
DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views
for Dynamic Android Malware Analysis

Lok Kwong Yan†‡ Heng Yin†

†Syracuse University ‡Air Force Research Laboratory
Syracuse, New York, USA Rome, New York, USA

{loyan, heyin}@syr.edu

Abstract
The prevalence of mobile platforms, the large market
share of Android, plus the openness of the Android Mar-
ket makes it a hot target for malware attacks. Once a mal-
ware sample has been identified, it is critical to quickly
reveal its malicious intent and inner workings. In this
paper we present DroidScope, an Android analysis plat-
form that continues the tradition of virtualization-based
malware analysis. Unlike current desktop malware anal-
ysis platforms, DroidScope reconstructs both the OS-
level and Java-level semantics simultaneously and seam-
lessly. To facilitate custom analysis, DroidScope ex-
ports three tiered APIs that mirror the three levels of an
Android device: hardware, OS and Dalvik Virtual Ma-
chine. On top of DroidScope, we further developed sev-
eral analysis tools to collect detailed native and Dalvik
instruction traces, profile API-level activity, and track in-
formation leakage through both the Java and native com-
ponents using taint analysis. These tools have proven to
be effective in analyzing real world malware samples and
incur reasonably low performance overheads.

1 Introduction
Android is a popular mobile operating system that is in-
stalled in millions of devices and accounted for more
than 50% of all smartphone sales in the third quarter of
2011 [22]. The popularity of Android and the open na-
ture of its application marketplace makes it a prime tar-
get for attackers. Malware authors can freely upload ma-
licious applications to the Android Market1 waiting for
unsuspecting users to download and install them. Ad-
ditionally, numerous third-party alternative marketplaces
make delivering malicious applications even easier. In-
deed recent research has shown that malicious applica-
tions exist in both the official and unofficial marketplaces
with a rate of 0.02% and 0.2% respectively [41].

1The Android Market has been superceded by the Android Apps
Store in Google Play.

Malware analysis and exploit diagnosis on desktop
systems is well researched. It is widely accepted that
dynamic analysis is indispensable, because malware is
often heavily obfuscated to thwart static analysis. Fur-
thermore, runtime information is often needed for exploit
diagnosis. In particular, much work has leveraged virtu-
alization techniques, either whole-system software emu-
lation or hardware virtualization, to introspect and ana-
lyze illicit activities within the virtual machine [11, 15,
18, 31, 33, 39, 37].

The advantages of virtualization-based analysis ap-
proaches are two-fold: 1) as the analysis runs under-
neath the entire virtual machine, it is able to analyze even
the most privileged attacks in the kernel; and 2) as the
analysis is performed externally, it becomes very diffi-
cult for an attack within the virtual machine to disrupt
the analysis. The downside, however, is the loss of se-
mantic contextual information when the analysis com-
ponent is moved out of the box. To reconstruct the se-
mantic knowledge, virtual machine introspection (VMI)
is needed to intercept certain kernel events and parse ker-
nel data structures [16, 21, 24]. Based on this idea, sev-
eral analysis platforms (such as Anubis [1], Ether [15],
and TEMU [35]) have been implemented.

Despite the fact that Android is based on Linux, it
is not straightforward to take the same desktop analy-
sis approach for Android malware. There are two lev-
els of semantic information that must be rebuilt. In the
lower level, Android is a Linux operating system where
each Android application (or App in short) is encapsu-
lated into a process. Within each App, a virtual machine
(known as the Dalvik Virtual Machine) provides a run-
time environment for the App’s Java components.

In essence, to enable the virtualization-based analysis
approach for Android malware analysis, we need to re-
construct semantic knowledge at two levels: 1) OS-level
semantics that understand the activities of the malware
process and its native components; and 2) Java-level se-
mantics that comprehend the behaviors in the Java com-

1

ponents. Ideally, to capture the interactions between Java
and native components, we need a unified analysis plat-
form that can simultaneously rebuild these two semantic
views and seamlessly bind these two views with the exe-
cution context.

With this goal in mind, we designed and implemented
a new analysis platform, DroidScope, for Android mal-
ware analysis. DroidScope is built on top of QEMU (a
CPU emulator [3]) and is able to reconstruct the OS-
level and Java-level semantic views completely from the
outside. Enriched with the semantic knowledge, Droid-
Scope further provides a set of APIs to help analysts
implement custom analysis plugins. To demonstrate the
capability of DroidScope, we have implemented several
tools, including native instruction tracer and Dalvik in-
struction tracer to obtain detailed instruction traces, API
tracer to log an App’s interactions with the Android sys-
tem, and taint tracker to analyze information leakage.

We evaluated the performance impacts of these tools
on 12 different benchmarks and found that the instru-
mentation overhead is reasonably low and taint analysis
performance (from 11 to 34 times slowdown) is compa-
rable with other taint analysis systems. We further eval-
uated the capability of these tools using two real world
Android malware samples: DroidKungFu and Droid-
Dream. They both have Java and native components as
well as payloads that try to exploit known vulnerabili-
ties. We were able to analyze their behavior without any
changes to the virtual Android device, and obtain valu-
able insights.

In summary, this paper makes the following contribu-
tions:

• We describe two-level virtual machine introspection to
rebuild the Linux and Dalvik contexts of virtual An-
droid devices. Dalvik introspection also includes a
technique to dynamically disable Dalvik Just-In-Time
compilation.
• We present DroidScope, a new emulation based An-

droid malware analysis engine that can be used to an-
alyze the Java and native components of Android Ap-
plications. DroidScope exposes an event-based anal-
ysis interface with three sets of APIs that correspond
to the three different abstraction levels of an Android
Device, hardware, Linux and Dalvik.
• We developed four analysis tools on DroidScope. The

native instruction tracer and Dalvik instruction tracer
provide detailed accounts of the analysis sample’s exe-
cution, while the API tracer provides a high level view
of how the sample interacts with the rest of the system.
The taint tracker implements dynamic taint analysis
on native instructions but is capable of tracking taint
through Java Objects with the help of the Dalvik view
reconstruction. These tools were used to instrument

Linux Kernel

Zygote
System
Services

 Dalvik VM

Java
Component

Java
Component

Java Libraries Java Libraries

Native
Component

Java Libraries

System
Libraries

System
Libraries

System
Libraries

JNI

Figure 1: Overview of Android System

and analyze two real-world malware samples: Droid-
KungFu and DroidDream.

2 Background and Motivation
In this section, we give an overview of the Android sys-
tem and existing Android malware analysis techniques to
motivate our new analysis platform.

2.1 Android System Overview
Figure 1 illustrates the architecture of the Android sys-
tem from the perspective of a system programmer. At
the lowest level, the Android system uses a customized
Linux kernel to manage various system resources and
hardware devices. System services, native applications
and Apps run as Linux processes. In particular, Zygote
is the parent process for all Android Apps. Each App
is assigned its own unique user ID (uid) at installation
time and group IDs (gids) corresponding to requested
permissions. These uids and gids are used to control
access to system resources (i.e, network and file system)
like on a normal Linux system.

All Apps can contain both Java and native compo-
nents. Native components are simply shared libraries
that are dynamically loaded at runtime. The Dalvik vir-
tual machine (DVM), a shared library named libdvm.so,
is then used to provide a Java-level abstraction for the
App’s Java components. At the same time, the Java Na-
tive Interface (JNI) is used to facilitate communications
between the native and Java sides.

To create a Java component, an App developer first
implements it in Java, compiles it into Java bytecode, and
then converts it into Dalvik bytecode. The result is a
Dalvik executable called a dex file. The developer can
also compile native code into shared libraries, .so files,
with JNI support. The dex file, the shared libraries and
any other resources, including the AndroidManifest.xml
file that describes the App, are packaged together into an
apk file for distribution.

For instance, DroidKungFu is a malicious puzzle

2

game found in alternative marketplaces [25]. Its Java
component exfiltrates sensitive information and awaits
commands from the bot master. Its native component is
used as a shell to execute those commands and it also in-
cludes three resource files that are encrypted exploits tar-
geting known vulnerabilities, adb setuid exhaustion and
udev [12], in certain versions of Android.

For security analysts, once a new Android malware
instance has been identified, it is critical to quickly re-
veal its malicious functionality and understand its inner-
workings. This often involves both static and dynamic
analysis.

2.2 Android Malware Analysis
Like malware analysis on the desktop environment, An-
droid malware analysis techniques can fall into two cat-
egories: static and dynamic. For static analysis, the sam-
ple’s dex file can be analyzed by itself or it can be disas-
sembled and further decompiled into Java using tools like
dex2jar and ded [13]. Standard static program analysis
techniques (such as control-flow analysis and data-flow
analysis) can then be performed. As static analysis can
give a complete picture, researchers have demonstrated
this approach to be very effective in many cases [20].

