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Abstract

Explaining why an answer is present (traditional provenance) or
absent (Why-not provenance) from a query result is important for
many use cases. Most existing approaches for positive queries use
the existence (or absence) of input data to explain a (missing) an-
swer. However, for realistically-sized databases, these explanations
can be very large and, thus, may not be very helpful to a user. In
this paper, we argue that logical constraints as a concise descrip-
tion of large (or even infinite) sets of existing or missing inputs can
provide a natural way of answering a why- or why-not provenance
question. For instance, consider a query that returns the names of
all cities which can be reached with at most one transfer via train
from Lyon in France. The provenance of a city in the result of this
query, say Dijon, will contain a large number of train connections
between Lyon and Dijon which each justify the existence of Dijon
in the result. If we are aware that Lyon and Dijon are cities in France
(e.g., an ontology of geographical locations is available), then we
can use this information to generalize the query output and its prov-
enance to provide a more concise explanation of why Dijon is in the
result. For instance, we may conclude that all cities in France can
be reached from each other through Paris. We demonstrate how an
ontology expressed as inclusion dependencies can provide mean-
ingful justifications for answers and non-answers, and we outline
how to find a most general such explanation for a given UCQ query
result using Datalog. Furthermore, we sketch several variations of
this framework derived by considering other types of constraints as
well as alternative definitions of explanation and generalization.

Categories and Subject Descriptors H.2.4 [Relational databases)
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1. Introduction

Explaining why a query does or does not return an answer of in-
terest has been studied extensively as data provenance (the positive
case) and the missing answer problem (the negative case). Here we
refer to these two types of problems as answering why and why-not
questions, respectively. Since the number of potential explanations
for a why-not question is typically very large, many approaches for
missing answers (e.g., [HH10, MGMS10]) have resorted to only
returning explanations that fulfill a given optimality criterion: e.g.,
find the smallest set of missing input tuples that if inserted into the
database would yield the missing answer. Alternatively, approaches
that support provenance of query languages with negation [KLZ13]
would enumerate all these explanations. The first approach has the
disadvantage that it does not present a full picture of why the an-
swer is missing (e.g., the optimization criterion may not be a good
fit for every domain) while the latter approach may return excessive
amounts of provenance.

In this paper, we take a different approach by computing con-
cise summaries of explanations for why and why-not questions by
generalizing sets of rule derivations (explanations) using logical
integrity constraints known to hold for the given schema. In our
framework, an explanation is a set of successful or unsuccessful
rule derivations which justify the presence or absence of a query
result.

We treat why and why-not questions in the same summarization
framework. This idea is inspired by the observation from [KLZ13,
RKL14], which demonstrated that why and why-not questions can
be treated uniformly in a provenance framework that supports full
negation (such as the provenance games introduced in that work).
Explaining why a tuple ¢ is missing from the result of a query @
is equivalent to explaining why ¢ is in the result of the negation of
Q. Consider a relation Train(X,Y) which contains direct train
connections from a city X to a city Y. For instance, in Datalog, the
negation of a query (@ returning cities with at least one outbound
train connection

Q(X):-Train(X,Y).
can be expressed as

Qneg(X):—adom(X),adom(Y), - Train(X,Y").

where predicate adom contains all values of the active domain of
the database instance. Our framework treats why and why-not ques-
tions uniformly in terms of generalizing explanations. The only dif-
ference between the two types of questions is what constitutes an
explanation: an explanation for a why question is a set of successful
rule derivations, each justifying the answer, while an explanation
for a why-not question is a set of unsuccessful rule derivations that
together justify that the answer is not in the result.

In this work we use inclusion dependencies that express a sim-
ple ontology rooted in the constants of a database instance to gen-
eralize explanations. For example, to explain why there are no train
connections with at most one transfer between Chicago and Berlin
we may list all hypothetical train connections between Chicago and
Berlin with one intermediate stop that could (but do not) exist. In-
stead of listing all combinations, we may explain this absence of
a train connection by the higher-level rule that there are no train
connections between North America and Europe. In this work, we
use ontologies to find such more general explanations for UCQ
queries. The idea of using an ontology for summarizing explana-
tions has also been applied by ten Cate et al. [tCCST15] and Wang
et al. [WDM15].! The major difference between these approaches
and ours is that we summarize the successful or failed derivation of

I Sven Kohler, Sean Riddle, and Bertram Ludischer explored different ap-
proaches to why-not provenance, including provenance games [KLZ13,
RKL14] and using (integrity) constraints. In particular, Sean Riddle pro-
posed to use the latter to produce higher-level explanations for why-not



r1 :max2Hop(X,Y) :—max1Hop(X,Y).

ro :max2Hop(X,Y') :-max1Hop(X, Z),max1Hop(Z,Y).
rs :max1Hop(X, X ):—City(X,Y, Z).

r4 :max1Hop(X,Y) - Train(Y, X).

r4 :max1Hop(X,Y):— Train(X,Y).

