
AdSplit: Separating smartphone advertising from applications

Shashi Shekhar
shashi.shekhar@rice.edu

Michael Dietz
mdietz@rice.edu

Dan S. Wallach
dwallach@rice.edu

Abstract
A wide variety of smartphone applications today rely on
third-party advertising services, which provide libraries
that are linked into the hosting application. This situ-
ation is undesirable for both the application author and
the advertiser. Advertising libraries require their own
permissions, resulting in additional permission requests
to users. Likewise, a malicious application could sim-
ulate the behavior of the advertising library, forging the
user’s interaction and stealing money from the advertiser.
This paper describes AdSplit, where we extended An-
droid to allow an application and its advertising to run
as separate processes, under separate user-ids, eliminat-
ing the need for applications to request permissions on
behalf of their advertising libraries, and providing ser-
vices to validate the legitimacy of clicks, locally and re-
motely. AdSplit automatically recompiles apps to extract
their ad services, and we measure minimal runtime over-
head. AdSplit also supports a system resource that allows
advertisements to display their content in an embedded
HTML widget, without requiring any native code.

1 Introduction

The smartphone and tablet markets are growing in leaps
and bounds, helped in no small part by the availability of
specialized third-party applications (“apps”). Whether
on the iPhone or Android platforms, apps often come
in two flavors: a free version, with embedded adver-
tising, and a pay version without. Both models have
been successful in the marketplace. To pick one exam-
ple, the popular Angry Birds game at one point brought
in roughly equal revenue from paid downloads on Ap-
ple iOS devices and from advertising-supported free
downloads on Android devices [10]. They now offer
advertising-supported free downloads on both platforms.

We cannot predict whether free or paid apps will dom-
inate in the years to come, but advertising-supported ap-
plications will certainly remain prominent. Already, a

cottage industry of companies offer advertising services
for smartphone application developers.

Today, these services are simply pre-compiled code li-
braries, linked and shipped together with the application.
This means that a remote advertising server has no way
to validate a request it receives from a user legitimately
clicking on an advertisement. A malicious application
could easily forge these messages, generating revenue for
its developer while hiding the advertisement displays in
their entirety. To create a clear trust boundary, advertis-
ers would benefit from running separately from their host
applications.

In Android, applications must request permission at
install time for any sensitive privileges they wish to ex-
ercise. Such privileges include access to the Internet, ac-
cess to coarse or fine location information, or even ac-
cess to see what other apps are installed on the phone.
Advertisers want this information to better profile users
and thus target ads at them; in return, advertisers may
pay more money to their hosting applications’ develop-
ers. Consequently, many applications which require no
particular permissions, by themselves, suffer permission
bloat—being forced to request the privileges required by
their advertising libraries in addition to any of their own
needed privileges. Since users might be scared away
by detailed permission requests, application developers
would also benefit if ads could be hosted in separate ap-
plications, which might then make their own privilege
requests or be given a suitable one-size-fits-all policy.

Finally, separating applications from their advertise-
ments creates better fault isolation. If the ad system fails
or runs slowly, the host application should be able to
carry on without inconveniencing the user. Addressing
these needs requires developing a suitable software ar-
chitecture, with OS assistance to make it robust.

The rest of the paper is organized as follows: in Sec-
tion 2 we present a survey of thousands of Android ap-
plications, and estimate the degree of permission bloat
caused by advertisement libraries. Section 3 discusses



the design objectives of AdSplit and how we can borrow
ideas from how web advertisements are secured. Sec-
tion 4 describes our Android-based implementation, and
Section 5 quantifies its performance. Section 6 provides
details about a simple binary rewriter to adapt legacy
apps to use our system. Section 7 considers how we
might eliminate native code libraries for advertisements
and go with a more web-like architecture. Finally, Sec-
tion 8 discusses a variety of policy issues.

2 App analysis

The need to monetize freely distributed smartphone ap-
plications has given rise to many different ad provider
networks and libraries. The companies competing for
business in the mobile ad world range from established
web ad providers like Google’s AdMob to a variety of
dedicated smartphone advertising firms.

With so many options for serving mobile ads, many
app developers choose to include multiple ad libraries.
Additionally, there is a new trend of advertisement ag-
gregators that have the aggregator choose which ad li-
brary to use in order to maximize profits for the devel-
oper.

While we’re not particularly interested in advertising
market share, we want to understand how these ad li-
braries behave. What permissions do they require? And
how many apps would be operating with fewer permis-
sions, if only their advertisement systems didn’t require
them? To address these questions, we downloaded ap-
proximately 10,000 free apps from the Android Market
and the Amazon App Store and analyzed them.

How many ad libraries? Fig 1 shows the distribution
of the number of advertisement libraries used by apps in
our sample. Of the apps that use advertisements, about
35% include two or more advertising libraries.

Permissions required. We found that some ad li-
braries need more permissions than those mentioned in
the documentation; also, the set of permissions may
change with the version of the ad library. Table 1 shows
some of the required and optional permission sets for a
number of popular Android ad libraries. The permissions
listed as optional are not required to use the ad library
but may be requested in order to improve the quality of
advertisements; for example, some ad libraries will use
location information to customize ads. A developer us-
ing such a library has the choice of including location-
targeted ads or not. Presumably, better targeted ads will
bring greater revenue to the application developer.

0 1 2 3 4 5 6 7 8
Number of ad libraries installed.

100

101

102

103

104

Nu
m

be
r o

f a
pp

s.

4433
3253

979
489

173

75

16
9

5

Figure 1: Number of apps with ad libraries installed.

Permission bloat. In Android, an application requests
a set of permissions at the time it’s installed. Those per-
missions must suffice for all of the app’s needs and for
the needs of its advertising library. We decided to mea-
sure how many of the permissions requested are used ex-
clusively by the advertising library (i.e., if the advertising
library were removed, the permission would be unneces-
sary).

This analysis required decompiling our apps into dex
format [3] using the android-apktool [23]. For each app,
we then extracted a list of all API calls made. Since
advertising libraries have package names that are easy
to distinguish, it’s straightforward to separate their API
calls from the main application. To map the list of API
calls to the necessary permissions, we use the data gath-
ered by Felt et al. [18]. This allows us to compute the
minimal set of permissions required by an application,
with and without its advertisement libraries. We then
compare this against the formal list of permissions that
each app requests from the system.

There may be cases where an app speculatively at-
tempts to use an API call that requires a permission that
was never granted, or there may be dead code that ex-
ercises a permission, but will never actually run. Our
analysis will err on the side of believing that an applica-
tion requires a permission that, in fact, it never uses. This
means that our estimates of permission bloat are strictly
a lower bound on the actual volume of permissions that
are requested only to support the needs of the advertising
libraries.

