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Abstract

Mobile users are often faced with a trade-off between se-
curity and convenience. Either users do not use any se-
curity lock and risk compromising their data, or they use
security locks but then have to inconveniently authenti-
cate every time they use the device. Rather than explor-
ing a new authentication scheme, we address the problem
of deciding when to surface authentication and for which
applications. We believe reducing the number of times a
user is requested to authenticate lowers the barrier of en-
try for users who currently do not use any security. Pro-
gressive authentication, the approach we propose, com-
bines multiple signals (biometric, continuity, possession)
to determine a level of confidence in a user’s authenticity.
Based on this confidence level and the degree of protec-
tion the user has configured for his applications, the sys-
tem determines whether access to them requires authen-
tication. We built a prototype running on modern phones
to demonstrate progressive authentication and used it in a
lab study with nine users. Compared to the state-of-the-
art, the system is able to reduce the number of required
authentications by 42% and still provide acceptable se-
curity guarantees, thus representing an attractive solution
for users who do not use any security mechanism on their
devices.

1 Introduction

Security on mobile phones is often perceived as a barrier
to usability. Users weaken the security of their phones
for the convenience of interacting with their applications
without having to type a password every time. As a re-
sult, according to a recent study [25], more than 30% of
mobile phone users do not use a PIN on their phones. On
the other hand, the amount of high-value content stored
on phones is rapidily increasing, with mobile payment
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and money transfer applications as well as enterprise data
becoming available on mobile devices [22].

One approach for increasing security of mobile phones
is to replace PINs and passwords with a more suitable au-
thentication scheme. Yet, alternative schemes have their
own flaws. Token-based approaches [6, 31, 35], for in-
stance, are in general harder to attack than passwords, but
they go against the desire of users to carry fewer devices.
Biometric identification has gained interest in the mobile
community [11], but not without performance, accept-
ability, and cost issues [27].

In this work, we look at the problem of mobile au-
thentication from a different angle. Rather than explor-
ing a new authentication scheme, we study the problem
of when to surface authentication and for which applica-
tions. Unlike desktops and laptops, which users tend to
use for a long, continuous period of time, users access
mobile phones periodically or in response to a particu-
lar event (e.g., incoming email notification). This lack
of continuous interaction creates the need to authenti-
cate with the device almost every time users wish to use
it. Even though the interaction between users and mo-
bile devices might not be continuous, the physical con-
tact between the user and the mobile device can be. For
instance, if a user places his phone in his pocket after a
phone call, even though the user stops interacting with it,
the authenticated owner is still “in contact” with the de-
vice. When the user pulls the phone out of his pocket, au-
thentication should not be necessary. On the other hand,
if the phone lost contact with the authenticated user (e.g.,
left on a table), then authentication should be required.
As a result, if the phone is able to accurately infer the
physical interaction between the authenticated user and
the device (e.g., through its embedded and surrounding
sensors), it can extend the validity of a user authentica-
tion event, reducing the frequency of such events.

This approach not only significantly lowers the au-
thentication overhead on the user, but also makes the au-
thentication effort proportional to the value of the content



being accessed. If the system has strong confidence in
the user’s authenticity, the user will be able to access any
content without explicitly authenticating. If the system
has low confidence in his authenticity, he will only be
able to access low-value content (e.g., a weather app) and
will be required to explicitly authenticate to view high-
value content (e.g., email, banking). By doing so, the
system provides low overhead with security guarantees
that can be acceptable for a large user population, par-
ticularly users who do not use any security lock on their
phones – our primary target.

We propose mobile systems that progressively authen-
ticate (and de-authenticate) users by constantly collect-
ing cues about the user, such that at any point in time the
user is authenticated with a certain level of confidence.
Several authentication signals are used. The system can
exploit the increasing availability of sensors on mobile
devices to establish users’ identity (e.g., through voice
recognition). Once the user is authenticated, the system
can exploit continuity to extend the validity of a suc-
cessful authentication by leveraging accelerometers and
touch sensors to determine when the phone “has left” the
user after a successful login. Finally, as users’ personal
devices are increasingly networked, it can use proximity
and motion sensors to detect whether the phone is next
to another device of the same user where he is currently
authenticated and active.

Automatically inferring a user’s authenticity from con-
tinuous sensor streams is challenging because of inher-
ent noise in sensing data as well as energy and perfor-
mance constraints. If sensor streams are naively used,
the system could suffer a high number of false rejec-
tions (not recognizing the owner) and/or unauthorized
accesses (recognizing others as the owner). Our solution
consists of using machine learning techniques to robustly
combine and cross-check weak sensor signals. Sensors
and related processing create energy and performance is-
sues. First, processing the sensor data and running the
inference stack on a mobile device can be challenging.
We show how to architect the system to mitigate these
problems by offloading processing to the cloud or dis-
abling computation-expensive signals. Second, contin-
uously recording data from the sensors can be a major
power hog in a mobile device. We rely on existing archi-
tectures for low power continuous sensing such as Lit-
tleRock [28, 29]. We expect in the near future all mo-
bile devices to be equipped with such low power sensing
subsystems, as it is already made possible by the latest
generation of mobile processors with embedded ARM
Cortex M4 based sensing subsystems [37].

In summary, the contributions of this work are three-
fold. First, we introduce the progressive authentication
model, which relies on the continuous combination of
multiple authentication signals collected through widely

available sensor information. This approach makes the
authentication overhead lower and proportional to the
value of the content being accessed. Second, we present
a Windows Phone implementation of progressive authen-
tication, which explores the implications of applying the
model to a concrete phone platform. Third, we show
through experiments and a deployment of the system
with 9 users how progressive authentication (within our
study setup) achieves the goal of reducing the number of
explicit authentications (by 42%) with acceptable secu-
rity guarantees (no unauthorized accesses and only 8% of
cases in which the user’s authenticity is estimated higher
than it should be), power consumption (325 mW) and de-
lay (987 msec). We believe this represents an attractive
solution for users who currently do not use any security
lock on their phones.

The rest of the paper is organized as follows. The next
section motivates our work through a user study on ac-
cess control on mobile phones and sets the goals of our
work. Section 3 presents the key principles of progres-
sive authentication, and Section 4 and Section 5 demon-
strate these principles through the prototype system we
designed and implemented. We then evaluate our sys-
tem: in Section 6 we describe how we collected sensor
traces and trained the inference model, and in Section 7
we present the experimental results. Finally, we discuss
related work and conclude.

2 Motivations and assumptions

Most smart phones and tablets support some locking
mechanism (e.g., PIN) that, if used, prevents access to
all the devices applications, with the exception of a few
pre-defined functions such as answering incoming calls,
making emergency calls, and taking photos. Unlike
desktops and laptops, users interact with their phones for
short-term tasks or in response to specific events (e.g.,
incoming SMS notification). This results in users having
to authenticate almost every time they wish to use their
phone.

2.1 User study
We investigated how well this model meets the access
control needs of mobile users through a user study [13].
We recruited 20 participants (9M/11F, age range: 23-54)
who owned both smart phones and tablets, using Mi-
crosoft’s recruiting service to reach a diverse population
in our region. They were primarily iPhone (9) or Android
(8) phone users. 11 used a PIN on their phone and 9 did
not use any. Although this study is much broader, some
of its findings motivate progressive authentication.