However, static analysis is known to be vulnerable
to code obfuscation techniques, which are common-
place for desktop malware and are expected for An-
droid malware. In fact, the Android SDK includes a
tool named Proguard [34] for obfuscating Apps. An-
droid malware may also generate or decrypt native com-
ponents or Dalvik bytecode at runtime. Indeed, Droid-
KungFu dynamically decrypts the exploit payloads and
executes them to root the device. Moreover, researchers
have demonstrated that bytecode randomization tech-
niques can be used to completely hide the internal logic
of a Dalvik bytecode program [14]. Static analysis also
falls short for exploit diagnosis, because a vulnerable
runtime execution environment is needed to observe and
analyze an exploit attack and pinpoint the vulnerability.

Complementary to static analysis, dynamic analysis is
immune to code obfuscation and is able to see the mali-
cious behavior on an actual execution path. Its downside
is lack of code coverage, although it can be ameliorated
by exploiting multiple execution paths [6, 9, 31]. The
Android SDK includes a set of tools, such as adb and
logcat, to help developers debug their Apps. With
JDWP (Java Debug Wire Protocol) support, the debug-
ger can even exist outside of the device. However, just
like how desktop malware detects and disables debug-
gers, malicious Android Apps can also detect the pres-
ence of these tools, and then either evade or disable the
analysis. The fundamental reason is that the debugging
components and malware reside in the same execution
environment with the same privileges.

Linux Kernel

Zygote
System
Services

 Dalvik VM

Java
Component

Java
Component

Java Libraries Java Libraries

Native
Component

Java Libraries

System
Libraries

System
Libraries

System
Libraries

JNI

OS-level
View

Java-level
View

DroidScope

Instrum
entation Interface

API
Tracer

Native
Insn. Tracer

Dalvik
Insn. Tracer

Taint
Tracker

Java
Component

Java
Component

Figure 2: DroidScope Overview

Virtualization based analysis has proven effective
against evasion, because all of the analysis components
are out of the box and are more privileged than the run-
time environment being analyzed, including the mal-
ware. Based on dynamic binary translation and hard-
ware virtualization techniques, several analysis plat-
forms [1, 15, 38] have been built for analyzing desktop
malware. These platforms are able to bridge the seman-
tic gap between the hardware-level view from the virtual
machine monitor and the OS-level view within the vir-
tual machine using virtual machine introspection tech-
niques [16, 21, 24].

However, these tools cannot be immediately used for
Android malware analysis. Android has two levels of
semantic views, OS and Java, that need to be recon-
structed versus the one for desktop malware. To enable
virtualization-based analysis for Android malware, we
need a unified analysis platform that reconstructs these
two levels of views simultaneously and seamlessly binds
these two views such that interactions between Java com-
ponents and native components can be monitored and an-
alyzed.

3 Architecture
DroidScope’s architecture is depicted in Figure 2. The
entire Android system (including the malware) runs on
top of an emulator, and the analysis is completely per-
formed from the outside. By integrating the changes into
the emulator, the Android system remains unchanged
and different virtual devices can be loaded. To ensure the
best compatibility with virtual Android devices, we ex-
tended the QEMU [3] based Android emulator that ships
with the Android SDK. This is done in three aspects: 1)
we introspect the guest Android system and reconstruct
OS-level and Java-level views simultaneously; 2) as a
key binary analysis technique, we implement dynamic
taint analysis; and 3) we provide an analysis interface to
help analysts build custom analysis tools. Furthermore,
we made similar changes to a different version of QEMU

3

to enable x86 support.
To demonstrate the capabilities of DroidScope, we

have developed several analysis tools on it. The API
tracer monitors the malware’s activities at the API level
to reason about how the malware interacts with the An-
droid runtime environment. This tool monitors how the
malware’s Java components communicate with the An-
droid Java framework, how the native components inter-
act with the Linux system, and how Java components and
native components communicate through the JNI inter-
face.

The native instruction tracer and Dalvik instruction
tracer look into how a malicious App behaves internally
by recording detailed instruction traces. The Dalvik in-
struction tracer records Dalvik bytecode instructions for
the malware’s Java components and the native instruc-
tion tracer records machine-level instructions for the na-
tive components (if they exist).

The taint tracker observes how the malware obtains
and leaks sensitive information (e.g., GPS location, IMEI
and IMSI) by leveraging the taint analysis component
in DroidScope. Dynamic taint analysis has been pro-
posed as a key technique for analyzing desktop malware
particularly with respect to information leakage behav-
ior [18, 39]. It is worth noting that DroidScope performs
dynamic taint analysis at the machine code level. With
semantic knowledge at both OS and Java levels, Droid-
Scope is able to detect information leakage in Java com-
ponents, native components, or even collusive Java and
native components.

We have implemented DroidScope to support both
ARM and x86 Android systems. Due to the fact that the
ARM architecture is most widely used for today’s mo-
bile platforms, we focus our discussion on ARM support,
which is also more extensively tested.

4 Semantic View Reconstruction
We discuss our methodology for rebuilding the two lev-
els of semantic views in this section. We first discuss how
information about processes, threads, memory mappings
and system calls are rebuilt at runtime. This constitutes
the OS-level view. Then from the memory mapping, we
locate the Dalvik Virtual Machine and further rebuild the
Java or Dalvik-level view.

4.1 Reconstructing the OS-level View
The OS-level view is essential for analyzing native com-
ponents. It also serves a basis for obtaining the Java-level
view for analyzing Java components. The basic tech-
niques for reconstructing the OS-level view have been
well studied for the x86 architecture and are generally
known as virtual machine introspection [16, 21, 24]. We
employ similar techniques in DroidScope. We begin by
first describing our changes to the Android emulator to

enable basic instrumentation support.

Basic Instrumentation QEMU is an efficient CPU em-
ulator that uses dynamic binary translation. The normal
execution flow in QEMU is as follows: 1) a basic block
of guest instructions is disassembled and translated into
an intermediate representation called TCG (Tiny Code
Generator); 2) the TCG code block is then compiled
down to a block of host instructions and stored in a
code cache; and 3) control jumps into the translated code
block and guest execution begins. Subsequent execution
of the same guest basic blocks will skip the translation
phase and directly jump into the translated code block in
the cache.

To perform analysis, we need to instrument the trans-
lated code blocks. More specifically, we insert extra
TCG instructions during the code translation phase, such
that this extra analysis code is executed in the execu-
tion phase. For example. in order to monitor context
switches, we insert several TCG instructions to call a
helper function whenever the translation table registers
(system control co-processor c2 base0 and c2 base1 in
QEMU) are written to.

With basic instrumentation support, we extract the fol-
lowing OS-level semantic knowledge: system calls, run-
ning processes, including threads, and the memory map.

System Calls A user-level process has to make system
calls to access various system resources and thus obtain-
ing its system call behavior is essential for understanding
malicious Apps. On the ARM architecture, the service
zero instruction svc #0 (also known as swi #0) is used to
make system calls with the system call number in register
R7. This is similar to x86 where the int 0x80 instruction
is used to transition into privileged mode and the system
call number is passed through the eax register.

To obtain the system call information, we instrument
these special instructions, i.e. insert the additional TCG
instructions, to call a callback function that retrieves ad-
ditional information from memory. For important sys-
tem calls (e.g. open, close, read, write, connect, etc.), the
system call parameters and return values are retrieved as
well. As a result, we are able to understand how a user-
level process accesses the file system and the network,
communicates with another process, and so on.

Processes and Threads From the operating system per-
spective, Android Apps are user-level processes. There-
fore, it is important to know what processes are active
and which one is currently running. In Linux kernel 2.6,
the version used in Gingerbread (Android 2.3), the basic
executable unit is the task which is represented by the
task struct structure. A list of active tasks is main-
tained in a task struct list which is pointed to by
init task. To make this information readily available
to analysis tools, DroidScope maintains a shadow task

4

list with select information about each task.

To distinguish between a thread and a process, we
gather a task’s process identifier pid as well as its thread
group identifier tgid. The pgd (the page global di-
rectory that specifies the memory space of a process),
uid (the unique user ID associated with each App), and
the process’ name are also maintained as part of the
shadow task list. Additionally, our experience has shown
that malware often escalates its privileges or spawns
child process(es) to perform additional duties. Thus,
our shadow task list also contains the task’s credentials,
i.e. uid, gid, euid, egid as well as the process’
parent pid.

Special attention is paid to a task’s name since the
comm field in task struct can only store up to 15
characters. This is often insufficient to store the App’s
full name, making it difficult to pinpoint a specific App.
To address this issue, we also obtain the complete appli-
cation name from the command line cmdline, which
is pointed to by the mm struct structure pointed to by
task struct. Note that the command line is located
in user-space memory, which is not shared like kernel-
space memory where all the other structures and fields
reside. To retrieve it, we must walk the task’s page table
to translate the virtual address into a physical one and
then read it based on the physical address.

According to the design of the Linux kernel, the
task struct for the current process can be easily
located. The current thread info structure is al-
ways located at the (stack pointer & 0x1FFF), and
thread info has a pointer pointing to the current
task struct. We iterate through all active tasks by
following the doubly linked task struct list. We
also update our shadow list whenever the base informa-
tion changes. We do this by monitoring four system calls
sys fork, sys execve, sys clone and sys prctl, and updat-
ing the shadow task list when they return.