Our results, shown in Fig. 2, are quite striking. 15% of
apps requesting Internet permissions are doing it for the
sole benefit of their advertising libraries. 26% of apps re-
questing coarse location permissions are doing it for the
sole benefit of their advertising libraries. 47% of apps



Ad Library In
te

rn
et

N
et

w
or

kS
ta

te

R
ea

dP
ho

ne
St

at
e

W
ri

te
E

xt
er

na
lS

to
ra

ge

C
oa

rs
eL

oc
at

io
n

C
al

lP
ho

ne

AdMob [22] X X ◦

Greystripe [25] X X X
Millennial
Media [36]

X X X X

InMobi [29] X ◦ ◦ ◦

MobClix [38] X ◦ X
TapJoy [53] X X X X
JumpTap [32] X X X ◦

X(required), ◦ (optional)

Table 1: Different advertising libraries require different
permissions.

requesting permission to get a list of the tasks running
on the phone (the ad libraries use this to check if the
application hosting the advertisement is in foreground)
are doing it for the sole benefit of their advertising li-
braries. These results suggest that any architecture that
separates advertisements from applications will be able
to significantly reduce permission bloat. (In concurrent
work to our own, Grace et al. [24] performed a static
analysis of 100 thousand Android apps and found ad-
vertisement libraries uploading sensitive information to
remote ad servers. They also found that some advertise-
ment libraries were fetching and dynamically executing
code from remote ad servers.)

3 Design objectives

Advertisement services have been around since the very
beginnings of the web. Consequently, these services have
adapted to use a wide variety of technologies that should
be able to influence our AdSplit design.

3.1 Advertisement security on the web
Fundamentally, a web page with a third-page advertise-
ment falls under the rubric of a mashup, where multiple
web servers are involved in the presentation of a single
web page.

Many web pages isolate advertisements from con-
tent by placing ads in an iframe [55]. The content
hosted in an iframe is isolated from the hosting web-
page and browsers allow only specific cross frame in-

INTERNET

ACCESS_NETWORK_STATE

ACCESS_COARSE_LOCATION

READ_PHONE_STATE

GET_TASKS

ACCESS_FINE_LOCATION
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Nu
m

be
r o

f a
pp

s.

7925

4366

1976

3056

560

1722

6710

3369

1460

2726

297

1598

Total requested
Total used

Figure 2: Distribution of types of permissions reduced
when advertisements are separated from applications.

teractions [6, 40], protecting the advertisement against
intrusions from the host page (although there have been
plenty of attacks [51, 47, 50]). Another valuable prop-
erty of the iframe is that it allows an external web server
to distinguish between requests coming from the adver-
tisement from requests that might be forged. Standard
web security mechanisms assist with this; browsers en-
force the same origin policy, restricting the host web
page from making arbitrary connections to the advertiser.
Defenses against cross site request forgery, like the Ori-
gin header [5], further aid advertisers in detecting fraud-
ulent clicks.

Adapting these ideas to a smartphone requires signifi-
cant design changes. Most notably, it’s common for An-
droid applications to request the privilege to make arbi-
trary Internet connections. There is nothing equivalent
to the same origin policy, and consequently no way for a
remote server to have sufficient context, from any given
click request it receives, to determine whether that click
is legitimate or fraudulent. This requires AdSplit to in-
clude several new mechanisms.

3.2 Adapting these ideas to AdSplit

The first and most prominent design decision of AdSplit
is to separate a host application from its advertisements.
This separation has a number of ramifications:



Specification for advertisements. Currently the ad li-
braries are compiled and linked with their corre-
sponding host application. If advertisements are
separate, then the host activities must contain the
description of of which advertisements to use. We
introduced a method by which the host activity can
specify the particular ad libraries to be used.

Permission separation. AdSplit allows advertisements
and host applications to have distinct and indepen-
dent permission sets.

Process separation. AdSplit advertisements run in sep-
arate processes, isolated from the host application.

Lifecycle management. Advertisements only need to
run when the host application is running, otherwise
they can be safely killed; similarly once the host
application starts running, the associated advertise-
ment process must also start running. Our system
manages the lifecycle of advertisements.

Screen sharing. Advertisements are displayed inside
host activity, so if advertisements are separated
there should be a way to share screen real estate be-
tween advertisements and host application. AdSplit
includes a mechanism for sharing screen real estate.

Authenticated user input. Advertisements generate
revenue for their host applications; this revenue is
typically dependent on the amount of user interac-
tion with the advertisement. The host application
can try to forge user input and generate fraudulent
revenue, hence the advertisements should have a
way to determine that any input events received
from host application are genuine. AdSplit includes
a method by which advertising applications can
validate user input, validate that they are being
displayed on-screen, and pass that verification, in
an unforgeable fashion, to their remote server.

In the next section, we will describe how AdSplit
achieves these design objectives.

4 Implementation

While many aspects of our design should be applicable
to any smartphone operating system, we built our system
on Android, and there are a number of relevant Android
features that are important to describe.

4.1 Background
Android applications present themselves to the user as
one or more activities, which are roughly analogous to
windows in a traditional window system. Activities in

Ad

Buy! Cool! Stuff!

Sample App

(transparent, so ad is visible)

Figure 3: Screen sharing between host and advertisement
apps.

Android are maintained on a stack, simplifying the user
interface and enabling the “back” button to work consis-
tently across applications. This switching between activ-
ities as well as other related functions to activity lifecycle
are performed by the ActivityManager service.

When an activity is started, the ActivityManager cre-
ates appropriate data structures for the activity, schedules
the creation of a process for activity, and puts activity-
related information on a stack. There is a separate Win-
dowManager that manages the z-order of windows and
maintains their association with activities. The Activity-
Manager informs the WindowManager about changes to
activity configuration. Since we want to factor out the
advertising code into a separate process / activity, this
will require a variety of changes to ensure that the user
experience is unchanged.

An app using AdSplit will require the collaboration of
three major components: the host activity, the advertise-
ment activity, and the advertisement service. The host
activity is the app that the user wants to run, whether a
game, a utility, or whatever else. It then “hosts” the ad-
vertisement activity, which displays the advertisement.
There is a one-to-one mapping between host activity and
advertisement activity instances. The Unix processes be-
hind these activities have distinct user-ids and distinct
permissions granted to them. To coordinate these two
activities, we have a central advertisement service. The
ad service is responsible for delivering UI events to the
ad activity. It also verifies that the ad activity is being
properly displayed and that the UI clicks aren’t forged.
(More on the verification task in Section 4.4.)

AdSplit builds on Quire [13], which prototyped a fea-



ture shown in Fig. 3, allowing the host and advertise-
ment activities to share the screen together. First the
window for advertisement activity is layered just below
the host activity window. The host activity window con-
tains transparent regions where advertisement will be
displayed. Standard Android features allow the adver-
tisement activity to verify that the user can actually see
the ads.

4.2 Advertisement pairing

In AdSplit, we wish to take existing Android applications
and separate out their advertising to follow the model de-
scribed above. We first must explain the variety of dif-
ferent ways in which an existing application might ar-
range for an advertisement to be displayed. We will use
Google’s AdMob system as a running example. Other
advertisement systems behave similarly, at least with re-
spect to displaying banner ads. (For simplicity of discus-
sion, we ignore full-screen interstitial ads.)

With current Android applications, if a developer
wants to include an advertisement from AdMob in an ac-
tivity of her application, she imports the AdMob library,
and then either declares an AdMob.AdView in the XML
layout, or she generates an instance of AdMob.AdView
and inserts it in directly into the view hierarchy. This
works without issue since all AdMob classes are loaded
alongside the hosting application; they are separated only
by having different package names.

Once we separate advertisements from applications,
neither of these techniques will work, since the code
isn’t there any more. We first need a new mechanism.
Later, in Section 6, we will describe how AdSplit does
this transformation automatically.

We added a AppFrame element, which can appear in
the XML manifest, allowing the system to attach a sub-
sidiary activity to its host. This results in a distinct activ-
ity for the advertisement as well as a local stub to support
the same API as if the advertisement code was still local
to the host application. The stub packages up requests
and passes them onto the advertisement service.