Beyond all-or-nothing: Today’s mobile devices force
users to either authenticate before accessing any applica-



tion or to entirely disable device locking. According to
our study, this all-or-nothing approach poorly fits users’
needs. Across our participants, those who used security
locks on their devices wanted about half of their appli-
cations to be unlocked and always accessible. Not co-
incidentally, participants who did not use security locks
wanted to have about half of their applications locked.

Multi-level security: Even when offered the option to
categorize their applications into two security levels (i.e.,
one unprotected level and one protected by their pre-
ferred security scheme), roughly half of our participants
expressed the need for at least a third category, mainly
motivated by security and convenience trade-off reasons.
Most participants chose to have a final configuration with
one unlocked level, one weakly-protected level for pri-
vate, but easily accessible applications, and one strongly-
protected level for confidential content such as banking.

Convenience: Participants were asked to rank the se-
curity of different authentication approaches (PINs, pass-
words, security questions, and biometric authentication).
More than half of the participants ranked passwords
and PINs as the most secure authentication schemes,
but when asked to indicate their favorite authentication
mechanism, 85% chose biometric systems. Convenience
was clearly the dominant factor in their decision.

These lessons highlight the value of correctly trading
off security and convenience on a per-application basis.
This is the cornerstone of progressive authentication.

2.2 Assumptions and threat model

Progressive authentication builds on two main assump-
tions. First, we assume a single-user model, which is
in line with current smart phones. However, such as in
related systems [20, 23], adding multiple profiles (e.g.,
family members, guests) to progressive authentication
would be straightforward. Second, we assume the avail-
ability of low-cost sensors in the device and the environ-
ment for detecting a user’s presence and identity. Indeed,
the sensors used in our implementation are widely avail-
able in modern devices and office environments. As more
sensors become pervasive (e.g., 3D depth cameras), they
can be easily folded into the system.

The main security goal of progressive authentication is
to protect important applications from unauthorized use,
while providing a probabilistic deterrent to use of less
sensitive applications by others. In a noise-free environ-
ment where sensor signals are reliable and error-free, the
same security guarantees can be provided regardless of
the physical environment and the people present. In re-
ality, these guarantees depend on several external con-
ditions (presence of people with similar aspect, back-
ground noise, light conditions, etc.), such that the sys-

tem relies on the probabilistic guarantees of a machine
learning model trained to account for these variables.

Progressive authentication seeks to preserve its goal
in the presence of adversaries under the following con-
ditions. Our model inserts barriers against unauthorized
use when the phone is left unattended. Attacks can be
carried out by both strangers and “known non-owner”
attackers such as children and relatives. Attackers can
operate both in public (e.g., a conference room, a restau-
rant) and private spaces (e.g., an office, at home). At-
tackers may not know which signals progressive authen-
tication utilizes (e.g., not knowing that voice is a factor
and speaking into the system) or they may know which
signals are in use and therefore try to avoid them (e.g.,
remaining silent). Attacks in which the adversary ob-
tains privileged information (e.g., passwords or biomet-
rics) are orthogonal to our guarantees, i.e., progressive
authentication does not make these authentication mech-
anisms more secure, so they are not considered in our
security analysis. Finally, we assume the phone operat-
ing system and the devices the user owns are trusted, and
that attacks cannot be launched on wireless links used by
the system.

In the presence of the legitimate user, progressive
authentication allows him to implicitly authorize other
users (by simply handing them the phone), as we assume
the above attacks can be prevented by the owner himself.
For instance, if the user authenticates with the phone by
entering a PIN and, soon after that, hands it to another
person, the phone will remain authenticated.

Stronger attacker models are possible, but addressing
them would require more sophisticated sensors and in-
ference algorithms, thus increasing the burden on the
user (cost of sensors, phone form factor, training effort)
or limiting the applicability of our approach in environ-
ments not equipped with these sensors.

2.3 Goals

Based on the assumptions and threat model described
above, our system has the following goals:

Finer control over convenience versus security trade-
offs: Today’s models are all-or-nothing: they require
users to make a single security choice for all applications.
Users who do not use authentication typically make this
choice for convenience. Our goal is to give these users
more flexibility such that they can keep the convenience
of not having to authenticate for low-value content, but
to improve security for high-value content. Progressive
authentication enables per-application choices.

Moderating the surfacing of authentication: Too many
authentication requests can be annoying to users. In ad-
dition to per-application control, our goal is to reduce
the number of times users are inconvenienced by having



to authenticate. We do this by augmenting devices with
inference models that use sensor streams to probabilisti-
cally determine if the user should continue to be authen-
ticated, avoiding the surfacing of authentication requests.

Low training overhead for users: Our focus is on con-
venience, so the above inference models should be easy
to train and deploy. Some scenarios, such as potential
attacks, are difficult to train after the phone ships, so
this type of training needs to be done in advance, in a
user-agnostic manner. Personalized models (e.g., voice
models), however, cannot be trained in advance because
they depend on input from the user. In such cases, users
should not be burdened with complex training routines.
Our solution partitions the model into a high-level, user-
agnostic model that can be trained before shipping, and
low-level, personalized models that can be trained via
normal user interaction with the device (e.g., by record-
ing the user’s voice during phone calls).

Overhead management: Mobile phones are afflicted
with battery limitations, yet their computing capabili-
ties are limited. It should be possible to let the system
transition between high-performance and energy-saving
modes. We achieve this goal by offloading computation
to the cloud, or moving all the computation locally and
disabling certain sensor streams, at the cost of accuracy.

3 Progressive authentication model

Progressive authentication establishes the authenticity
of the user by combining multiple authentication sig-
nals (multi-modal) and leveraging multi-device authen-
tication. The goal is to keep the user authenticated while
in possession of the device (i.e.,continuity since a last
successful authentication is detected) or de-authenticate
the user once the user lets go of it (i.e., a discontinuity
is detected). The confidence level in the user’s authen-
ticity is then compared to one authentication threshold
for a single-level approach, or to multiple authentication
thresholds for multi-level authentication.
Multi-modal. Possible signal types used for multi-
modal authentication are the following:

Biometric signals: user appearance and sound (face
and voice recognition). Fingerprinting and other hard
biometric identification can also be used, but we focus
on low-sensitivity signals. High-sensitivity signals may
result in privacy concerns (e.g., if stored on untrusted
servers).

Behavioral signals: deviation of a user’s current be-
havior from his past recurrent behavior may result in
lower confidence. For example, if the phone is used at
an unusual time and in a location that the user has never
visited, then authentication may be surfaced. Location
signals are a subset of behavioral signals.

Possession signals: nearby objects that belong to the
user, such as a laptop or a PC, may increase the confi-
dence level of the phone. This may be detected using
Bluetooth signal strength or RFIDs, for example.

Secrets: PINs and passwords are still compatible with
progressive authentication and actually represent some
of the strongest signals it uses. They are requested from
the user when the system is unable to determine the
user’s authenticity with high confidence.