Memory Map The Dalvik Virtual Machine, libraries
and dex files are all memory mapped and we rely on the
knowledge of their memory addresses for introspection.
Therefore, it is important to understand the memory map
of an App. This is especially true for the latest version of
Android, Ice Cream Sandwich, since address space lay-
out randomization is enabled by default.

To obtain the memory map of a process, we iterate
through the process’ list of virtual memory areas by fol-
lowing the mmap pointer in the mm struct pointed to
by the task struct. To ensure the freshness of the
memory map information, we intercept the sys mmap2
system call and update the shadow memory map when it
returns.

rIBase:dvmAsmInstructionStart

array-length

instance-of

move/from16

move

nop

ldrh r7, [r4, #2]!
and ip, r7, #255
add pc, r8, ip, lsl #6
push{r4,r5,r6,r7,r8,r9,sl,fp,lr}
sub sp, sp, #4
.
.
nop
nop
nop

lsr r3, r7, #12
lsr r9, r7, #8
ldr r0, [r5, r3, lsl #2]
and r9, r9, #15
cmp r0, #0
.
.
cmp r0, r1
beq<dvmAsmSisterStart+0xe4>
b<dvmAsmSisterStart+0xd0>

Opcode * 0x40

 0x0

0x40

0x80

0x800

0x840

Figure 3: Dalvik Opcode Emulation Layout in mterp

4.2 Reconstructing the Dalvik View

With the OS-level view and knowledge of how the DVM
operates internally, we are able to reconstruct the Java or
Dalvik view, including Dalvik instructions, the current
machine state, and Java objects. Some of the details are
presented in this section.

Dalvik Instructions The DVM’s main task is to exe-
cute Dalvik bytecode instructions by translating them
into corresponding executable machine code. In Ginger-
bread and thereafter, it does so in two ways: interpreta-
tion and Just-In-Time compilation (JIT) [8].

The interpreter, named mterp, uses an offset-
addressing method to map Dalvik opcodes to machine
code blocks as shown in Figure 3. Each opcode has 64
bytes of memory to store the corresponding emulation
code, and any emulation code that does not fit within the
64 bytes use an overflow area, dvmAsmSisterStart,
(see instance-of in Figure 3). This design simpli-
fies the emulation of Dalvik instructions. mterp simply
calculates the offset, opcode ∗ 64, and jumps to the cor-
responding emulation block.

This design also simplifies the reverse conversion from
native to Dalvik instructions as well: when the pro-
gram counter (R15) points to any of these code re-
gions, we are sure that the DVM is interpreting a byte-
code instruction. Furthermore, it is trivial to determine
the opcode of the currently executing Dalvik instruc-
tion. In DroidScope we first identify the virtual ad-
dress of rIBase, the beginning of the emulation code re-
gion, and then calculate the opcode using the formula
(R15− rIBase)/64. rIBase is dynamically calculated
as the virtual address of libdvm.so (obtained from the
shadow memory map in the OS-level view) plus the off-
set of dvmAsmInstructionStart (a debug sym-
bol). If the debug symbol is not available, we can identify
it using the signature for Dalvik opcode number 0 (nop).

5

Update
Program Counter(PC)

Is Code in JIT
code cache?

Execute JIT
 code block

Emulate Code
Using mterp

Yes

No

Decrement block
Counter

Is Counter 0?
Request JIT

Compilation for
Code block and

reset Counter

Yes

No

Figure 4: High Level Flowchart of mterp and JIT

The Just-In-Time compiler was introduced to improve
performance by compiling heavily used, or hot, Dalvik
instruction traces (consisting of multiple code blocks) di-
rectly into native machine code. While each translation
trace has a single entry point, there can be multiple ex-
its known as chaining cells. These chaining cells either
chain to other translation traces or to default entry points
of the mterp interpreter. Overall, JIT provides an excel-
lent performance boost for programs that contain many
hot code regions, although it makes fine-grained instru-
mentation more difficult. This is because JIT performs
optimization on one or more Dalvik code blocks and thus
blurs the Dalvik instruction boundaries.

An easy solution would be to completely disable JIT
at build time, but it could incur a heavy performance
penalty and more importantly it require changes to the
virtual device, which we want to avoid. Considering
that we are often only interested in a particular section
of Dalvik bytecode (such as the main program but not
the rest of system libraries), we choose to selectively dis-
able JIT at runtime. Analysis plugins can specify the
code regions for which to disable JIT and as a result only
the Dalvik blocks being analyzed incur the performance
penalty. All other regions and Apps still benefit from
JIT.

Figure 4 shows the general flow of the DVM. When
a basic block of Dalvik bytecode needs to be emulated,
the Dalvik program counter is updated to reflect the new
block’s address. That address is then checked against
the translation cache to determine if a translated trace for
the block already exists. If it does, the trace is executed.
If it does not then the profiler will decrement a counter
for that block. When this counter reaches 0, the block
is considered hot and a JIT compilation requested. To
prevent thrashing, the counter is reset to a higher value
and emulation using mterp commences. As can be seen
in the flow chart, as long as the requested code is not in
the code cache, then mterp will be used to emulate the

V4 (In 2)
V3 (In 1)
V2 (In 0)

V1
V0

R0:
R1:
R2:
R3:
R4: rPC
R5: rFP
R6: rGLUE
R7: rINST
R8: rIBASE
R9:
R10:
R11:
R12:
R13:
R14:
R15: PC+4

framework.jar@
classes.dex

mterp

InterpState

InterpState
{
 …
 Jvalue retval;
 ...
 Thread* self;
 …
}

android.app.ContextImpl.SharedPreferencesImpl.getInt:(Ljava/lang/String;I)I:

lib
d

vm
.s

o

String
Integer

“this”

S
ta

ck
 g

ro
w

s

low address

Figure 5: Dalvik Virtual Machine State

code.
The dvmGetCodeAddr function is used to deter-

mine whether a translated trace exists. It returns NULL
if a trace does not exist and the address of the corre-
sponding trace if it does. Thus, to selectively disable
JIT, we instrument the DVM and set the return value of
dvmGetCodeAddr to NULL for any translated trace we
wish to disable. To show that our change to the virtual
machine state does not have any ill side-effects, we make
the following arguments. First, if the original return
value was NULL then our change will not have any side
effects. Second, if the return value was a valid address,
then by setting it to NULL, the profile counter is decre-
mented and if 0, i.e. the code region deemed hot again,
another compilation request is issued for the block. In
this case, the code will be recompiled taking up space in
the code-cache. This can be prevented by not instrument-
ing the dvmGetCodeAddr call from the compiler.

In addition to preventing the translated trace from be-
ing executed, setting the value to NULL also prevents it
from being chained to other traces. This is the desired
behavior. For the special case where a translation trace
has already been chained and thus dvmGetCodeAddr
is not called, we flush the JIT cache whenever the dis-
abled JIT’ed code regions change. This is done by mark-
ing the JIT cache as full during the next garbage collec-
tion event, which leads to a cache flush. While this is not
a perfect solution, we have found it to be sufficient.

In all cases, the only side effect is wasted CPU cy-
cles due to compilation; the execution logic is unaffected.
Therefore, the side effects are deemed inconsequential.

DVM State Figure 5 illustrates how the DVM main-
tains the virtual machine state. When mterp is emulating
Dalvik instructions, the ARM registers R4 through R8
store the current DVM execution context. More specifi-
cally, R4 is the Dalvik program counter, pointing to the
current Dalvik instruction. R5 is the Dalvik stack frame
pointer, pointing to the beginning of the current stack

6

ClassObject*

lock

ArrayObject*

hashcode

offset (0)

count (5)in
st

an
ce

D
at

a

struct StringObject {
 Object obj;
 u4 instanceData[1];
};

struct ArrayObject {
 Object obj;
 u4 length;
 u8 contents[1];
};

ClassObject*

lock

align_pad

0x0048 'H', 0x0045 'e'

0x006c 'l', 0x006c 'l'

0x006f 'o', 0x0000

co
nt

en
t s

V3 (In 1)

0x0000, 0x0000

java.lang.String ClassObject

struct Object {
 ClassObject* clazz;
 u4 lock;
};

char[] ClassObject

Figure 6: String Object Example

frame. R6 points to the InterpState data structure,
called glue. R7 contains the first two bytes of the cur-
rent Dalvik instruction, including the opcode. Finally R8
stores the base address of the mterp emulation code for
the current DVM instruction. In x86, edx, esi, edi
and ebx are used to store the program counter, frame
pointer, mterp base address and the first two bytes of the
instruction respectively. The glue object can be found
on the stack at a predefined offset.

Dalvik virtual registers are 32 bits and are stored in
reverse order on the stack. They are referenced relative
to the frame pointer R5. Hence, the virtual register V0
is located at the top of the stack (pointed to by the ARM
register R5,) and the virtual register V1 sits on top of V0
in memory, and so forth. All other Dalvik state infor-
mation (such as return value and thread information) is
obtained through glue pointed to by R6.

After understanding how DVM state is maintained, we
are able to reconstruct the state from the native machine
code execution. That is, by examining the ARM registers
and relative data structures, we can get the current DVM
program counter, frame pointer, all virtual registers, and
so on.