One complication of this process is that advertising li-
braries like AdMob were engineered to have one copy
running in each process. If we create a single, global
instance of any given advertising library, it won’t have
been engineered to maintain the state of the many origi-
nal applications which hosted it.

Consequently, the advertisement service must manage
distinct advertisement applications for each host applica-
tion. If ten different applications include AdMob, then
there need to be ten different AdMob user-ids in the sys-
tem, mapping one-to-one with the host applications. The
advertisement service is then responsible for ensuring
that the proper host application speaks to the proper ad-

vertising application.
This is sufficient to ensure that the existing advertising

libraries can run without requiring modifications. One
complication concerns Android’s mechanism for sharing
processes across related activities. When a new activ-
ity is launched and there is already a process associated
with the user-id of the application, Android will launch
the new activity in the same process as the old one [2].
If there is already an instance of an activity running, for
example, then Android will just resume the activity and
bring its activity window to the front of the stack. This
is normally a feature, ensuring that there is only a sin-
gle process at a time for any given application. However,
for AdSplit, we need to ensure that advertising apps map
one-to-one with hosting apps and we must ensure that
their activity windows stay “glued” to their hosts’ ac-
tivities. Consequently, we changed the default Android
behavior such that advertisement activities are differenti-
ated based not only by user-id, but also by the host activ-
ity. AdSplit thus required modest changes in how activ-
ities are launched and resumed as well as how windows
are managed.

4.3 Permission separation
With Android’s install-time permission system, an appli-
cation requests every permission it needs at the time of
its installation. As we described in Section 2, advertis-
ing libraries cause significant bloat in the permission re-
quests made by their hosting applications. Our AdSplit
architecture allows the advertisements to run as separate
Android users with their own isolated permissions. Host
applications no longer need to request permissions on be-
half of their advertisement libraries.

We note that AdSplit makes no attempt to block a host
application from explicitly delegating permissions to its
advertisements. For example, the host application might
obtain fine-grained location permissions (i.e., GPS coor-
dinates with meter-level accuracy) and pass these coor-
dinates to an advertising library which lacks any loca-
tion permissions. Plenty of other Android extensions, in-
cluding TaintDroid [15] and Paranoid Android [46], offer
information-flow mechanisms that might be able to for-
bid this sort of thing if it was considered undesirable. We
believe these techniques are complementary to our own,
but we note that if we cannot create a hospitable environ-
ment for advertisers, they will have no incentive to run in
an environment like AdSplit. We discuss this and other
policy issues further in Section 8.

4.4 Click fraud
AdSplit leverages mechanisms from Quire [13] to detect
counterfeit events, thus defeating the opportunity for an



Android host application to perform a click fraud attack
against its advertisers. While a variety of strategies are
used to defeat click fraud on the web (see, e.g., Juels
et al. [31]), we need distinct mechanisms for AdSplit,
since a smartphone is a very different environment from
a web browser.

Quire uses an system built around HMAC-SHA1
where every process has a shared key with a system
service. This allows any process to cheaply compute a
“signed statement” and send it anywhere else in the sys-
tem. The ultimate recipient can then ask the system ser-
vice to verify the statement. Quire uses this on user-
generated click events, before they are passed to the host
activity. The host activity can then delegate a click or
any other UI event, passing it to the advertising activity
which will then validate it without being required to trust
the host activity. The performance overhead is minimal.

Quire has support for making these signed statements
meaningful to remote network services. Unlike the web,
where we might trust a browser to speak truthfully about
the context of an event (see Section 3.1), any app might
potentially send any message to any network service. In-
stead, Quire provides a system service that can validate
one of these messages, re-sign it using traditional public-
key cryptography, and send it to a remote service over
the network.

Quire’s event delivery mechanism is summarized in
Fig. 4. The touch event is first signed by the input sys-
tem and delivered to the host activity. The stub in the
host activity then forwards the touch event to advertise-
ment service which verifies the touch event and forwards
it to the advertisement activity instance. This could
then be passed to another system service (not shown)
which would resign and transmit the message as de-
scribed above.

Despite Quire’s security mechanisms, there are still
several ways the host might attempt to defraud the adver-
tiser. First, a host application might save old click events
with valid signatures, potentially replaying them onto an
advertisement. We thus include timestamps for adver-
tisements to validate message freshness. Second, a host
may send genuine click events but move the AdView, we
prevent this kind of tampering by allowing the advertise-
ment service to query layout information about the host
activity. Third, a host application might attempt to hide
the advertising. Android already includes mechanism
for an activity to sort out its visibility to the screen [21]
(touch events may include a flag that indicates the win-
dow is obscured); our advertising service uses these to
ensure that the ad was being displayed at the time the
click occurred.

It’s also conceivable that the host application could
simply drop input events rather than passing them to
the advertising application. This is not a concern be-

Input 
Event 

System

Host 
Activity

Quire 
Authority 
Manager

Ad 
Activity

Add 
HMAC 

signature

Verify 
HMAC

Figure 4: Motion event delivery to the advertisement ac-
tivity.

cause the host application has no incentive to do this.
The host only makes money from clicks that go through,
not from clicks that are denied. (Advertising generally
works on two different business models: payment per
impression and payment per click. In our AdSplit ef-
forts, we’re focused on per-click payments, but the same
Quire authenticated RPC mechanisms could be used in
per-impression systems, with the advertisement service
making remotely verifiable statements about the state of
the screen.) The host activity can also use a clickjacking
attack by anticipating the location of user touch and mov-
ing AdView to the intended location. Our implementa-
tion currently does not prevent this attack; ads could cer-
tainly check that they were visible at the proper location
for at least some minimum duration before considering a
click to be valid.

4.5 Summary

AdSplit, as we’ve described it so far, would not leverage
the Quire RPC mechanisms by default, since no off-the-
shelf advertising library has been engineered to use it.
There are other pragmatic issues, such as how the adver-
tisement applications might be installed and managed.
We address these issues in Sections 7 and 8. Nonetheless,
we now have a workable skeleton design for AdSplit that
we have implemented and benchmarked.



5 Performance

In order to evaluate the performance overhead of our sys-
tem we performed our experiments on a standard An-
droid developer phone, the Nexus One, which has a
1GHz ARM core (a Qualcomm QSD 8250), 512MB of
RAM, and 512MB of internal Flash storage. We con-
ducted our experiments with the phone displaying the
home screen and running the normal set of applications
that spawn at start up. We replaced the default “live wall-
paper” with a static image to eliminate its background
CPU load. All of our benchmarks are measured using
the Android Open Source Project’s (AOSP) Android 2.3
(“Gingerbread”) plus the relevant portions of Quire, as
discussed earlier.

Our performance analysis focuses on the effect of Ad-
Split on user interface responsiveness as well as the extra
CPU and memory overhead.

5.1 Effect on UI responsiveness
We performed benchmarking to determine the overhead
of AdSplit on touch event throughput. By default An-
droid has a 60 event per second hard coded limit; for our
experiments we removed this limit. Table 2 shows the
event throughput in terms of number of touch events per
second. (The overhead added by our system is due to
passing touch events from the host activity to the adver-
tisement activity. There is also additional overhead due
to the additional traversal of the view hierarchy in the ad-
vertisement activity.) We can see the our system can still
support about 183 events per second which is well above
the default limit of 60. Furthermore, the Nexus One is
much slower than current-generation Android hardware.
CPU overhead, even in this extreme case, appears to be
a non-issue.