In combining these signals several challenges must be
considered. First, most signals are produced using unre-
liable and discrete sensor measurements. Second, certain
signals may require combining readings from sources
with different sampling frequencies and communication
delays. As a result, most signals are not individually suf-
ficient to determine user authenticity and when combined
they may be inconsistent as well. Finally, signals vary in
strength. Some signals can provide a stronger indication
of authenticity than others because, for example, some
may be easier to fake and some are more discriminating
than others (e.g., a PIN vs. the user’s voice which may
be recorded in a phone call). For all these reasons, sig-
nals need to be combined and cross-checked. However,
drawing the correlations across these signals manually is
a cumbersome job, prone to errors and inconsistencies.
As we discuss in the next section, we use machine learn-
ing tools to derive a robust inference model from the sig-
nals we collect.

Continuous. Continuity is one of the cornerstones of
progressive authentication. It comes from the observa-
tion that users are likely to use their phones shortly after
a previous use. For example, after the user reads emails,
he locks the phone to save energy. He keeps holding
the phone and talking to someone else. When he tries
to use the phone five minutes later, the phone is locked
even if he did not let go of it. If the user has been touch-
ing the phone since the last successful authentication, the
authentication level should be maintained unless “nega-
tive” signals are being received (e.g., mismatching bio-
metric signals). By “touching”, we currently mean ac-
tively holding or storing the phone in a pocket. A phone’s
placement with respect to the user can be determined by
accelerometers, touch screens, light, temperature and hu-
midity sensors, most of which are embedded in modern
phones.

Multi-device. Progressive authentication takes advan-
tage of widespread device connectivity to gather infor-
mation about the user from other devices he owns. If
a user is logged in and active in another nearby device,
this information represents a strong signal of the user’s
presence. For example, if a user enters his office, places
the phone on his desk, logs into his PC and wants to use
the phone, the phone already has some cues about his
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Figure 1: Progressive authentication in action. Signals
are combined to infer the level of confidence in user au-
thenticity. Based on this level, access (without PIN) to
public, private or confidential content is granted.

authenticity. Devices need to be registered once (e.g., at
purchase time) so the overhead for the user is limited.
Multi-level. Users storing high-value content on their
devices want to protect this harder than less valuable in-
formation. Progressive authentication associates user au-
thenticity with a confidence level. This enables the sys-
tem to depart from the all-or-nothing paradigm and al-
lows the user to associate different protection levels to
different data and applications. For example, a weather
or a game application does not reveal any sensitive data,
so it can be made accessible to anybody. An email or
a social networking application contains sensitive infor-
mation, but perhaps not as sensitive as a financial appli-
cation. Thus, the confidence level required for access-
ing email is lower than that for accessing the banking
application. In a complete system, users may config-
ure their applications into an appropriate security level,
perhaps at installation time, may specify levels by appli-
cation categories (e.g., games, email, banking, etc.), or
may even accept a default configuration set by their cor-
porate’s IT department. We expect users to deal with no
more than three or four levels. The preferred configura-
tion that emerged from our user study was three levels.
Our system prototype adopts the same.
Putting it all together. Figure 1 illustrates the pro-
gressive authentication process. Multiple signals are ag-
gregated into a single framework, which determines the
level of confidence in user authenticity. The example
considers continuity (phone placement), biometric (face
and voice) and multi-device (proximity to a PC where
the user is logged on/off) signals as well PIN events.
Based on the confidence level, the user is allowed to
access predefined data and applications in three sensi-
tivity levels: public, which requires a very low confi-
dence; private, which requires medium confidence; and
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Figure 2: Progressive authentication architecture. The
two-level inference engine processes incoming sensor
data to estimate the level of a user’s authenticity.

confidential, which requires very high confidence. Note
that when the user’s authenticity level is too low for ac-
cessing high security applications, the system requires a
PIN, which raises the score to the confidential level. Pre-
viously achieved levels are maintained by continuity as
long as signals are sufficient.

4 Architecture

This section describes the architecture of progressive au-
thentication. Note that the system is designed for phones
and mobile devices with rich sensing capabilities, but
could also be applied to other types of computers. The
specific system we consider is a 2-device configuration
including a mobile phone and another user-owned device
such as a desktop PC. Progressive authentication is used
to control authentication on the phone and the PC simply
acts as another sensor.

As Figure 2 shows, the software running on each de-
vice consists of two levels. At the monitoring level, sen-
sor streams are continuously collected and fed as inputs
to the inference engine, the core of our system. The infer-
ence engine processes sensor information in two stages.
A collection of inference modules (ii boxes inside low-
level processing) processes raw sensor data to extract the
set of primitive signals described in the previous sec-
tion, such as placement of the mobile device as an in-
dication of continuity, presence of the user through bio-
metric inference, and proximity to other known devices
as an indication of device possession and safe location.
A confidence level is associated to each signal. These
inferred signals are not sufficiently robust in isolation to
authenticate or de-authenticate the user, hence the next
step (high-level processing) combines them to compute
the overall confidence in the user’s authenticity.



We rely on well-established machine learning tech-
niques, particularly support vector machine (SVM) mod-
els, to do this properly. In using such models, feature
extraction is the most critical step. Features should pro-
vide as accurate and discriminative information as possi-
ble about the user’s authenticity and whether the phone
has left or not the user since the last successful authen-
tication (Table 1 in the next section lists all features we
have considered in our prototype). Once the high-level
processing extracts these features from the most recent
signals produced by low-level processing, they are com-
bined in a feature vector. This vector is passed as input
to the machine learning model (m box inside high-level
processing), which in turn associates a label to it, indi-
cating the estimated confidence in the user’s authentic-
ity at that particular time. This label is then mapped to
one of the system protection levels, which we currently
limit to three. Named after the most restrictive type of
application to which they allow access, they are: public
level, in which only applications classified as public are
accessible; private level, in which public and private ap-
plications are accessible; and confidential level, in which
all applications are available.

The machine learning model is trained offline using a
set of labeled feature vectors (Section 6 describes how
they are obtained). The model is trained to minimize a
loss function, which represents the relative seriousness
of the kinds of mistakes the system can make. More
specifically, it represents the loss incurred when the sys-
tem decides that a user has authenticity level higher than
it should be and possibly automatically authenticates him
(false authentication), or when the system decides that he
has authenticity level lower than it should be and requires
explicit authentication (false rejection). The system ex-
poses a so-called risk factor to users such that they can
themselves adjust how aggressively they want to trade
security for convenience. The higher the risk factor, the
higher the convenience, but also the higher the security
risk.

Unlike low-level processing, which is continually ac-
tive as sensor data are fed into the system, high-level pro-
cessing is activated only when the phone detects touch-
screen activity (i.e., the user is about to use an applica-
tion). This model is sufficient to provide the illusion of
continuous authentication without unnecessarily drain-
ing the battery of the phone and wasting communication
resources. The high level keeps being invoked periodi-
cally, as long as the phone’s touch screen detects activity,
allowing the system to promptly adjust its authentication
decision to sudden changes in ambient conditions, which
may indicate threat situations.

A main challenge for this system is resource manage-
ment. Sensor monitoring and processing need to mini-
mally impact the phone’s operation and battery lifetime.