Java Objects Java Objects are described using two data
structures. Firstly, ClassObject describes a class type and
contains important information about that class: the class
name, where it is defined in a dex file, the size of the ob-
ject, the methods, and the location of the member fields
within the object instances. To standardize class repre-
sentations, Dalvik creates a ClassObject for each defined
class type and implicit class type, e.g. arrays. For exam-
ple there is a ClassObject that describes a char[]which
is used by java.lang.String. Moreover, if the App
has a two dimensional array, e.g. String[][], then
Dalvik creates a ClassObject to describe the String[]
and another to describe the array of the previously de-
scribed String[] class.

Secondly, as an abstract type, Object describes a run-
time object instance, i.e. member fields. Each Object

has a pointer to the ClassObject that it is an instance
of plus a tail accumulator array for storing all member
fields. Dalvik defines three types of Objects, DataOb-
ject, StringObject and ArrayObject that are all pointed to
by generic Object*s. The correct interpretation of any
Object* fully depends on the ClassObject that it points
to.

We use a simple String (”Hello”) to illustrate the
interpretation process. Figure 6 depicts the different
data structures involved as well as the struct defini-
tions on top. To access the String, we first follow the
reference in the virtual register V3. Since Java ref-
erences are simply Object*s, V3 points to an Ob-
ject. To determine the type of the object, we follow
the first 4 bytes to the ClassObject structure. This Clas-
sObject instance describes the java.lang.String
class. Internally, Dalvik does not store the String data
inside the StringObject and instead use a char[].
Consequently, instanceData[0] is used to store
the reference to the corresponding char[] object and
instanceData[3] is used to store the number of
characters in the String, 5 in this case.

We then obtain the String’s data by following
instanceData[0] to the character array. Once again
we must follow the Object* within the new object to
correctly interpret it as an ArrayObject. Note that since
ARM EABI requires all arrays to be aligned to its ele-
ment size and u8 is 8 bytes in length, we inserted an im-
plicit 4 byte align pad into the ArrayObject to ensure
that the contents array is properly aligned. Given the
length of the String from the StringObject and the cor-
roborating length in the ArrayObject, the ”Hello” String
is found in the contents array encoded in UTF-16.

4.3 Symbol Information
Symbols (such as function name, class name, field name,
etc.) provide valuable information for human analysts to
understand program execution. Thus, DroidScope seeks
to make the symbols readily available by maintaining a
symbol database. For portability and ASLR support, we
use one database of offsets to symbols per module. At
runtime, finding a symbol by a virtual address requires
first identifying the containing module using the shadow
memory map, and then calculating the offset to search
the database.

Native library symbols are retrieved statically through
objdump and are usually limited to Android libraries
since malware libraries are often stripped of all symbol
information. On the other hand, Dalvik or Java symbols
are retrieved dynamically and static symbol information
through dexdump is used as a fallback. This has the ad-
vantage of ensuring the best symbol coverage for opti-
mized dex files and even dynamically generated Dalvik
bytecode.

7

E
vents

instruction begin/end context switch
register read/write system call method begin
memory read/write task begin/end
block begin/end task updated

memory map updated

Q
uery &

 S
et

memory read/write query symbol database query symbol database
get current context interpret Java object

register read/write get task list get/set DVM state
taint set/check taint set/check objects

disable JIT

NativeAPI LinuxAPI DalvikAPI
Dalvik instruction begin

memory r/w with pgd

Table 1: Summary of DroidScope APIs

We rely on the data structures of DVM to retrieve sym-
bols at runtime. For example, the Method structure con-
tains two pointers of interest. insns points to the start
of the method’s bytecode, the symbol address, and name
points to the name. Conveniently, the glue structure
pointed to by R6 has a field method that points to the
Method structure for the currently executing method.

There are times when this procedure fails though, e.g.
if the corresponding page of the dex file has not been
loaded into memory yet. In these cases, we first try to
look up the information in a local copy of the correspond-
ing dex file, and if that fails as well, use the static symbol
information from dexdump. DroidScope uses this same
basic method of relying on the DVM’s data structures to
retrive class and field names as well.

5 Interface & Plugins
DroidScope exports an event based interface for instru-
mentation. We describe the general layout of the APIs,
present an example of how tools are implemented, and
finally describe available tools in this section.

5.1 APIs
DroidScope defines a set of APIs to facilitate custom
analysis tool development. The APIs provide instrumen-
tation on different levels: native, OS and Dalvik, to mir-
ror the context levels of a real Android device. At each
level, the analysis tool can register callbacks for different
events, and also query or set various kinds of information
and controls. Table 1 summarizes these APIs.

At the native level, one can register callbacks for in-
struction start and end, basic block start and end, mem-
ory read and write, and register read and write. One can
also read and write memory and register content. As
taint analysis is implemented at the machine code level,
one can also set and check taint in memory and regis-
ters. Currently, the taint propagation engine only sup-
ports copy and arithmetic operations, control flow depen-
dencies are not tracked.

At the OS level, one can register callbacks for context
switch, system call, task start, update (such as process

name), and end, and memory map update. One can also
query symbols, obtain the task list, and get the current
execution context (e.g., current process and thread). At
the Dalvik level, one can instrument at the granularity
of Dalvik instructions and methods. One can query the
Dalvik symbols, parse and interpret Java objects, read
and modify DVM state, and selectively disable JIT for
certain memory regions. Through the Dalvik-view, one
can also set and check taint in Java Objects as well.

5.2 Instrumentation Optimization
A general guideline for performance optimization in dy-
namic binary translation is to shift computation from the
execution phase to the translation phase. For instance, if
we need to instrument a function call at address x using
basic blocks, then we should insert the instrumentation
code for the block at x when it is being translated instead
of instrumenting every basic block and look for x at exe-
cution time.

We follow this guideline in DroidScope. Conse-
quently, our instrumentation logic becomes more com-
plex. When registering for an event callback, one can
specify a specific location (such as a function entry) or a
memory range (to trace instructions or functions within a
particular module). Therefore, our instrumentation logic
supports single value comparisons and range checks for
controlling when and where event callbacks are inserted
during the translation phase.

The instrumentation logic is also dynamic, because we
often want to register and unregister a callback at execu-
tion time. For example, when the virtual device starts,
only the OS-view instrumentation is enabled so the An-
droid system can start quickly as usual. When we start
analyzing an App, instrumentation code is inserted to
reconstruct the Dalvik view and to perform analysis as
requested by the plugin. When instrumenting a func-
tion return, the return address will be captured from the
link register R14 at the function entry during execution,
and a callback is registered at the return address. Af-
ter the function has returned, this callback is removed.
Then when the analysis has finished, other instrumenta-
tion code is removed as well. To maintain consistency,
DroidScope invalidates the corresponding basic blocks
in the translated code cache whenever necessary so that
the new instrumentation logic can be enforced. Hence,
the instrumentation logic in DroidScope is complex and
dynamic. These details are hidden from the analysis plu-
gins.

5.3 Sample Plugin
Figure 7 presents sample code for implementing a simple
Dalvik instruction tracer. The init function at L19 will
be invoked once this plugin is loaded in DroidScope. In
init, it specifies which program to analyze by calling the

8

 1. void opcode_callback(uint32_t opcode) {
 2. printf("[%x] %s\n", GET_RPC, opcodeToStr(opcode));
 3. }
 4.
 5. void module_callback(int pid) {
 6. if (bInitialized || (getIBase(pid) == 0))
 7. return;
 8.
 9. gva_t startAddr = 0, endAddr = 0xFFFFFFFF;
10.
11. addDisableJITRange(pid, startAddr, endAddr);
12. disableJITInit(getGetCodeAddrAddress(pid));
13. addMterpOpcodesRange(pid, startAddr, endAddr);
14. dalvikMterpInit(getIBase(pid));
15. registerDalvikInsnBeginCb(&opcode_callback);
16. bInitialized = 1;
17. }
18.
19. void _init() {
20. setTargetByName("com.andhuhu.fengyinchuanshuo");
21. registerTargetModulesUpdatedCb(&module_callback);
22. }

Figure 7: Sample code for Dalvik Instruction Tracer

setTargetByName function. It also registers a callback
module callback to be invoked when module informa-
tion is updated. module callback will check if the DVM
is loaded and if so, disable JIT for the entire memory
space (L9 and L11.) It also registers a callback, op-
code callback, for Dalvik instructions. When invoked,
opcode callback prints the opcode information.

This sample code will print all Dalvik instructions for
the specified App, including the main program and all
the libraries. If we are only interested in the execu-
tion of the main program, we can add a function call
like getModAddr(”example@classes.dex”, &startAddr,
&endAddr) at L10. This function locates the dex file in
the shadow memory map and stores its start and end ad-
dresses in the appropriate variables. The rest of the code
can be left untouched.

5.4 Analysis Plugins
To demonstrate the capability of DroidScope for analyz-
ing Android malware, we have implemented four analy-
sis plugins: API tracer, native instruction tracer, Dalvik
instruction tracer, and taint tracker.