Stock Android AdSplit Ratio
229.96 183.12 0.796

Table 2: Comparison of click throughput (Events/sec),
averaged over 1 million events.

5.2 Memory and CPU overhead
Measuring memory overhead on Android is complicated
since Android optimizes memory usage by sharing read-
only data for common libraries. Consequently, if an ac-
tivity has several copies of a UI widget, the effective
overhead of adding a new instance of the same widget is
low. Every advertisement library that we examined dis-
plays advertisements by embedding a WebView. A We-
bView is an instance of web browser. When the host ac-

tivity already has a WebView instance, a fairly common
practice, and it includes an advertisement, then most of
the code for the advertisement WebView will be shared,
yielding a relatively low additional overhead for the ad-
vertisement. (In our experiments we found out that mul-
tiple WebViews in the same activity will share their cook-
ies, which means that an advertisement can steal cookies
from any other WebViews in the activity.)

Consequently, in order to determine the actual mem-
ory overhead of separating advertisements from their
host applications, we need to differentiate between the
cases when host activities contain an instance of Web-
View and when they don’t. We did our measurements
by running the AdMob library, both inside the applica-
tion and in a separate advertisement activity. To measure
memory overhead we used procrank [14], which tells us
the proportional set size (Pss) and unique set size (Uss).
Pss is the amount of memory shared with other pro-
cesses, divided equally among the processes who share
it. Uss is the amount of memory used uniquely by the
one process. Table 3 lists our results for the memory
measurements.

Activity setup Memory Overhead (MB)
Host Activity Ad Activity
Pss Uss Pss Uss

Without Ad or
WebView

2.46 1.44 - -

Only WebView 5.52 3.30 - -
Only AdMob 9.67 6.58 - -
WebView and
AdMob

9.82 6.73 - -

AdMob with Ad-
Split

2.46 1.56 9.55 6.56

WebView and
AdMob with
AdSplit

5.15 3.35 9.29 6.58

Table 3: Memory overhead for host and advertisement
activities with different system configurations.

In interpreting our results we are primarily concerned
with the sum of Pss and Uss. From the table, we see
that starting with a simply activity without any WebView
(due to AdMob or its own), consumes about 3.9 MB.
This increases to about 9 MB if the activity has a We-
bView. Having AdMob loaded and displaying an adver-
tisement takes about 16.3 MB of memory. When an ac-
tivity has both WebView and AdMob, the total memory
used is only about 16.5 MB, demonstrating the efficiency
of Android’s memory sharing.

With AdMob in a separate process, we expect to pay
additional costs for Android to manage two separate ac-



1 2 3 4
Depth of AdView in layout.

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5

tim
e(

m
s)

4.18

5.24

6.51

7.64

Figure 5: Layout query time vs view depth of host activ-
ity (average of 10K runs).

tivities, two separate processes, and so forth. The total
memory cost in this configuration, with AdMob running
in AdSplit and no other WebView, is about 20.2 MB,
roughly a 4 MB increase relative to AdMob running lo-
cally. Furthermore, when a separate WebView is running
in the host activity, there is no longer an opportunity to
share the cost of that WebView. The total memory use
in this scenario is 24.4 MB, or roughly an 8 MB increase
relative to hosting AdMob locally. We expect we would
see similar overheads with other advertising libraries.

The CPU overhead is same as the overhead of addi-
tional Dalvik virtual machine on Android. In fact, since
the advertisement activities run in the background, they
run with lower priority and can be safely killed without
any issues.

As discussed in Section 4.4, we allow advertisement
service to query layout information (type, position and
transparency of views) about the host activity to prevent
UI rearrangement attacks. In order to evaluate the over-
head of layout information queries we experimented with
different view configurations for host activities and var-
ied the depth of AdView in the view hierarchy. Fig. 5
shows how the query overhead varies with view depth.
The additional depth adds a small (1 ms) overhead.
These queries will run infrequently—only once per click.

In summary, while AdSplit does introduce a marginal
amount of additional memory and CPU cost, these will
have negligible impact in practice.

6 Separation for legacy apps

The amount of permissions requested by mobile apps and
lack of information about how they are used has been a

cause of concern (see, e.g., the U.S. government’s Fed-
eral Trade Commission study of privacy disclosures for
children’s smartphone apps [17]). To some extent, the
potential for information leakage is driven by advertise-
ment permission bloat, so separating out the ad systems
and treating them distinctly is a valuable goal.

As we showed in Section 2, a significant number of
current apps with embedded advertising libraries would
immediately benefit from AdSplit, reducing the permis-
sion bloat necessary to host embedded ads. This section
describes a proof-of-concept implementation that can au-
tomatically rewrite an Android application to use Ad-
Split. Something like this could be deployed in an app
store or even directly on the smartphone itself.

Figure 6 sketches the rewriting process. First the ap-
plication is decompiled using android-apktool, convert-
ing dex bytecode into smali files. (Smali is to dex byte-
code what assembly language is to binary machine code;
smali is the human-readable version.) Because smali
files are organized into directories based on their pack-
age names, it’s trivial to distinguish the advertisement
libraries from their hosting applications. All we have to
do is delete the advertisement code and drop in a stub
library, supporting the same API, which calls out to the
AdSplit advertisement service. We also analyze the per-
missions required without the advertisement present (see
Section 2), remove permissions which are no longer nec-
essary, and edit the manifest appropriately.

For our proof of concept, we decided to focus our at-
tention on AdMob. Our techniques would easily gen-
eralize to support other advertising libraries, if desired.
(Alternatively we believe we have a better solution, de-
scribed next in Section 7.)

Our stub library was straightforward to implement.
We manually implemented a handful of public methods
from the AdMob library, whereafter we constructed a
standard Android IPC message to send to the AdSplit
advertising service. It worked.

While it would be tempting to use automated tools to
translate an entire API in one go, any commercial im-
plementation would require significant testing and, in-
evitably, there would be corner cases where the auto-
mated tool didn’t quite do the right thing. Instead, since
there are a fairly small number of advertising vendors,
we imagine that each one would best be supported by
hand-written code, perhaps even supplied directly by the
vendor in collaboration with an app store that did the
rewriting.

Unfortunately, there are a number of significant prob-
lems that would stand in the way of an automated rewrit-
ing architecture becoming the preferred method of de-
ploying AdSplit.



com.
example.

app

AndroidManifest.xml

com/example/app

com/admob/android

com/admob/android

Decompile

AdMob stub library

AndroidManifest.xml

Modified 
manifest

com/example/app

com/admob/android

com.
example.

appCompile

Manifest 
processor

Figure 6: Automated separation of advertisement libraries from their host applications.

Ad installation. When advertisements exist as distinct
applications in the Android ecosystem, they will need to
be installed somehow. We’re hesitant to give the host ap-
plication the necessary privileges to install a third-party
advertising application. Perhaps an application could de-
clare that it had a dependency on a third-party app, and
the main installer could hide this complexity from the
user, in much the same way that common Linux package
installers will follow dependencies as part of the instal-
lation process for any given target.

