
Privacy-Preserving Social Plugins

Georgios Kontaxis,† Michalis Polychronakis,† Angelos D. Keromytis,† Evangelos P. Markatos*

†Columbia University, *FORTH-ICS

{kontaxis,mikepo,angelos}@cs.columbia.edu, markatos@ics.forth.gr

Abstract

The widespread adoption of social plugins, such as Face-

book’s Like and Google’s +1 buttons, has raised con-

cerns about their implications to user privacy, as they en-

able social networking services to track a growing part of

their members’ browsing activity. Existing mitigations in

the form of browser extensions can prevent social plugins

from tracking user visits, but inevitably disable any kind

of content personalization, ruining the user experience.

In this paper we propose a novel design for privacy-

preserving social plugins that decouples the retrieval of

user-specific content from the loading of a social plugin.

In contrast to existing solutions, this design preserves the

functionality of existing social plugins by delivering the

same personalized content, while it protects user privacy

by avoiding the transmission of user-identifying infor-

mation at load time. We have implemented our design

in SafeButton, an add-on for Firefox that fully supports

seven out of the nine social plugins currently provided by

Facebook, including the Like button, and partially due to

API restrictions the other two. As privacy-preserving so-

cial plugins maintain the functionality of existing social

plugins, we envisage that they could be adopted by social

networking services themselves for the benefit of their

members. To that end, we also present a pure JavaScript

design that can be offered transparently as a service with-

out the need to install any browser add-ons.

1 Introduction

Social plugins enable third-party websites to offer per-

sonalized content by leveraging the social graph, and al-

low their visitors to seamlessly share, comment, and in-

teract with their social circles [12]. For example, Face-

book’s Like button, probably the most widely deployed

social plugin [33], enables users to leave positive feed-

back for the web page in which it has been embedded,

share the page with their social circle, and view their

like-minded friends. Google’s “+1” button [16] offers al-

most identical features to the Like button, while similar

widgets are also available from other popular social net-

working services (SNSs) such as Twitter and LinkedIn.

Social plugins offer multifaceted benefits to both con-

tent providers and members of SNSs, a fact that is re-

flected by the tremendous growth in their adoption. In-

dicatively, as of June 2012, more than two million web-

sites have incorporated some of Facebook’s social plu-

gins, while more than 35% of the top 10,000 websites

include Like buttons—a percentage three times higher

than just one year ago [33]. Unfortunately, as the num-

ber of websites that incorporate social plugins increases,

so does the portion of their visitor’s browsing history that

gets exposed.

To personalize the content of third-party web pages,

social plugins connect to the SNS and transmit a unique

user identifier—usually contained in an HTTP cookie—

along with the URL of the visited page. Consequently,

the SNS receives detailed information about every visit

of its members to any page with embedded social plu-

gins. Considering the increasing adoption rate of so-

cial plugins, a constantly growing part of its members’

browsing history can be precisely tracked.

More importantly, the cookies used in social plugins

are linked to user profiles that typically contain the per-

son’s name, email address, and other private information.

Although third-party tracking cookies as used by adver-

tising networks and traffic analytics services also aim to

track the pages visited by a specific user [43], in essence

they track the pages opened using a particular browser

instance running on a device with a given IP address.

While this can already be considered as personally iden-

tifying information to some extent, in addition to that in-

formation, social plugins reveal much more: the brows-

ing history of individuals.

The important implications of social plugins to user

privacy were identified soon after their release [34, 54],

and concerns have been intensifying [34, 37]. As avoid-



ing becoming a member of any SNS is often rather

difficult (even users that are not interested in the so-

cial aspects of a service can be affected, e.g., Gmail

users can still be tracked through Google’s “+1” buttons),

privacy-conscious users can resort to browser extensions

that block user-identifying information from reaching the

SNS through social plugins [27, 15, 7, 4, 28, 45].

Depending on the subtlety of their approach, ranging

from stripping cookies and headers from the plugin’s re-

quests to preventing the plugin from loading, some or

none of its user interaction functionality may be pre-

served. However, as user-identifying information never

reaches the SNS, all these solutions completely disable

any kind of content personalization. As an example, for

a Like button, even logged in members will be viewing

just the total number of “likes” for the page (Fig. 1a), in-

stead of the names and pictures of their friends who have

liked the page (Fig. 1c).

We believe that the majority of users are not even

aware of the privacy issues stemming from the preva-

lence of social plugins. For this reason, we argue that

any solution can be effective only if it can be deployed

by SNSs themselves, so as to protect all users without

requiring any action on their behalf. Crucially, content

personalization and user interaction are two key features

of existing social plugins. Any solution that lacks either

of them, or introduces even a slight compromise in user

experience, is not likely to be adopted by SNSs.

Driven by these two observations, in this paper we pro-

pose a novel design for privacy-preserving social plu-

gins, which fulfills two seemingly contradicting goals:

it protects user privacy by avoiding the transmission of

user-identifying information at load time, while it offers

identical functionality to existing social plugins by pro-

viding the same personalized content. The main idea is

to decouple the retrieval of private information from the

loading of a social plugin by prefetching all data from

the user’s social circle that might be needed in the con-

text of a social plugin. Any missing non-private data is

retrieved on demand without revealing the identity of the

user to the SNS. Local (private) and server-side (public)

data are then combined to render a pixel-by-pixel identi-

cal version of the same personalized content that would

have been rendered by existing social plugins.

To demonstrate the feasibility of our design, we have

implemented SafeButton, an add-on for Firefox that pro-

vides privacy-preserving versions of existing social plu-

gins, as they are provided by the major SNSs. Based

on our experimental evaluation, the local disk space con-

sumed by SafeButton for storing the private data required

for handling the nine different social plugins currently

provided by Facebook is in the order of a few megabytes

for typical users, and 145MB for the extreme case of a

user with 5,000 friends. At the same time, due to re-

Figure 1: Different states of Facebook’s Like button for

a user that (a) has never logged in on Facebook from this

particular browser or is not a member of Facebook at all,

(b) has previously logged in but is currently logged out,

(c) is currently logged in (personalized view).

duced network overhead, SafeButton renders social plu-

gins 64% faster compared to their original versions. Our

design can be readily adopted by existing SNSs, and be

offered transparently as a service to their members with-

out the need to install any additional software.

Our work makes the following main contributions:

• We propose a novel design for privacy-preserving

social plugins that i) prevents the SNS from track-

ing its members’ browsing activities, and ii) pro-

vides the same functionality as existing social plug-

ins with no compromises in content personalization.

• We have implemented SafeButton, a Firefox exten-

sion that currently provides privacy-preserving ver-

sions of Facebook’s social plugins.

• We evaluate our implementation and demonstrate

the feasibility of the proposed design in terms of

functionality, effectiveness, and performance.

• We describe in detail a pure JavaScript implemen-

tation of our design that can be offered by existing

SNSs as a transparent service to their members.

2 User Tracking through Social Plugins

2.1 Social Plugins

Social plugins are provided by the major social network-

ing services in the form of “widgets” that can be embed-

ded in any web page, usually in the form of an IFRAME

element. After downloading the page, the browser is-

sues a subsequent request to fetch and load the content

of the plugin, as shown in Fig. 2 (step 2). The domain

that serves the social plugins is the same as the one that

hosts the SNS itself, and thus any state that the browser

maintains for the SNS in the form of HTTP cookies [17]

is transmitted along with the request for the social plugin.

Assuming the user has an active session with the SNS,

the site will associate the request with the user’s profile,



Figure 2: Loading phase of social plugins. After a page

is fetched (1), the browser loads the IFRAME of the so-

cial plugin (2). If the user is logged in on the SNS,

the plugin receives and displays personalized informa-

tion (3). Users are identified (and can be tracked) through

the HTTP cookies included in the request.

and respond with personalized content tailored to that

particular user and visited web page (step 3 in Fig. 2).

Otherwise, if the user has not logged in on the SNS from

that particular browser before, or has never registered at

all, the social plugin will display only generic, publicly

accessible information for that page.

For instance, Fig. 1 shows the different modes of

the Like button depending on the browser’s cookies for

facebook.com. If a user does not have an account or has

not logged in on Facebook using that browser, the plugin

displays only the total number of “likes” and prompts

the user to sign up (a). If a user is currently logged

in, the plugin displays personalized information, includ-

ing some of the names and pictures of the user’s friends

that have liked the page (c). Interestingly, while a user

is logged out (b), the plugin does not prompt for sign-

up; depending on how cookies are cleared, some user-

identifying information may persist even upon user exit.

2.2 Privacy Issues

With publishers reporting multifold increases in traf-

fic [35], and the continuous addition of new gestures

and social features by the major social networking ser-

vices [36], it is expected that the explosive popularity

of social plugins will only continue to grow. As more

sites employ social plugins, the potential for broader

user tracking increases. With more than 35% of the

top 10,000 most visited websites having Like buttons in

their pages (as of June 2012) [33], a good part of the

daily browsing history of 901 million active Facebook

users [8] is technically available to Facebook. We should

stress that the same issue holds for all other major social

networking services that provide social plugins, includ-

ing Google and Twitter.