For this reason, we designed the architecture in a mod-
ular manner. Depending on its resource constraints, the
phone can decide to offload some processing to the cloud
or another device so as to reduce the computing over-
head, or it can instead decide to do more processing lo-
cally in order to reduce communication. In addition, all
low-level processing modules are independent and the
high-level processing can work with all or some of them,
i.e., some modules can be disabled to save resources,
in which case the corresponding features are computed
based on the latest available signals. In the evaluation
section, we show the impact of these resource-saving de-
cisions on the overall system’s accuracy. The system cur-
rently supports a few static configurations. Systems such
as MAUI [8] and AlfredO [10] may be used to support
dynamic module reconfiguration.

For this kind of authentication to be viable, it is im-
portant to keep the machine learning models as user-
agnostic as possible. The main inference model can be
trained independently using a broad population (before
the phone ships). Some of the low-level inference algo-
rithms, specifically face and voice recognition, are user
specific. However, their training does not incur a high
overhead on the user because it can be done in the back-
ground, during user interaction with the device. A user’s
appearance can be recorded while the user types or reads
from the PC. 1 minute of image recording is sufficient for
the face recognition model to work accurately. Voice can
be recorded during phone calls. In particular, Speaker
Sense [21], the algorithm we used in our implementa-
tion, was designed to specifically support such type of
training. The voice model was trained using 2 minutes
of audio recording.

5 Implementation

We built a progressive authentication prototype on Win-
dows Phone 7.1 OS and used it in a 2-device configura-
tion with a desktop PC running Windows. The bottom
part of Figure 3 shows the detailed architecture of the
system running on the phone and on the desktop PC.
Sensors. On the phone, we use accelerometers, light,
temperature/humidity sensor, touch screen, login events,
microphone, and Bluetooth receiver. All these sensors
are widely available on commercial phones (e.g., An-
droid) today. As the platform we chose does not yet
support light and temperature/humidity sensors, we aug-
mented it by using the .NET Gadgeteer [9] sensor kit, a
platform for quick prototyping of small electronic gad-
gets and embedded hardware devices. Figure 5 shows
the final prototype. On the PC, we use external web-
cams, sensors for activity detection (mouse motion, key
presses, login/logout events), and Bluetooth adaptors.
Bluetooth is used for proximity detection between phone
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Figure 3: Detailed architecture of a 2-device progres-
sive authentication implementation. Offline, a machine
learning model is trained using traces from several users.
Online, the model is loaded into the phone and invoked
using the features extracted from the most-recent sensor
signals. Signals’ confidence values are not shown.

and PC. The system employs Bluetooth, WiFi or cellular
links for communication. The channel can be encrypted.
Low-level processing. It currently produces these sig-
nals: proximity to known devices (detected using Blue-
tooth beacons), presence of activity on phone or PC
(detected using touch screen and activity detection sen-
sors, respectively), speaker identification, face recogni-
tion, and phone placement.

Voice recognition relies on Speaker Sense [21], which
is based on a Gaussian Mixture Model (GMM) classi-
fier [30]. To make the recognition process more effi-
cient, in a first stage, called Frame Admission, sound
recorded by the phone’s microphone is processed to iden-
tify voiced speech frames and discard silence frames or
unvoiced speech frames. Voiced speech frames are ad-
mitted to the second stage, called Voice Identification,
where speaker recognition occurs and produces an iden-
tifier with associated confidence.

Face recognition is based on a proprietary algorithm.
Pictures are collected using a PC’s webcam and fed into
the face recognition model. This returns an identifier of
the recognized person along with a confidence.
High-level processing. The primitive authentication sig-
nals and associated confidence levels generated by the
low-level processing are combined at this stage to ex-
tract the features used by the machine learning model.
Figure 4 gives a detailed example of the entire process,
where accelerometer data are aggregated every 200 msec
and processed by the placement decision tree to extract
placement signals. Continuity features are extracted and
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Figure 4: Processing chain from accelerometer data
(sampled every 20 msec) to placement signals and to
continuity features which are fed as input to the ma-
chine learning model to estimate the user’s authentica-
tion level.

combined in a feature vector with all other features (bio-
metric, possession, continuity and secret-derived fea-
tures). Feature vectors are fed as input to the machine
learning (ML) model and a label indicating the authen-
ticity of the user is produced.

Table 1 lists all features currently used. These features
cover all categories of signals described in Section 3 with
the exception of behavioral signals. For these, we plan to
first collect longer-term traces of users interacting with
our prototype, and then extract behavioral patterns for
each user. The current implementation relies on SVM
models, but we experimented also with Decision Tree
and Linear Regression models (see Section 7).

Finally, the high-level processing and some of the low-
level processing can be too computationally intensive for
mobile phones, so we support a minimum power con-
figuration where Voice Identification and high-level pro-
cessing (gray box in Figure 3) are offloaded to the cloud
(Windows Azure) or a remote device.

User interface. Figure 5 shows our current user inter-
face. We do not claim this to be the most appropriate
interface. For instance, users may want to configure the
level of details returned in the feedback. However, we
used it during our user study [13] and it was well re-
ceived by our participants. When the phone is picked up,
the user can see which applications are accessible and
which are locked (not shown in the figure). When try-
ing to access a locked application, the user is prompted
to enter a PIN and receives a visual explanation of why
access is denied. Icons representing the authentication
signals are lit up (the corresponding signal is present) or
grayed out (the corresponding signal is absent). This al-
lows users to understand why a PIN is required.



Table 1: Machine learning features used in the high-level processing.

Category Features Description

Cont. Placement, PlacementDuration, PlacementConf Current placement of the phone, how long it has lasted, and associated confidence

Cont. LastPlacement, LastPlacementDuration Last placement of the phone, and how long it lasted

Cont. TimeSinceTable, TimeSinceHands, TimeSincePocket Time elapsed since the last time the phone was on the table, in the user’s hands, or pocket

Cont./Secrets TimeSincePIN, TimeSinceTouch Time since last login event and time since the phone’s screen was last touched

Biom. Speaker, SpeakerConf Whether a human voice was identified (owner, other, no-voice) and associated confidence

Biom. TimeSinceOwnerVoice, TimeSinceNonOwnerVoice Time since (any) voice was identified

Biom. TimeSinceSound Time since any sound (either voice or noise) was detected

Poss./Biom. ProxAuthDev, ProxAuthDevConf Proximity of phone to a device where the user is logged in and active, and confidence

Poss./Biom. TimeSinceProx Time elapsed since the proximity status last changed

Figure 5: System prototype running on a WP Samsung
Focus augmented with Gadgeteer sensors (white box).

6 Data collection and offline training

We collected traces from 9 users (4F, 5M) to evaluate
our system prototype. The participants were researchers
(4), engineers (3) and admins (2) working in our group.
During the lab study, they used the system for a little
longer than an hour. The study consisted of two parts.
The first part focused on collecting data for evaluating
the accuracy of the low-level processing models. It lasted
for roughly 30 minutes and it was guided by a researcher.
The data collected was used to train voice identification
and face recognition models, which were plugged into
the system for use in the second part.