Ad permissions. Even if we can get the ad libraries
installed, we have the challenge of understanding what
permissions to grant them. Particularly when many ad-
vertising libraries know how to make optional use of a
permission, such as measuring the smartphone’s location
if it’s allowed, how should we decide if the advertisement
application has those permissions? Must we install mul-
tiple instances of the advertising application based on the
different subsets of permissions that it might be granted
by the host application? Alternatively, should we go with
a one-size-fits-all policy akin to the web’s same-origin-
policy? What’s the proper “origin” for an application that
was installed from an app store? Unfortunately, there
is no good solution here, particularly not without gener-
ating complex user interfaces to manage these security
policies.

Similarly, what should we do about permissions that
many users will find to be sensitive, such as learning
their fine-grained location, their phone number, or their
address book? Again, the obvious solutions involve cre-
ating dialog boxes and/or system settings that users must
interact with, which few user will understand, and which
advertisers and application authors will all hate.

Ad unloading. Like any Android application, an ad-
vertisement application must be prepared to be killed at
any time—a consequence of Android’s resource manage-
ment system. This could have some destabilizing conse-
quences if the hosting application is trying to commu-
nicate with its advertisement and the ad is killed. Also,
what happens if a user wants to uninstall an advertising
application? Should that be forbidden unless every host
application which uses it is also uninstalled?

7 Alternative design: HTML ads

While struggling with the shortcomings outlined above
with the installation and permissions of advertising ap-
plications, we hit upon an alternative approach that uses
the same AdSplit architecture. The solution is to expand
on something that advertising libraries are already doing:
embedded web views (see Section 5.2).

If an ad creator want to purchase advertising on smart-
phones, they want to specify their advertisements the
same way they do for the web: as plain text, images, or
perhaps as a “rich” ad using JavaScript. Needless to say,
a wide variety of tools are available to create and man-
age such ads, and mobile advertising providers want to
make it easy for ads to appear on any platform (iPhone,
Android, etc.) without requiring heroic effort from the
ad creator.

Consequently, all of the advertising libraries we exam-
ined simply include a WebView within themselves. All
of the native Android code is really nothing more than a
wrapper around a WebView. Based on this insight, we
suggest that AdSplit will be easiest to deploy by provid-
ing a single advertising application, build into the An-
droid core distribution, that satisfies the typical needs of



Android advertising vendors.
Installation becomes a non-issue, since the only

advertiser-provided content in the system is HTML,
JavaScript, and/or images. We still use the rest of the Ad-
Split architecture, running the WebView with a separate
user-id, in a separate process and activity, ensuring that a
malicious application cannot tamper with the advertise-
ments it hosts. We still have the AdSplit advertisement
service, leveraging Quire, to validate user events before
passing them onto the WebView. We only need to extend
the WebView’s outbound HTTP transactions to include
Quire RPC signatures, allowing the remote advertising
server to have confidence in the provenance of its adver-
tising clicks.

Security permissions are more straightforward. The
same-origin-policy, standard across all the web, applies
perfectly to HTML AdSplit. Since the Android Web-
View is built on the same Webkit browser as the stan-
dalone “Browser” application, it has the same security
machinery to enforce the same-origin-policy.

Keeping all this in mind we introduced a new form of
WebView specifically targeted for HTML ads: the Ad-
WebView. The AdWebView is a way to host HTML
ads in a constrained manner. We introduced two ad-
vertisement specific permissions which can be controlled
by the user. These permissions control whether ads can
make internet connections or use geolocation features of
HTML5.

When an ad inside an AdWebView requests to load a
url or performs call to HTML5 geolocation api, the Ad-
WebView performs a permission check to verify if the
associated advertisement origin has the needed advertise-
ment permission. These advertisement permissions can
be managed by the user.

About the only open policy question is whether we
should allow AdSplit HTML advertisements to maintain
long-term tracking cookies or whether we should dis-
able any persistent state. Certainly, persistent cookies
are a standard practice for web advertising, so they seem
like a reasonable feature to support here a well. AdWeb-
View, by default, doesn’t support persistent cookies, but
it would be trivial to add.

Implementation. We built an advertising application
that embeds an AdWebView widget, as discussed above.
The host application in this case specifies the URL of the
advertisement server to be loaded in the AdWebView at
initialization. We were successfully in downloading and
running advertisements from our sample advertisement
server.

Performance. Memory and performance overheads
are indistinguishable from our AdMob experiments.
Both versions host a WebView in a separate process, and

it’s the same HTML/JavaScript content running inside
the WebView.

8 Policy

While AdSplit allows for and incentivizes applications to
run distinct from their advertisements, there are a variety
of policy and user experience issues that we must still
address.

8.1 Advertisement blocking
Once advertisements run as distinct processes, some
fraction of the Android users will see this as an oppor-
tunity to block advertisements for good. Certainly, with
web browsers, extension like AdBlock and AdBlock Plus
are incredibly popular. The Chrome web store lists these
two extensions in its top six1 with “over a million” in-
stalls of each. (Google doesn’t disclose exact numbers.)

The Firefox add-ons page offers more details, claim-
ing that AdBlock Plus is far and away the most popu-
lar Firefox extension, having been installed just over 14
million times, versus 7 million for the next most popular
extension2. The Mozilla Foundation estimates that 85%
of their users have installed an extension [39]. Many will
install an ad blocker.

To pick one example, Ars Technica, a web site popular
with tech-savvy users, estimated that about 40% of its
users ran ad blockers [35]. At one point, it added code to
display blank pages to these users in an attempt to cajole
them into either paying for ad-free “premium” service,
or at least configuring their ad blocker to “white list” the
Ars Technica website.

Strategies such as this are perilous. Some users, faced
with a broken web site, will simply stop visiting it rather
than trying to sort out why it’s broken. Of course, many
web sites instead employ a variety of technical tricks to
get around ad blockers, ensuring their ads will still be
displayed.

Given what’s happening on the web, it’s reasonable to
expect a similar fraction of smartphone users might want
an ad blocker if it was available, with the concomitant
arms race in ad block versus ad display technologies.

So long as users have not “rooted” their phones, a va-
riety of core Android services can be relied upon by host
applications to ensure that the ads they’re trying to host
are being properly displayed with the appropriate adver-
tisement content. Similarly, advertising applications (or
HTML ads) can make SSL connections to their remote
servers, and even embed the proper remote server’s pub-
lic key certificate, to ensure they are downloading data

1https://chrome.google.com/webstore/category/popular
2https://addons.mozilla.org/en-US/firefox/extensions/?sort=users



from the proper source, rather than empty images from a
transparent proxy.

Once a user has rooted their phone, of course, all bets
are off. While it’s hard to measure the total number of
rooted Android phones, the CyanogenMod Android dis-
tribution, which requires a rooted phone for installation,
is installed on roughly 722 thousand phones3—a tiny
fraction of the hundreds of millions of Android phones
reported to be in circulation [43]. Given the relatively
small market share where such hacks might be possible,
advertisers might be willing to cede this fraction of the
market rather than do battle against it.

Consequently, for the bulk of the smartphone market-
place, advertising apps on Android phones offer greater
potential for blocking-detection and blocking-resistance
than advertising on the web, regardless of whether they
are served by in-process libraries or by AdSplit. Given
all the other benefits of AdSplit, we believe advertisers
and application vendors would prefer AdSplit over the
status quo.