The privacy issues related to the use of HTTP cook-

ies are a well-known problem. Since their introduction

in 1995, cookies have been extensively used by advertis-

ing networks for building user profiles and tracking the

browsing activity of users across the web [51]. Although

user tracking through social plugins resembles this kind

of cross-site tracking through third-party cookies [43],

there is one key difference.

An advertising network uses cookies to track the same

user across all affiliate sites that host the network’s ad-

vertisements, but cannot easily link the derived activity

pattern to the actual identity of the user. In contrast, so-

cial plugins use cookies associated with real user profiles

on the respective social networking site, which typically

contain an abundance of personally identifiable informa-

tion [47]. In essence, instead of tracking anonymous

users, social plugins enable tracking of named persons.

Advertising agencies can also potentially associate a

user profile with a person’s identity by combining infor-

mation from other sources, e.g., in cooperation with one

or more affiliate websites on which users provide contact

information for registration. Social networking services,

though, do not have to collude with another party be-

cause they already have access to both extensive person-

ally identifiable information, as well as to a broad net-

work of sites that host social plugins.

2.3 Preventing Privacy Leaks

One might think that if users diligently log out of the

social networking site, they will be safe from the pri-

vacy leaks caused by its social plugins. Unfortunately,

this seems a rather daunting task for users that rely daily

on Google, Facebook, Twitter, and other popular SNSs

for their personal and professional communication and

social interaction activities. To provide convenience for

frequent use, these sites follow a single sign-on approach

for all offered services, and prompt users to stay logged

in indefinitely through “keep me logged in” features.

Consequently, users typically remain logged in through-

out the whole duration of their online presence.

In some cases, even after a user logs out, the cookies of

the SNS might not be cleared completely, and personally

identifiable information may still persist [9]. For exam-

ple, even after logging out of Facebook, a cookie with a

user identifier remains in the browser, enabling features

such as pre-filling a returning user’s email address in the



log in form, or avoiding to unnecessarily prompt existing

members to sign up, as shown in Fig. 1(b).

Blocking of third-party cookies could be considered

a mitigation to this problem, since most of the major

web browsers (Chrome, Firefox, Internet Explorer) have

adapted their security policy to prevent third parties from

reading (in addition to writing) cookies. Therefore, even

though the SNS’s domain appears both as a first party

(when a user visits the site directly) and as a third party

(when a social plugin is embedded in a page), in the lat-

ter case the SNS no longer receives any cookies. How-

ever, with the exception of Internet Explorer, blocking

of third-party cookies is not enabled by default. Internet

Explorer will do so, but white-lists same-domain cook-

ies set by first parties that return a P3P header [30] (even

a dummy one), which both Facebook and Google [25]

appear to be doing. Moreover, even if a user chooses

explicitly to block third-party cookies, there are known

bypass techniques [2], such as faking an interaction with

the embedded page through a script-initiated form sub-

mission in Safari, or opening the embedded page in a

pop-up window that gets treated by the browser as a first

party [53], which interestingly in Chrome is not hindered

by pop-up blocking [3].

The Do Not Track HTTP header [5] is an encouraging

recent initiative that allows users to opt out of tracking by

advertising networks and analytics services. Although

currently not supported by any SNS, if it were adopted,

Do Not Track could allow users to choose whether they

want to opt in for the personalized versions of social plu-

gins or not. However, users who would opt in for the per-

sonalized versions (or who would not opt out, depending

on the default setting) could still be tracked.

This situation drives privacy-conscious users towards

browser extensions that block the transmission of user-

identifying information through social plugins [27, 15,

7, 4, 28, 45]. For instance, Facebook Blocker [7] re-

moves completely the IFRAME elements of social plug-

ins from visited web pages. Instead of blocking social

plugins completely, ShareMeNot [28] simply removes

the sensitive cookies from the social plugin’s requests at

load time. When a user explicitly interacts with a plu-

gin, the cookies are then allowed to go through, enabling

the action to complete normally. Although this approach

strikes a balance between usability and privacy, it still

completely disables any content personalization.

3 Design

3.1 Requirements

The design of privacy-preserving social plugins is driven

by two key requirements: i) provide identical functionality

to existing social plugins in terms of content personaliza-

tion and user interaction, and ii) avoid the transmission of

user-identifying information to the social networking ser-

vice before any user interaction takes place. The first re-

quirement is necessary for ensuring that users receive the

full experience of social plugins, as currently offered by

the major SNSs. Existing solutions against user track-

ing do not provide support for content personalization,

and thus are unlikely to be embraced by SNSs and con-

tent providers. The second requirement is mandatory for

preventing SNSs from receiving user-identifying infor-

mation whenever users merely view a page and do not

interact with a social plugin.

We consider as user-identifying information any piece

of information that can be used to directly associate a so-

cial plugin instance with a user profile on the SNS, such

as a cookie containing a unique user identifier. The IP

address of a device or a browser fingerprint can also be

considered personally identifying information, and could

be used by a shady provider for user tracking. However,

the accuracy of such signals cannot be compared with

the ability of directly associating a visit to a page with

the actual person that visits the page, due to factors that

introduce uncertainty [52], such as DHCP churn, NAT,

proxies, multiple users using the same browser, and other

aspects that obscure the association of a device with the

actual person behind it. Users can mitigate the effect

of these signals to their privacy by browsing through an

anonymous communication network [38], and ensuring

that their browser has a non-unique fingerprint [39].

When viewed in conjunction, the two requirements

seem contradicting. Content personalization presumes

knowledge of the person for whom the content will be

personalized. Nevertheless, the approach we propose

satisfies both requirements, and enables a social plugin

instance to render personalized content without reveal-

ing any user-identifying information to the SNS.

3.2 Overall Approach

Social plugins present the user with two different types

of content: private information, such as the names and

pictures of friends who like a page, and public informa-

tion, such as the total number of “likes.” The main idea

behind our approach is to maintain a local copy of all

private information that can possibly be needed for ren-

dering any personalized content for a particular user, and

query the social networking service only for public infor-

mation that can be requested anonymously.

This approach satisfies our first requirement, since all

the required private information for synthesizing and pre-

senting personalized content is still available to the social

plugin locally, while any missing public information can

be fetched on demand. User interaction is not hindered

in any way, as user actions are handled in the same way



as in existing social plugins. Our second requirement

is also accomplished, because all communication of a

privacy-preserving social plugin with the SNS for load-

ing its content does not include any user-identifying in-

formation. Only public information about the page might

be requested, which can be retrieved anonymously.

The whole process is coordinated by the Social Plugin

Agent, which runs in the context of the browser and has

three main tasks: i) upon first run, gathers all private data

that might be needed through the user’s profile and social

circle, and stores it in a local DataStore, ii) periodically,

synchronizes the DataStore with the information avail-

able online by adding or deleting any new or stale entries,

and iii) whenever a social plugin is encountered, synthe-

sizes and presents the appropriate content by combining

private, personalized information from the local Data-

Store and public, non-personalized information through

the SNS. Maintaining a local copy of the user’s social in-

formation is a continuous process, and takes place trans-

parently in the background. Once all necessary informa-

tion has been mirrored during the bootstrapping phase,

the DataStore is kept up to date periodically.

Going back to the example of the Like button, the

private information that must be stored locally for its

privacy-preserving version should suffice for properly

rendering any possible instance of its personalized con-

tent for any third-party page the user might encounter. This

can be achieved by storing locally all the “likes” that all

of the user’s friends have ever made, as well as the names

and thumbnail pictures of the user’s friends. Note that

all the above information is available through the profile

history of the user’s friends, which is always accessible

while the user is logged in.

Although keeping all this state locally might seem

daunting at first, as we demonstrate in Sec. 5.2, the re-

quired space for storing all the necessary private infor-

mation for privacy-preserving versions of all Facebook’s

existing social plugins is just 5.4MB for the typical case

of a user with 190 friends, and 145MB for an extreme

case of a user with 5,000 friends. No information that is

not accessible under the user’s credentials is ever needed,

and daily synchronization typically requires the trans-

mission of a few kilobytes of data.

Continuing with the Like button as an example, Fig. 3

illustrates the process of rendering its privacy-preserving

version. Upon visiting a third-party page, the Social Plu-

gin Agent requests from the SNS the total number of

“likes” for that particular page, without providing any

user-identifying information (step 3). In parallel, it looks

up the URL of the page in the DataStore and retrieves the

names and pictures of the friends that have liked the page

(if any). Once the total number of “likes” arrives (step 4),

it is combined with the local information and the unified

personalized content is presented to the user (5).

