Enhanced Operating System Security Through
Efficient and Fine-grained Address Space Randomization

Cristiano Giuffrida
Vrije Universiteit, Amsterdam
giuffrida@cs.vu.nl

Anton Kuijsten
Vrije Universiteit, Amsterdam
akuijst@cs.vu.nl

Andrew S. Tanenbaum
Vrije Universiteit, Amsterdam
ast@cs.vu.nl

Abstract

In recent years, the deployment of many application-
level countermeasures against memory errors and the in-
creasing number of vulnerabilities discovered in the ker-
nel has fostered a renewed interest in kernel-level ex-
ploitation. Unfortunately, no comprehensive and well-
established mechanism exists to protect the operating
system from arbitrary attacks, due to the relatively new
development of the area and the challenges involved.

In this paper, we propose the first design for fine-
grained address space randomization (ASR) inside the
operating system (OS), providing an efficient and com-
prehensive countermeasure against classic and emerg-
ing attacks, such as return-oriented programming. To
motivate our design, we investigate the differences with
application-level ASR and find that some of the well-
established assumptions in existing solutions are no
longer valid inside the OS; above all, perhaps, that infor-
mation leakage becomes a major concern in the new con-
text. We show that our ASR strategy outperforms state-
of-the-art solutions in terms of both performance and se-
curity without affecting the software distribution model.
Finally, we present the first comprehensive live reran-
domization strategy, which we found to be particularly
important inside the OS. Experimental results demon-
strate that our techniques yield low run-time perfor-
mance overhead (less than 5% on average on both SPEC
and syscall-intensive benchmarks) and limited run-time
memory footprint increase (around 15% during the exe-
cution of our benchmarks). We believe our techniques
can greatly enhance the level of OS security without
compromising the performance and reliability of the OS.

1 Introduction

Kernel-level exploitation is becoming increasingly pop-
ular among attackers, with local and remote exploits sur-
facing for Windows [5], Linux [2], Mac OS X [3], BSD

variants [37, 4], and embedded operating systems [25].
This emerging trend stems from a number of important
factors. First, the deployment of defense mechanisms for
user programs has made application-level exploitation
more challenging. Second, the kernel codebase is com-
plex, large, and in continuous evolution, with many new
vulnerabilities inevitably introduced over time. Studies
on the Linux kernel have shown that its codebase has
more than doubled with a steady fault rate over the past
10 years [55] and that many known but potentially crit-
ical bugs are at times left unpatched indefinitely [29].
Third, the number of targets in large-scale attacks is sig-
nificant, with a plethora of internet-connected machines
running the same kernel version independently of the
particular applications deployed. Finally, an attacker has
generally more opportunities inside the OS, for example
the ability to disable in-kernel defense mechanisms or
the option to execute shellcode at the user level (similar
to classic application-level attacks) or at the kernel level
(approach taken by kernel rootkits).

Unfortunately, existing OS-level countermeasures fail
to provide a comprehensive defense mechanism against
generic memory error exploits. A number of techniques
aim to thwart code injection attacks [65, 28, 60], but
are alone insufficient to prevent return-into-kernel-text
attacks [56] and return-oriented programming (ROP) in
general [35]. Other approaches protect kernel hooks or
generally aim at preserving control-flow integrity [69,
74, 44, 57]. Unfortunately, this does not prevent attack-
ers from tampering with noncontrol data, which may lead
to privilege escalation or allow other attacks. In addi-
tion, most of these techniques incur high overhead and
require virtualization support, thus increasing the size of
the trusted computing base (TCB).

In this paper, we explore the benefits of address space
randomization (ASR) inside the operating system and
present the first comprehensive design to defend against
classic and emerging OS-level attacks. ASR is a well-
established defense mechanism to protect user programs

against memory error exploits [12, 39, 14, 72, 73]; all
the major operating systems include some support for it
at the application level [1, 68]. Unfortunately, the OS it-
self is typically not randomized at all. Recent Windows
releases are of exception, as they at least randomize the
base address of the text segment [56]. This randomiza-
tion strategy, however, is wholly insufficient to counter
many sophisticated classes of attacks (e.g., noncontrol
data attacks) and is extremely vulnerable to information
leakage, as better detailed later. To date, no strategy has
been proposed for comprehensive and fine-grained OS-
level ASR. Our effort lays the ground work to fill the gap
between application-level ASR and ASR inside the OS,
identifying the key requirements in the new context and
proposing effective solutions to the challenges involved.

Contributions. The contributions of this paper are
threefold. First, we identify the challenges and the key
requirements for a comprehensive OS-level ASR solu-
tion. We show that a number of assumptions in exist-
ing solutions are no longer valid inside the OS, due to
the more constrained environment and the different at-
tack models. Second, we present the first design for fine-
grained ASR for operating systems. Our approach ad-
dresses all the challenges considered and improves ex-
isting ASR solutions in terms of both performance and
security, especially in light of emerging ROP-based at-
tacks. In addition, we consider the application of our de-
sign to component-based OS architectures, presenting a
fully fledged prototype system and discussing real-world
applications of our ASR technique. Finally, we present
the first generic live rerandomization strategy, particu-
larly central in our design. Unlike existing techniques,
our strategy is based on run-time state migration and can
transparently rerandomize arbitrary code and data with
no state loss. In addition, our rerandomization code runs
completely sandboxed. Any run-time error at rerandom-
ization time simply results in restoring normal execution
without endangering the reliability of the OS.

2 Background

The goal of address space randomization is to ensure that
code and data locations are unpredictable in memory,
thus preventing attackers from making precise assump-
tions on the memory layout. To this end, fine-grained
ASR implementations [14, 39, 72] permute the order of
individual memory objects, making both their addresses
and their relative positioning unpredictable. This strat-
egy attempts to counter several classes of attacks.
Attacks on code pointers. The goal of these attacks
is to override a function pointer or the return address on
the stack with attacker-controlled data and subvert con-
trol flow. Common memory errors that can directly al-
low these attacks are buffer overflows, format bugs, use-

after-free, and uninitialized reads. In the first two cases,
the attack requires assumptions on the relative distance
between two memory objects (e.g., a vulnerable buffer
and a target object) to locate the code pointer correctly.
In the other cases, the attack requires assumptions on the
relative alignment between two memory objects in case
of memory reuse. For example, use-after-free attacks re-
quire control over the memory allocator to induce the al-
location of an object in the same location of a freed ob-
ject still pointed by a vulnerable dangling pointer. Simi-
larly, attacks based on stack/heap uninitialized reads re-
quire predictable allocation strategies to reuse attacker-
controlled data from a previously deallocated object. All
these attacks also rely on the absolute location of the
code the attacker wants to execute, in order to adjust the
value of the code pointer correctly. In detail, code in-
jection attacks rely on the location of attacker-injected
shellcode. Attacks using return-into-libc strategies [22]
rely on the location of a particular function—or multiple
functions in case of chained return-into-libc attacks [52].
More generic attacks based on return-oriented program-
ming [66] rely on the exact location of a number of gad-
gets statically extracted from the program binary.
Attacks on data pointers. These attacks commonly
exploit one of the memory errors detailed above to over-
ride the value of a data pointer and perform an arbitrary
memory read/write. Arbitrary memory reads are often
used to steal sensitive data or information on the mem-
ory layout. Arbitrary memory writes can also be used
to override particular memory locations and indirectly
mount other attacks (e.g., control-flow attacks). Attacks
on data pointers require the same assumptions detailed
for code pointers, except the attacker needs to locate the
address of some data (instead of code) in memory.
Attacks on nonpointer data. Attacks in this category
target noncontrol data containing sensitive information
(e.g., uid). These attacks can be induced by an arbitrary
memory write or commonly originate from buffer over-
flows, format bugs, integer overflows, signedness bugs,
and use-after-free memory errors. While unable to di-
rectly subvert control flow, they can often lead to priv-
ilege escalation or indirectly allow other classes of at-
tacks. For example, an attacker may be able to perform
an arbitrary memory write by corrupting an array index
which is later used to store attacker-controlled data. In
contrast to all the classes of attacks presented earlier,
nonpointer data attacks only require assumptions on the
relative distance or alignment between memory objects.

3 Challenges in OS-level ASR

This section investigates the key challenges in OS-level
address space randomization, analyzing the differences
with application-level ASR and reconsidering some of

the well-established assumptions in existing solutions.
We consider the following key issues in our analysis.

WoX. A number of ASR implementations comple-
ment their design with W@X protection [68]. The idea
is to prevent code injection attacks by ensuring that no
memory page is ever writable and executable at the same
time. Studies on the Linux kernel [45], however, have
shown that enforcing the same property for kernel pages
introduces implementation issues and potential sources
of overhead. In addition, protecting kernel pages in a
combined user/kernel address space design does not pre-
vent an attacker from placing shellcode in an attacker-
controlled application and redirecting execution there.
Alternatively, the attacker may inject code into WAX re-
gions with double mappings that operating systems share
with user programs (e.g., vsyscall page on Linux) [56].

Instrumentation. Fine-grained ASR techniques typi-
cally rely on code instrumentation to implement a com-
prehensive randomization strategy. For example, Bhak-
tar et al. [14] heavily instrument the program to cre-
ate self-randomizing binaries that completely rearrange
their memory layout at load time. While complex in-
strumentation strategies have been proven practical for
application-level solutions, their applicability to OS-
level ASR raises a number of important concerns. First,
heavyweight instrumentation may introduce significant
run-time overhead which is ill-affordable for the OS.
Second, these load-time ASR strategies are hardly sus-
tainable, given the limited operations they would be able
to perform and the delay they would introduce in the boot
process. Finally, complex instrumentation may introduce
a lot of untrusted code executed with no restriction at
runtime, thus endangering the reliability of the OS or
even opening up new opportunities for attack.