8.2 Permissions and privacy
Some advertisers would appear to love their ability to
learn additional data about the user, including their loca-
tion, their contacts, and the other apps running on their
phone, and so forth. This information can help profile a
user, which can help target ads. Targeted ads, in turn, are
worth more money to the advertiser and thus worth more
money to the hosting application. When we offer HTML
style advertisements, with HTML-like security restric-
tions, the elegance of the solution seems to go against
the higher value profiling that advertisers desire.

Leaving aside whether it’s legal for advertisers to col-
lect this information, we have suggested that a host ap-
plication could make its own requests that violate the
users’ privacy and pass these into the AdSplit advertis-
ing app. Can we disincentivize such behavior? We hope
that, if we can successfully reduce apps’ default requests
for privileges that they don’t really need, then users will
be less accustomed to seeing such permission requests.
When they do occur, users will push back, refusing to
install the app. (Reading through the user-authored com-
ments in the Android Market, many apps with seem-
ingly excessive permission requirements will often have
scathing comments from users, along with technical jus-
tifications posted by the app authors to explain why each
permission is necessary.)

Furthermore, if advertisers ultimately prefer the Ad-
Split architecture, perhaps due to its improved resis-
tance to click fraud and so forth, then they will be
forced to make the trade-off between whether they pre-
fer improved integrity of their advertising platform,

3http://stats.cyanogenmod.com/

or whether they instead want less integrity but more
privacy-violating user details.

9 Related Work

Android has become quite popular with the security com-
munity, with researchers considering many aspects of the
system.

9.1 Android advertisements

A number of researchers have considered the Android
advertisement problem concurrent with our own work.

AdDroid [45] proposed a separation of advertisements
similar to our HTML ads design (outlined in Section 7)
by introducing a system service for advertisements. Ad-
Droid does not use our process separation or otherwise
defeat a malicious host application.

Leontiadis et al. [33] proposed market mechanisms
which through peer pressure and user reviews incen-
tivizes developers to reduce permission bloat due to ad-
vertisements. They introduced a separate advertisement
service which exposes an intent which apps can sub-
scribe to. Apps display advertisements in a specific UI
gadget similar to our AdView. To limit privacy leaks,
they monitor the flow of data between advertisement ser-
vice and apps and use the information to reduce revenue
of misbehaving apps and advertisements.

Roesner et al. [49] described user driven access con-
trol gadgets (ACGs). The kernel manages input isolation
and provides a trusted path to ACGs, solving a problem
similar to what we address in AdSplit with Quire signed
statements.

While not directly considering security issues, Pathak
et al. [44] analyzed the energy use in popular mobile apps
and found that 65%-75% of apps energy budget is spent
in third-party advertisement libraries. We note that Ad-
Split’s process separation architecture allows the operat-
ing system to easily distinguish between advertisements
and their hosting applications, allowing for a variety of
energy management policies.

9.2 Web security

AdSplit considers an architecture to allow for controlled
mashups of advertisements and applications on a smart-
phone. The web has been doing this for a while (as dis-
cussed in Section 3.1). Additionally, researchers have
considered a variety of web extensions to further contain
browser components in separate processes [26, 48], in-
cluding constructing browser-based multi-principal op-
erating systems [28, 54].



9.3 JavaScript sandboxes

Caja [37] and ADsafe [1] work as JavaScript sand-
boxes which use static and dynamic checks to safely
host JavaScript code. They use a safe subset of
JavaScript, eliminating dangerous primitives like eval
or document.write that could allow an advertisement
to take over an entire web page. Instead, advertisements
are given a limited API to accomplish what they need.
AdSplit can trivially host advertisements built against
these systems, and as their APIs evolve, they could be
directly supported by out AdWebView class. Addition-
ally, because we run the AdWebView in a distinct process
with its own user-id and permissions, we provide a strong
barrier against advertisement misbehavior impacting the
rest of the platform.

9.4 Advertisement privacy

Privad [27] and Juels et al. [30] address security issues
related to privacy and targeted advertising for web ads.
They use client side software that prevents behavior pro-
filing of users and allows targeted advertisements with-
out compromising user privacy.

AdSplit does not address privacy problems related to
targeted advertisements but it provides framework for
implementing various policies on advertisements.

9.5 Smart phone platform security

As mobile phone hardware and software increase in com-
plexity the security of the code running on a mobile de-
vices has become a major concern.

The Kirin system [16] and Security-by-Contract [12]
focus on enforcing install time application permissions
within the Android OS and .NET framework respec-
tively. These approaches to mobile phone security allow
a user to protect themselves by enforcing blanket restric-
tions on what applications may be installed or what in-
stalled applications may do, but do little to protect the
user from applications that collaborate to leak data or
protect applications from one another.

Saint [42] extends the functionality of the Kirin sys-
tem to allow for runtime inspection of the full system
permission state before launching a given application.
Apex [41] presents another solution for the same prob-
lem where the user is responsible for defining run-time
constraints on top of the existing Android permission
system. Both of these approaches allow users to specify
static policies to shield themselves from malicious ap-
plications, but don’t allow apps to make dynamic policy
decisions.

CRePE [11] presents a solution that attempts to artifi-
cially restrict an application’s permissions based on envi-

ronmental constraints such as location, noise, and time-
of-day. While CRePE considers contextual information
to apply dynamic policy decisions, it does not attempt to
address privilege escalation attacks.

9.5.1 Privilege escalation

XManDroid [8] presents a solution for privilege es-
calation and collusion by restricting communication at
runtime between applications where the communication
could open a path leading to dangerous information flows
based on Chinese Wall-style policies [7] (e.g., forbidding
communication between an application with GPS privi-
leges and an application with Internet access). While this
does protect against some privilege escalation attacks,
and allows for enforcing a more flexible range of poli-
cies, applications may launch denial of service attacks on
other applications (e.g., connecting to an application and
thus preventing it from using its full set of permissions)
and it does not allow the flexibility for an application to
regain privileges which they lost due to communicating
with other applications.

One feature of Quire that is not used in AdSplit is
its ability to defeat confused deputy attacks, by annotat-
ing IPCs with the entire call chain. In concurrent work
to Quire, Felt et al. present a solution to what they
term “permission re-delegation” attacks against deputies
on the Android system [20]. With their “IPC inspec-
tion” system, apps that receive IPC requests are poly-
instantiated based on the privileges of their callers, en-
suring that the callee has no greater privileges than the
caller. IPC inspection addresses the same confused
deputy attack as Quire’s “security passing” IPC anno-
tations, however the approaches differ in how inten-
tional deputies are handled. With IPC inspection, the
OS strictly ensures that callees have reduced privileges.
They have no mechanism for a callee to deliberately of-
fer a safe interface to an otherwise dangerous primitive.
Unlike Quire, however, IPC inspection doesn’t require
apps to be recompiled or any other modifications to be
made to how apps make IPC requests.

(AdSplit does not require Quire’s IPC inspection sys-
tem, and thus also does not require apps to be recompiled
to have the semantics described in this paper.)

More recent work has focused on kernel extensions
that can observe IPC traffic, label files, and enforce a
variety of policies [9, 52]. These systems can enhance
the assurance of many of the above techniques by cen-
tralizing the policy specification and enforcement mech-
anisms.