API tracer monitors how an App (including Java and
native components) interacts with the rest of the sys-
tem through system and library calls. We first log all
of the App’s system calls by registering for system call
events. We then build a whitelist of the virtual device’s
built-in native and Java libraries. As modules are loaded
into memory, any library not in the whitelist is marked
for analysis. We instrument the invoke* and execute*
Dalvik bytecodes to identify and log method invoca-
tions, including those of the sample. The log contains
the currently executing Java thread, the calling address,
the method being invoked as well as a dump of its in-
put parameters. Since Java Strings are heavily used, we
try to convert all Strings into native strings before log-
ging them. We then instrument the move-result* byte-
code instructions to detect when system methods return
and gather the return values. We do not instrument any

of the other bytecodes to improve performance. To log
library calls from the App’s native components, we reg-
ister for the block end event for blocks that are located in
the App’s native components. When the callback for the
block end event is invoked, we check if the next block is
within the Apps native components or not. If not, we log
this event.

Native instruction tracer registers ARM or x86 in-
struction callbacks to gather information about each in-
struction including the raw instruction, its operands (reg-
ister and memory) and their values.

Dalvik instruction tracer follows the basic logic of
the above example and logs the decoded instruction to
a file in the dexdump format. The operands, their values
and all available symbol information, e.g. class, field and
method names, are logged as well.

Taint tracker utilizes the dynamic taint analysis APIs
to analyze information leakage in an Android App. It
specifies sensitive information sources (such as IMEI,
IMSI, and contact information) as tainted and keeps track
of taint propagation at the machine code level until they
reach sinks, e.g. sys write and sys send. With the OS
and Dalvik views, it further creates a graphical represen-
tation to visualize how sensitive information has leaked
out. To construct the graph, we first identify function and
method boundaries. Whenever taint is propagated, we
add a node to represent the currently executing function
or method and nodes for the tainted memory locations.
Since methods operate on Java Objects, we further try to
identify the containing Object and create a node for it in-
stead of the simple memory location. Currently, we only
do this check against the method’s input parameters and
the current Object, e.g. ”this”. Further improvements are
left as future work.

To identify method boundaries, we look for match-
ing invoke* or execute* and move-result* Dalvik instruc-
tions. We do not rely on the return* instructions since
they are executed in the invokee context, which might not
be instrumented, e.g. inside an API. Since there are mul-
tiple ways for native code to call and return from func-
tions plus malicious code is known to jump into the mid-
dle of functions, we do not rely on native instructions
to determine function boundaries. Instead, we treat the
nearest symbol that is less than or equal to the jump tar-
get in the symbol database as the function.

6 Evaluation
We evaluated DroidScope with respect to efficiency and
capability. To evaluate efficiency, we used 7 benchmark
Apps from the official Android Market: AnTuTu Bench-
mark (ABenchMark) by AnTuTu, CaffeineMark by Ravi
Reddy, CF-Bench by Chainfire, Mobile processor bench-
mark (Multicore) by Andrei Karpushonak, Benchmark
by Softweg, and Linpack by GreeneComputing. We then

9

ABenchMark

CaffieneMark

CFBench/Native

CFBench/Java

CFBench/Overall

CPUBench (ms)

Multicore (ms)

Softweg/CPU

Softweg/Graphics

Softweg/Memory

Linpack/Singlethread

Linpack/Multithread

0% 20% 40% 60% 80% 100% 120%

0% 20% 40% 60% 80% 100% 120%

NOJIT Baseline Context Only API Tracer
Dalvik
Instruction
Tracer

Taint Tracker

Percent of Baseline

Percent of Baseline

Figure 8: Benchmark Results

ran the benchmarks while using the different automatic
analysis tools described above on the benchmarks them-
selves. The results are presented in Section 6.1. To
evaluate capability, we analyzed two real world Android
malware samples: DroidKungFu and DroidDream in de-
tail, which will be presented in Sections 6.2 and 6.3.
These samples were obtained from the Android Malware
Genome project [40].

Experimental Setup All experiments were conducted
on an Acer 4830TG with a Core i5 @ 2.40GHz and 3GB
of RAM running Xubuntu 11.10. The Android guest is
a Gingerbread build configured as ”user-eng” for ARM
with the Linux 2.6.29 kernel and uses the QEMU default
memory size of 96 MB. No changes were made to the
Android source.

6.1 Performance
To measure the performance impact of instrumentation,
we took the analysis tools and targeted the benchmark
Apps while the Apps performed their tests. This was re-
peated 5 times. As the baseline, we ran these benchmarks

on the default Android emulator without any instrumen-
tation. Since DroidScope selectively disables JIT on the
Apps, we also obtained a NOJIT baseline with JIT com-
pletely disabled at build time. The performance results
are summarized in the bar chart in Figure 8. Each tool
is associated with a set of bars that shows its benchmark
results (y-axis) relative to the baseline as a percentage.
The ARM Instruction Tracer results are excluded as they
are similar to the taint tracker results.

Please note that the benchmarks are not perfect repre-
sentations of performance as evidenced by the > 100%
results. For example, in CPUBenchmark the standard de-
viation, σ , for Baseline, Dalvik tracer and Context Only
is only 1%. This means that the results are consistent for
each plugin, but might not be across plugins. Further-
more, we removed the Softweg filesystem benchmarking
results due to high variability, σ > 27%.

We can see from Figure 8 that the overhead
(Context Only) of reconstructing the OS-level view
is very small, up to 7% degradation. The taint tracker
has the worst performance as expected, because it reg-
isters for instruction level events. The taint tracker in-
curs 11x to 34x slowdown, which is comparable to other
taint analysis tools [10, 39] on the x86 architecture. A
special case is seen in the Dalvik instruction tracer re-
sult for CaffeineMark. This result is attributed to the fact
that the tracer dynamically retrieves symbol information
from guest memory for logging.

The benefits of dynamically disabling JIT is evident
in some Java based benchmarks such as Linpack, CF-
Bench/Java and CaffeineMark. For those benchmarks,
the API tracer’s performance is greater than that of the
NOJIT Baseline, despite the fact that instrumentation is
taking place. This difference is due to Java libraries, such
as String methods, still benefiting from JIT in the API
tracer.

6.2 Analysis of DroidKongFu
The DroidKungFu malware contains three components.
First, the core logic is implemented in Java and is con-
tained within the com.google.ssearch package.
This is the main target of our investigation. Second are
the exploit binaries which are encrypted in the apk, de-
crypted by the Java component and then subsequently
executed. Third is a native library that is used as a shell.
It contains JNI exported functions that can run shell com-
mands and is the main interface for command and con-
trol. Unfortunately the command and control server was
unavailable at the time of our test and thus we did not
analyze this feature.

Discovering the Internal Logic We began our investi-
gation by running the API tracer on the sample and an-
alyzing the log. We first looked for system calls of in-
terest and found a sys open for a file named “gjsvro”.

10

getPermission {
 if checkPermission() then doSearchReport(); return
 if !isVersion221() then
 if getPermission1() then return
 if exists("bin/su" or "xbin/su") then
 getPermission2(); return
 if !isVersion221() then getPermission3(); return
}

Figure 9: getPermission Pseudocode

There was also a subsequent sys write to the file from
a byte array. We later found that this array is actu-
ally part of a Java ArrayObject which was populated
by the Utils.decrypt method, which is part of Droid-
KungFu. Since decrypt takes a byte array as the param-
eter, we were able to search backwards and identify that
this particular array was read from an asset inside the
App’s package file called ”gjsvro”. It means that dur-
ing execution, DroidKungFu decrypts an asset from its
package and generates the ”gjsvro” file. We then found
that DroidKungFu called Runtime.exec with parameters
“chmod 4755” and the name of the file, making the file
executable and setting the setuid bit. After that, it called
Runtime.exec again for “su” which led to a sys fork. Fur-
thermore, the file path for “gjsvro” was then written to
a ProcessImpl OutputStream, followed immedi-
ately by “exit”. Since this stream is piped to the child’s
stdin, we know that the intention of “su” was to open a
shell which is then used to execute “gjsvro” followed by
“exit” to close the shell. This did not work though since
“su” did not execute successfully.

Next we used the Dalvik instruction tracer to obtain
a Dalvik instruction trace. The trace showed that the
decrypt and Runtime.exec methods were invoked from
a method called getPermission2, which was called from
getPermission following a comparison using the result
of isVersion221 and some file existence checks. To get a
more complete picture of the getPermission method, we
ran dexdump and built the overview pseudocode shown
in Figure 9 . It is evident that to explore the getPermis-
sion1 and getPermission3, we must instrument the sam-
ple and change the return values of the different method
invocations.

With the Dalvik view support, we manipulated the re-
turn values of isVersion221 and exist methods and were
able to explore all three methods getPermission1, get-
Permission2, and getPermission3. They are essentially
different ways to obtain the root privilege on different
Android configurations. getPermission1 and getPermis-
sion2 only uses the “gjsvro” exploit. The main difference
is that getPermission1 uses Runtime.exec to execute the
exploit while the other uses the “su” shell. On the other
hand, getPermission3 decrypts “ratc”, “killall” (a wrap-
per for “ratc”) and “gjsvro” and executes them using its
own native library. As the API tracer monitors both

UrlEncodedFormEntity.<init>

AbstractHttpClient.execute()

sys_write(34, 0x405967d0, 397)

String @ 0x4056a448
“imei=123456789012345&ostype=...”

byte[] @ 405967c0 / void* @ 405967d0
“POST /search/sayhi.php HTTP/1.1...”