Run-time constraints. There are a number of con-
straints that significantly affect the design of an OS-level
ASR solution. First, making strong assumptions on the
memory layout at load time simplifies the boot process.
This means that some parts of the operating system may
be particularly hard to randomize. In addition, existing
rerandomization techniques are unsuitable for operating
systems. They all assume a stateless model in which a
program can gracefully exit and restart with a fresh reran-
domized layout. Loss of critical state is not an option for
an OS and neither is a full reboot, which introduces unac-
ceptable downtime and loss of all the running processes.
Luckily, similar restrictions also apply to an adversary
determined to attack the system. Unlike application-level
attacks, an exploit needs to explicitly recover any critical
memory object corrupted during the attack or the system
will immediately crash after successful exploitation.

Attack model. Kernel-level exploitation allows for a
powerful attack model. Both remote and local attacks are
possible, although local attacks mounted from a compro-

mised or attacker-controlled application are more com-
mon. In addition, many known attack strategies become
significantly more effective inside the OS. For exam-
ple, noncontrol data attacks are more appealing given the
amount of sensitive data available. In addition, ROP-
based control-flow attacks can benefit from the large
codebase and easily find all the necessary gadgets to per-
form arbitrary computations, as demonstrated in [35].
This means that disclosing information on the locations
of “useful” text fragments can drastically increase the
odds of successful ROP-based attacks. Finally, the par-
ticular context opens up more attack opportunities than
those detailed in Section 2. First, unchecked pointer
dereferences with user-provided data—a common vul-
nerability in kernel development [18]—can become a
vector of arbitrary kernel memory reads/writes with no
assumption on the location of the original pointer. Sec-
ond, the combined user/kernel address space design used
in most operating systems may allow an attacker control-
ling a user program to directly leverage known applica-
tion code or data for the attack. The conclusion is that
making both the relative positioning between any two
memory objects and the location of individual objects
unpredictable becomes much more critical inside the OS.

Information leakage. Prior work on ASR has of-
ten dismissed information leakage attacks—in which the
attacker is able to acquire information about the inter-
nal memory layout and carry out an exploit in spite of
ASR—as relatively rare for user applications [14, 67,
72]. Unfortunately, the situation is completely differ-
ent inside the OS. First, there are several possible entry
points and a larger leakage surface than user applications.
For instance, a recent study has shown that uninitialized
data leading to information leakage is the most common
vulnerability in the Linux kernel [18]. In addition, the
common combined user/kernel address space design al-
lows arbitrary memory writes to easily become a vector
of information leakage for attacker-controlled applica-
tions. To make things worse, modern operating systems
often disclose sensitive information to unprivileged ap-
plications voluntarily, in an attempt to simplify deploy-
ment and debugging. An example is the /proc file sys-
tem, which has already been used in several attacks that
exploit the exposed information in conventional [56] and
nonconventional [76] ways. For instance, the /proc im-
plementation on Linux discloses details on kernel sym-
bols (i.e., /proc/kallsyms) and slab-level memory in-
formation (i.e., /proc/slabinfo). To compensate for
the greater chances of information leakage, ASR at the
finest level of granularity possible and continuous reran-
domization become both crucial to minimize the knowl-
edge acquired by an attacker while probing the system.

Brute forcing. Prior work has shown that many ex-
isting application-level ASR solutions are vulnerable to

simple brute-force attacks due to the low randomization
entropy of shared libraries [67]. The attack presented
in [67] exploits the crash recovery capabilities of the
Apache web server and simply reissues the same return-
into-libc attack with a newly guessed address after ev-
ery crash. Unlike many long-running user applications,
crash recovery cannot be normally taken for granted in-
side the OS. An OS crash is normally fatal and imme-
diately hinders the attack while prompting the attention
of the system administrator. Even assuming some crash
recovery mechanism inside the OS [43, 27], brute-force
attacks need to be far less aggressive to remain unno-
ticed. In addition, compared to remote clients hiding
their identity and mounting a brute-force attack against
a server application, the source of an OS crash can be
usually tracked down. In this context, blacklisting the
offensive endpoint/request becomes a realistic option.

4 A design for OS-level ASR

Our fine-grained ASR design requires confining differ-
ent OS subsystems into isolated event-driven compo-
nents. This strategy is advantageous for a number of
reasons. First, this enables selective randomization and
rerandomization for individual subsystems. This is im-
portant to fully control the randomization and rerandom-
ization process with per-component ASR policies. For
example, it should be possible to retune the rerandomiza-
tion frequency of only the virtual filesystem after notic-
ing a performance impact under particular workloads.
Second, the event-driven nature of the OS components
greatly simplifies synchronization and state management
at rerandomization time. Finally, direct intercomponent
control transfer can be more easily prevented, thus limit-
ing the freedom of a control-flow attack and reducing the
number of potential ROP gadgets by design.

Our ASR design is currently implemented by a
microkernel-based OS architecture running on top of the
MINIX 3 microkernel [32]. The OS components are con-
fined in independent hardware-isolated processes. Hard-
ware isolation is beneficial to overcome the problems of
a combined user/kernel address space design introduced
earlier and limit the options of an attacker. In addition,
the MMU-based protection can be used to completely
sandbox the execution of the untrusted rerandomization
code. Our ASR design, however, is not bound to its cur-
rent implementation and has more general applicability.

For example, our ASR design can be directly applied
to other component-based OS architectures, including
microkernel-based architectures used in common em-
bedded OSes—such as L4 [41], Green Hills Integrity [7],
and QNX [33]—and research operating systems using
software-based component isolation schemes—such as
Singularity [36]. Commodity operating systems, in con-

[[User applications]]

/(Proc Mgr) (Mem Mgr) (Sched))

1 rand()

(Storage) (Network) (}”33‘1‘-’(RIIM)

I rand()

‘@isk DriveD (Nlc Driver) @BD DriveD C .)

n I
Microkernel !

Figure 1: The OS architecture for our ASR design.

trast, are traditionally based on monolithic architectures
and lack well-defined component boundaries. While this
does not prevent adoption of our randomization tech-
nique, it does eliminate the ability to selectively reran-
domize specific parts of the OS, yielding poorer flexibil-
ity and longer rerandomization times to perform whole-
OS state migration. Encouragingly, there is an emerging
trend towards allowing important commodity OS subsys-
tems to run as isolated user-space processes, including
filesystems [6] and user-mode drivers in Windows [50]
or Linux [16]. Our end-to-end design can be used to pro-
tect all these subsystems as well as other operating sys-
tem services from several classes of attacks. Note that,
while running in user space, operating system services
are typically trusted by the kernel and allowed to per-
form a variety of critical system operations. An example
is udev, the device manager for the Linux kernel, which
has already been target of several different exploits [17].
Finally, given the appropriate run-time support, our de-
sign could also be used to improve existing application-
level ASR techniques and offer better protection against
memory error exploits for generic user-space programs.

Figure 1 shows the OS architecture implementing our
ASR design. At the heart lies the microkernel, providing
only IPC functionalities and low-level resource manage-
ment. All the other core subsystems are confined into
isolated OS processes, including drivers, memory man-
agement, process management, scheduling, storage and
network stack. In our design, all the OS processes (and
the microkernel) are randomized using a link-time trans-
formation implemented with the LLVM compiler frame-
work [42]. The transformation operates on prelinked
LLVM bitcode to avoid any lengthy recompilation pro-
cess at runtime. Our link-time strategy avoids the need
for fine-grained load-time ASR, eliminating delays in the
boot process and the run-time overhead introduced by the
indirection mechanisms adopted [14]. In addition, this
strategy reduces the instrumentation complexity to the
bare minimum, with negligible amount of untrusted code
exposed to the runtime. The vast majority of our ASR

transformations are statically verified by LLVM at the
bitcode level. As a result, our approach is also safer than
prior ASR solutions relying on binary rewriting [39].

As pointed out in [14], load-time ASR has a clear
advantage over alternative strategies: the ability to cre-
ate self-randomizing binaries distributed to every user in
identical copies, thus preserving today’s software distri-
bution model. Fortunately, our novel live rerandomiza-
tion strategy can fully address this concern. In our model,
every user receives the same (unrandomized) binary ver-
sion of the OS, as well as the prelinked LLVM bitcode
of each OS component. The bitcode files are stored in a
protected disk partition inaccessible to regular user pro-
grams, where a background process periodically creates
new randomized variants of the OS components using
our link-time ASR transformation (and any valid LLVM
backend to generate the final binary). The generated vari-
ants are consumed by the randomization manager (RM),
a special component that periodically rerandomizes ev-
ery OS process (including itself). Unlike all the existing
solutions, rerandomization is applied transparently on-
line, with no system reboot or downtime required. The
conclusion is that we can directly leverage our live reran-
domization technique to randomize the original OS bi-
nary distributed to the user. This strategy retains the ad-
vantages of link-time ASR without affecting the software
distribution model.

When the OS boots up for the first time, a full reran-
domization round is performed to relinquish any unran-
domized code and data present in the original binary. To
avoid slowing down the first boot process, an option is
to perform the rerandomization lazily, for example re-
placing one OS process at the time at regular time in-
tervals. After the first round, we continuously perform
live rerandomization of individual OS components in the
background. Currently, the microkernel is the only piece
of the OS that does not support live rerandomization.
Rerandomization can only be performed after a full re-
boot, with a different variant loaded every time. While it
is possible to extend our current implementation to sup-
port live rerandomization for the microkernel, we believe
this should be hardly a concern. Microkernel implemen-
tations are typically in the order of 10kLOC, a vastly
smaller TCB than most hypervisors used for security en-
forcement, as well as a candidate for formal verification,
as demonstrated in prior work [40].