Figure 3: The loading phase of privacy-preserving so-

cial plugins. When a social plugin is encountered (1), the

Social Plugin Agent intervenes between the plugin and

the SNS (2). The agent requests (3) and receives (4) only

publicly accessible content, e.g., the page’s total number

of “likes,” without revealing any user-identifying infor-

mation to the SNS. The agent then combines this data

with personalized information that is maintained locally,

and presents the unified content to the user (5).

Further optimizations are possible for avoiding query-

ing for non-personalized content at load time. Depend-

ing on the plugin and the kind of information it pro-

vides, public information for frequently visited pages can

be cached, while public information for highly popu-

lar pages can be prefetched. For example, information

such as the total number of “likes” for a page that a user

visits several times a day can be updated only once per

day without introducing a significant inconsistency, al-

lowing the Social Plugin Agent to occasionally serve the

Like button using solely local information. Similarly, the

SNS can regularly push to the agent the total number of

“likes” for the top 10K most “liked” pages. In both cases,

the elimination of any network communication on every

cache hit not only reduces the rendering time, but also

protects the user’s browsing pattern even further.

4 Implementation

To explore the feasibility of our approach we have imple-

mented SafeButton, an add-on for Firefox (version 7.0.1)

that provides privacy-preserving versions of existing so-

cial plugins. SafeButton is written in JavaScript and

XUL [23], and relies on the XPCOM interfaces of Fire-

fox to interact with the internals of the browser. Figure 4



Figure 4: Overall architecture of SafeButton. A Request Handler (1) intercepts the HTTP requests of social plugins.

Privacy-preserving implementations of the supported plugins (2) combine public remote data (3b), which can be

cached in the X-Cache for improving network performance (3a), and private data from the user’s social circle, which

are maintained locally in the DataStore (4), and deliver the same personalized content (5) as the original plugins.

provides an overview of SafeButton’s main components,

which are described below. A detailed description of how

the components are put together to handle a Like button

is provided at the end of this section.

Request Handler The main task of the Request Han-

dler is to intercept the HTTP requests of a social plugin at

load time, and hand off the event to an appropriate call-

back handler function. The requests are intercepted using

a set of filters based on signatures that capture the target

URL of each plugin. These signatures are received from

the Social Plugin Provider Interface, along with the call-

back handlers that should be invoked whenever a filter is

triggered. The Request Handler provides as an argument

to these callbacks a reference to the DOM of the page

that contains the social plugin that triggered the filter.

We have implemented the Request Handler by

registering an observer for HTTP requests (http-

on-modify-request notification) using XPCOM’s

nsIObserverService. This allows the inspection code

to lie inline in the HTTP request creation process, and

either intercept and modify requests (e.g., by stripping

HTTP cookies or other sensitive headers), or drop them

entirely when necessary.

Social Plugin Provider Interface The Social Plugin

Provider Interface serves as an abstraction between the

Request Handler and different Provider Modules that sup-

port the social plugins offered by different social net-

working services. This extensible design enables more

networks and plugins to be supported in the future. In

the current version of SafeButton, we have implemented

a Provider Module for the social plugins offered by Face-

book. We take advantage of the Graph API [10] to down-

load the user’s private social information that needs to be

stored locally, and access any other public content on de-

mand. We should stress that, although an option, we do

not employ any kind of web scraping to acquire informa-

tion from pages accessible through the user’s profile.

A Provider Module for a SNS consists of: i) the signa-

tures that will be used by the Request Handler for inter-

cepting the HTTP requests of the platform’s social plu-

gins, ii) the callback handler functions that implement

the core functionality of each social plugin based on lo-

cal and remote social information, and iii) the necessary

logic for initializing the DataStore and keeping it up to

date with the information that is available online.

Each callback function implements the core function-

ality for rendering a particular social plugin. Its main

task is to retrieve the appropriate private social data from

the DataStore, request any missing public data from the

SNS (without revealing any user-identifying informa-

tion), and compile the two into the personalized content

that will be displayed. The function then updates the

DOM of the web page through the page reference that

was passed by the Request Handler.

DataStore The DataStore keeps locally all the private

social data that might be required for rendering person-

alized versions of any of the supported social plugins.

All information is organized in a SQLite database that

is stored in the browser’s profile folder for the user that

has installed SafeButton. Upon first invocation, SafeBut-

ton begins the process of prefetching the necessary data.

This process takes place in the background, and relies on

the detection of browser idle time and event scheduling

to operate opportunistically without interfering with the

user’s browsing activity.

In our implementation for Facebook, data retrieval be-

gins with information about the user’s friends, including

each friend’s name, thumbnail picture, and unique iden-

tifier in Facebook’s social graph. Then, for each friend,

SafeButton retrieves events of social activity such as the

pages that a friend has liked or shared, starting with the

oldest available event and moving onward. In case the



download process is interrupted, e.g., if the users turns

off the computer, it continues from where it left off the

next time the browser is started.

Updating the DataStore is an incremental process that

takes place periodically. Fortunately, the current version

of the Graph API offers support for incremental updates.

As we need to query for any new activity using a separate

request for each friend (a Graph API function for multi-

ple user updates would be welcome), we do so gracefully

for each friend every two hours, or, if the browser is not

idle, in the next idle period. We have empirically found

the above interval to strike a good balance between the

timeliness of the locally stored information and the in-

curred network overhead. In our future work, we plan to

employ a more elaborate approach based on an exponen-

tial backoff algorithm, so that a separate adaptive update

interval can be maintained for different friend groups ac-

cording to their “chattiness.”

Note that we also need to address the consistency of

the locally stored data with the corresponding data that

is available online. For instance, friends may “like” a

page and later on “unlike” it, thereby deleting this activ-

ity from their profile. Unfortunately, the Graph API cur-

rently does not offer support for retrieving any kind of

removal events. Nevertheless, SafeButton periodically

fetches the entire set of activities for each friend (at a

much slower pace than the incremental updates), and re-

moves any stale entries from the DataStore.

X-Cache The X-Cache holds frequently used public in-

formation and meta-information, such as the total num-

ber of “likes” for a page or the mapping between page

URLs and objects in the Facebook graph. A hit in the

X-Cache means that no request towards the social net-

working service is necessary for rendering a social plu-

gin. This improves significantly the time it takes for the

rendering process to complete, and at the same time does

not reveal the IP address of the user to the SNS.

Use Case: Facebook Like Button Here we enrich the

running case of the Facebook Like button from Sec. 3

with the technical details of the behavior of SafeButton’s

components, as shown by the relevant steps in Fig. 4.

Upon visiting a web page with an embedded Like

button in the form of an IFRAME, the browser

will issue an HTTP request towards Facebook to

load and subsequently render the contents of that

IFRAME. The Request Handler intercepts this re-

quest and attempts to match its URL against the

set of signatures of the supported social plugins,

which will trigger a match for the regular expres-

sion http[s]?:\/\/www\.facebook\.com\/plugins\/

like\.php. Subsequently, the handler invokes the

callback associated with this signature and pass as an

argument the plugin’s URL and a reference to the DOM

of the page that contains the social plugin (step 1).

The first action of the callback function is to query

X-Cache for any cached non-personalized information

about the button and the page it is referring to. This in-

cludes the mapping between the page’s URL and its ID in

the Facebook graph, along with the global count of users

who have “liked” the page (step 3a). In case of a miss,

a request made through the Graph API retrieves that in-

formation (step 3b). The request is stripped from any

Facebook cookies that the browser unavoidably appends

to it. The response is then added to X-Cache for future

reference. After retrieving the global count of users, the

names (and if the developer has chosen so, the thumbnail

pictures) of the user’s friends that have liked the page are

retrieved from the LocalStore (step 4).

Finally, the reference to the DOM of the embedding

page (passed by the handler in step 1), is used to update

the IFRAME where the original Like button would have

been with exactly the same content (step 5).

5 Experimental Evaluation

5.1 Supported Facebook Plugins

In this section we discuss the social plugins offered by

Facebook and evaluate the extend to which SafeButton

can support them in respect to two requirements: i) user

privacy, and ii) support for personalized content. Table 1

lists the nine social plugins currently offered by Face-

book. For each plugin, we provide a brief categorization

of its “view” functionality, i.e., the content presented to

the user according to whether it is based on public (non-

personalized) or private (personalized) information, as

well as its “on-click” functionality, i.e., the type of ac-

tion that a user can take.

Although SafeButton interferes with the “view” func-

tionality of existing social plugins, it does not affect their

“on-click” functionality, allowing users to interact nor-

mally as with the original plugins. As shown in Ta-

ble 2, SafeButton currently provides complete support

for seven out of the nine social plugins currently offered

by Facebook.

The Like button and its variation, the Like Box, are

fully functional; the count, names, and pictures of the

user’s friends are retrieved from the DataStore, while

the total number “likes” is requested on demand anony-

mously. The Recommendations plugin presents a list

of recommendations for pages from the same site, with

those made by friends appearing first. Recommendations

from the user’s friends are stored locally, so SafeBut-

ton can render those that are relevant to the visited site

on top. The list is then completed with public recom-

mendations by others, which are retrieved on demand.