The second part of the study was conducted in two
user study rooms that had a participant and an observer
side, which allowed us to collect information about the
activities in which the participant was engaged without
disturbing. This information was used to generate the
ground truth necessary for training the high-level pro-
cessing model (more details below). Each study session
was also video-recorded such that it could be used later
for the same purpose. Participants were asked to per-
form a series of tasks by following a script. The script
consisted of ordinary tasks in an office setting, involving

a phone and a desktop PC. The user was asked to check
his phone from time to time, work on the PC, answer in-
coming phone calls, chat with a colleague, and walk to
a “meeting room” with his phone to meet a colleague.
The script also included security attacks. Overall, the
second part of the study lasted 40 minutes. The data col-
lection ran continuously and collected sensor measure-
ments from phone and PC, as well as types and time of
applications invoked on the phone.

Each participant interacted with a total of five phone
applications categorized as public (1 application), pri-
vate (3) or confidential (1). This distribution reflects
the results of our preliminary user study where across
their most frequently used applications (i.e., more than
10 times a day) participants wanted 22% of them to be
always available (public) and the rest protected by some
security mechanism (private or confidential). We then
assumed a similar frequency of invocation across these 5
applications: across all participants, the average ratio at
which public, private, and confidential applications were
invoked was 19%:57%:24%, respectively.

6.1 Attack scenarios

In the script, we inserted 3 attack sessions for a total of 26
attack attempts (12 to private applications and 14 to con-
fidential applications) covering the threat scenarios de-
scribed in Section 2.2. In two sessions the user leaves
the office and the phone on the desk, and soon after that
an attacker (i.e., a user unknown to the system) enters the
room and tries to use the phone. These attacks take place
in a private place (i.e., office). We simulate both an at-
tacker that knows which signals the system is using and
one that does not know. In the first case, the attacker’s
strategies are staying out of the camera’s range, being
silent and entering the office soon after the user leaves
and locks his PC. In the second case, the attacker is in the
camera’s range and speaks three times for about 10 sec-



onds. In each of the two sessions we have both types of
attacks. The third type of attack occurs in a public place.
The participant forgets his phone in a meeting room. The
participant is asked to interact with the phone just until
leaving the meeting room. The attacker enters the room
soon after the user leaves, picks the phone up and tries
to access the phone applications. These scenarios cover
a small range of situations, but in the office setup we se-
lected for the study they simulate all types of attacker
strategies we considered in our threat model.

6.2 Training and testing the models

Low-level processing models were trained and tested us-
ing the data collected in the first part of the study. The
inferred model for placement detection is the same across
all users, while the face and voice recognition models are
user specific (more details in Section 7.5). To train the
high-level inference model, which is user-agnostic, we
extracted feature vectors from each user’s trace, and used
WEKA [14], a popular suite of machine learning soft-
ware, to train three models: decision tree, support vector
machine with a non-linear model, and linear regression.
As the top part of Figure 3 shows, the model is trained
offline, across users. 8 users’ traces are used for training
and the remaining user’s trace for testing. A feature vec-
tor is generated for each line in the user trace and then
labeled with a ground truth label – the state the model
is trained to recognize under different conditions. The
ground truth labels are extracted by the study’s observer
based on a set of predetermined definitions. These defi-
nitions are used to provide an objective, quantifiable, and
implementation-independent way of defining the ground
truth labels:

Public Label: The legitimate owner is not present OR
Other people are in contact with the phone OR The legit-
imate owner is present, but not in contact with the phone
and other people are present.

Private Label: The legitimate owner has been in con-
tact with the phone since the last private-level authenti-
cation OR The legitimate owner is present and is not in
contact with the phone and no one else is present.

Confidential Label: The legitimate owner has been in
contact with the phone since the last confidential-level
authentication.

Across all participants, the distribution of ground truth
labels was such that 55.0% of the labels were of type
public (2379 labels), 42.6% were of type private (1843
labels), and the rest were of type confidential (2.4% or
105 labels). The distribution of the ground truth labels
should not be confused with the distribution of applica-
tion invocations and the type of application invoked. For
instance, despite the participants invoked the confidential
application as frequently as the public application or one

of the three private applications, only 2.4% of the labels
were confidential. This means that only in few cases the
signals the system could collect were sufficient to auto-
matically authenticate the user at the confidential level.
Hence, confidential applications required a PIN most of
the time.

In the testing phase, the model was invoked using a
user’s trace. For each touch event which had been gen-
erated less than 0.5 seconds earlier, a feature vector was
generated and fed as input to the model. To assess the
model’s accuracy, the output of the model was then com-
pared against the ground truth label. We also tried train-
ing the high-level model on a per-user basis, but the ac-
curacy of the resulting model was lower than that of the
generalized model, so we did not pursue this strategy
(more details in Section 7).

7 Experimental evaluation

We verify that our prototype meets the following goals:
(1) Lowers authentication overhead on mobile phones;
(2) Allows users to trade off stronger protection and more
convenience; (3) Achieves reasonable accuracy in esti-
mating the level of user authenticity; and (4) Provides
acceptable execution time and power consumption.

7.1 Authentication overhead
The main goal of progressive authentication is to reduce
the authentication overhead on mobile phones and be-
come a viable (more secure) solution for users who cur-
rently do not use security locks on their devices. We
measure how many times the participants executing the
tasks of our script had to type a PIN and how many
times they would have had to type a PIN without pro-
gressive authentication. We also count the number of
unauthorized authentications (UAs) that occurred dur-
ing the attack scenarios – cases of false authentication
in which a non-legitimate user tried to unlock the phone
and succeeded. For progressive authentication, we use
an SVM model. As baseline schemes, we assume a sys-
tem that locks the user’s phone after 1 minute of inactiv-
ity (PhoneWithPIN) and one that never locks the phone
(PhoneWithoutPIN). We choose a 1-minute timeout for
the baseline case because the script was designed to al-
low for frequent application invocations in a limited time
window. In real-life such invocations would be spread
over longer time. Table 2 shows that, on average, com-
pared to a state-of-the-art phone with PIN, progressive
authentication reduces the number of times a user is re-
quested to enter a PIN by 42% and provides the same
security guarantees (i.e., 0 UAs). Our claim is that such
a system would be acceptable by users who currently do
not use PINs on their phones. If for some of these users



Table 2: Reduction in the authentication over-
head with progressive authentication (using an SVM
model without loss function) compared to the two
baseline cases available on today’s mobile phones.
The table reports the number of times the user was
required to enter a PIN (Num of PINs) and how
many unauthorized authentications (Perc of UAs)
occurred. Average and standard deviation are re-
ported.

Avg [Stdev] PhoneWithoutPIN PhoneWithPIN ProgAuth

Num of PINs 0.0 [0.0] 19.2 [0.6] 11.2 [0.4]

Perc of UAs 100% [0.0] 0.0% [0.0] 0.0% [0.0]

this reduction in overhead is not sufficient, they can de-
crease it even more by tuning the system’s risk factor,
which we evaluate next.

7.2 Convenience and security trade-offs
As with password-based systems, for which users can set
easy or hard passwords, with progressive authentication
users can set a high or low risk factor (R). If R is high,
the inference model is optimized for convenience – it re-
duces the number of false rejections (FRs), but it can pos-
sibly increase the number of false authentications (FAs).
If R is low, the inference model is optimized for security.
Recall that FAs are cases in which the system overes-
timates the level of the user authenticity and grants the
user automatic access instead of requesting a PIN. Unau-
thorized accesses (UAs), reported in the previous test,
represent a subset of the total number of FAs, as UAs
only refer to cases in which non-legitimate users got ac-
cess to the system. FAs refer to any user, legitimate or
non-legitimate ones. FRs are cases in which the system
underestimates the level of user authenticity and unnec-
essarily requires a password.