Our live rerandomization strategy for an OS process,
in turn, is based on run-time state migration, with the en-
tire execution state transparently transferred to the new
randomized process variant. The untrusted rerandomiza-
tion code runs completely sandboxed in the new variant
and, in case of run-time errors, the old variant immedi-
ately resumes execution with no disruption of service or
state loss. To support live migration, we rely on another

LLVM link-time transformation to embed relocation and
type information into the final process binary. This infor-
mation is exposed to the runtime to accurately introspect
the state of the two variants and migrate all the random-
ized memory objects in a layout-independent way.

5 ASR transformations

The goal of our link-time ASR transformation is to ran-
domize all the code and data for every OS component.
Our link-time strategy minimizes the time to produce
new randomized OS variants on the deployment plat-
form and automatically provides randomization for the
program and all the statically linked libraries. Our trans-
formation design is based on five key principles: (i) min-
imal performance impact; (ii) minimal amount of un-
trusted code exposed to the runtime; (iii) architecture-
independence; (iv) no restriction on compiler optimiza-
tions; (v) maximum randomization granularity possible.
The first two principles are particularly critical for the
OS, as discussed earlier. Architecture-independence en-
hances portability and eliminates the need for complex
binary rewriting techniques. The fourth principle dictates
compiler-friendly strategies, for example avoiding indi-
rection mechanisms used in prior solutions [12], which
inhibit a number of standard optimizations (e.g., inlin-
ing). Eliminating the need for indirection mechanisms
is also important for debuggability reasons. Our trans-
formations are all debug-friendly, as they do not signif-
icantly change the code representation—only allocation
sites are transformed to support live rerandomization, as
detailed later—and preserve the consistency of symbol
table and stack information. Finally, the last principle is
crucial to provide lower predictability and better security
than existing techniques.

Traditional ASR techniques [1, 68, 12] focus on ran-
domizing the base address of code and data regions. This
strategy is ineffective against all the attacks that make
assumptions only about relative distances/alignments be-
tween memory objects, is prone to brute forcing [67], and
is extremely vulnerable to information leakage. For in-
stance, many examples of application-level information
leakage have emerged on Linux over the years, and expe-
rience shows that, even by acquiring minimal knowledge
on the memory layout, an attacker can completely bypass
these basic ASR techniques [24].

To overcome these limitations, second-generation
ASR techniques [14, 39, 72] propose fine-grained strate-
gies to permute individual memory objects and random-
ize their relative distances/alignments. While certainly
an improvement over prior techniques, these strategies
are still vulnerable to information leakage, raising seri-
ous concerns on their applicability at the OS level. Un-
like traditional ASR techniques, these strategies make it

normally impossible for an attacker to make strong as-
sumptions on the locations of arbitrary memory objects
after learning the location of a single object. They are
completely ineffective, however, in inhibiting precise as-
sumptions on the layout of the leaked object itself. This
is a serious concern inside the OS, where information
leakage is the norm rather than the exception.

To address all the challenges presented, our ASR
transformation is implemented by an LLVM link-time
pass which supports fine-grained randomization of both
the relative distance/alignment between any two memory
objects and the internal layout of individual memory ob-
jects. We now present our transformations in detail and
draw comparisons with state-of-the-art techniques.

Code randomization. The code-transformation pass
performs three primary tasks. First, it enforces a ran-
dom permutation of all the program functions. In LLVM,
this is possible by shuffling the symbol table in the in-
tended order and setting the appropriate linkage to pre-
serve the permutation at code generation time. Second, it
introduces (configurable) random-sized padding before
the first function and between any two functions in the
bitcode, making the layout even more unpredictable. To
generate the padding, we create dummy functions with a
random number of instructions and add them to the sym-
bol table in the intended position. Thanks to demand
paging, even very large padding sizes do not significantly
increase the run-time physical memory usage. Finally,
unlike existing ASR solutions, we randomize the inter-
nal layout of every function.

To randomize the function layout, an option is to per-
mute the basic blocks and the instructions in the function.
This strategy, however, would hinder important compiler
optimizations like branch alignment [75] and optimal in-
struction scheduling [49]. Nonoptimal placements can
result in poor instruction cache utilization and inadequate
instruction pipelining, potentially introducing significant
run-time overhead. To address this challenge, our pass
performs basic block shifting, injecting a dummy basic
block with a random number of instructions at the top of
every function. The block is never executed at runtime
and simply skipped over, at the cost of only one addi-
tional jump instruction. Note that the order of the origi-
nal instructions and basic blocks is left untouched, with
no noticeable impact on run-time performance. The off-
set of every instruction with respect to the address of the
function entry point is, however, no longer predictable.

This strategy is crucial to limit the power of an attacker
in face of information leakage. Suppose the attacker ac-
quires knowledge on the absolute location of a number of
kernel functions (e.g., using /proc/kallsyms). While
return-into-kernel-text attacks for these functions are still
conceivable (assuming the attacker can subvert control
flow), arbitrary ROP-based computations are structurally

prevented, since the location of individual gadgets is no
longer predictable. While the dummy basic block is in a
predictable location, it is sufficient to cherrypick its in-
structions to avoid giving rise to any new useful gadget.
It is easy to show that a sequence of nop instructions does
not yield any useful gadget on the x86 [54], but other
strategies may be necessary on other architectures.

Static data randomization. The data-transformation
pass randomly permutes all the static variables and read-
only data on the symbol table, as done before for func-
tions. We also employ the same padding strategy, except
random-sized dummy variables are used for the padding.
Buffer variables are also separated from other variables
to limit the power of buffer overflows. In addition, unlike
existing ASR solutions, we randomize the internal layout
of static data, when possible.

All the aggregate types in the C programming lan-
guage are potential candidates for layout randomization.
In practice, there are a number of restrictions. First, the
order of the elements in an array cannot be easily ran-
domized without changing large portions of the code and
resorting to complex program analysis techniques that
would still fail in the general case. Even when possi-
ble, the transformation would require indirection tables
that translate many sequential accesses into random array
accesses, sensibly changing the run-time cache behav-
ior and introducing overhead. Second, unions are cur-
rently not supported natively by LLVM and randomizing
their layout would introduce unnecessary complications,
given their rare occurrence in critical system data struc-
tures and their inherent ambiguity that already weakens
the assumptions made by an attacker. Finally, packed
structs cannot be randomized, since the code makes
explicit assumptions on their internal layout.

In light of these observations, our transformation fo-
cuses on randomizing the layout of regular struct
types, which are pervasively used in critical system data
structures. The layout randomization permutes the order
of the struct members and adds random-sized padding
between them. To support all the low-level programming
idioms allowed by C, the type transformations are oper-
ated uniformly for all the static and dynamic objects of
the same struct type. To deal with code which treats
nonpacked structs as implicit unions through pointer
casting, our transformation pass can be instructed to de-
tect unsafe pointer accesses and refrain from randomiz-
ing the corresponding struct types.

Layout randomization of system data structures is im-
portant for two reasons. First, it makes the relative dis-
tance/alignment between two struct members unpre-
dictable. For example, an overflow in a buffer allocated
inside a struct cannot make precise assumptions about
which other members will be corrupted by the overflow.
Second, this strategy is crucial to limit the assumptions

of an attacker in face of information leakage. Suppose an
attacker is armed with a reliable arbitrary kernel mem-
ory write generated by a missing pointer check. If the
attacker acquires knowledge on the location of the data
structure holding user credentials (e.g., struct credon
Linux) for an attacker-controlled unprivileged process,
the offset of the uid member is normally sufficient to
surgically override the user ID and escalate privileges.
All the existing ASR solutions fail to thwart this attack.
In contrast, our layout randomization hinders any precise
assumptions on the final location of the uid. While brute
forcing is still possible, this strategy will likely compro-
mise other data structures and trigger a system crash.

Stack randomization. The stack randomization pass
performs two primary tasks. First, it randomizes the base
address of the stack to make the absolute location of any
stack object unpredictable. In LLVM, this can be ac-
complished by creating a dummy alloca instruction—
which allocates memory on the stack frame of the cur-
rently executing function—at the beginning of the pro-
gram, which is later expanded by the code generator.
This strategy provides a portable and efficient mecha-
nism to introduce random-sized padding for the initial
stack placement. Second, the pass randomizes the rel-
ative distance/alignment between any two objects allo-
cated on the stack. Prior ASR solutions have either ig-
nored this issue [39, 72] or relied on a shadow stack and
dynamically generated random padding [14], which in-
troduces high run-time overhead (10% in the worst case
in their experiments for user applications).

To overcome these limitations, our approach is com-
pletely static, resulting in good performance and code
which is statically verified by LLVM. In addition, this
strategy makes it realistic to use cryptographically ran-
dom number generators (e.g., /dev/random) instead
of pseudo-random generators to generate the padding.
While care should be taken not to exhaust the random-
ness pool used by other user programs, this approach
yields much stronger security guarantees than pseudo-
random generators, like recent attacks on ASR demon-
strate [24]. Our transformations can be configured to use
cryptographically random number generators for code,
data, and stack instrumentation, while, similar to prior
approaches [14], we always resort to pseudo-random
generation in the other cases for efficiency reasons.