Facebook Public Personalized User

Social Plugin Content Content Action

Like Button Total number of people that have liked the

page

Names and pictures of friends that have

liked the page

Like page

Send Button - - Send content/page URL

Comments List of user comments Friends’ comments appear on top Post comment

Activity Feed List of user activities (likes, comments,

shared pages)

Friends’ activities appear on top -

Recommendations List of user recommendations (likes) Friends’ recommendations appear on top -

Like Box Total number of people that have liked the

Facebook Page, names and pictures of some

of them, list of recent posts from the Page

Names and pictures of friends that have

liked the page are shown first

Like page

Registration - User’s Name, picture, birthday, gender, lo-

cation, email (prefilled in registration form)

Register

Facepile - Names and pictures of friends that have

liked the page

-

Live Stream User messages - Post message

Table 1: Public vs. Personalized content in Facebook’s social plugins [12].

Exposed information Personalized

Facebook during loading Content with

Social Plugin Original SafeButton SafeButton

Like Button IP addr. + cookies IP addr. Complete

Send Button IP addr. + cookies None Complete

Comments IP addr. + cookies IP addr. Partial1

Activity Feed IP addr. + cookies IP addr. Partial2

Recommendations IP addr. + cookies IP addr. Complete

Like Box IP addr. + cookies IP addr. Complete

Registration IP addr. + cookies None Complete

Facepile IP addr. + cookies IP addr. Complete

Live Stream IP addr. + cookies IP addr. Complete

1 When all comments are loaded at once, all personalized content is

complete. In case they are loaded in a paginated form, some of the

friends’ comments (if any) might not be shown in the first page.
2 Some of the friends’ comments (if any) might be omitted (access to

comments is currently not supported by Facebook’s APIs).

Table 2: For 7 out of the 9 Facebook social plugins,

SafeButton provides exactly the same personalized con-

tent without exposing any user-identifying information.

Similarly to the Like button, Facepile presents pictures

of friends who have liked a page, and that information

is already present in the DataStore. The Send, Register,

and Login buttons do not present any kind of dynamic

information, and thus can be rendered instantly without

issuing any network request.

Similarly to the Recommendations plugin, content

personalization in the Comments plugin consists of giv-

ing priority to comments made by friends. SafeButton

retrieves the non-personalized version of the plugin, and

reorders the received comments so that friends’ com-

ments are placed on top. When all comments for a page

are fetched at once, the personalized information pre-

sented by SafeButton is fully consistent with the origi-

nal version of the plugin. However, when comments are

presented in a paginated form, only the first sub-page

is loaded. The current version of the Graph API does

not support the retrieval of comments (e.g., in contrast

to “likes”), and thus in case friends’ comments appear

deeper than the first sub-page, SafeButton will not show

them on top (a workaround would be to download all

subsequent comment sub-pages, but for popular pages

this would result in a prohibitive amount of data).

The Activity Feed plugin is essentially a wrapper for

showing a mix of “likes” and comments by friends, and

thus again SafeButton’s output lacks any friends’ com-

ments. Note that our implementation is based solely on

the functionality provided by the Graph API [10], and

we refrain from scraping of web content for any missing

information. Ideally, future extensions of the Graph API

will allow SafeButton to fully support the personalized

content of all plugins. We discuss this and other missing

functionality that would facilitate SafeButton in Sec. 7.

5.2 Space Requirements

To explore the local space requirements of SafeButton,

we gathered a data set that simulates the friends a user

may have. Starting with a set of friends from the authors’

Facebook profiles, we crawled the social graph and iden-

tified about 300,000 profiles with relaxed privacy settings

that allow unrestricted access to all profile information,

including the pages that person has liked or shared in the

past. From these profiles, we randomly selected a set

of 5,000—the maximum number of friends a person can

have on Facebook [6].



Data 190 Friends 5,000 Friends

Names, IDs of Friends 10.5KB 204.8KB

Photos of Friends 463.4KB 11.8MB

Likes of Friends 4.6MB 126.7MB

Shares of Friends 318.4KB 7.0MB

Total 5.4MB 145.7MB

Average (per friend) 29.2KB 29.7KB

Table 3: Storage space requirements for the average case

of 190 friends and the borderline case of 5,000 friends.

To quantify the space needed for storing the required

data from a user’s social circle, we initialized SafeBut-

ton using the above 5,000 profiles. In detail, SafeButton

prefetches the names, IDs, and photos of all friends, and

the URLs of all pages they have liked or shared. Al-

though we have employed a slow-paced data retrieval

process (5sec delay between consecutive requests), the

entire process for all 5,000 friends took less than 10

hours. For typical users with a few hundred friends, boot-

strapping completes in less than a hour. As already men-

tioned, users are free to use the browser during that time

or shut it down and resume the process later.

Table 3 shows a breakdown of the consumed space for

the average case of a user with 190 friends [58] and the

extreme case of a user with 5,000 friends, which totals

5.4MB and 145.7MB, respectively. Evidently, consumed

space is dominated by “likes,” an observation consistent

with the prevailing popularity of the Like button com-

pared to the other social plugins. To gain a better un-

derstanding of storage requirements for different users,

Fig. 5 shows the consumed space as a function of the

number of friends, which as expected increases linearly.

We should note that the above results are specific for

the particular data set, and the storage space might in-

crease for users with more “verbose” friends. Further-

more, the profile history of current members will only

continue to grow as time passes by, and the storage space

for older users in the future will probably be larger. Nev-

ertheless, these results are indicative for the overall mag-

nitude of SafeButton’s storage requirements, which can

be considered reasonable even for current smartphones,

while the storage space of future devices can only be ex-

pected to increase.

To further investigate the distribution of “likes,” the

factor that dominates local space, we plot in Fig. 6 the

CDF of the number of “likes” of each user in our data

set. The median user has 122 “likes,” while there are

some users with much heavier interaction: about 10% of

the users have more than 504 “likes.” The total num-

ber of “likes” was 1,110,000, i.e., 222 per user on aver-

age. This number falls within the same order of mag-

Number of Friends

0 1 10 100 1000 5000

L
o

c
a

l 
S

p
a

c
e

 (
M

B
)

0

1

10

100
146

5.4MB for a user
with 190 friends
(avg. friend count
on Facebook)

11.3MB for a user with 400 friends
(avg. friend count in dataset)

Figure 5: Local space consumption for the required in-

formation from a user’s social circle as a function of the

number of friends. For the average case of a user with

190 friends, SafeButton needs just 5.4MB.

Number of Likes

0 1 10 100 1000 4500

%
 o

f 
U

s
e

rs

0

10

20

30

40

50

60

70

80

90

100

Median: 122 Likes

90th Percentile: 504 Likes

Figure 6: CDF of the number of “likes” of each user.

nitude as previously reported statistics, which suggest

that there are about 381,861 “likes” per minute on Face-

book [31]. With a total population of about 901 million

active users [8], this results in about 217 “likes” per user

per year. These results indicate that our data set is not

particularly biased towards excessively active or inactive

profiles.

Besides the storage of social information, SafeBut-

ton maintains the X-Cache for quick access to frequently

used non-personalized information about a social plugin.

To get an estimate about its size requirements, we vis-

ited the home pages of the first 1,000 of the top web-

sites according to alexa.com that contained at least one

Facebook social plugin. About 82.4% of the identified

plugins corresponded to a Like Button or Like Box, 14%

to Facebook Connect, 3% to Recommendations, 0.5% to

Send Button, and 0.1% to Facepile and Activity Box. Af-

ter visiting all above sites, X-Cache grew to no more than

850KB, for more than 2,500 entries.

5.3 Speed

In this experiment, we explore the rendering time of

social plugins with and without SafeButton. Specif-

alexa.com


ically, we measured the time from the moment the

HTTP request for loading the IFRAME of a Like

button is sent by the browser, until its content is

fully rendered in the browser window. To do so,

we instrumented Firefox with measurement code trig-

gered by http-on-modify-request notifications [20]

and pageshow events [21]. We chose to measure the ren-

dering time for the IFRAME instead of the entire page

to eliminate measurement variations due to other remote

elements in the page. This is consistent with the way a

browser renders a page, since IFRAMEs are loaded in

parallel with the rest of its elements.

We consider the following three scenarios: i) Firefox

rendering a Like button unobstructed, and Firefox with

SafeButton rendering a Like button when there is ii) an

X-Cache miss or iii) an X-Cache hit. For the original

Like button, we used a hot browser cache to cancel out

loading times for any required external elements, such

as CSS and JavaScipt files. Using SafeButton, visiting

a newly or infrequently accessed webpage will result in

a miss in the X-Cache. For a Like button, this means

that besides looking up the relevant information in the

local DataStore, SafeButton must (anonymously) query

Facebook to retrieve the total number of “likes.” For

frequently accessed pages, such personalized informa-

tion will likely already exist in the X-Cache, and thus

SafeButton does not place any network request at all.