City

Train

new york nystate usa

new york washington dc . A
new york chicago chicago illlinois usa
chicago seattle washington dc QC usa
washington dc seattle seattle washington usa
berlin paris é,y,"“ . ?rance
berlin munich uon . rance
paris lyon paris - france
paris dijon berlin - germany
munich - germany

Figure 1: Example Database and Views

a query result (i.e., its provenance) while they aim to summarize a
subset of the missing answers to a query. By including query struc-
ture into the explanations we can unearth causes for answers and
non-answers that cannot be detected by approaches that are query
agnostic [tCCST15]. Thus, in a sense we are combining missing
answers and provenance techniques with generalization based on
ontologies.

EXAMPLE 1 (Why-not Question). Consider a relation Train stor-
ing train connections between cities (Figure 1), as well as a view
max2Hop that determines which cities are reachable from each
other with at most one transfer. Here we assume that train con-
nections are bi-directional and use the convention that a city is
reachable from itself by not taking any train (see the rules defining
max1Hop in Figure 1). Assume that a user wants to understand why
there is no train connection between Chicago and Berlin, i.e., why
the following tuple is missing:

max2Hop(chicago, berlin)

Note that the type of a user question (why or why-not) is de-
termined based on whether the question tuple is missing or not.
We can explain this missing answer by enumerating all poten-
tial instantiations of rules for max2Hop that, if one of them had
been successful, would have derived the missing answer (with
head max2Hop(chicago, berlin)), but failed because one or more
grounded atoms from the body did not exist in the instance. For
example, one such failed rule derivation is

r1 : max2Hop(chicago, berlin) :— max1Hop(chicago, berlin)

That is, there is no direct train connection between Chicago and
Berlin. This rule derivation together with all other such unsuccess-
ful rule derivations explains the failure to derive max2Hop(chicago,
berlin). Note that a rule derivation fails if at least one goal in its
body fails. For rules with more than one goal, we only report the
failed goals in a failed rule derivation (replacing successful goals
with a placeholder T), because only these goals caused the deriva-
tion to fail. For instance, another failed rule derivation (rule r2)
for the example question is

questions and came up with the “continent disconnect implies train dis-
connect” example used here. Bertram Luddscher discussed IC-based prov-
enance with Balder ten Cate, who acknowledged Bertram [tCCST15], who
hereby acknowledges Sean Riddle.

r2 : max2Hop(chicago, berlin) :— max1Hop(chicago, seattle),
max1Hop(seattle, berlin)

In this rule derivation the first goal succeeds (Seattle can be
reached with at most one train connection from Chicago), but the
second goal fails. Thus, when explaining the missing connection
between Chicago and Berlin we would report the rule derivation
as:

ro : max2Hop(chicago, berlin) :— T,max1Hop(seattle, berlin)

2. Basic and Generalized Explanations

We call the set of all such failed rule derivations an explanation
(for why questions we consider successful rule derivations). In the
following we limit the exposition to UCQ queries. For programs
like the one shown in Figure 1 we allow the user to pose questions
over predicate max2Hop by materializing max1Hop and treating it
as a base relation. A generalization of the approach to FO queries
requires more advanced provenance techniques (e.g., [KLS12,
KLZ13]) to determine successful or failed rule derivations relevant
for a user question. Our approach generalizes to FO queries, but
due tg) space limitations we do not present the required techniques
here.

DEFINITION 1 (Explanation). Let (Q be a UCQ expressed in Dat-
alog with head predicate Q(X ) and I be a database instance. We
support user questions of the form Q(Z) where ¢ is a list of con-
stants with the same arity as predicate Q). The type of question (why
or why-not) is automatically inferred based on whether Q(¢) exists
or not. The explanation EXPL(Q(¢), I) for a why question Q(¢) is
the set of all a substitutions of the variables in a rule r from Q with
constants such that Q(¢) is the rule head and the body of the rule
is fulfilled in I. Similarly, the explanation for a why-not question
Q(&) is the same type of rule derivation except that the body is not
fulfilled in I and we replace successful subgoals with T.