When adopting a static stack padding strategy, great
care should be taken not to degrade the quality of the
randomization and the resulting security guarantees. To
randomize the relative distances between the objects in
a stack frame, we permute all the alloca instructions
used to allocate local variables (and function parame-
ters). The layout of every stack-allocated struct is also
randomized as described earlier. Nonbuffer variables are
all grouped and pushed to the top of the frame, close

1 (7

Stack frame New stack frame

Previous frame Previous frame

Parameters M
Return address

Saved base pointer

Local variables

l l l Buffer variables

. J (. J

Parameters
Return address
Saved base pointer
Nonbuffer variables

>

Figure 2: The transformed stack layout.

to the base pointer and the return address. Buffer vari-
ables, in turn, are pushed to the bottom, with random-
sized padding (i.e., dummy alloca instructions) added
before and between them. This strategy matches our re-
quirements while allowing the code generator to emit a
maximally efficient function prologue.

To randomize the relative alignment between any two
stack frame allocations of the same function (and thus
the relative alignment between their objects), we create
random-sized padding before every function call. Albeit
static, this strategy faithfully emulates dynamically gen-
erated padding, given the level of unpredictability intro-
duced across different function calls. Function calls in-
side loops are an exception and need to be handled sepa-
rately. Loop unrolling is a possible solution, but enforc-
ing this optimization in the general case may be expen-
sive. Our approach is instead to precompute N random
numbers for each loop, and cycle through them before
each function call. Figure 2 shows the randomized stack
layout generated by our transformation.

Dynamic data randomization. Our operating sys-
tem provides malloc/mmap-like abstractions to every
OS process. Ideally, we would like to create memory al-
location wrappers to accomplish the following tasks for
both heap and memory-mapped regions: (i) add random-
sized padding before the first allocated object; (ii) add
random-sized padding between objects; (iii) permute the
order of the objects. For memory-mapped regions, all
these strategies are possible and can be implemented ef-
ficiently [39]. We simply need to intercept all the new
allocations and randomly place them in any available lo-
cation in the address space. The only restriction is for
fixed OS component-specific virtual memory mappings,
which cannot be randomized and need to be explicitly
reserved at initialization time.

For heap allocations, we instrument the code to ran-
domize the heap base address and introduce random-
sized padding at allocation time. Permuting heap ob-
jects, however, is normally impractical in standard allo-
cation schemes. While other schemes are possible—for
example, the slab allocator in our memory manager ran-
domizes block allocations within a slab page—state-of-

the-art allocators that enforce a fully and globally ran-
domized heap organization incur high overhead (117%
worst-case performance penalty) [53]. This limitation is
particularly unfortunate for kernel Heap Feng Shui at-
tacks [25], which aim to carefully drive the allocator into
a deterministic exploitation-friendly state. While random
interobject padding makes these attacks more difficult, it
is possible for an attacker to rely on more aggressive ex-
ploitation strategies (i.e., heap spraying [59]) in this con-
text. Suppose an attacker can drive the allocator into a
state with a very large unallocated gap followed by only
two allocated buffers, with the latter vulnerable to under-
flow. Despite the padding, the attacker can induce a large
underflow to override all the traversed memory locations
with the same target value. Unlike stack-based over-
flows, this strategy could lead to successful exploitation
without the attacker worrying about corrupting other crit-
ical data structures and crashing the system. Unlike prior
ASR solutions, however, our design can mitigate these
attacks by periodically rerandomizing every OS process
and enforcing a new unpredictable heap permutation. We
also randomize (and rerandomize) the layout of all the
dynamically allocated structs, as discussed earlier.

Kernel modules randomization. Traditional load-
able kernel module designs share many similarities—
and drawbacks, from a security standpoint—with
application-level shared libraries. The attack presented
in [61] shows that the data structures used for dynamic
linking are a major source of information leakage and
can be easily exploited to bypass any form of random-
ization for shared libraries. Prior work on ASR [67, 14]
discusses the difficulties of reconciling sharing with fine-
grained randomization. Unfortunately, the inability to
perform fine-grained randomization on shared libraries
opens up opportunities for attacks, including probing,
brute forcing [67], and partial pointer overwrites [23].

To overcome these limitations, our design allows only
statically linked libraries for OS components and inhibits
any form of dynamic linking inside the operating sys-
tem. Note that this requirement does by no means limit
the use of loadable modules, which our design simply
isolates in independent OS processes following the same
distribution and deployment model of the core operating
system. This approach enables sharing and lazy load-
ing/unloading of individual modules with no restriction,
while allowing our rerandomization strategy to random-
ize (and rerandomize) every module in a fine-grained
manner. In addition, the process-based isolation prevents
direct control-flow and data-flow transfer between a par-
ticular module and the rest of the OS (i.e., the access is
always IPC- or capability-mediated). Finally, this strat-
egy can be used to limit the power of untrusted loadable
kernel modules, an idea also explored in prior work on
commodity operating systems [16].

6 Live rerandomization

Our live rerandomization design is based on novel auto-
mated run-time migration of the execution state between
two OS process variants. The variants share the same op-
erational semantics but have arbitrarily different memory
layouts. To migrate the state from one variant to the other
at runtime, we need a way to remap all the corresponding
global state objects. Our approach is to transform the bit-
code with another LLVM link-time pass, which embeds
metadata information into the binary and makes run-time
state introspection and automated migration possible.

Metadata transformation. The goal of our pass is to
record metadata describing all the static state objects in
the program and instrument the code to create metadata
for dynamic state objects at runtime. Access to these ob-
jects at the bitcode level is granted by the LLVM API. In
particular, the pass creates static metadata nodes for all
the static variables, read-only data, and functions whose
address is taken. Each metadata node contains three key
pieces of information: node ID, relocation information,
and type. The node ID provides a layout-independent
mechanism to map corresponding metadata nodes across
different variants. This is necessary because we random-
ize the order and the location of the metadata nodes (and
write-protect them) to hinder new opportunities for at-
tacks. The relocation information, in turn, is used by our
run-time migration component to locate every state ob-
ject in a particular variant correctly. Finally, the type is
used to introspect any given state object and migrate the
contained elements (e.g., pointers) correctly at runtime.

To create a metadata node for every dynamic state ob-
ject, our pass instruments all the memory allocation and
deallocation function calls. The node is stored before the
allocated data, with canaries to protect the in-band meta-
data against buffer overflows. All the dynamic metadata
nodes are stored in a singly-linked list, with each node
containing relocation information, allocation flags, and a
pointer to an allocation descriptor. Allocation flags de-
fine the nature of a particular allocation (e.g., heap) to
reallocate memory in the new variant correctly at migra-
tion time. The allocation descriptors, in turn, are stat-
ically created by the pass for all the allocation sites in
the program. A descriptor contains a site ID and a type.
Similar to the node ID, the site ID provides a layout-
independent mechanism to map corresponding allocation
descriptors (also randomized and write-protected) across
different variants. The type, in contrast, is determined
via static analysis and used to correctly identify the run-
time type of the allocated object (e.g., a char type with
an allocation of 7 bytes results in a [7 x char] run-
time type). Our static analysis can automatically identify
the type for all the standard memory allocators and cus-
tom allocators that use simple allocation wrappers. More

advanced custom allocation schemes, e.g., region-based
memory allocators [11], require instructing the pass to
locate the proper allocation wrappers correctly.

The rerandomization process. Our OS processes
follow a typical event-driven model based on message
passing. At startup, each process initializes its state and
immediately jumps to the top of a long-running event-
processing loop, waiting for IPC messages to serve. Each
message can be processed in cooperation with other OS
processes or the microkernel. The message dispatcher,
isolated in a static library linked to every OS process,
can transparently intercept two special system messages
sent by the randomization manager (RM): sync and init.
These messages cannot be spoofed by other processes
because the IPC is mediated by the microkernel.

The rerandomization process starts with RM loading
a new variant in memory, in cooperation with the mi-
crokernel. Subsequently, it sends a sync message to the
designated OS process, which causes the current variant
to immediately block in a well-defined execution point.
A carefully selected synchronization point (e.g., in main)
eliminates the need to instrument transient stack regions
to migrate additional state, thus reducing the run-time
overhead and simplifying the rerandomization strategy.
The new variant is then allowed to run and delivered an
init message with detailed instructions. The purpose of
the init message is to discriminate between fresh start and
rerandomization init. In the latter scenario, the message
contains a capability created by the microkernel, allow-
ing the new variant to read arbitrary data and metadata
from the old variant. The capability is attached to the IPC
endpoint of the designated OS process and can thus only
be consumed by the new variant, which by design inher-
its the old variant’s endpoint. This is crucial to transpar-
ently rerandomize individual operating system processes
without exposing the change to the rest of the system.

When the rerandomization init message is intercepted,
the message dispatcher requests the run-time migration
component to initialize the new variant properly and then
jumps to the top of the event-processing loop to resume
execution. This preserves the original control flow se-
mantics and transparently restores the correct execution
state. The migration component is isolated in a library
and runs completely sandboxed in the new variant. RM
monitors the execution for run-time errors (i.e., panics,
crashes, timeouts). When an error is detected, the new
variant is immediately cleaned up, while the old vari-
ant is given back control to resume execution normally.
When the migration completes correctly, in contrast, the
old variant is cleaned up, while the new variant resumes
execution with a rerandomized memory layout. We have
also implemented rerandomization for RM itself, which
only required some extra microkernel changes to detect
run-time errors and arbitrate control transfer between the

New variant

Old variant

Metadata Metadata migration@ Metadata
State I State migration@ State
__Code J| capabiity-based Code
/' IPC mechani

®
®|[syne

Figure 3: The rerandomization process.

CLEAN UP INIT DONE

if error then rollback

two variants. Our run-time error detection mechanism al-
lows for safe rerandomization without trusting the (com-
plex) migration code. Moreover, the reversibility of the
rerandomization process makes detecting semantic er-
rors in the migration code a viable option. For example,
one could transparently migrate the state from one vari-
ant to another, migrate it again to another instance of the
original variant, and then compare the results. Figure 3
depicts the proposed rerandomization process.