Using a set of the first 100 among the top websites ac-

cording to alexa.com that contain a Like button, we mea-

sured the loading time of the Like button’s IFRAME for

each site (each measurement was repeated 1,000 times).

Figure 7 shows the median loading time across all sites

for each scenario, as well as its breakdown according to

the events that take place during loading. The rendering

time for the original Like button is 351ms, most of which

is spent for communication with Facebook. In particu-

lar, it takes 130ms from the moment the browser issues

the request for the IFRAME until the first byte of the re-

sponse is received, and another 204ms for the completion

of the transfer. In contrast, SafeButton is much faster, as

it needs 127ms for rendering the Like button in case of

an X-Cache miss (2.8 times faster than the original), and

just 24ms in case of an X-Cache hit (14.6 times faster),

due to the absence of any network communication.

The difference in the response times for the network

requests placed by the original Like button and SafeBut-

ton in case of an X-Cache miss can be associated with the

different API used and amount of data returned in each

case. SafeButton uses the Graph API to retrieve just the

total number of “likes,” which is returned as a raw ASCII

value that is just a few bytes long. In contrast, the origi-

nal plugin communicates with a different endpoint from

the side of Facebook, and fetches a full HTML page with

embedded CSS and JavaScript content. While these two

Time in milliseconds

0 50 100 150 200 250 300 350

SafeButton
 X−Cache hit

SafeButton
 X−Cache miss

Original
 Social Plugin

Processing

Network: request dispatch to first response byte

Network: first response byte to end of transmission

DataStore lookup

HTTP
Response

Lookup

Figure 7: Loading time for Like button with and without

SafeButton. Even when the total number of “likes” is not

available in the X-Cache, SafeButton is 2.8 times faster.

requests need a similar amount of time from the moment

they are placed until the first response byte is received

from the server, they differ by two orders of magnitude in

terms of the time required to complete the transfer. Even

if Facebook optimizes its own plugins in the future, we

expect the rendering speed of SafeButton to be compara-

ble in case of an X-Cache miss, and still much faster in

case of an X-Cache hit.

5.4 Effectiveness

As presented in Sec. 3, we rely on a set of heuristics

that match the target URL of each supported social plu-

gin to intercept and treat them accordingly so as to pro-

tect the user’s privacy. To evaluate the effectiveness and

accuracy of our approach, we carried out the follow-

ing experiment. Using tcpdump, we captured a network

trace of all outgoing communication of a test PC in our

lab while surfing the web for a week through Firefox

equipped with SafeButton. We then inspected the trace

and found that no cookie was ever transmitted in any

HTTP communication with facebook.com or any of its

sub-domains.

This was a result of the following “fail-safe” ap-

proach. Besides the signatures of the supported so-

cial plugins, SafeButton inspects all communication with

facebook.com and strips any cookies from requests ini-

tiated by third-party pages. Next, we performed the

reverse experiment: using the same browser equipped

with SafeButton, we surfed www.facebook.com and inter-

acted with the site’s functionality without any issues for

a long period. Careful inspection of the log generated by

SafeButton proved that no in-Facebook communication

was hindered at any time.

alexa.com
www.facebook.com


Figure 8: Privacy-preserving social plugins serviced by

a SNS. Here: the loading of a social plugin in a third-

party page. The code of the social plugin agent is always

fetched from a secondary domain to avoid leaking cook-

ies set by the primary domain of the SNS. The URL of

the target page is passed via a fragment identifier, so it is

never transmitted to the SNS. The agent synthesizes and

renders the personalized content of the social plugin.

6 Privacy-preserving Social Plugins as a

Service: A Pure JavaScript Design

As many users are typically not aware of the privacy

issues of social plugins, they are not likely to install

any browser extension for their protection. For instance,

NoScript [27], a Firefox add-on which blocks untrusted

JavaScript code from being executed, has roughly just 2

million downloads, and AdBlock [1], an add-on which

prevents advertisement domains from loading as third

parties in a web page, has been downloaded 14 million

times. At the same time, Firefox has 450 million active

users [24], which brings the adoption rate of the above

security add-ons to 0.4% and 3.1%, respectively. For

this reason, in this section we present a pure JavaScript

implementation of privacy-preserving social plugins that

could be employed by social networking services them-

selves for the protection of their members.

The use case would not be much different from now:

web developers would still embed an IFRAME element

that loads the social plugin from the SNS. However,

instead of serving a traditional social plugin, the SNS

serves a JavaScript implementation of a social plugin

agent in respect to the design presented in Sec. 3. The

agent then fetches personalized information from the

browser’s local storage, requests non-personalized infor-

mation from the SNS, and renders the synthesized con-

Figure 9: Privacy-preserving social plugins serviced by

a SNS. Here: securely communicating the user’s session

identifier to the social plugin agent when logging in on

the SNS. Although the agent is hosted on a secondary

domain, it receives and stores the identifier from the pri-

mary domain through the postMessage function, allow-

ing it to place asynchronous authenticated requests for

accessing the user’s profile information.

tent according to the specified social plugin. The feasi-

bility of the above design is supported by existing web

technologies such as IndexedDB [19], which provide a

JavaScript API for managing a local database, similar to

the DataStore used in SafeButton.

The most challenging aspect of this implementa-

tion is to prevent the leakage of user-identifying in-

formation during the loading of a social plugin. If

the IFRAME of the social plugin agent is hosted

on the same (sub)domain as the SNS itself (e.g.,

socialnetwork.com), then the request for fetching its

JavaScript code would also transmit the user’s cookies

for the SNS. At the same time, the agent would need to

know the URL of the embedding page for which it has

personalized the social plugin’s content. If the URL is

passed as a parameter to that initial request, the situation

is obviously as problematic as in current social plugins.

A solution would be to leave out the URL of the page

from the request for loading the social plugin agent.

However, there should be a way to communicate this in-

formation to the agent once its JavaScript code has been

loaded by the browser. This can be achieved through

a fragment identifier [32] in the URL from which the

agent is loaded. Fragment identifiers come as the last

part of a URL, and begin with a hash mark (#) char-



acter. According to the HTTP specification [18], frag-

ment identifiers are never transmitted as part of a re-

quest to a server. Thus, during the loading of a social

plugin in a third-party page, instead of passing an ex-

plicit parameter with the URL of the embedding page, as

in www.socialnetwork.com/sp-agent.js?url=<URL> , it

can be passed through a fragment identifier, as in www.

socialnetwork.com/sp-agent.js#<URL>. The informa-

tion about the URL of the visited page never leaves the

browser, and remains accessible to the JavaScript code of

the agent, which can then parse the hypertext reference

of its container and extract the fragment identifier.

Unfortunately, this approach is still not secure in prac-

tice. The URL of the embedding page is usually also

transmitted as part of the HTTP Referer [sic] header

by most browsers. Therefore, even if we omit the tar-

get URL from the HTTP parameters of the request, the

server will receive it anyway, allowing the SNS to cor-

relate this information with the user’s cookies that are

transmitted as part of the same request.

To overcome this issue, the social plugin agent can

be hosted on a secondary domain, different than the

primary domain of the SNS, as also proposed by Do

Not Track [5]. For instance, in this design the agent

could be hosted under socialnetwork-cdn.net instead

of socialnetwork.com, as shown in Fig. 8. This prevents

the browser from appending the user’s cookies whenever

a social plugin is encountered (step 2), since its IFRAME

will be served from a different domain than the one for

which the cookies were set. The rest of the steps are

analogous to Fig. 3.

Still, the social plugin agent must be able to issue au-

thenticated requests towards the SNS for accessing the

user’s profile and retrieving the necessary private social

information that must be maintained locally. This re-

quires access to the user’s cookies, and specifically to

the identifier of the authenticated session that the user

has with the SNS.

A solution to this problem can be achieved by taking

advantage of the windows.postMessage [22] JavaScript

API, which allows two different origins to communicate.

When the user logs in on the SNS, the login page con-

tains a hidden IFRAME loaded through HTTPS from

the secondary domain on which the social plugin agent

is hosted, as shown in Fig. 9 (step 2). The login page

then communicates to the agent’s IFRAME the session

identifier of the user through postMessage (step 3). The

IFRAME executes JavaScript code that stores locally the

user identifier under its own domain, making it acces-

sible to the plugin agent. The agent can then read the

session identifier from its own local storage, and place

authenticated requests towards the SNS for accessing the

user’s profile (step 4) and synchronizing the required in-

formation with the locally stored data. When the user ex-

plicitly logs out from the social networking site, the log

out page follows a similar process to erase the identifier

from the local storage of the agent.