String @ 0x40524e80
“123456789012345”

getDeviceId()

Figure 10: Taint Graph for DroidKungFu

Java and native components, our logs show that the li-
brary then calls sys vfork and sys execve to execute the
commands. This indicates that getPermission3 was try-
ing to run both “udev” exploit and “rage against the cage”
(ratc) exploits.

Analyzing Root Exploits Since Gingerbread has al-
ready been patched against these exploits, they never ex-
ecuted correctly. To further analyze these root exploits,
we first needed to remove the corresponding patches
from the virtual device build. Here we focus on “ratc,”
since “udev” is analyzed in the same manner. Due to
space constraints we present the exploit diagnosis of
“ratc” in Appendix A.

We first ran the API tracer on the ratc exploit, but did
not observe any malicious behavior in the API log. We
did see suspicious behavior in the process log provided as
part of the OS-view reconstruction. Particularly, we ob-
served that numerous ratc processes (descendants of the
original ratc process) were spawned, the adbd process
with uid 2000 ended, followed by more ratc processes
and then by an adbd process with uid 0 or root. This
signifies that the attack was successful. It is worth not-
ing that the traditional adb based dynamic analysis would
fail to observe the entire exploiting process because adbd
is killed at the beginning.

Further analysis of the logs and descendent processes
showed that there are in fact three types of ratc processes.
The first is the original ratc process that simply iterates
through the /proc directory looking for the pid of the
adbd process. Its child then forked itself until sys fork re-
turned -11 or EAGAIN. At this point it wrote some data
to a pipe and resumed forking. In the grandchild process
we see a call to sys kill to kill the adbd process followed
by attempts to locate the adbd process after it re-spawns.

Triggering Data leakage Reverting back to the default
Gingerbread build, we sought to observe the informa-
tion leakage behavior in doSearchReport. As depicted

11

in Figure 9, this involves instrumenting checkPermission
during execution of getPermission. The Dalvik instruc-
tion trace shows that doSearchReport invokes update-
Info, which obtains sensitive information about the de-
vice including the device model, build version and IMEI
amongst other things. We also observed outgoing HTTP
requests, which failed because the server was down. We
then redirected these HTTP requests to our own HTTP
server by adding a new entry into /etc/hosts. To fur-
ther analyze this information leakage, we used the taint
tracker and built a simplified taint propagation graph,
which is shown in Figure 10. Objects, both Java and
native, are represented by rectangular nodes while meth-
ods are represented by oval nodes. We see that UrlEn-
codedFormEntity (the constructor) propagated the orig-
inal tainted IMEI number in the String @ 0x40524e80
to a second String that looks like an HTTP request. The
taint then propagated to a byte array at 0x405967c0 by
AbstractHttpClient.execute. We finally see the taint ar-
riving at the sink at sys write. Note that sys write used
a void* at 0x405967d0, which is the contents array of
the byte array Object (see the StringObject example in
Section 4.2). This is expected since JNI provides direct
access to arrays to save on the cost of memcpy.

6.3 Analysis of DroidDream
Like analyzing DroidKungFu, we first used the API
tracer to get a basic understanding of DroidDream, and
then obtained instruction traces and analyzed informa-
tion leakage.

From the log generated by the API tracer and the
shadow task list, we found that there are two Droid-
Dream processes. “com.droiddream.lovePositions,” the
main process, does not exhibit any malicious behavior
except using Runtime.exec to execute “logcat -c” which
clears Android’s internal log. Again, this behavior indi-
cates that traditional Android debugging tools fall short
for malware analysis.

“com.droiddream.lovePositions:remote,” the other
process, is the malicious one. The logs show that Droid-
Dream retrieves the IMSI number along with other sen-
sitive information like IMEI, and encodes them into an
XML String. Then we observed a failed attempt to open
a network connection to 184.105.245.17:8080.
In order to observe this networking behavior, we instru-
ment the return values of sys connect and sys write to
make DroidDream believe these network operations are
successful.

Using the taint tracker, we marked these information
sources as tainted and obtained taint propagation graphs,
which confirm that DroidDream did leak sensitive infor-
mation from these sources to a remote HTTP server. The
graph for leaking IMSI information is illustrated in Fig-
ure 11. We simplified the graph and annotated it to in-

String @ 0x40522a10
“310260000000000”

getSubscriberId()

Formatter.format()

byte[] @ 0x405232a8

String @ 0x40523288
“<?xml version="1.0" ...”

getBytes()

crypt()

sys_write(33, 405261a8, 257)

API Native Memory

ByteArrayInputStream

Figure 11: Taint Graph for DroidDream

clude crypt which is the DroidDream method used to
xor-encrypt the byte array. The graph shows that get-
SubscriberId is used to obtain the IMSI from the system
as a String @ 0x40522a10. The IMSI String, along with
other information, is then encoded into an XML format
using format. The resulting String is then converted into
a byte[] @ 0x405232a8 for encryption by crypt. The
encrypted version is used to create a ByteArrayInput-
Stream. For brevity, we use a generic “API Native Mem-
ory” node to illustrate that the taint further propagates
through memory until the eventual sink at sys write.

We further investigated the crypt method by augment-
ing the Dalvik instruction tracer to track taint propaga-
tion and generate a taint-annotated Dalvik instruction
trace. Not only do we see the byte array being xor-ed
with a static field name “KEYVALUE,” we also see that
the encryption is being conducted on the byte[] in-place.
A snippet of the trace log is depicted in Figure 12.

DroidDream also includes the udev and ratc ex-
ploits (unencrypted), plus the native library terminal like
DroidKungFu. Since we have already analyzed them in
DroidKungFu, we skipped the analysis on them in Droid-
Dream.

7 Discussion
Limited Code Coverage Dynamic analysis is known to
have limited code coverage, as it only explores a single
execution path at a time. To increase code coverage, we
may explore multiple execution paths as demonstrated in
previous work [6, 9, 31]. In the experiments, we demon-
strated that we can discover different execution paths by
manipulating the return values of system calls, native

12

[43328f40] aget-byte v2(0x01), v4(0x405232a8), v0(186)
 Getting Tainted Memory: 40523372(2401372)
 Adding M@410accec(42c5cec) len = 4
[43328f44] sget-object v3(0x0000005e), KEYVALUE// field@0003
[43328f48] aget-byte v3(0x88), v3(0x4051e288), v1(58)
[43328f4c] xor-int/2addr v2(62), v3(41)
 Getting Tainted Memory: 410accec(42c5cec)
 Adding M@410accec(42c5cec) len = 4
[43328f4e] int-to-byte v2(0x17), v2(23)
 Getting Tainted Memory: 410accec(42c5cec)
 Adding M@410accec(42c5cec) len = 4
[43328f50] aput-byte v2(0x17), v4(0x405232a8), v0(186)
 Getting Tainted Memory: 410accec(42c5cec)
 Adding M@40523372(2401372) len = 1

Figure 12: Excerpt of Dalvik Instruction Trace for
DroidDream. A Dalvik instruction entry shows the location
of the current instruction in square brackets, the decoded in-
struction plus the values of the virtual registers in parenthesis.
A taint log entry is indented and shows tainted memory being
read or written to. The memory’s physical address is shown in
parenthesis and the total bytes tainted is represented by ”len.”

APIs and even internal Dalvik methods of the App. This
simple approach works fairly well in practice although a
more systematic approach is desirable. One method is to
perform symbolic execution to compute path constraints
and then automatically explore other feasible paths. We
have not yet implemented symbolic execution and leave
it as future work. In particular, we seek to use tainting in
conjunction with the Dalvik view to implement a sym-
bolic execution engine at the Dalvik instruction level.

Detecting and Evading DroidScope In the desktop en-
vironment, malware becomes increasingly keen to the
execution environment. Emulation-resistant malware de-
tect if they are running within an emulated environment
and evade analysis by staying dormant or simply crash-
ing themselves. Researchers have studied this problem
for desktop malware [2, 26, 36]. The same problem has
not arisen for Android malware analysis. However, as
DroidScope or similar analysis platforms become widely
adopted to analyze Android malware, we anticipate sim-
ilar evasion techniques will eventually appear. As mal-
ware may detect the emulated environment using emula-
tion bugs in the emulator, some efforts have been made to
detect bugs in the CPU emulators and thus can improve
emulation accuracy [28, 29].

More troubling are the intrinsic differences between
the emulated environment and mobile systems. Mobile
devices contain numerous sensors, e.g. GPS, motion and
audio, with performance profiles which might be difficult
to emulate. While exploring multiple execution paths
may be used to bypass these types of tests, they might
still not be sufficient. For example we have observed
that Android, as an interactive platform, can be sensitive
to the performance overhead due to analysis. If the anal-

ysis takes too long, certain timeout events are triggered
leading to different execution paths. The analyst must
be aware of these new challenges. In summary, further
investigation in this area is needed.