State migration. The migration starts by transferring
all the metadata from the old variant to a local cache in
the new variant. Our capability-based design allows the
migration code to locate a root metadata descriptor in the
old variant and recursively copy all the metadata nodes
and allocation descriptors to the new variant. To auto-
mate the metadata transfer, all the data structures copied
use a fixed and predetermined layout. At the end, both
the old and the new metadata are available locally, al-
lowing the code to arbitrarily introspect the state of the
two variants correctly. To automate the data transfer, we
map every old metadata node in the local cache with its
counterpart in the new variant. This is done by pairing
nodes by ID and carefully reallocating every old dynamic
state object in the new variant. Reallocations are per-
formed in random order, thus enforcing a new unpre-
dictable permutation of heap and memory-mapped re-
gions. An interesting side effect of the reallocation pro-
cess is the compaction of all the live heap objects, an op-
eration that reduces heap fragmentation over time. Our
reallocation strategy is indeed inspired by the way a com-
pacting garbage collector operates [70].

The mapping phase generates all the perfect pairs of
state objects in the two variants, ready for data migra-
tion. Note that paired state objects may not reflect the
same type or size, due to the internal layout rerandom-
ization. To transfer the data, the migration code intro-
spects every state object in the old variant by walking
its type recursively and examining each inner state ele-
ment found. Nonpointer elements are simply transferred
by value, while pointer elements require a more care-
ful transfer strategy. To deal with layout randomization,

each recursive step requires mapping the current state el-
ement to its counterpart (and location) in the new variant.
This can be easily accomplished because the old type and
the new type have isomorphic structures and only dif-
fer in terms of member offsets for randomized struct
types. For example, to transfer a struct variable with
3 primitive members, the migration code walks the orig-
inal struct type to locate all the members, computes
their offsets in the two variants, and recursively transfers
the corresponding data in the correct location.

Pointer migration. The C programming language al-
lows several programming constructs that make pointer
migration particularly challenging in the general case.
Our approach is to fully automate migration of all the
common cases and only delegate the undecidable cases
to the programmer. The first case to consider is a pointer
to a valid static or dynamic state object. When the pointer
points to the beginning of the object, we simply reini-
tialize the pointer with the address of the pointed object
in the new variant. Interior pointers (i.e., pointers into
the middle of an object) in face of internal layout reran-
domization require a more sophisticated strategy. Simi-
lar to our introspection strategy, we walk the type of the
pointed object and recursively remap the offset of the tar-
get element to its counterpart. This strategy is resilient
to arbitrary layout rerandomization and makes it easy to
reinitialize the pointer in the new variant correctly.

Another scenario of interest is a pointer which is as-
signed a special integer value (e.g., NULL or MAP_FAILED
(-1)). Our migration code can explicitly recognize spe-
cial ranges and transfer the corresponding pointers by
value. Currently, all the addresses in reserved memory
ranges (e.g., zero pages) are marked as special values.

In another direction, memory addresses or other
layout-specific information may be occasionally stored
in integer variables. This is, unfortunately, a case of un-
solvable ambiguity which cannot be automatically set-
tled without programmer assistance. To this end, we sup-
port annotations to mark “hidden” pointers in the code.

Pointers stored in unions are another case of un-
solvable ambiguity. Since C does not support tagged
unions, it is impossible to resolve these cases automat-
ically. In our experiments with OS code, unions with
pointers were the only case of ambiguity that required
manual intervention. Other cases are, however, possi-
ble. For example, any form of pointer encoding or ob-
fuscation [13] would require knowledge on the particu-
lar encoding to migrate pointers correctly. Other classes
of pointers—guard pointers, uninitialized pointers, dan-
gling pointers—are instead automatically handled in our
implementation. In the last two cases, the general strat-
egy is to try to transfer the pointer as a regular pointer,
and simply reinitialize it to NULL in the new variant
whenever our dynamic pointer analysis reports an error.

1.40

ASR instrumentation |
1.35 |ASR+ASRR instrumentation .

1.30

1.25

1.20

1.15

1.10

1.05

Normalized execution time

1.00 +

Figure 4: Execution time of the SPEC CPU 2600 bench-
marks and our devtools benchmark normalized against
the baseline (no OS/benchmark instrumentation).

7 Evaluation

We have implemented our ASR design on the MINIX 3
microkernel-based operating system [32], which already
guarantees process-based isolation for all the core oper-
ating system components. The OS is x86-based and ex-
poses a complete POSIX interface to user applications.
We have heavily modified and redesigned the original OS
to implement support for our ASR techniques for all the
possible OS processes. The resulting operating system
comprises a total of 20 OS processes (7 drivers and 13
servers), including process management, memory man-
agement, storage and network stack. Subsequently, we
have applied our ASR transformations to the system and
evaluated the resulting solution.

7.1 Performance

To evaluate the performance of our ASR technique, we
ported the C programs in the SPEC CPU 2006 bench-
mark suite to our prototype system. We also put together
a devtools macrobenchmark, which emulates a typical
syscall-intensive workload with the following operations
performed on the OS source tree: compilation, find,
grep, copying, and deleting. We performed repeated
experiments on a workstation equipped with a 12-core
1.9Ghz AMD Opteron “Magny-Cours” processor and
4GB of RAM, and averaged the results. All the OS code
and our benchmarks were compiled using Clang/LLVM
2.8 with -02 optimization level. To thoroughly stress the
system and identify all the possible bottlenecks, we in-
strumented both the OS and the benchmarks using the
same transformation in each run. The default padding
strategy used in the experiments extends the memory oc-
cupancy of every state object or struct member by 0-
30%, similar to the default values suggested in [14]. Fig-
ure 4 depicts the resulting execution times.

1000

ILR Coverage: 0% s
— 900 ILR Coverage: 50%
E 800 ILR Coverage: 100% s
[}
£ 700
T 600
o
% 500
N
€ 400
<}
2 300
o
o} 200 +
o
100
TN 4 1 9t A % %
o S o Ry o Yo, Ry
Vs P Vs P)
ALL SERVERS DRIVERS

Figure 5: Rerandomization time against coverage of in-
ternal layout rerandomization.

The ASR instrumentation alone introduces 0.9% run-
time overhead on average on SPEC benchmarks and
1.1% on devtools. The average run-time overhead in-
creases to 4.8% and 1.6% respectively with ASRR in-
strumentation. The maximum overhead reported across
all the benchmarks was found for perlbench (36%
ASRR overhead). Profiling revealed this was caused
by a massive amount of dynamic memory allocations.
This test case pinpoints a potential source of overhead
introduced by our technique, which, similar to prior ap-
proaches, relies on memory allocation wrappers to in-
strument dynamically allocated objects. Unlike prior
comprehensive solutions, however, our run-time over-
head is barely noticeable on average (1.9% for ASRR
without perlbench). The most comprehensive second-
generation technique presented in [14]—which, com-
pared to other techniques, also provides fine-grained
stack randomization—introduces a run-time overhead of
11% on average and 23% in the worst case, even by in-
strumenting only the test programs. The main reasons for
the much higher overheads are the use of heavyweight
stack instrumentation and indirection mechanisms that
inhibit compiler optimizations and introduce additional
pointer dereferences for every access to code and data
objects. Their stack instrumentation, however, includes
a shadow stack implementation that could complement
our techniques to offer stronger protection against stack
spraying attacks.

Although we have not observed strong variations
in our macrobenchmark performance across different
runs, our randomization technique can potentially af-
fect the original spatial locality and yield nonoptimal
cache usage at runtime. The possible performance im-
pact introduced—inherent in all the fine-grained ASR
techniques—is subject to the particular compiler and sys-
tem adopted and should be carefully evaluated in each
particular deployment scenario.

Figure 5 shows the rerandomization time (average,

SPEC CPU 2006 benchmarks —e— |
50 7| devtools benchmark -] o
45 .
) ’
& 40 ,
/
B 3 :
£ /
5 30 .
3 ;
UE’ 25 4
£ 20 .
£ A
e 15 o ;:/
10 et
5 e e
0= ; : : :
32 16 8 4 2 y

Rerandomization latency (s)

Figure 6: Run-time overhead against periodic rerandom-
ization latency.

median, max) measured across all the OS components.
With no internal layout rerandomization (ILR), a generic
component completes the rerandomization process in
272ms on average. A higher ILR coverage increases
the average rerandomization time only slightly (297ms
at 100% coverage). The impact is more noticeable for
OS servers than drivers, due to the higher concentra-
tion of complex rerandomized structs (and pointers to
them) that need to be remapped during migration. Al-
beit satisfactory, we believe these times can be further
reduced, for example using indexes to speed up our dy-
namic pointer analysis. Unfortunately, we cannot com-
pare our current results against existing solutions, given
that no other live rerandomization strategy exists to date.
Finally, Figure 6 shows the impact of periodic reran-
domization on the execution time of SPEC and devrools.
The experiment was performed by rerandomizing a sin-
gle OS component at the end of every predetermined
time interval. To ensure uniform coverage, the OS com-
ponents were all rerandomized in a round-robin fashion.
Figure 6 reports a barely noticeable overhead for reran-
domization latencies higher than 20s. For lower laten-
cies, the overhead increases steadily, reaching the value
of 42.7% for SPEC and 51.9% for devtools at 1s. The
rerandomization latency defines a clear tradeoff between
performance and unobservability of the system. Reason-
able choices of the rerandomization latencies introduce
no performance impact and leave a small window with a
stable view of the system to the attacker. In some cases, a
performance penalty may also be affordable to offer extra
protection in face of particularly untrusted components.