In respect to supporting multiple users per browser in-

stance and protecting the personal information stored lo-

cally, encryption can be employed to shield any sensi-

tive information, such as the names or identifiers of a

user’s friends. In accordance with the communication

of the session identifier described above, a user-specific

cryptographic key can be communicated from the SNS

to the social plugin agent. The plugin can then use this

key to encrypt sensitive information locally. The key

is kept only in memory. Each time the plugin agent

loads, it spawns a child IFRAME towards the social net-

working site. The request for the child IFRAME will

normally have the user’s cookies appended. Finally,

that child IFRAME, once loaded, can communicate via

postMessage the encryption key back to the plugin agent.

7 Discussion

Strict Mode of Operation Although SafeButton does

not send any cookies to the social networking service,

it still needs to make non-authenticated requests towards

the SNS to fetch public information for some social plu-

gins (e.g., for Facebook plugins, the information shown

in column “Public Content” in Table 1). These requests

unavoidably expose the user’s IP address to the SNS.

Some users might not feel comfortable with exposing

their IP address to the SNS (even when no cookies are

sent), as this information could be correlated by the SNS

with other sources of information, and could eventually

lead to the exposure of the users’ true identity. For such

privacy-savvy users, we consider a “paranoid” mode of

operation in which SafeButton does not reveal the user’s

IP address to the social networking service when en-

countering a social plugin in a third-party page, by sim-

ply not retrieving any public information about the page.

Unavoidably, some social plugins are then rendered us-

ing solely the locally available personalized information,

e.g., for the Like button, the total number of “likes” for

the page will be missing.

Alternatively, given the very low traffic incurred by

SafeButton’s non-authenticated queries to the SNS, these

can be carried out transparently by SafeButton through

an anonymous communication network such as Tor [38].

Given that social plugins are loaded in parallel with the

rest of the page’s elements, this would minimally affect

the browsing experience (compared to browsing solely

through Tor).

Potential Challenges with Future Social Plugins. Al-

though SafeButton currently supports all social plugins

www.socialnetwork.com/sp-agent.js?url=<URL>
www.socialnetwork.com/sp-agent.js
www.socialnetwork.com/sp-agent.js
<URL>
socialnetwork-cdn.net
socialnetwork.com


offered by Facebook, and our approach is extensible so

as to handle the plugins of other social networking ser-

vices, we consider two potential challenges with future

plugins [44]. First, future personalization functionality

could include social information from a user’s second de-

gree friends, i.e., the friends of his friends, or rely on the

analysis of data from the entire user population of the so-

cial network. Second, this type of personalization could

involve proprietary algorithms not available to the client-

side at run-time.

We believe that our approach could be adapted to sup-

port such developments. We find it realistic that such

extended analysis will take place offline, and result in

the calculation of a product that will be stored and taken

into account in real-time during content personalization.

Therefore, it will not be necessary to have at the client

side neither the analysis algorithms nor the entire dataset.

The stored outcome of the analysis, e.g., some extra

weight on the social graph or additional meta-data, could

be available to through the developer’s API, and be taken

into account by SafeButton during content personaliza-

tion. At the same time, the social networking service is

not deprived of the data necessary to carry out such anal-

ysis. Our approach protects user privacy when accessing

the “view” functionality of social plugins, but when users

explicitly interact with them, their actions and any corre-

sponding data are transmitted to the SNS.

Profile Management As users may access the web via

more than one devices, it reasonable to assume that they

will require a practical way to use SafeButton in all of

them. Although installing SafeButton on each browser

should be enough, this will result to the synchronization

of the locally stored information with the SNS for each

instance separately. In our future work, we will con-

sider the use of cloud storage for keeping fully-encrypted

copies of the local DataStore and X-Cache, and synchro-

nizing them across all the user’s browser instances, in

the same spirit as existing settings and bookmark syn-

chronization features of popular browsers [29, 14].

Keeping a local copy of private information that is nor-

mally accessible only through the social networking ser-

vice might be considered a security risk, as it would be

made readily available to an attacker that gains unautho-

rized access to the user’s system. At that point, though,

the attacker would already have access to the user’s cre-

dentials (or could steal them by installing a keylogger on

the compromised host) and could easily gather this infor-

mation from the SNS anyway.

In any case, users could opt-in for keeping the DataS-

tore encrypted, although this would require them to pro-

vide a password to SafeButton (similarly to the above

mentioned settings synchronization features). For the

pure JavaScript implementation, though, as discussed in

Section 6, the cryptographic key can be supplied by the

SNS upon user login, making the process completely

transparent to the user.

Security in Multi-user Environments We now con-

sider the operation of SafeButton in a multi-user environ-

ment where more than one users share the same browser

instance. In general, sharing the same browser instance is

a bad security practice, because after users are done with

a browsing session they may leave sensitive information

behind, such as stored passwords, cookies, and browsing

history. Ideally, users should maintain their own browser

instance or accounts in the operating system.

SafeButton retrieves private information when users

are logged in the SNS, and stores it locally even after

they log out, as it would be inefficient to erase it every

single time. Multiple users are supported by monitor-

ing the current cookies for that domain of the SNS, and

serving personalized content only for the user that is cur-

rently logged in. Local entries that belong to a user ID

that does not match the one currently logged in are never

returned. Obviously, users that share the same OS ac-

count can access each other’s locally stored data, since

they are contained in the same DataStore instance, un-

less they have opted in for keeping their data encrypted,

as discussed earlier.

Shortcomings of the Graph API Throughout this pa-

per we have briefly mentioned some obstacles we have

encountered, namely shortcomings in the developer API

provided by Facebook, in respect to our objective of pro-

tecting the user’s privacy while maintaining full func-

tionality for the social plugins. We summarize these is-

sues here and discuss how the social networks in general

could support us.

User Activity Updates through the API. Currently the

Facebook API [10] offers access to the social graph but

there is no way to receive updates or “diffs” when some-

thing changes. For instance, we retrieve a friend’s “likes”

through the API, we are also able to fetch only new

“likes” from a point forward, but are unable to receive

notice when that friend “unlikes.” A friend “activity” or

“history” function could significantly aid our implemen-

tation in keeping an accurate local store.

Accuracy of the Provided Information. Sometimes, the

API calls and documentation offered to developers differ

slightly from the actual behavior of a plugin when it is of-

fered by the SNS itself [11]. This creates a predicament

for developers wishing to replicate the functionality.

Support for All Social Information that is Otherwise Ac-

cessible. We consider it reasonable for the API to pro-

vide access to information that is accessible via the so-

cial plugins offered by the SNS itself or via the profile

pages of its users. For instance, there is no API call to



access the comments of a specific user, although they ap-

pear in the user’s profile page. Scrapping could retrieve

them, but this practice is not ideal. Therefore, in our case,

we have to resolve to practices that result in reduced ac-

curacy, such as anonymously retrieving a sample of the

comments of a page and placing the comments of a user’s

friends at the top, if present in the sample. Retrieving the

entire set of comments could be inefficient for pages with

too many comments.

Alternatively, Facebook could provide a call for re-

trieving just the user IDs of all the commenters, and an-

other call for specifying a set of IDs for which to retrieve

the actual comments. In that case, we could hide the IDs

of a user’s friends among a group of k strangers and re-

quest their comments for that page [56].

8 Related Work

Do Not Track [5] is a browser technology which enables

users to signal, via an HTTP header, that they do not wish

to be tracked by websites they do not explicitly visit. Un-

fortunately there are no guarantees that such a request

will be honored by the receiving site or not.

Krishnamurthy et al. [46] studied privacy leaks in on-

line social networking services. They identified the pres-

ence of embedded content from third-party domains in

the interactions of a user with the SNS itself and stress

that the combination with personal information inside an

SNS could pose a significant threat to user privacy.

There has been significant work in the interplay be-

tween SNSs and privacy. For example, there has been

some focus on protecting privacy in SNS against third-

party applications installed in a user’s profile within the

social network [41, 40, 55]. Facecloak [49] shields a

user’s personal information from a SNS and any third-

party interaction, by providing fake information to the

SNS and storing actual, sensitive information in an en-

crypted form on a separate server. The authors in Fly-

ByNight [48] propose the use of public key cryptography

among friends in a SNS so as to protect their information

from a curious social provider and potential data leaks.

Recent work has focused on how to support personal-

ized advertisements without revealing the user’s personal

information to the providing party. Adnostic [57] offers

targeted advertising while preserving the user’s privacy

by having the web browser profile the user, through the

monitoring of his browsing history, and inferring his in-

terests. It then downloads diverse content from the ad-

vertising server and selects which part of it to display to

the user. Similarly, RePriv [42] enables the browser to

mine a user’s web behavior to infer guidelines for con-

tent personalization, which are ultimately communicated

to interested sites. Our approach differs in principle as

the model of these previous systems prevents a web site

from building a profile for the user while we decouple

the identification step the user undergoes, to access his

already existing social profile, with his subsequent re-

quests for content personalization.