9.5.2 Dynamic taint analysis on Android

The TaintDroid [15] and ParanoidAndroid [46] projects
present dynamic taint analysis techniques to preventing
runtime attacks and data leakage. These projects attempt
to tag objects with metadata in order to track information
flow and enable policies based on the path that data has
taken through the system. TaintDroid’s approach to in-
formation flow control is to restrict the transmission of
tainted data to a remote server by monitoring the out-
bound network connections made from the device and
disallowing tainted data to flow along the outbound chan-
nels.

AdSplit allows ads to run in separate processes but ap-
plications can still pass sensitive information to separated
advertisements. TaintDroid and ParanoidAndroid can be
used to detect and prevent any such flow of information.
Thus they are complementary to AdSplit.

10 Future Work

The work in this paper touches on a trend that will be-
come increasingly prevalent over the next several years:
the merger of the HTML security model and the smart-
phone application security model. Today, HTML is
rapidly evolving from its one-size-fits-all security origins
to allow additional permissions, such access to location
information, for specific pages that are granted those per-
missions by the user. HTML extensions are similarly
granted varying permissions rather than having all-or-
nothing access [4, 34].

On the flip side, iOS apps originally ran with full, un-
restricted access to the platform, subject only to vague
policies enforced by human auditors. Only access to lo-
cation information was restricted. In contrast, the An-
droid security model restricts the permissions of apps,
with many popular apps running without any optional
permissions at all. Despite this, Android malware is
a growing problem, particularly from third-party app
stores (see, e.g., [19, 56]). Clearly, there’s a need for
more restrictive Android security, more like the one-size-
fits-all web security model.

While the details of how exactly web apps and smart-
phone apps will eventually combine, our paper shows
where this merger is already underway: when web con-
tent is embedded in a smartphone app. Well beyond ad-
vertising, a variety of smartphone apps take the strategy
of using native code to set up one or more web views,
then do the rest in HTML and JavaScript. This has sev-
eral advantages: it makes it easier to support an app
across many different smartphone platforms. It also al-
lows authors to quickly update their apps, without need-
ing to go through a third-party review process.

These trends, plus the increasing functionality in

HTML5, suggest that “native” apps may well be entirely
supplanted by some sort of “mobile HTML” variant, not
unlike HP/Palm’s WebOS, where every app is built this
way4.

Maybe this will result in a industry battle royale, but
it will also offer the ability to ask a variety of interesting
security questions. For example, consider the proposed
“web intents” standard5. How can an “external” web in-
tent interact safely with the “internal” Android intent sys-
tem? Both serve essential the same purpose and use sim-
ilar mechanisms. We, and others, will pursue these new
technologies toward their (hopefully) interesting conclu-
sions.

11 Conclusion

We have presented AdSplit, an Android-based advertis-
ing system that provides advertisers integrity guarantees
against potentially hostile applications that might host
them. AdSplit leverages several mechanisms from Quire
to ensure that UI events are correct and to communicate
to the outside world in a fashion that hosting applica-
tions cannot forge. AdSplit runs with marginal perfor-
mance overhead and, with our HTML-based design, of-
fers a clear path toward widespread adoption. AdSplit
not only protects advertisers against click fraud and ad
blocking, it also reduces the need for permission bloat
among advertising-supported free applications, and has
the potential to reduce the incentive for applications to
leak privacy-sensitive user information in return for bet-
ter advertising revenues.

Acknowledgments

We would like to thank Adrienne Porter Felt, David Wag-
ner, Adam Pridgen, and Daniel Sandler for their valuable
feedback. This work builds on our prior Quire project.
We would like to thank Yuliy Pisetsky and Anhei Shu for
their assistance and efforts. This work was supported in
part by NSF grants CNS-1117943 and CNS-0524211.

References

[1] ADsafe. ADsafe, Feb. 2012. http://www.adsafe.org.

[2] Android. Processes and Threads | Android Develop-
ers, Nov. 2011. http://developer.android.com/guide/topics/
fundamentals/processes-and-threads.html.

[3] Android Open Source Project. dex - Dalvik Executable
Format, Nov. 2007. http://source.android.com/tech/dalvik/
dex-format.html.

4http://developer.palm.com/blog
5http://webintents.org/



[4] A. Barth, A. P. Felt, P. Saxena, and A. Boodman. Protect-
ing browsers from extension vulnerabilities. In 17th Net-
work and Distributed System Security Symposium (NDSS
’10), San Diego, CA, Feb. 2010.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses
for cross-site request forgery. In 15th ACM Conference
on Computer and Communications Security (CCS ’08),
Alexandria, VA, Oct. 2008.

[6] A. Barth, C. Jackson, and J. C. Mitchell. Securing frame
communication in browsers. In 17th USENIX Security
Symposium, San Jose, CA, July 2008.

[7] D. F. C. Brewer and M. J. Nash. The Chinese wall security
policy. In Proceedings of the 1989 IEEE Symposium on
Security and Privacy, pages 206–214, Oakland, CA, May
1989.

[8] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-
R. Sadeghi. XManDroid: A new Android evolution
to mitigate privilege escalation attacks. Technical Re-
port TR-2011-04, Technische Universität Darmstadt, Apr.
2011. http://www.trust.informatik.tu-darmstadt.de/fileadmin/
user_upload/Group_TRUST/PubsPDF/xmandroid.pdf.

[9] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming privilege-
escalation attacks on Android. In 19th Network and
Distributed System Security Symposium (NDSS ’12), San
Diego, CA, Feb. 2012.

[10] T. Cheshire. In depth: How Rovio made Angry
Birds a winner (and what’s next). Wired, Mar.
2011. http://www.wired.co.uk/magazine/archive/2011/04/
features/how-rovio-made-angry-birds-a-winner.

[11] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE:
Context-related policy enforcement for Android. In 13th
Information Security Conference (ISC ’10), Boca Raton,
FL, Oct. 2010.

[12] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,
F. Piessens, I. Siahaan, and D. Vanoverberghe. Security-
by-contract on the .NET platform. Information Security
Technical Report, 13(1):25–32, 2008.

[13] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wal-
lach. Quire: Lightweight provenance for smart phone op-
erating systems. In 20th USENIX Security Symposium,
San Francisco, CA, Aug. 2011.

[14] eLinux.org. Android Memory Usage, Feb. 2012. http:
//elinux.org/Android_Memory_Usage.

[15] W. Enck, P. Gilbert, C. Byung-gon, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In 9th USENIX Symposium
on Operating Systems Design and Implementation (OSDI
’10), pages 393–408, Vancouver, B.C., Oct. 2010.

[16] W. Enck, M. Ongtang, and P. McDaniel. On lightweight
mobile phone application certification. In 16th ACM Con-
ference on Computer and Communications Security (CCS
’09), Chicago, IL, Nov. 2009.

[17] Federal Trade Commission. Mobile Privacy for Kids:
Current Privacy Disclosures are Disappointing, Feb.
2012. http://ftc.gov/os/2012/02/120216mobile_apps_kids.
pdf.

[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner.
Android Permissions Demystified. In 18th ACM Confer-
ence on Computer and Communications Security (CCS
’11), Chicago, IL, 2011.

[19] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner.
A survey of mobile malware in the wild. In 1st ACM
Workshop on Security and Privacy in Smartphones and
Mobile Devices (SPSM ’11), Chicago, IL, Oct. 2011.

[20] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission re-delegation: Attacks and defenses.
In 20th USENIX Security Symposium, San Fansisco, CA,
Aug. 2011.

[21] Google. View: Android developer reference, Feb.
2011. http://developer.android.com/reference/android/view/
View.html#Security.