7.2 Memory usage

Table 1 shows the average run-time virtual memory over-
head introduced by our technique inside the OS during
the execution of our benchmarks. The overhead mea-
sured is comparable to the space overhead we observed

Type Overhead ASR; ASR; | ASR;3
ASRR state 16.1% Vulnerability
ASRR overall 14.6% Buffer overflows A, R, R,
ASR padding, ((8as+2aj,+4ay)- 1074 + Cpase) % Format string bugs A, R, R,
ASR padding, ((2ry+0.6r,+3r) 107! + puge) % Use-after-free A, R, R,
Uninitialized reads A, R, R,
Table 1: Average run-time virtual memory overhead Effect
measured during the execution of our benchmarks. Arbitrary memory R|W A, A, A,
Controlled code injection A, A, A,
Return-into-libc/text A, N-A, | N-A,
for the OS binaries on the disk. In the table, we re- Return-oriented programming A, N-A, _

port the virtual memory overhead to also account for dy-
namic state object overhead at runtime. For the aver-
age OS component, support for rerandomization intro-
duces 16.1% state overhead (the extra memory neces-
sary to store state metadata w.r.t. the original memory
occupancy of all the static and dynamic static objects)
and 14.6% overall memory overhead (the extra mem-
ory necessary to store state metadata and migration code
w.r.t. the original memory footprint) on average. The vir-
tual memory overhead (not directly translated to physical
memory overhead, as noted earlier) introduced by our
randomization strategy is only due to padding. Table 1
reports the overhead for two padding schemes using byte
granularity (but others are possible): (i) padding,, gen-
erating an inter-object padding of a bytes, with a uni-
formly distributed in [0;a, , ¢] for static, heap, and func-
tion objects, respectively; (ii) padding,, generating an
inter-object padding of r-s bytes, with a preceding ob-
ject of size s, and r uniformly distributed in [0;7y, ¢]
for static, heap, and function objects, respectively. The
coefficient cpq is the overhead introduced by the one-
time padding used to randomize the base addresses. The
formulations presented here omit stack frame padding,
which does not introduce persistent memory overhead.

7.3 Effectiveness

As pointed out in [14], an analytical analysis is more gen-
eral and effective than empirical evaluation in measur-
ing the effectiveness of ASR. Bhaktar et al. [14] present
an excellent analysis on the probability of exploitation
for different vulnerability classes. Their entropy anal-
ysis applies also to other second-generation ASR tech-
niques, and, similarly, to our technique, which, how-
ever, provides additional entropy thanks to internal lay-
out randomization and live rerandomization. Their anal-
ysis, however, is mostly useful in evaluating the effec-
tiveness of ASR techniques against guessing and brute-
force attacks. As discussed earlier, these attacks are far
less attractive inside the operating system. In contrast,
information leakage dominates the scene.

For this reason, we explore another direction in our
analysis, answering the question: “How much informa-

A, = Known region address
A, = Known object address
A, = Known element address

R, = Known relative distance/alignment between objects

=

¢ — Known relative distance/alignment between elements

Table 2: Comparison of ASR techniques.

tion does the attacker need to acquire for successful ex-
ploitation?”. In this respect, Table 2 compares our ASR
technique (ASR3) with first-generation techniques like
PaX [68] and comprehensive second-generation tech-
niques like the one presented in [14]. Most attacks re-
quire at least some knowledge of a memory area to cor-
rupt and of another target area to achieve the intended
effect (missing kernel pointer checks and non control
data attacks are examples of exceptions in the two cases).
Table 2 shows that first-generation techniques only re-
quire the attacker to learn the address of a memory re-
gion (e.g., stack) to locate the target correctly. Second-
generation techniques, in turn, allow the attacker to cor-
rupt the right memory location by learning the relative
distance/alignment between two memory objects.

In this respect, our internal layout randomization pro-
vides better protection, forcing the attacker to learn the
relative distance/alignment between two memory ele-
ments in the general case. For example, if the attacker
learns the relative alignment between two heap-allocated
data structures S| and S, and wants to exploit a vulnera-
ble dangling pointer to hijack a write intended for a mem-
ber of S; to a member of S5, he still needs to acquire
information on the relative positioning of the members.

Similarly, our technique constraints attacks based on
arbitrary memory reads/writes to learn the address of
the target element. In contrast, second-generation tech-
niques only require knowledge of the target memory
object. This is easier to acquire, because individual
objects can be exposed by symbol information (e.g.,
/proc/kallsyms) and are generally more likely to have
their address taken (and leaked) than interior elements.
Controlled code injection shows similar differences—
spraying attacks are normally “A,”, in contrast. Return-

P(ROP Payload) - Call/Store | 7k 140

1 '| Average Source File Size --=-] L B %n:

09 a L 120 2

0.8 y 4

=) 4 F 100 &

8 o / &
>

& 0.6 7 L 80 %

.

o 05 B @

o / S L g0 ©

T 04 / ot 3

a . %]

0.3 / S F40 g

-7 ©

0.2 > ®

/ -t 2o 2

0.1 / R S <

0 == 0
4 8 16 32 64 128

Number of Functions

Figure 7: The probability that state-of-the-art tech-
niques [64] can successfully generate ROP payloads to
call linked functions or perform attacker-controlled arbi-
trary memory writes. The (fitted) distribution is plotted
against the number of known functions in the program.

into-libc/text, in turn, requires the attacker to learn the
location of N chosen functions in both cases, because
our function layout randomization has no effect.

Things are different in more general ROP-based at-
tacks. Our strategy completely hinders these attacks by
making the location of the gadgets inside a function un-
predictable. Given that individual gadgets cannot have
their address taken and function pointer arithmetic is
generally disallowed in a program, the location of a gad-
get cannot be explicitly leaked. This makes informa-
tion leakage attacks ineffective in acquiring any useful
knowledge for ROP-based exploitation. In contrast, prior
techniques only require the attacker to learn the address
of any N functions with useful gadgets to mount a suc-
cessful ROP-based attack. To estimate N, we made an
analysis on GNU coreutils (v7.4), building on the re-
sults presented in [64]. Figure 7 correlates the number
of program functions with the probability of locating all
the necessary ROP gadgets, and shows, for example, that
learning 16 function addresses is sufficient to carry out
an attack in more than 80% of the cases.

Another interesting question is: “How fast can the
attacker acquire the required information?”’. Our live
rerandomization technique can periodically invalidate
the knowledge acquired by an attacker probing the
system (e.g., using an arbitrary kernel memory read).
Shacham et al. [67] have shown that rerandomization
slows down single-target probing attacks by only a fac-
tor of 2. As shown in Table 2, however, many attacks
require knowledge of multiple targets when fine-grained
ASR is in place. In addition, other attacks (e.g., Heap
Feng Shui) may require multiple probing rounds to as-
sert intermediate system states. When multiple rounds
are required, the attacker is greatly limited by our reran-
domization strategy because any knowledge acquired is

only useful in the current rerandomization window. In
particular, let us assume the duration of every round to
be distributed according to some probability distribution
p(t) (e.g., computed from the probabilities given in [14]).
Hence, the time to complete an n-round probing phase is
distributed according to the convolution of the individ-
ual p;(z). Assuming the same p;(¢) in every round for
simplicity, it can be shown that the expected time before
the attacker can complete the probing phase in a single
rerandomization window (and thus the attack) is:

T -1
Tattack =T- (/) P*n(T)d’L'> 5

where T is the size (ms) of the rerandomization window,
n is the number of probing rounds, and p*'(¢) is the n-
fold convolution power of p(r). Since the convolution
power decreases rapidly with the number of targets n, the
attack can quickly become impractical. Given a vulner-
ability and an attack model characterized by some p(t),
this formula gives a practical way to evaluate the impact
of a given rerandomization frequency on attack preven-
tion. When a new vulnerability is discovered, this for-
mula can also be used to retune the rerandomization fre-
quency (perhaps accepting a performance penalty) and
make the attack immediately impractical, even before an
appropriate patch is developed and made available. This
property suggests that our ASR design can also be used
as the first “live-workaround” system for security vulner-
abilities, similar, in spirit, to other systems that provide
immediate workarounds to bypass races at runtime [71].

8 Related work

Randomization. Prior work on ASR focuses on ran-
domizing the memory layout of user programs, with
solutions based on kernel support [39, 1, 68], linker
support [73], compiler-based techniques [12, 14, 72],
and binary rewriting [39, 15]. A number of studies
have investigated attacks against poorly-randomized pro-
grams, including brute forcing [67], partial pointer over-
writes [23], and return-oriented programming [64, 61].
Our ASR design is more fine-grained than existing tech-
niques and robust against these attacks and information
leakage. In addition, none of the existing approaches
can support stateful live rerandomization. The general
idea of randomization has also been applied to instruc-
tion sets (to thwart code injection attacks) [38, 58, 34],
data representation (to protect noncontrol data) [13], data
structures (to mitigate rootkits) [46], memory allocators
(to protect against heap exploits) [53]. Our struct layout
randomization is similar to the one presented in [46], but
our ASR design generalizes this strategy to the internal
layout of any memory object (including code) and also

allows live layout rerandomization. Finally, randomiza-
tion as a general form of diversification [26] has been
proposed to execute multiple program variants in parallel
and detect attacks from divergent behavior [20, 62, 63].