Mayer et al. [50] highlight the threats against user pri-

vacy by the cross-site tracking capabilities of third-party

web services. The authors detail a plethora of tracking

technologies used by the embedded pages of advertise-

ment, analytics, and social networking services. Their

work demonstrates the high level of sophistication in

web tracking technologies, and their resiliency against

browser countermeasures.

Roesner et al. [53] study the tracking ecosystem of

third-party web services and discuss current defenses, in-

cluding third-party cookie blocking. They identify cases

where tracking services actively try to evade such restric-

tions by bringing themselves in a first party position, e.g.,

by spawning pop-up windows. Moreover, the authors

present cases in which services are treated as first par-

ties when visited directly and intentionally by the users,

and at the same time appear embedded as third parties

in web sites, as is the case with social networking ser-

vices and their social plugins. Overall, they conclude that

current restrictions imposed by browsers against third-

party tracking are not fool-proof, and at the same time

find more than 500 tracking services, some with the ca-

pability to capture more than 20% of a user’s browsing

behavior.

A series of browser add-ons exist [7, 26] that block so-

cial plugins from the web pages a user visits by removing

them or preventing them from loading, in a manner sim-

ilar to what Adblock [1] does for advertisements. How-

ever, they come at the cost of full loss of functionality as

social plugins are completely removed from a page. Note

that some of these add-ons are poorly implemented and

naively remove the social plugins only after they have ap-

peared on a page, meaning that the corresponding HTTP

request containing user-identifying information has al-

ready been issued towards the server.

ShareMeNot [28, 53] is a Firefox add-on that strips

user cookies from a series of HTTP requests that the

web browser issues to load social plugins. As a result,

no user-identifying information is sent to the social net-

working service until the user explicitly interacts with

the social plugin. The downside of this approach is that

users are deprived of any personalized information of-

fered by the plugin, e.g., the number and names of any

of their friends that might have already interacted with

a page. In other words, users view these social plug-

ins as if they were logged out from the respective SNS

(or browsing in “incognito” mode). Our approach differs

from ShareMeNot in that it focuses on providing the full

content personalization of existing social plugins while

protecting user privacy.



9 Conclusion

Concerns about the interplay between social plugins and

privacy are mounting rapidly. Tensions have reached the

point that even governments consider to outlaw Face-

book’s Like button [13]. Recently, in an official response

to questions regarding user privacy asked by the govern-

ment of Norway, it was stated that “Facebook does not

use cookies to track people visiting websites using the Like

button” [37]. The current design of social plugins, as

provided by all major social networking services, com-

bined with empirical evidence [9], stresses the need for

changes so that words align with actions. We want to

believe that SNSs treat the privacy of their members as

an issue of the utmost importance, and we hope that they

are willing to ensure it through technical means.

In this paper, we have presented a novel design for

privacy-preserving social plugins, which provide exactly

the same user experience as existing plugins, and at the

same time prevent SNSs from being able to track the

browsing activities of their users. We have described in

detail how this design can be offered transparently as a

service to users of existing SNSs without the need to in-

stall any additional software, and thus envisage that it

could be adopted for the protection of their member’s

privacy. SafeButton, our proof-of-concept implemen-

tation of this design as a browser add-on for Firefox,

demonstrates the practicality of our approach. SafeBut-

ton is publicly available, and currently supports full con-

tent personalization in a privacy-preserving way and with

minimal space overhead for seven out of the nine so-

cial plugins offered by Facebook, while it loads them 2.8

times faster compared to their original versions.

Availability

SafeButton is publicly available as an open source

project at http://www.cs.columbia.edu/~kontaxis/

safebutton/

Acknowledgements

This work was supported in part by the FP7-PEOPLE-

2009-IOF project MALCODE and the FP7 project

SysSec, funded by the European Commission under

Grant Agreements No. 254116 and No. 257007. This

work was also supported by the National Science Foun-

dation through Grant CNS-09-14312, with additional

support from Google. Any opinions, findings, conclu-

sions, or recommendations expressed herein are those of

the authors, and do not necessarily reflect those of the US

Government or the NSF.

References

[1] AdBlock Plus. https://addons.mozilla.org/
en-US/firefox/addon/adblock-plus/.

[2] Browser Security Handbook - Third-party cookie rules.

http://code.google.com/p/browsersec/wiki/
Part2#Third-party_cookie_rules.

[3] Chromium - Don’t play plugin instances inside suppressed

popups? http://code.google.com/p/chromium/
issues/detail?id=3477.

[4] Disconnect. http://disconnect.me/.

[5] Do Not Track - Universal Web Tracking Opt Out. http://
donottrack.us/.

[6] Facebook - How many Pages can I like? https://www.
facebook.com/help/?faq=116603848424794.

[7] Facebook Blocker. http://webgraph.com/
resources/facebookblocker/.

[8] Facebook Fact Sheet. http://newsroom.fb.com/
content/default.aspx?NewsAreaId=22.

[9] Facebook fixes logout issue, explains cook-

ies. http://nikcub.appspot.com/
facebook-fixes-logout-issue-explains-cookies .

[10] Facebook Graph API. http://developers.facebook.
com/docs/reference/api/.

[11] Facebook Like Button Count Inaccuracies.

http://faso.com/fineartviews/21028/
facebook-like-button-count-inaccuracies .

[12] Facebook Plugins. http://developers.facebook.
com/docs/plugins/.

[13] Facebook’s Like button illegal in German state. http://
news.cnet.com/8301-1023_3-20094866-93/
facebooks-like-button-illegal-in-german-state/ .

[14] Firefox Sync. http://www.mozilla.org/en-US/
mobile/sync/.

[15] Ghostery. http://www.ghostery.com/.

[16] Google +1 button. http://www.google.com/+1/
button/.

[17] HTTP state management. http://www.ietf.org/rfc/
rfc2109.txt.

[18] Hypertext Transfer Protocol 1.1. http://www.ietf.
org/rfc/rfc2616.txt.

[19] Indexed Database API. http://www.w3.org/TR/
IndexedDB/.

[20] MDN - Intercepting Page Loads. https://developer.
mozilla.org/en/XUL_School/Intercepting_
Page_Loads.

[21] MDN - Pageshow Event. https://developer.
mozilla.org/en/using_firefox_1.5_caching#
pageshow.

[22] MDN - window.postMessage. https://developer.
mozilla.org/en/DOM/window.postMessage.

[23] MDN - XML User Interface Language. https://
developer.mozilla.org/En/XUL.

[24] Mozilla At a Glance. http://blog.mozilla.org/
press/ataglance/.

[25] MSDN Blogs - Google Bypassing User Privacy Settings.

http://www.cs.columbia.edu/~kontaxis/safebutton/
http://www.cs.columbia.edu/~kontaxis/safebutton/
https://addons.mozilla.org/en-US/firefox/addon/adblock-plus/
https://addons.mozilla.org/en-US/firefox/addon/adblock-plus/
http://code.google.com/p/browsersec/wiki/Part2#Third-party_cookie_rules
http://code.google.com/p/browsersec/wiki/Part2#Third-party_cookie_rules
http://code.google.com/p/chromium/issues/detail?id=3477
http://code.google.com/p/chromium/issues/detail?id=3477
http://disconnect.me/
http://donottrack.us/
http://donottrack.us/
https://www.facebook.com/help/?faq=116603848424794
https://www.facebook.com/help/?faq=116603848424794
http://webgraph.com/resources/facebookblocker/
http://webgraph.com/resources/facebookblocker/
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://newsroom.fb.com/content/default.aspx?NewsAreaId=22
http://nikcub.appspot.com/facebook-fixes-logout-issue-explains-cookies
http://nikcub.appspot.com/facebook-fixes-logout-issue-explains-cookies
http://developers.facebook.com/docs/reference/api/
http://developers.facebook.com/docs/reference/api/
http://faso.com/fineartviews/21028/facebook-like-button-count-inaccuracies
http://faso.com/fineartviews/21028/facebook-like-button-count-inaccuracies
http://developers.facebook.com/docs/plugins/
http://developers.facebook.com/docs/plugins/
http://news.cnet.com/8301-1023_3-20094866-93/facebooks-like-button-illegal-in-german-state/
http://news.cnet.com/8301-1023_3-20094866-93/facebooks-like-button-illegal-in-german-state/
http://news.cnet.com/8301-1023_3-20094866-93/facebooks-like-button-illegal-in-german-state/
http://www.mozilla.org/en-US/mobile/sync/
http://www.mozilla.org/en-US/mobile/sync/
http://www.ghostery.com/
http://www.google.com/+1/button/
http://www.google.com/+1/button/
http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2109.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/IndexedDB/
https://developer.mozilla.org/en/XUL_School/Intercepting_Page_Loads
https://developer.mozilla.org/en/XUL_School/Intercepting_Page_Loads
https://developer.mozilla.org/en/XUL_School/Intercepting_Page_Loads
https://developer.mozilla.org/en/using_firefox_1.5_caching#pageshow
https://developer.mozilla.org/en/using_firefox_1.5_caching#pageshow
https://developer.mozilla.org/en/using_firefox_1.5_caching#pageshow
https://developer.mozilla.org/en/DOM/window.postMessage
https://developer.mozilla.org/en/DOM/window.postMessage
https://developer.mozilla.org/En/XUL
https://developer.mozilla.org/En/XUL
http://blog.mozilla.org/press/ataglance/
http://blog.mozilla.org/press/ataglance/


http://blogs.msdn.com/b/ie/archive/2012/02/
20/google-bypassing-user-privacy-settings.
aspx.