We configure 4 additional SVM models with increas-
ing risk factors and compare their rates of FAs and FRs
for private and confidential applications against a base-
line without loss function (this is the same model used in
Section 7.1, which uses R = 1). Table 3 shows that as R
increases the percentage of FAs for private applications
(FA Priv) increases from 4.9% to 16.1% and there are no
FAs for confidential applications (FA Conf). Conversely,
FRs decrease. With R = 20, the system reduces FR Priv
to only 34.4% (i.e., the user is required to enter a PIN
for private applications 1 out of 3 times), but it still re-
quires PINs for confidential applications most of the time
(96.8%). This happens because the loss function used
for optimizing the model always penalizes more strongly
FAs for confidential applications (i.e., if the penalty for

Table 3: Comparison of 5 SVM models, each with a
different risk factor (R). One default model does not
use any loss function (R = 1), while the other 4 are
optimized either for convenience (R = 5 and R = 20)
or for security (R = 0.05 and R = 0.2). The table
reports percentage of false authentications and false
rejections for private (FA Priv and FR Priv) and con-
fidential (FA Conf and FR Conf) applications.

Risk factor %FA Priv %FA Conf %FR Priv %FR Conf

0.05 3.3 0.0 57.7 100.0

0.2 3.6 0.0 55.8 100.0

1 4.9 0.0 53.5 98.4

5 5.8 0.0 39.9 96.8

20 16.1 0.0 34.4 96.8

accessing private applications is P, that for confidential
applications is P2). This makes it very hard for the sys-
tem to allow access to confidential applications without
a PIN.

7.3 High-level processing accuracy
We have so far used an SVM model. We now evalu-
ate the accuracy of high-level processing in more detail
and compare SVM against two other popular modeling
techniques: a decision tree with maximum depth of five
and linear regression. All models are trained and cross-
validated across users (i.e., successively trained on ev-
ery eight users and tested on the ninth user). None of
the models use a loss function. Unlike the previous tests
where we measured the accuracy of the model in estimat-
ing the level of user authenticity only for the first touch
event leading to an application invocation, here we eval-
uate its accuracy in estimating the ground truth labels for
all touch events extracted from the trace. This means that
this analysis not only reports whether access to an appli-
cation correctly required or did not require a PIN, but
also whether while the application was in use the system
was able to maintain the correct level of authentication
or to de-authenticate the user as expected.
Precision and recall. We start by reporting the preci-
sion and recall for each model. Precision is defined as
the fraction of correct predictions across all testing sam-
ples that resulted in the same prediction, while recall is
defined as the fraction of correct predictions across all
testing samples with the same ground truth label. As
Figure 6(b) shows, SVM and decision tree outperform
linear regression, which instead presents many incorrect
predictions when the ground truth is private or confiden-
tial. This could lead to a disproportionate number of both
FRs and FAs, so we discard it. We choose to use SVM
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Figure 6: Precision and recall of different machine learning models when trained with 8 user traces and tested with the
remaining one. The average and standard deviation is across the 9 users. No loss function is used.

Table 4: Confusion matrix for the SVM model.

Rec. as Public Rec. as Priv. Rec. as Conf.

Public 92.50% 7.44 % 0.06%

Private 25.02% 74.42% 0.56%

Confidential 37.31% 0.00 % 62.69%

as the default inference model in our system because it
is the most secure: it is able to recognize 92.5% of the
public labels (high recall) which implies very few false
authentications, and shows precision higher than 81%
for all labels (Figure 6(a)). These graphs consider infer-
ences done when both the authentic user and the attacker
used the system. Since we saw in Table 2 that no unau-
thorized accesses occurred (i.e., cases of false authen-
tications when an attacker tried to access the system),
all false authentications of SVM happened for authentic
users and were due to incorrectly binning a user’s access
as private/confidential instead of public. Decision tree is
a more aggressive model which presents fewers FRs for
confidential (higher recall for confidential), but generates
more FAs (lower recall for public).

Table 4 further characterizes the results for SVM. It
provides a complete breakdown of test outputs, includ-
ing which states were incorrectly inferred when an incor-
rect inference was made (i.e., how the difference between
100% and the height of the bar in Figure6(b) is broken
down). We observe that most of the errors are false rejec-
tions for the confidential state: when the ground truth is
confidential (last row in the table), the model labels it as
public 37% of the time (first column) and it never labels
it as private (second column). When inferring private
states, it labels private states as public 25% of the time
and almost never as confidential. The higher accuracy
in inferring private states is an artifact of our traces and

the reliability of the sensor signals our implementation
uses: the number of private ground truth labels (42.6%)
was much higher than the confidential ones (2.4%), thus
making the model better trained for inferring private la-
bels.

From these results two observations follow. First, we
do expect users to place commonly used applications in
the private application bin more often than in the confi-
dential one, hence requiring higher convenience for pri-
vate and higher security for confidential. Second, one
could argue that for the confidential level, the system
should simply adopt password-based authentication and
avoid making any inference. Our model does not exclude
this option, but in an implementation with a larger num-
ber of more reliable signals, the system would be more
likely to automatically detect the confidential level thus
making the machine learning approach still useful at this
level. Overall, these results show high potential in using
machine learning models such as SVM in this context.
False authentications are less than 8% and restricted to
authentic users, and the system is able to infer the pri-
vate/confidential states about 70% of the time.

Feature Importance. Next, we evaluate which fea-
tures more strongly contributed in training the inference
model. Table 5 shows the relative importance of features
for SVM (in WEKA, this parameter is called GainRa-
tioAttributeEvaluator: “it evaluates the worth of an at-
tribute by measuring the gain ratio with respect to the
class”). Features are shown in rank order (second col-
umn), along with their respective gain ratio (third col-
umn). The feature rank shows the importance of the
corresponding authentication signals: possession (Prox-
AuthDev and ProxAuthDevConf), continuity (LastPlace-
mentDuration), secrets (TimeSincePIN), and biometric
(TimeSinceOwnerVoice). All types of signals envisioned
for progressive authentication contributed to the infer-
ence model. Particularly, these results confirm the im-



Table 5: Relative feature importance for SVM

Feature rank Feature name Gain ratio

1 ProxAuthDev 0.16105

2 LastPlacementDuration 0.09785

3 TimeSincePIN 0.04879

4 ProxAuthDevConf 0.04584

5 TimeSinceOwnerVoice 0.04554

6 TimeSinceProx 0.03919

7 TimeSinceTouch 0.02802

8 TimeSinceSound 0.02618

9 LastPlacement 0.02529

10 TimeSinceTable 0.02264

11 Placement 0.01849

12 TimeSinceHands 0.0174

13 TimeSinceNonOwnerVoice 0.01505

14 TimeSincePocket 0.01456

15 Speaker 0.00983

16 SpeakerConf 0.00907

17 PlacementDuration 0.00884

18 PlacementConf 0.00000

portance of recency and continuity of significant events
that indicate user authenticity, such as being close to a
known PC, having been in contact with the phone re-
cently, having a PIN entered, or “hearing” the owner’s
voice. However, the fact that in this specific imple-
mentation of progressive authentication ProxAuthDev is
the top ranked feature does not mean that progressive
authentication works only in scenarios where the user
is nearby a PC. Instead, not surprisingly, the features
ranked first are those derived from the most reliable sen-
sor signals. For instance, ProxAuthDev is derived from
BT-based proximity, activity detection, and PIN events.