8 Related Work
Virtual Machine Introspection Virtual Machine Intro-
spection is a family of techniques that rebuild a guest’s
context from the virtual machine monitor [21, 24]. This
is achieved by understanding the important kernel data
structures (such as the task list) and extracting impor-
tant information from these data structures. For closed-
source operating systems, it is difficult to have complete
understanding of the kernel data structures. To solve this
problem, Dolan-Gavitt et al. developed a technique that
automatically generates introspection tools by first mon-
itoring the execution of a similar tool within the guest
system and then mimicking the same execution outside
of the guest system [16]. With deep understanding of the
Android kernel, DroidScope is able to intercept certain
kernel functions and traverse proper kernel data struc-
tures to reconstruct the OS level view. In comparison,
DroidScope takes it one step further to reconstruct the
Dalvik/Java view, such that both Java and native compo-
nents from an App can be analyzed simultaneously and
seamlessly.

Dynamic Binary Instrumentation PIN [27], Dy-
namoRIO [5], and Valgrind [32] are powerful dynamic
instrumentation tools that analyze user-level programs.
They are less ideal for malware analysis, because they
share the same memory space with user-level mal-
ware and thus can be subverted. Bernat et al. used
a formal model to identify observable differences due
to instrumentation of sensitive instructions and created
a sensitivity-resistant instrumentation tool called SR-
Dyninst [4]. Like the other tools though, it cannot be
used to analyze kernel-level malware.

Anubis [1], PinOS [7], TEMU [35], and Ether [15] are
based on CPU emulators and hypervisors. They have the
full system view of the guest system and thus are better
suited for malware analysis. These systems only sup-
port the x86 architecture and Ether, in principle, cannot
support ARM, because it relies on the hardware virtual-
ization technology on x86. A new port must be devel-
oped for ARM virtualization [30]. While Atom based
mobile platforms are available, ARM still dominates the
Android market and thus ARM based analysis is impor-
tant. To the best of our knowledge, DroidScope is the
first fine-grained dynamic binary instrumentation frame-
work that supports the ARM architecture and provides a
comprehensive interface for Android malware analysis.
We do not however support control flow tainting or dif-
ferent tainting profiles like Dytan [10]. Since Dytan is

13

based on PIN, it is theoretically feasible to port the tool
to PIN for ARM [23], although it will still be limited to
analyzing user-level malware.

Dalvik Analysis Tools Enck et al. used ded to convert
Dalvik bytecode into Java bytecode and soot to further
convert it into Java source code to identify data flow
violations [20]. While powerful, the authors note that
some violations could not be identified due to code re-
covery failures. DroidRanger is a static analysis tool that
operates on Dalvik bytecode directly and was success-
ful in identifying previously unknown malicious Apps in
Android marketplaces [41]. TaintDroid and DroidBox
are two examples of dynamic analysis tools for Android
applications [17, 19]. TaintDroid is a specially crafted
DVM that supports taint analysis of Dalvik instructions
and across API calls. DroidBox is a project that uses
TaintDroid to build an android application sandbox for
analysis purposes. The biggest advantage of using Taint-
Droid is that it runs on actual devices. All of the hard-
ware, sensors, vendor software and unpredictable intrica-
cies that come with a real device are there. This can’t be
achieved in an emulated environment. The major nega-
tive of all these tools is that they are limited to analyzing
the Java portion of Apps. Thus, if there is a native com-
ponent, like DroidKungFu has, they will not be able to
fully analyze it.

9 Conclusion
We presented DroidScope, a fine grained dynamic binary
instrumentation tool for Android that rebuilds two lev-
els of semantic information: operating system and Java.
This information is provided to the user in a unified in-
terface to enable dynamic instrumentation of both the
Dalvik bytecode as well as native instructions. In this
manner, the analyst is able to reveal the behavior of a
malware sample’s Java and native components as well
as interactions between them and the rest of the system
as evidenced by the successful analysis of DroidKungFu
and DroidDream using DroidScope. These capabilities
are provided to the analyst without changing the guest
Android system and particularly with JIT intact. Our per-
formance evaluation showed the benefits of dynamically
disabling JIT for targeted analysis such as API tracing.
The overall performance seems reasonable as well.

Acknowledgements
We thank the anonymous reviewers for their insightful
comments towards improving this paper. This work is
supported in part by the US National Science Founda-
tion NSF under Grants #1018217 and #1054605. Any
opinions, findings, and conclusions made in this material
are those of the authors and do not necessarily reflect the
views of the NSF or the Air Force Research Laboratory.

References
[1] Anubis: Analyzing Unknown Binaries. http://anubis.

iseclab.org/.

[2] BALZAROTTI, D., COVA, M., KARLBERGER, C., KRUEGEL,
C., KIRDA, E., AND VIGNA, G. Efficient Detection of Split
Personalities in Malware. In Proceedings of the Network and
Distributed System Security Symposium (NDSS) (San Diego, CA,
February 2010).

[3] BELLARD, F. QEMU, a fast and portable dynamic translator.
In USENIX Annual Technical Conference, FREENIX Track (April
2005).

[4] BERNAT, A. R., ROUNDY, K., AND MILLER, B. P. Efficient,
sensitivity resistant binary instrumentation. In Proceedings of the
2011 International Symposium on Software Testing and Analysis
(New York, NY, USA, 2011), ISSTA ’11, ACM, pp. 89–99.

[5] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An in-
frastructure for adaptive dynamic optimization. In International
Symposium on Code Generation and Optimization (CGO’03)
(March 2003).

[6] BRUMLEY, D., HARTWIG, C., KANG, M. G., LIANG, Z., NEW-
SOME, J., POOSANKAM, P., AND SONG, D. BitScope: Auto-
matically dissecting malicious binaries. Tech. Rep. CS-07-133,
School of Computer Science, Carnegie Mellon University, Mar.
2007.

[7] BUNGALE, P. P., AND LUK, C.-K. PinOS: a programmable
framework for whole-system dynamic instrumentation. In Pro-
ceedings of the 3rd international conference on Virtual execution
environments (2007), VEE ’07, pp. 137–147.

[8] CHENG, B., AND BUZBEE, B. A JIT com-
piler for android’s dalvik VM. http://www.
google.com/events/io/2010/sessions/
jit-compiler-androids-dalvik-vm.html, 2010.
Google I/O.

[9] CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E: A
platform for in-vivo multi-path analysis of software systems. In
Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems (AS-
PLOS) (Mar. 2011).

[10] CLAUSE, J., LI, W., AND ORSO, A. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 Interna-
tional Symposium on Software Testing and Analysis (ISSTA’07)
(2007), pp. 196–206.

[11] CRANDALL, J. R., AND CHONG, F. T. Minos: Control data
attack prevention orthogonal to memory model. In Proceedings
of the 37th International Symposium on Microarchitecture (MI-
CRO’04) (December 2004).

[12] Cve-2009-1185. http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-1185.

[13] ded: Decompiling Android Applications. http://siis.cse.
psu.edu/ded/index.html.

[14] Dynamic, metamorphic (and opensource) virtual machines.
http://archive.hack.lu/2010/Desnos_Dynamic_
Metamorphic_Virtual_Machines-slides.pdf.

[15] DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
malware analysis via hardware virtualization extensions. In Pro-
ceedings of the 15th ACM Conference on Computer and Commu-
nications Security (2008), pp. 51–62.

[16] DOLAN-GAVITT, B., LEEK, T., ZHIVICH, M., GIFFIN, J., AND
LEE, W. Virtuoso: Narrowing the semantic gap in virtual ma-
chine introspection. In Proceedings of the 2011 IEEE Symposium
on Security and Privacy (Washington, DC, USA, 2011), SP ’11,
IEEE Computer Society, pp. 297–312.

14

http://anubis.iseclab.org/
http://anubis.iseclab.org/
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://www.google.com/events/io/2010/sessions/jit-compiler-androids-dalvik-vm.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1185
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-1185
http://siis.cse.psu.edu/ded/index.html
http://siis.cse.psu.edu/ded/index.html
http://archive.hack.lu/2010/Desnos_Dynamic_Metamorphic_Virtual_Machines-slides.pdf
http://archive.hack.lu/2010/Desnos_Dynamic_Metamorphic_Virtual_Machines-slides.pdf

[17] Droidbox: Android application sandbox. http://code.
google.com/p/droidbox/.

[18] EGELE, M., KRUEGEL, C., KIRDA, E., YIN, H., AND SONG, D.
Dynamic Spyware Analysis. In Proceedings of the 2007 Usenix
Annual Conference (Usenix’07) (June 2007).

[19] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. N. Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the 9th USENIX conference on Op-
erating systems design and implementation (Berkeley, CA, USA,
2010), OSDI’10, USENIX Association, pp. 1–6.

[20] ENCK, W., OCTEAU, D., MCDANIEL, P., AND CHAUDHURI,
S. A study of android application security. In Proceedings of the
20th USENIX Security Symposium (2011).