[26] No Likie. https://chrome.google.com/webstore/
detail/pockodjapmojcccdpgfhkjldcnbhenjm .

[27] NoScript. https://addons.mozilla.org/en-US/
firefox/addon/noscript/.

[28] ShareMeNot. http://sharemenot.cs.washington.
edu/.

[29] The Chromium projects - Sync. http://www.chromium.
org/developers/design-documents/sync.

[30] The Platform for Privacy Preferences Specification.

http://www.w3.org/TR/P3P/.

[31] Time Magazine - One Minute on Facebook. http://
www.time.com/time/video/player/0,32068,
711054024001_2037229,00.html.

[32] Uniform Resource Identifier. http://www.ietf.org/
rfc/rfc3986.txt.

[33] Widgets Distribution. http://trends.builtwith.
com/widgets.

[34] An Open Letter to Facebook CEO Mark Zuckerberg,

June 2010. https://www.eff.org/files/filenode/
social_networks/OpenLettertoFacebook.pdf.

[35] Facebook + Media - The Value of a Liker, Sept. 2010.

https://www.facebook.com/note.php?note_
id=150630338305797.

[36] 5 ways Facebook’s new features will fuel social shop-

ping, Sept. 2011. http://mashable.com/2011/09/
29/facebook-social-shopping/.

[37] Facebook’s response to questions from the

Data Inspectorate of Norway, Sept. 2011.

http://www.datatilsynet.no/upload/
Dokumenter/utredningeravDatatilsynet/
FromFacebook-Norway-DPA.pdf.

[38] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the

second-generation onion router. In Proceedings of the 13th

USENIX Security Symposium, pages 303–320. USENIX

Association, 2004.

[39] P. Eckersley. How unique is your web browser? In Pro-

ceedings of the 10th international conference on Privacy

Enhancing Technologies, pages 1–18. Springer, 2010.

[40] M. Egele, A. Moser, C. Kruegel, and E. Kirda. PoX: Pro-

tecting users from malicious facebook applications. In Pro-

ceedings of the 9th Annual IEEE international conference

on Pervasive Computing and Communications (PerCom),

Workshop Proceedings, pages 288–294. IEEE Computer

Society, 2011.

[41] A. Felt and D. Evans. Privacy protection for social network-

ing platforms. In Proceedings of the 2008 IEEE Workshop

on Web 2.0 Security and Privacy, 2008.

[42] M. Fredrikson and B. Livshits. RePriv: Re-envisioning in-

browser privacy. In Proceedings of the 2011 IEEE Sympo-

sium on Security and Privacy, pages 131–146. IEEE Com-

puter Society, 2011.

[43] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell. Pro-

tecting browser state from web privacy attacks. In Proceed-

ings of the 15th international World Wide Web Conference

(WWW), pages 737–744. ACM, 2006.

[44] A. Kobsa. Privacy-enhanced personalization. Communica-

tions of the ACM, 50:24–33, August 2007.

[45] G. Kontaxis, M. Polychronakis, and E. P. Markatos. Su-

doWeb: Minimizing information disclosure to third parties

in single sign-on platforms. In Proceedings of the 14th In-

formation Security Conference, pages 197–212. Springer,

2011.

[46] B. Krishnamurthy and C. E. Wills. Characterizing privacy in

online social networks. In Proceeedings of the 1st Workshop

on Online Social Networks, pages 37–42. ACM, 2008.

[47] B. Krishnamurthy and C. E. Wills. On the leakage of per-

sonally identifiable information via online social networks.

SIGCOMM Computer Communication Review, 40, 2010.

[48] M. M. Lucas and N. Borisov. FlyByNight: mitigating the

privacy risks of social networking. In Proceedings of the

7th ACM workshop on Privacy in the ElecTronic Society

(PETS), pages 1–8. ACM, 2008.

[49] W. Luo, Q. Xie, and U. Hengartner. FaceCloak: An archi-

tecture for user privacy on social networking sites. In Pro-

ceedings of the international conference on computational

science and engineering, pages 26–33. IEEE Computer So-

ciety, 2009.

[50] J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking:

Policy and Technology. In Proceedings of the 2012 IEEE

Symposium on Security and Privacy. IEEE Computer Soci-

ety, 2012.

[51] L. I. Millett, B. Friedman, and E. Felten. Cookies and web

browser design: toward realizing informed consent online.

In Proceedings of the SIGCHI conference on Human factors

in computing systems. ACM, 2001.

[52] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis. My

botnet is bigger than yours (maybe, better than yours): why

size estimates remain challenging. In Proceedings of the

first workshop on Hot topics in understanding Botnets (Hot-

Bots). USENIX Association, 2007.

[53] F. Roesner, T. Kohno, and D. Wetherall. Detecting and de-

fending against third-party tracking on the web. In Proceed-

ings of the 9th USENIX conference on Networked Systems

Design and Implementation (NSDI). USENIX Association,

2012.

[54] A. Roosendaal. Facebook tracks and traces everyone: Like

this! http://ssrn.com/abstract=1717563.

[55] K. Singh, S. Bhola, and W. Lee. xbook: Redesigning pri-

vacy control in social networking platforms. In Proceedings

of the 18th USENIX Security Symposium, pages 249–266.

USENIX Association, 2009.

[56] L. Sweeney. k-anonymity: a model for protecting pri-

vacy. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 10:557–570, October 2002.

[57] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and

S. Barocas. Adnostic: Privacy preserving targeted adver-

tising. In Proceedings of the 17th Network and Distributed

System Security Symposium (NDSS). IEEE Internet Society,

2010.

[58] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.

The anatomy of the facebook social graph. CoRR,

abs/1111.4503, 2011.

http://blogs.msdn.com/b/ie/archive/2012/02/20/google-bypassing-user-privacy-settings.aspx
http://blogs.msdn.com/b/ie/archive/2012/02/20/google-bypassing-user-privacy-settings.aspx
http://blogs.msdn.com/b/ie/archive/2012/02/20/google-bypassing-user-privacy-settings.aspx
https://chrome.google.com/webstore/detail/pockodjapmojcccdpgfhkjldcnbhenjm
https://chrome.google.com/webstore/detail/pockodjapmojcccdpgfhkjldcnbhenjm
https://addons.mozilla.org/en-US/firefox/addon/noscript/
https://addons.mozilla.org/en-US/firefox/addon/noscript/
http://sharemenot.cs.washington.edu/
http://sharemenot.cs.washington.edu/
http://www.chromium.org/developers/design-documents/sync
http://www.chromium.org/developers/design-documents/sync
http://www.w3.org/TR/P3P/
http://www.time.com/time/video/player/0,32068,711054024001_2037229,00.html
http://www.time.com/time/video/player/0,32068,711054024001_2037229,00.html
http://www.time.com/time/video/player/0,32068,711054024001_2037229,00.html
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://trends.builtwith.com/widgets
http://trends.builtwith.com/widgets
https://www.eff.org/files/filenode/social_networks/OpenLettertoFacebook.pdf
https://www.eff.org/files/filenode/social_networks/OpenLettertoFacebook.pdf
https://www.facebook.com/note.php?note_id=150630338305797
https://www.facebook.com/note.php?note_id=150630338305797
http://mashable.com/2011/09/29/facebook-social-shopping/
http://mashable.com/2011/09/29/facebook-social-shopping/
http://www.datatilsynet.no/upload/Dokumenter/utredninger av Datatilsynet/From Facebook - Norway-DPA.pdf
http://www.datatilsynet.no/upload/Dokumenter/utredninger av Datatilsynet/From Facebook - Norway-DPA.pdf
http://www.datatilsynet.no/upload/Dokumenter/utredninger av Datatilsynet/From Facebook - Norway-DPA.pdf
http://ssrn.com/abstract=1717563

	Introduction
	User Tracking through Social Plugins
	Social Plugins
	Privacy Issues
	Preventing Privacy Leaks

	Design
	Requirements
	Overall Approach

	Implementation
	Experimental Evaluation
	Supported Facebook Plugins
	Space Requirements
	Speed
	Effectiveness

	Privacy-preserving Social Plugins as a Service: A Pure JavaScript Design
	Discussion
	Related Work
	Conclusion