7.4 Model personalization
We have so far evaluated high-level processing models
trained across users because these are the models we ex-
pect to ship with the phones. However, it is possible to
collect additional data from specific users to further tailor
the model to their behavior. To assess the benefits of per-
sonalization, we evaluate the models when trained with
data of a single user and tested through leave-one-out
cross-validation. Figure 7 reports average precision and
recall of these “personalized” models. Compared to the
models trained across users (see Figure 6), SVM’s recall
remains the same while the precision is slightly worse.
Decision tree and linear regression show slightly better
performance, but these modest improvements do not jus-
tify the overhead of training personal models. Perhaps
with much longer traces for individual users we could see
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Figure 7: Precision and recall of different models when
tested through leave-one-out cross-validation. Average
and standard deviation across users are shown. No loss
function is used.

higher improvements, but otherwise these results con-
firm that building accurate generalized models that can
be shipped with the phone is feasible.

7.5 Low-level processing accuracy

The low-level processing models include placement de-
tection, face recognition and voice identification. Fig-
ure 8 reports the average accuracy (across 9 users) and
variance for each recognition model. The accuracy is
computed as the ratio of correct recognitions out of the
total number of model invocations.

In the current prototype, placement can be in one of
three possible states: “hands”, “table”, or “pocket”. Al-
though they do not cover all possible states, we started
with three states that are fairly common and sufficient to
cover the scenarios in the script. To evaluate the place-
ment detector accuracy, each participant performed a se-
ries of actions that put the phone in each of these states
multiple times. In the meantime, sensor measurements
were recorded: accelerometer samples were taken every
20 milliseconds, temperature and humidity every second,
and light every 100 milliseconds. The placement recog-
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Figure 8: Average accuracy of placement, voice and
face recognition models. Two versions of the placement
model are tested: PlacAllSens relies on external Gad-
geteer sensors and PlacAcc does not.

nition model was invoked every half second. We mea-
sured the accuracy of two decision tree models, one that
uses only accelerometer data (PlacAcc), and another that
is augmented with temperature/humidity and light sen-
sors (PlacAllSens).

Figure 8 shows that the model accuracy varies from
83% to 100% when all sensors are used, and from 76% to
99% if only accelerometers are used. Without the added
Gadgeteer sensors, the model still provides high accu-
racy. As Table 6 shows, the most common error consists
of confusing a pocket placement with a table placement.
Due to the prototype bulky form factor, the light sensor
was sometimes left outside of the pocket, biasing the sys-
tem towards a “table” state. The “hands” state was rarely
confused with other states because of the high reliabil-
ity of the temperature/humidity sensor (used to detect a
human hand).

For face recognition, a webcam mounted on a desktop
PC’s screen collected pictures of the participants. First,
users were asked to look at the center of the screen (4
pictures) and then to look at 8 different points around
the perimeter of the screen (2 pictures for each point).
We trained a user-specific model using these 20 photos.
For testing, a video was recorded while users read text
on the screen and watched a ball moving in a figure of
eight pattern across the entire screen. Roughly 1,000
frames were extracted from the video and used for test-
ing. The whole recording was performed indoors and in
the same lighting conditions (since it was from a desktop
webcam). Figure 8 shows a 94% accuracy and a small
variance across users. In scenarios with changing light
conditions it is likely that the face recognition accuracy
would decrease, but for office environments where light-
ing conditions are more stable this was not a problem.
Nevertheless, when face recognition did not work we
observed a small impact on the overall accuracy of our
system because the face recognition signals are cross-

Table 6: Confusion matrix for the PlacAllSens model.

Recogn. as Hand Recogn. as Table Recogn. as Pocket

Hand 98.78% 1.22% 0.003%

Table 0.01% 98.43% 1.56%

Pocket 0.12% 5.82% 94.06%

Table 7: Confusion matrix for voice identification.

Rec. as Owner’s voice Rec. as Other’s voice or Unknown

Owner’s voice 77.0% 23.0%

Other’s voice 0.4% 99.6%

checked against other presence signals collected using
activity detection sensors (e.g., login/logout events, typ-
ing on keyboard or moving a mouse) which can be esti-
mated with much higher reliability.

Finally, we evaluated the accuracy of the speaker
identification model [21]. In the study, the participants’
voice was recorded for roughly 10 minutes using the
phone’s microphone at 16kHz, 16bit mono format. All
samples were collected in an office environment where
the user’s voice was the dominant signal and there was
modest background noise such as people talking in the
hall, keyboard typing, or air conditioning. The phone
was placed within 1 to 2 meters from the participant. The
participant was asked to speak or read some text (4 of
them only read text, 1 only spoke, and 4 alternated be-
tween reading and speaking). This model requires mul-
tiple voices for training, so we created a single model
with the samples we collected. The model was trained
using 2 minutes from each of the users and the voice
of all 9 participants was tested against the model (i.e., a
user’s voice may be recognized as somebody’s else voice
or as unknown). Compared to the other models in Fig-
ure 8, speaker identification varied the most across users.
There were 3 participants for whom the average accu-
racy was roughly 59.3%, while for all the other users the
model achieved at least 83.7% accuracy. However, Ta-
ble 7 shows that the system rarely recognized another
voice as the owner’s voice (0.4%) – false positives were
rare. Most of the errors were due to the system not rec-
ognizing the user (23%) – false negatives. In the actual
study (the second part), these errors were unfortunately
amplified, perhaps due to the variety of conditions in
which the phone was used (the speaker was at a variable
distance from the user, sometimes the phone was in a
pocket while the user spoke, different background noise,
etc.).



Table 8: Power consumption and execution time on a Sam-
sung Focus WP 7.1 for 4 different power configurations.

Conf Sensing Comput Comm TotalPower ExTime

(mW) (mW) (mW) (mW) (sec)

LocalMin <1 41 0 42 0.20

Local ≈160 447 44 651 0.23

LocalRemote ≈160 71 94 325 0.99

Remote ≈160 49 98 307 1.50-2.81

7.6 Latency and power consumption
We evaluate latency and power overhead using a 2-device
configuration including a WP 7.1 Samsung Focus using
WiFi for communication and a Windows PC (2.66GHz
Intel Xeon W3520 CPU with 6GB of RAM). We con-
sider four device configurations:

• LocalMin: low-level and high-level processing runs
on the phone, however power-consuming tasks
(BT-based proximity detection and voice identifica-
tion/recognition) are disabled.

• Local: all low-level and high-level processing tasks
depicted in Figure 3 run on the phone.

• LocalRemote: computation-light low-level process-
ing runs on the phone while voice identification
and high-level processing run on the PC (i.e., gray-
colored modules in Figure 3 are offloaded).