Operating system defenses. Prior work on OS de-
fenses against memory exploits focuses on control-flow
attacks. SecVisor [65] is a hypervisor-based solution
which uses memory virtualization to enforce W@ X pro-
tection and prevent code injection attacks. Similarly,
NICKLE [60] is a VMM-based solution which stores au-
thenticated kernel code in guest-isolated shadow mem-
ory regions and transparently redirects execution to these
regions at runtime. Unlike SecVisor, NICKLE can sup-
port unmodified OSes and seamlessly handle mixed ker-
nel pages with code and data. hvmHarvard [28] is a
hypervisor-based solution similar to NICKLE, but im-
proves its performance with a more efficient instruction
fetch redirection strategy at the page level. The idea of
memory shadowing is also explored in HookSafe [69], a
hypervisor-based solution which relocates kernel hooks
to dedicated memory pages and employs a hook indi-
rection layer to disallow unauthorized overrides. Other
techniques to defend against kernel hook hijacking have
suggested dynamic monitoring strategies [74, 57] and
compiler-based indirection mechanisms [44]. Finally,
Dalton et al. [21] present a buffer overflow detection
technique based on dynamic information flow tracking
and demonstrate its practical applicability to the Linux
kernel. None of the techniques discussed here provides
a comprehensive solution to OS-level attacks. Remark-
ably, none of them protects noncontrol data, a common
target of attacks in local exploitation scenarios.

Live rerandomization. Unlike our solution, none of
the existing ASR techniques can support live rerandom-
ization with no state loss. Prior work that comes closest
to our live rerandomization technique is in the general
area of dynamic software updating. Many solutions have
been proposed to apply run-time updates to user pro-
grams [51, 47, 8, 19] and operating systems [48, 10, 9].
Our rerandomization technique shares with these solu-
tions the ability to modify code and data of a running sys-
tem without service interruption. The fundamental dif-
ference is that these solutions apply run-time changes in
place, essentially assuming a fixed memory layout where
any state transformation is completely delegated to the
programmer. Our solution, in contrast, is generic and
automated, and can seamlessly support arbitrary mem-
ory layout transformations between variants at runtime.
Other solutions have proposed process-level run-time up-
dates to release some of the assumptions on the memory
layout [30, 31], but they still delegate the state transfer
process completely to the programmer. This completely
hinders their applicability in live rerandomization scenar-
ios where arbitrary layout transformations are allowed.

9 Conclusion

In this paper, we introduced the first ASR design for op-
erating systems. To fully explore the design space, we
presented an analysis of the different constraints and at-
tack models inside the OS, while highlighting the chal-
lenges of OS-level ASR. Our analysis reveals a funda-
mental gap with long-standing assumptions in existing
application-level solutions. For example, we show that
information leakage, traditionally dismissed as a rela-
tively rare event, becomes a major concern inside the OS.
Building on these observations, our design takes the first
step towards truly fine-grained ASR for OSes. While our
prototype system is targeted towards component-based
OS architectures, the principles and the techniques pre-
sented are of much more general applicability. Our tech-
nique can also be applied to generic user programs, im-
proving existing application-level techniques in terms of
both performance and security, and opening up opportu-
nities for third-generation ASR systems. The key to good
performance (and no impact on the distribution model)
is our link-time ASR strategy used in combination with
live rerandomization. In addition, this strategy is more
portable and much safer than existing techniques, which
either rely on complex binary rewriting or require a sub-
stantial amount of untrusted code exposed to the runtime.
In our technique, the complex rerandomization code runs
completely sandboxed and any unexpected run-time er-
ror has no impact on normal execution. The key to good
security is the better randomization granularity combined
with periodic live rerandomization. Unlike existing tech-
niques, we can (re)randomize the internal layout of mem-
ory objects and periodically rerandomize the system with
no service interruption or state loss. These properties are
critical to counter information leakage attacks and truly
maximize the unobservability of the system.

10 Acknowledgments

We would like to thank the anonymous reviewers for
their insightful comments. This work has been supported
by European Research Council under grant ERC Ad-
vanced Grant 2008 - R3S3.

References
[1] ASLR: leopard versus vista. http://blog.
laconicsecurity.com/2008/01/aslr-leopard-versus—
vista.html.
[2] Linux vmsplice vulnerabilities. http://isec.pl/

vulnerabilities/isec-0026-vmsplice_to_kernel.txt.

[3] The story of a simple and dangerous kernel bug.
http://butnotyet.tumblr.com/post/175132533/the-
story-of-a-simple-and-dangerous-kernel-bug.

[4]

[5]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

OpenBSD’s IPv6 mbufs remote kernel buffer overflow.
http://www.securityfocus.com/archive/1/462728/
30/0/threaded, 2007.

Microsoft windows TCP/IP IGMP MLD remote buffer over-
flow vulnerability. http://www.securityfocus.com/bid/
27100, 2008.

FUSE: filesystem in userspace. http://fuse.sourceforge.
net/, 2012.

Green hills integrity. http://www.ghs.com/products/rtos/
integrity.html, 2012.

ALTEKAR, G., BAGRAK, 1., BURSTEIN, P., AND SCHULTZ, A.
OPUS: online patches and updates for security. In Proc. of the
14th USENIX Security Symp. (2005), vol. 14, pp. 19-19.

ARNOLD, J., AND KAASHOEK, M. F. Ksplice: Automatic re-
bootless kernel updates. In Proc. of the Fourth European Conf.
on Computer Systems (2009), pp. 187-198.

BAUMANN, A., APPAVOO, J., WISNIEWSKI, R. W., SILVA,
D. D., KRIEGER, O., AND HEISER, G. Reboots are for hard-
ware: Challenges and solutions to updating an operating system
on the fly. In Proc. of the USENIX Annual Tech. Conf. (2007),
pp. 1-14.

BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. Recon-
sidering custom memory allocation. In Proc. of the 17th ACM
SIGPLAN Conf. on Object-oriented Programming, Systems, Lan-
guages, and Applications (2002), pp. 1-12.

BHATKAR, S., DUVARNEY, D. C., AND SEKAR, R. Address
obfuscation: an efficient approach to combat a board range of
memory error exploits. In Proc. of the 12th USENIX Security
Symp. (2003), p. 8.

BHATKAR, S., AND SEKAR, R. Data space randomization. In
Proc. of the Fifth Int’l Conf. on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (2008), pp. 1-22.

BHATKAR, S., SEKAR, R., AND DUVARNEY, D. C. Efficient
techniques for comprehensive protection from memory error ex-
ploits. In Proc. of the 14th USENIX Security Symp. (2005), p. 17.

BoiiNov, H., BONEH, D., CANNINGS, R., AND MALCHEV, I.
Address space randomization for mobile devices. In Proc. of the
Fourth ACM Conf. on Wireless network security (2011), pp. 127—
138.

BOYD-WICKIZER, S., AND ZELDOVICH, N. Tolerating mali-
cious device drivers in linux. In Proc. of the USENIX Annual
Tech. Conf. (2010), pp. 9-9.

C-SKILLS. Linux udev trickery. http://c-skills.
blogspot.com/2009/04/udev-trickery-cve-2009-
1185-and-cve.html.

CHEN, H., MAO, Y., WANG, X., ZHOU, D., ZELDOVICH, N.,
AND KAASHOEK, M. Linux kernel vulnerabilities: State-of-the-
art defenses and open problems. In Proc. of the Second Asia-
Pacific Workshop on Systems (2011).

CHEN, H., YU, J., CHEN, R., ZANG, B., AND YEW, P. POLUS:
a POwerful live updating system. In Proc. of the 29th Int’l Conf.
on Software Engineering (2007), pp. 271-281.

Cox, B., EvaNns, D., FiLipi, A., ROWANHILL, J., HU,
W., DAVIDSON, J., KNIGHT, J., NGUYEN-TUONG, A., AND
HISER, J. N-variant systems: a secretless framework for security
through diversity. In Proc. of the 15th USENIX Security Symp.
(2006), pp. 105-120.

DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Real-world
buffer overflow protection for userspace & kernelspace. In Proc.
of the 17th USENIX Security Symp. (2008), pp. 395-410.

DESIGNER, S. Getting around non-executable stack (and fix).
http://seclists.org/bugtraq/1997/Aug/63.

[23]
[24]

[25]
[26]

[27]

[28]

[29]

[30]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

DURDEN, T. Bypassing PaX ASLR protection.

EDGE, J. Linux ASLR vulnerabilities.
Articles/330866/, 2009.

ESSER, S. Exploiting the iOS kernel. In Black Hat USA (2011).

FORREST, S., SOMAYAIJI, A., AND ACKLEY, D. Building di-
verse computer systems. In Proc. of the 6th Workshop on Hot
Topics in Operating Systems (1997), pp. 67—.

http://lwn.net/

GIUFFRIDA, C., CAVALLARO, L., AND TANENBAUM, A. S. We
crashed, now what? In Proc. of the 6th Workshop on Hot Topics
in System Dependability (2010), pp. 1-8.

GRACE, M., WANG, Z., SRINIVASAN, D., LI, J., JIANG, X.,
LIANG, Z., AND LIAKH, S. Transparent protection of com-
modity OS kernels using hardware virtualization. In Proc.of the
6th Conf. on Security and Privacy in Communication Networks
(2010), pp. 162-180.

Guo, P. J., AND ENGLER, D. Linux kernel developer responses
to static analysis bug reports. In Proc. of the USENIX Annual
Tech. Conf. (2009), pp. 285-292.

GUPTA, D., AND JALOTE, P. On line software version change
using state transfer between processes. Softw. Pract. and Exper.
23,9 (1993), 949-964.

HAYDEN, C. M., SMITH, E. K., HICKS, M., AND FOSTER,
J. S. State transfer for clear and efficient runtime updates. In
Proc. of the Third Int’l Workshop on Hot Topics in Software Up-
grades (2011), pp. 179-184.

HERDER, J. N., Bos, H., GRAS, B., HOMBURG, P., AND
TANENBAUM, A. S. Reorganizing UNIX for reliability. In Proc.
of the 11th Asia-Pacific Conf. on Advances in Computer Systems
Architecture (2006), pp. 81-94.