[22] Google Inc. Google AdMob Ads Android Fundamen-
tals, Nov. 2011. http://code.google.com/mobile/ads/docs/
android/fundamentals.html.

[23] Google Project Hosting. android-apktool - A tool for
reengineering Android apk files, Feb. 2012. http://code.
google.com/p/android-apktool.

[24] M. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi. Unsafe
exposure analysis of mobile in-app advertisements. In 5th
ACM Conference on Security and Privacy in Wireless and
Mobile Networks (WiSec ’12), Tucson, AZ, Apr. 2012.

[25] GreyStripe Inc. Android - SDK Integration Overview,
Nov. 2011. http://wiki.greystripe.com/index.php/Android#
AndroidManifest.xml.

[26] C. Grier, S. Tang, and S. T. King. Secure web browsing
with the OP web browser. In 2008 IEEE Symposium on
Security and Privacy, Oakland, CA, May 2008.

[27] S. Guha, B. Cheng, and P. Francis. Privad: Practi-
cal privacy in online advertising. In 8th Symposium on
Networked Systems Design and Implementation (NSDI),
Boston, MA, Mar. 2011.

[28] J. Howell, C. Jackson, H. J. Wang, and X. Fan. Mashu-
pOS: Operating system abstractions for client mashups.
In 11th USENIX Workshop on Hot Topics in Operating
Systems (HotOS ’07), pages 1–7, 2007.

[29] InMobi. InMobi Android SDK - Version a300, Nov. 2011.
http://developer.inmobi.com/wiki/index.php?title=Android.

[30] A. Juels. Targeted advertising ... and privacy too. In
2001 Conference on Topics in Cryptology: The Cryp-
tographer’s Track at RSA (CT-RSA 2001), San Francisco,
CA, Apr. 2001.

[31] A. Juels, S. Stamm, and M. Jakobsson. Combating click
fraud via premium clicks. In 16th USENIX Security Sym-
posium, Boston, MA, 2007.

[32] Jumptap. Jumptap Android SDK Integration, Nov.
2011. https://support.jumptap.com/index.php/Jumptap_
Android_SDK_Integration.



[33] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo.
Don’t kill my ads! Balancing privacy in an ad-supported
mobile application market. In 12th Workshop on Mobile
Computing Systems & Applications (HotMobile ’12), San
Diego, CA, Feb. 2012.

[34] L. Liu, X. Zhang, G. Yan, and S. Chen. Chrome exten-
sions: Threat analysis and countermeasures. In 19th Net-
work and Distributed System Security Symposium (NDSS
’12), San Diego, CA, Feb. 2012.

[35] L. McGann. How Ars Technica’s “experiment”
with ad-blocking readers built on its community’s
affection for the site. Nieman Journalism Lab,
Mar. 2010. http://www.niemanlab.org/2010/03/how-ars-
technica-made-the-ask-of-ad-blocking-readers/.

[36] Millenial Media. Millennial Media Android SDK - Ver-
sion 4.5.0, Nov. 2011. http://wiki.millennialmedia.com/
index.php/Android.

[37] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: Safe active content in sanitized JavaScript. Google,
Dec. 2007. http://google-caja.googlecode.com/files/caja-
2007.pdf.

[38] Mobclix. Mobclix SDK Integration Guide Version 3.1.0,
Nov. 2011. https://developer.mobclix.com/help/advertising/
sdk_api/android.

[39] Mozilla Foundation. How Many Firefox Users Have Add-
Ons Installed? 85%!, June 2011. http://blog.mozilla.com/
addons/2011/06/21/firefox-4-add-on-users/.

[40] MSDN. About Cross-Frame Scripting and Secu-
rity., Oct. 2011. http://msdn.microsoft.com/en-us/library/
ms533028(v=vs.85).aspx.

[41] M. Nauman, S. Khan, and X. Zhang. Apex: extending
Android permission model and enforcement with user-
defined runtime constraints. In 5th ACM Symposium
on Information, Computer and Communications Secu-
rity(ASIACCS ’10), pages 328–332, Beijing, China, Apr.
2010.

[42] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.
Semantically rich application-centric security in Android.
In 25th Annual Computer Security Applications Confer-
ence (ACSAC ’09), Honolulu, HI, Dec. 2009.

[43] M. Panzarino. Google: About 190 Million Android
Devices Activated Worldwide. That’s About 576900
A Day Since May. The Next Web, Oct. 2011.
http://thenextweb.com/google/2011/10/13/google-190-
million-android-devices-activated-worldwide-thats-about-
576900-a-day-since-may/.

[44] A. Pathak, Y. C. Hu, and M. Zhang. Where is the energy
spent inside my app? Fine grained energy accounting on
smartphones with eprof. In 7th ACM European Confer-
ence on Computer Systems (EuroSys ’12), Bern, Switzer-
land, Apr. 2012.

[45] P. Pearce, A. P. Felt, and D. Wagner. AdDroid: Priv-
ilege separation for applications and advertisers in An-
droid. In 7th ACM Symposium on Information, Computer
and Communications Security (AsiaCCS ’12), Seoul, Ko-
rea, May 2012.

[46] G. Portokalidis, P. Homburg, K. Anagnostakis, and
H. Bos. Paranoid Android: Zero-day protection for smart-
phones using the cloud. In Annual Computer Security
Applications Conference (ACSAC ’10), Austin, TX, Dec.
2010.

[47] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Mon-
rose. All your iFRAMEs point to us. In 17th USENIX
Security Symposium, San Jose, CA, July 2008.

[48] C. Reis and S. D. Gribble. Isolating web programs in
modern browser architectures. In 4th ACM European
Conference on Computer systems (EuroSys ’09), Nurem-
berg, Germany, Apr. 2009.

[49] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J.
Wang, and C. Cowan. User-Driven Access Control: Re-
thinking permission granting in modern operating sys-
tems. In 2012 IEEE Symposium on Security and Privacy,
Berkeley, CA, May 2012.

[50] G. Rydstedt, E. Bursztein, and D. Boneh. Framing attacks
on smart phones and dumb routers: Tap-jacking and geo-
localization. In USENIX Workshop on Offensive Tech-
nologies (wOOt ’10), Washington, DC, Aug. 2010.

[51] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting frame busting: a study of clickjacking vulnerabil-
ities at popular sites. In IEEE Oakland Web 2.0 Security
and Privacy (W2SP ’10), Oakland, CA, May 2010.

[52] S. Smalley. The case for SE Android. In
Linux Security Summit 2011, Santa Rosa, CA, Sept.
2011. http://selinuxproject.org/~jmorris/lss2011_slides/
caseforseandroid.pdf.

[53] Tapjoy. Getting Started with Publisher SDK, Nov.
2011. http://knowledge.tapjoy.com/integration-8-x/android/
publisher/getting-started-with-offers-sdk.

[54] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choud-
hury, and H. Venter. The multi-principal OS construction
of the Gazelle web browser. In 18th USENIX Security
Symposium, Montreal, Canada, Aug. 2009.

[55] World Wide Web Consortium (W3C). Frames in
HTML Documents, Nov. 2011. http://www.w3.org/TR/
REC-html40/present/frames.html#h-16.5.

[56] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in official
and alternative Android markets. In 19th Network and
Distributed System Security Symposium (NDSS ’12), San
Diego, CA, Feb. 2012.