[21] GARFINKEL, T., AND ROSENBLUM, M. A virtual machine in-
trospection based architecture for intrusion detection. In Pro-
ceedings of Network and Distributed Systems Security Symposium
(NDSS’03) (February 2003).

[22] Gartner says sales of mobile devices grew 5.6 percent in third
quarter of 2011; smartphone sales increased 42 percent. http:
//gartner.com/it/page.jsp?id=1848514, 2011.

[23] HAZELWOOD, K., AND KLAUSER, A. A dynamic binary in-
strumentation engine for the arm architecture. In Proceedings
of the 2006 international conference on Compilers, architecture
and synthesis for embedded systems (New York, NY, USA, 2006),
CASES ’06, ACM, pp. 261–270.

[24] JIANG, X., WANG, X., AND XU, D. Stealthy malware detection
through vmm-based ”out-of-the-box” semantic view reconstruc-
tion. In Proceedings of the 14th ACM conference on Computer
and Communications Security (CCS’07) (October 2007).

[25] Security alert: New sophisticated android malware droidkungfu
found in alternative chinese app markets. http://www.csc.
ncsu.edu/faculty/jiang/DroidKungFu.html.

[26] KANG, M. G., YIN, H., HANNA, S., MCCAMANT, S., AND
SONG, D. Emulating emulation-resistant malware. In Pro-
ceedings of the 2nd Workshop on Virtual Machine Security (VM-
Sec’09) (November 2009).

[27] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD,
K. Pin: Building customized program analysis tools with dynamic
instrumentation. In Proc. of 2005 Programming Language Design
and Implementation (PLDI) conference (june 2005).

[28] MARTIGNONI, L., MCCAMANT, S., POOSANKAM, P., SONG,
D., AND MANIATIS, P. Path-exploration lifting: Hi-fi tests for
lo-fi emulators. In Proceedings of the 17th International Confer-
ence on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) (London, UK, Mar. 2012).

[29] MARTIGNONI, L., PALEARI, R., ROGLIA, G. F., AND BR-
USCHI, D. Testing cpu emulators. In Proceedings of the 18th
International Symposium on Software Testing and Analysis (IS-
STA’09) (2009), pp. 261–272.

[30] MIJAR, R., AND NIGHTINGALE, A. Virtualization is coming to
a platform near you. Tech. rep., ARM Limited, 2011.

[31] MOSER, A., KRUEGEL, C., AND KIRDA, E. Exploring mul-
tiple execution paths for malware analysis. In Proceedings of
the 2007 IEEE Symposium on Security and Privacy(Oakland’07)
(May 2007).

[32] NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In PLDI (2007),
pp. 89–100.

[33] PORTOKALIDIS, G., SLOWINSKA, A., AND BOS, H. Argos:
an emulator for fingerprinting zero-day attacks. In EuroSys 2006
(April 2006).

[34] Proguard. http://proguard.sourceforge.net.

[35] TEMU: The BitBlaze dynamic analysis component. http://
bitblaze.cs.berkeley.edu/temu.html.

[36] YAN, L.-K., JAYACHANDRA, M., ZHANG, M., AND YIN, H.
V2E: Combining hardware virtualization and software emulation
for transparent and extensible malware analysis. In Proceedings of
the Eighth Annual International Conference on Virtual Execution
Environments (VEE’12) (March 2012).

[37] YIN, H., LIANG, Z., AND SONG, D. HookFinder: Identifying
and understanding malware hooking behaviors. In Proceedings of
the 15th Annual Network and Distributed System Security Sympo-
sium (NDSS’08) (February 2008).

[38] YIN, H., AND SONG, D. Temu: Binary code analysis via whole-
system layered annotative execution. Tech. Rep. UCB/EECS-
2010-3, EECS Department, University of California, Berkeley,
Jan 2010.

[39] YIN, H., SONG, D., MANUEL, E., KRUEGEL, C., AND KIRDA,
E. Panorama: Capturing system-wide information flow for mal-
ware detection and analysis. In Proceedings of the 14th ACM
Conferences on Computer and Communication Security (CCS’07)
(October 2007).

[40] ZHOU, Y., AND JIANG, X. Dissecting android malware: Char-
acterization and evolution. In Proceedings of the 33rd IEEE Sym-
posium on Security and Privacy (Oakland 2012) (San Francisco,
CA, USA, May 2012), IEEE.

[41] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, you, get
off of my market: Detecting malicious apps in official and alter-
native android markets. In Proceedings of the 19th Network and
Distributed System Security Symposium (San Diego, CA, Febru-
ary 2012).

A Trace-Based Exploit Diagnosis of “ratc”
In this section, we provide an example of exploit diagno-
sis using DroidScope and the ARM instruction tracer on
“ratc”. These results corroborate with publicly available
information on “ratc” and the setuid exhaustion vulnera-
bility.

We know that adbd is supposed to downgrade its priv-
ileges by setting its uid to AID SHELL (2000), and yet
adbd retained its root privileges after the attack. Thus,
in an effort to identify the root cause of the vulnerability,
we used DroidScope to gather an ARM instruction trace
that includes both user and kernel code.

A simplified and annotated log is shown in Figure 13.
In the log, the instruction’s address comes first fol-
lowed by a colon, the decoded instruction and then the
operands. We have also indented the instructions to il-
lustrate the relative stack depth.

The log begins when setgid returns from the ker-
nel space and returns back to adb main at address
0x0000c3a4. Almost immediately, the log shows setuid
being called. After transitioning into kernel mode, we
see sys setuid being called followed by a call to set user.
Later we see set user returning an error code 0xfffffff5
which is (-11 in 2’s complement or -EAGAIN).

Tracing backwards in the log reveals that this error
code was the result of the RLIMIT NPROC check in
set user. This reveals why setuid failed to downgrade

15

http://code.google.com/p/droidbox/
http://code.google.com/p/droidbox/
http://gartner.com/it/page.jsp?id=1848514
http://gartner.com/it/page.jsp?id=1848514
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://proguard.sourceforge.net
http://bitblaze.cs.berkeley.edu/temu.html
http://bitblaze.cs.berkeley.edu/temu.html

;;;setgid returns from kernel back to adbd
0000813c: pop {r4, r7}
00008140: movs r0, r0
00008144: bxpl lr : Read Oper[0]. R14, Val = 0xc3a5
;; Return back to 0xc3a4 (caller) in Thumb mode

;;;adbd_main sets up for setuid
0000c3a4: movs r0, #250
0000c3a6: lsls r0, r0, #3 : Write Oper[0]. R0, Val = 0x7d0

;; 250 * 8 = 0x7d0 = 2000 = AID_SHELL

...

;;;Start of setuid section
;;; 213 is syscall number for sys_setuid
00008be0: push {r4, r7} : Write Oper[0]. M@be910bb8, Val = 0x7d0

;; push AID_SHELL onto the stack
00008be4: mov r7, #213
00008be8: svc 0x00000000

;; Make sys call

;;; === TRANSITION TO KERNEL SPACE ===

;;;sys_setuid then calls set_user in kernel mode

;;;inside sys_setuid
;; Has rlimit been reached?
c0048944: cmp r2, r3 : Read Oper[0]. R3, Val = 300 Read Oper[1]. R2, Val = 300

;;; RLIMIT(300) is reached and !init_user so return -11
c0048960: mvn r0, #10 : Write Oper[0]. R0, Val = 0xfffffff5

;; the return value is now -11 or -EAGAIN
c0048964: ldmib sp, {r4, r5, r6, fp, sp, pc}

;;;Return back to sys_setuid which returns back to userspace

;;; === RETURN TO USERSPACE ===

;;;setuid continues
00008bec: pop {r4, r7}
00008bf0: movs r0, r0 : Read Oper[0]. R0, Val = 0xfffffff5

;; -11 is still here

;;;Return back to adb_main at 0xc3ac (the return address) above
;;; Immediately starts other work, does not check return code
0000c3ac: ldr r7, [pc, #356] : Read Oper[0]. M@0000c514, Val = 0x19980330

Write Oper[0]. R7, Val = 0x19980330
;; 0x19980330 is _LINUX_CAPABILITY_VERSION

Figure 13: Annotated adbd trace

adbd’s privileges. Further analysis of the log shows that
the return value from setuid was not used by adbd nor
was a call to getuid seen. The same applies to setgid.
This indicates that adbd failed to ensure that it is no
longer running as root. Thus, our analysis shows that
the vulnerability is due to two factors, RLIMIT NPROC
and failure to check the return code by adbd.

16

	Introduction
	Background and Motivation
	Android System Overview
	Android Malware Analysis

	Architecture
	Semantic View Reconstruction
	Reconstructing the OS-level View
	Reconstructing the Dalvik View
	Symbol Information

	Interface & Plugins
	APIs
	Instrumentation Optimization
	Sample Plugin
	Analysis Plugins

	Evaluation
	Performance
	Analysis of DroidKongFu
	Analysis of DroidDream

	Discussion
	Related Work
	Conclusion
	Trace-Based Exploit Diagnosis of ``ratc"