HILDEBRAND, D. An architectural overview of QNX. In Proc.
of the Workshop on Micro-kernels and Other Kernel Architectures
(1992), pp. 113-126.

Hu, W., HISER, J., WILLIAMS, D., FILIPI, A., DAVIDSON,
J. W., EVANS, D., KNIGHT, J. C., NGUYEN-TUONG, A., AND
ROWANHILL, J. Secure and practical defense against code-
injection attacks using software dynamic translation. In Proc. of
the Second Int’l Conf. on Virtual Execution Environments (2006),
pp. 2-12.

HUND, R., HoLZ, T., AND FREILING, F. C. Return-oriented
rootkits: bypassing kernel code integrity protection mechanisms.
In Proc. of the 18th USENIX Security Symp. (2009), pp. 383-398.

HuUNT, G. C., AND LARUS, J. R. Singularity: rethinking the
software stack. SIGOPS Oper. Syst. Rev. 41,2 (2007), 37-49.

JANMAR, K. FreeBSD 802.11 remote integer overflow. In Black
Hat Europe (2007).

Kc, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. Counter-
ing code-injection attacks with instruction-set randomization. In
Proc. of the 10th ACM Conf. on Computer and Commun. Security
(2003), pp. 272-280.

KiL, C., Jun, J., BOOKHOLT, C., XU, J., AND NING, P. Ad-
dress space layout permutation (ASLP): towards Fine-Grained
randomization of commodity software. In Proc. of the 22nd An-
nual Computer Security Appl. Conf. (2006), pp. 339-348.

KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J.,
CocCK, D., DERRIN, P., ELKADUWE, D., ENGELHARDT, K.,
KOLANSKI, R., NORRISH, M., SEWELL, T., TUCH, H., AND
WINWOOD, S. sel4: formal verification of an OS kernel. In
Proc. of the 22nd ACM Symp. on Oper. Systems Prin. (2009),
ACM, pp. 207-220.

LABs, O. K. OKL4 community site. http://wiki.ok-1labs.
com/, 2012.

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

LATTNER, C., AND ADVE, V. LLVM: a compilation framework
for lifelong program analysis & transformation. In Proc. of the
Int’l Symp. on Code Generation and Optimization (2004), p. 75.

LENHARTH, A., ADVE, V. S., AND KING, S. T. Recovery do-
mains: an organizing principle for recoverable operating systems.
In Proc. of the 14th Int’l Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (2009), pp. 49-60.

L1, J., WANG, Z., BLETSCH, T., SRINIVASAN, D., GRACE,
M., AND JIANG, X. Comprehensive and efficient protection of
kernel control data. IEEE Trans. on Information Forensics and
Security 6,4 (2011), 1404-1417.

LIAKH, S., GRACE, M., AND JIANG, X. Analyzing and im-
proving linux kernel memory protection: a model checking ap-
proach. In Proc. of the 26th Annual Computer Security Appl.
Conf. (2010), pp. 271-280.

LIN, Z., RILEY, R. D., AND XU, D. Polymorphing software
by randomizing data structure layout. In Proc. of the 6th Int’l
Conf. on Detection of Intrusions and Malware, and Vulnerability
Assessment (2009), pp. 107-126.

MAKRIS, K., AND BAzzI, R. Immediate multi-threaded dy-
namic software updates using stack reconstruction. In Proc. of
the USENIX Annual Tech. Conf. (2009), pp. 397-410.

MAKRIS, K., AND RYU, K. D. Dynamic and adaptive updates
of non-quiescent subsystems in commodity operating system ker-
nels. In Proc. of the Second European Conf. on Computer Systems
(2007), pp. 327-340.

MALIK, A. M., MCINNES, J., AND BEEK, P. v. Optimal basic
block instruction scheduling for Multiple-Issue processors using
constraint programming. In Proc. of the 18th IEEE Int’l Conf. on
Tools with Artificial Intelligence (2006), pp. 279-287.

MICROSOFT. Windows User-Mode driver frame-
work. http://msdn.microsoft.com/en-us/windows/
hardware/gg463294, 2010.

NEAMTIU, 1., HICKS, M., STOYLE, G., AND ORIOL, M. Prac-
tical dynamic software updating for C. ACM SIGPLAN Notices
41, 6 (2006), 72-83.

NERGAL. The advanced return-into-lib(c) exploits. Phrack Mag-
azine 4, 58 (2001).

NOVARK, G., AND BERGER, E. D. DieHarder: securing the
heap. In Proc. of the 17th ACM Conf. on Computer and Commun.
Security (2010), pp. 573-584.

ONARLIOGLU, K., BILGE, L., LANZI, A., BALZAROTTI, D.,
AND KIRDA, E. G-Free: defeating return-oriented programming
through gadget-less binaries. In Proc. of the 26th Annual Com-
puter Security Appl. Conf. (2010), pp. 49-58.

PALIX, N., THOMAS, G., SAHA, S., CALVES, C., LAWALL, J.,
AND MULLER, G. Faults in linux: ten years later. In Proc. of
the 16th Int’l Conf. on Architectural Support for Programming
Languages and Operating Systems (2011), pp. 305-318.

PERLA, E., AND OLDANI, M. A guide to kernel exploitation:
attacking the core. 2010.

PETRONLJR., N. L., AND HICKS, M. Automated detection of
persistent kernel control-flow attacks. In Proc. of the 14th ACM
Conf. on Computer and Commun. Security (2007), pp. 103-115.

PORTOKALIDIS, G., AND KEROMYTIS, A. D. Fast and practical
instruction-set randomization for commodity systems. In Proc. of
the 26th Annual Computer Security Appl. Conf. (2010), pp. 41—
48.

RATANAWORABHAN, P., LIVSHITS, B., AND ZORN, B. NOZ-
ZLE: a defense against heap-spraying code injection attacks. In
Proc. of the 18th USENIX Security Symp. (2009), pp. 169-186.

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

RILEY, R., JIANG, X., AND XU, D. Guest-Transparent preven-
tion of kernel rootkits with VMM-Based memory shadowing. In
Proc. of the 11th Int’l Conf. on Recent Advances in Intrusion De-
tection (2008), pp. 1-20.

RoGLIA, G. F., MARTIGNONI, L., PALEARI, R., AND BR-
USCHI, D. Surgically returning to randomized lib(c). In Proc. of
the 2009 Annual Computer Security Appl. Conf. (2009), pp. 60—
69.

SALAMAT, B., GAL, A., JACKSON, T., MANIVANNAN, K.,
WAGNER, G., AND FRANZ, M. Multi-variant program execu-
tion: Using multi-core systems to defuse Buffer-Overflow vulner-
abilities. In Proc. of the 2008 Int’l Conf. on Complex, Intelligent
and Software Intensive Systems (2008), pp. 843-848.

SALAMAT, B., JACKSON, T., GAL, A., AND FRANZ, M. Or-
chestra: intrusion detection using parallel execution and moni-
toring of program variants in user-space. In Proc. of the Fourth
European Conf. on Computer Systems (2009), pp. 33—46.

SCHWARTZ, E. J., AVGERINOS, T., AND BRUMLEY, D. Q: ex-
ploit hardening made easy. In Proc. of the 20th USENIX Security
Symp. (2011), p. 25.

SESHADRI, A., LUK, M., QU, N., AND PERRIG, A. SecVisor: a
tiny hypervisor to provide lifetime kernel code integrity for com-
modity OSes. In Proc. of the 21st ACM Symp. on Oper. Systems
Prin. (2007), pp. 335-350.

SHACHAM, H. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In Proc. of
the 14th ACM Conf. on Computer and Commun. Security (2007),
pp. 552-561.

SHACHAM, H., PAGE, M., PFAFF, B., GOH, E., MODADUGU,
N., AND BONEH, D. On the effectiveness of address-space ran-
domization. In Proc. of the 11th ACM Conf. on Computer and
Commun. Security (2004), pp. 298-307.

TEAM, P. Overall description of the PaX project. http://pax.
grsecurity.net/docs/pax.txt, 2008.

WANG, Z., JIANG, X., Cul, W., AND NING, P. Countering ker-
nel rootkits with lightweight hook protection. In Proc. of the 16th
ACM Conf. on Computer and Commun. Security (2009), pp. 545—
554.

WILSON, P. R. Uniprocessor garbage collection techniques.
In Proc. of the Int’l Workshop on Memory Management (1992),
pp. 1-42.

Wu, J., Cul, H., AND YANG, J. Bypassing races in live applica-
tions with execution filters. In Proc. of the 9th USENIX Symp. on
Operating Systems Design and Implementation (2010), pp. 1-13.

XU, H., AND CHAPIN, S. J. Improving address space random-
ization with a dynamic offset randomization technique. In Proc.
of the 2006 ACM Symp. on Applied Computing (2006), pp. 384—
391.

XU, J., KALBARCZYK, Z., AND IYER, R. K. Transparent run-
time randomization for security. In Proc. of the 22nd Int’l Symp.
on Reliable Distributed Systems (2003), pp. 260— 269.

YIN, H., POOSANKAM, P., HANNA, S., AND SONG, D.
HookScout: proactive binary-centric hook detection. In Proc. of
the 7th Int’l Conf. on Detection of Intrusions and Malware, and
Vulnerability Assessment (2010), pp. 1-20.

YOUNG, C., JOHNSON, D. S., SMITH, M. D., AND KARGER,
D. R. Near-optimal intraprocedural branch alignment. In Proc.
of the ACM SIGPLAN Conf. on Programming Language Design
and Implementation (1997), pp. 183-193.

ZHANG, K., AND WANG, X. Peeping tom in the neighborhood:
keystroke eavesdropping on multi-user systems. In Proc. of the
18th USENIX Security Symp. (2009), pp. 17-32.