• Remote: both low-level and high-level processing
runs on the PC. The phone only runs the sensors
and sends raw measurements to the PC.

We measured the power drained from the phone bat-
tery by connecting it to a Monsoon Power Monitor [26],
specifically designed for Windows phones. The Mon-
soon meter supplies a stable voltage to the phone and
samples the power consumption at a rate of 5KHz. Dur-
ing the measurements, the phone had the display and
WiFi on, which corresponds to an idle power consump-
tion of 896 mW. Table 8 shows power consumption and
execution time results for all four configurations. Lo-
calMin is the best configuration from both a power con-
sumption and latency point of view: it consumes only
42 mW and has an average delay of 200 msec. How-
ever, as this configuration disables features derived from
proximity and voice recognition, its model may provide
lower accuracy compared to the other 3 configurations,
which allow for the complete set of features. Specifi-
cally, LocalMin’s SVM model is able to reduce the num-
ber of PINs by 53%, but it presents 70% UAs to private
applications. On the other hand, the model still provides

0% UAs to confidential applications. Although less accu-
rate, this model still provides advantages compared to an
unprotected system, thus being an option for users who
currently do not use a PIN on their phone.

Among the other 3 configurations, the best com-
promise from a power-latency point of view is Local-
Remote – this is also the default configuration of our
system. Its delay is less than 1 second and it consumes
about 325 mW, which may be acceptable for modern
phones. The reason for such a reduction in power con-
sumption compared to Local is that this configuration
offloads voice identification to the PC thus significantly
reducing the power drained by the phone’s CPU. Basi-
cally, the phone uploads voice recordings only if voice is
detected (i.e., it does not upload raw data if no voice is
present). Local represents the fastest full configuration
with an average execution time of 225 msec per infer-
ence, including feature extraction (≈ 90 msec) and SVM
invocation (≈ 115 msec). This configuration may be con-
venient for a phone at home or in an office, with full
power or currently connected to a power charger.

We have shown a range of options. Executing on
the client is faster, using the server for remote ex-
ecution yields lower power costs. Temporarily dis-
abling computation-intensive features can also signifi-
cantly lower power consumption at the cost of accuracy.
By switching between these configurations and possibly
even temporarily disabling progressive authentication,
we can deliver a system with lower authentication over-
head and acceptable power and latency requirements. In
general, users who currently do not use PINs on their
phones can have a much more protected system without
the need to worry about power consumption.

8 Related work

Other researchers have explored work related to progres-
sive authentication in the following areas: multi-level
authentication systems, context-based and automatic au-
thentication, and mobile device authentication in general.

8.1 Multi-level authentication
Multi-level authentication has been considered before.
As in progressive authentication, data and applica-
tions are categorized in different levels of authoriza-
tion, variously called “hats” [34], “usage profiles” [19],
“spheres” [32], “security levels” [4], or ”sensitive
files” [36]. With the exception of TreasurePhone [32]
and MULE [36], most of this work has been concep-
tual, with no actual implementation. TreasurePhone
divides applications into multiple access spheres and
switches from one sphere to another using the user’s lo-
cation, a personal token, or physical “actions” (e.g., lock-



ing the home door would switch from the “Home” to
the “Closed” sphere). However, these sphere switch-
ing criteria have flaws. First, location is rather unre-
liable and inaccurate, and when used in isolation, it is
difficult to choose the appropriate sphere (e.g., being
alone at home is different than being at home during a
party). Second, the concept of personal tokens requires
users to carry more devices. Third, monitoring physi-
cal “actions” assumes that the device can sense changes
in the physical infrastructure, something that is not yet
viable. Conversely, progressive authentication enables
automatic switching among the multiple levels of au-
thentication by relying on higher-accuracy, simpler and
more widely available multi-modal sensory information.
MULE proposes to encrypt sensitive files stored in lap-
tops based on their location: if the laptop is not at work or
at home, these files are encrypted. Location information
is provided by a trusted location device that is contacted
by the laptop in the process of regenerating decryption
keys. Progressive authentication protects applications,
not files, and it uses multiple authentication factors, un-
like MULE, which uses location exclusively.

8.2 Automatic authentication
Other forms of automatic authentication use a single au-
thentication factor such as proximity [6, 7, 18], behav-
ioral patterns [33], and biometrics, such as typing pat-
terns [1,24], hand motion and button presses [3]. Most of
these techniques are limited to desktop computers, lap-
tops or specific devices (e.g., televisions [3]). The clos-
est to our work is Implicit Authentication [33], which
records a user’s routine tasks such as going to work or
calling friends, and builds a profile for each user. When-
ever deviations from the profile are detected, the user is
required to explicitly authenticate. Progressive authenti-
cation differs from this work in that it uses more sensory
information to enable real-time, finer granularity mod-
eling of the device’s authentication state. On the other
hand, any of those proximity, behavioral and biometric
patterns could be plugged into our system. Transient au-
thentication [6,7] requires the user to wear a small token
and authenticate with it from time to time. This token
is used as a proximity cue to automate laptop authen-
tication. This approach requires the user to carry and
authenticate with an extra token, but its proximity-based
approach is relevant to our work in that it also leverages
nearby user-owned devices (i.e., the tokens) as authenti-
cation signals.

8.3 Mobile device authentication
The design of more intuitive and less cumbersome
authentication schemes has been a popular research

topic. Current approaches can be roughly classified into
knowledge-based, multi-factor, and biometric authenti-
cation techniques. All three are orthogonal to progres-
sive authentication. Our goal is not to provide a new “ex-
plicit” authentication mechanism, but instead to increase
the usability of current mechanisms by reducing the fre-
quency at which the user must authenticate. When ex-
plicit authentication is required, any of these techniques
can be used.

Knowledge-based approaches assume that a secret
(e.g., a PIN) is shared between the user and the device,
and must be provided every time the device is used. Due
to the limited size of phone screens and on-screen key-
boards, this can be a tedious process [5], especially when
it is repeated multiple times per day. In multi-factor
authentication, more than one type of evidence is re-
quired. For instance, two-factor authentication [2,31,35]
requires a PIN and secured element such as a credit card
or USB dongle. This practice presents major usability
issues, as the need to carry a token such as SecurID [31]
goes against the user’s desire to carry fewer devices. Bio-
metric schemes [5, 16, 27] leverage biometrics [17] or
their combinations [12, 15], such as face recognition and
fingerprints, to authenticate the user with high accuracy.
Even though very secure, biometric identification comes
with acceptability, cost and privacy concerns [27], and is
especially cumbersome on small devices.

9 Conclusions

We presented a novel approach to progressively authen-
ticate (and de-authenticate) users on mobile phones. Our
key insight is to combine multiple authentication signals
to determine the user’s level of authenticity, and surface
authentication only when this level is too low for the con-
tent being requested. We have built a system prototype
that uses machine learning models to implement this ap-
proach. We used the system in a lab study with nine users
and showed how we could reduce the number of explicit
authentications by 42%. We believe our results should
make this approach attractive to many mobile users who
do not use security locks today. Overall, progressive au-
thentication offers a new point in the design of mobile
authentication and provides users with more options in
balancing the security and convenience of their devices.
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