The difference between explanations for why and why-not ques-
tions is that the former are successful rule derivations whereas
the latter are failed rule derivations restricted to failed goals.’
As mentioned before, an explanation may be very large, in par-
ticular for why-not questions over large instances. For example,
the failed derivations of rule r» for the example question are
all derivations max2Hop(chicago, berlin) :— max1Hop(chicago, c),
max1Hop(c, berlin) for any constant ¢ from the active domain. The
explanation for the example question contains one entry for each
such derivation where each successful goal is replaced with T.

ExXAMPLE 2 (Using Constraints to Generalize Explanations). As-
sume an ontology of cities is available as a set of inclusion depen-
dencies describing the subsumption relationships between concepts
and mapping constants from the activate domain of the instance to
the concepts they belong too. Figure 2 shows such an ontology for
our running example and a set of Datalog rules defining subsump-
tion relationships. Note that here we treat every constant in the
active domain as a concept. For instance, according to this ontol-
ogy, paris belongs to concept of FrenchCity and FrenchCity is
subsumed by the concept EuropeanCity. Based on this ontology

2 An explanation for an FO query resembles the connected component of a
provenance game graph [KLS12] which contains the user question.

3 Indeed, basic explanations in our model are a specialized form of prove-
nance games and in turn provenance games [RKL14, KL.Z13] can be un-
derstood as a form of SLD(NF) resolution. Thus, it is not surprising that a
uniform treatment of why- and why-not is possible in our framework.



ACity(X):—NACity(X).
ACity(X):—EuropeanCity(X).
NACity(X):-USCity(X).
EuropeanCity(X ) :— GermanCity(X).
EuropeanCity(X):—FrenchCity(X).
USCity(X):-I1llinoisCity(X).
USCity(X):—WashingtonCity(X).
USCity(X):-DCCity(X).
USCity(X):—NYStateCity(X).
I1linoisCity(X):— City(X,illinois, Z).
WashingtonCity(X):— City(X, washington, Z).
DCCity(X):—City(X,dc, Z).
NYStateCity(X):—City (X, nystate, Z).
GermanCity(X):-City(X,Y, germany).
FrenchCity(X):—City(X,Y, france).

chicago

seattle newyork

ACity
/ \
NACity EuropeanCity
/ \
USCity GermanCity FrenchCity
NS IN
IllinoisCity WashingtonCity NY StateCity DCCity berlin munich paris lyon dijon

washington dc

Figure 2: Example Ontology and Mapping

we can compactly describe parts of an explanation for a question
using rule derivations with concepts instead of constants. Such a
generalized explanation represents the set of all rule derivations
with constants belonging to these concepts. For instance, one ex-
planation for the previous example is that there is no direct con-
nection between any city in Illinois and Berlin:

max2Hop(IllinoisCity, berlin):—
max1Hop(IllinoisCity,berlin)

Generalization of explanations can be defined in several ways
(see Section 5 alternative notions). Here we settle for explanations
that generalize the user question (the rule heads) and where the rule
derivations are subsumed by the explanation for a question, i.e., for
each head Q(ci) covered by the generalized explanation, the set of
rule derivations with head Q(J) covered by the explanation are a
subset of EX PL(Q(J), T). Some generalized explanations are more
specific than others and a natural question that arises is the search
for a generalized explanation that is most general in some sense.
Next, we first define ontologies rooted in a database instance and
then define explanations and subsumption of explanations.

DEFINITION 2 (Ontologies over Instances). Let O be an ontology
over constants from an instance 1, i.e., a pair (C7 E) where C is a
set of concepts and € € C x C is a subsumption relation (reflexive
and transitive). We use c to denote the strict version of c, i.e.,
c (C1,C2) holds if Cy € Co and Cy ¢ C1. We require that every
constant ¢ in adom([) (the active domain of instance I) is included
in C and that the concept corresponding to a constant ¢ does not
subsume any other concepts: ¢’ S c —c=c.

Figure 2 shows an ontology that is defined by a set of Datalog
rules. Using this notion of ontologies mapped to an instance we
can define explanations and reason over what it means for an
explanation to generalize another explanation.

DEFINITION 3 (Generalized Explanation). Consider a UCQ @,
instance I, and ontology O. A generalized explanation E for a
question Q(&) using rule r from Q is a substitution r[X « C]
of the variables of rule r with concepts from C and optionally a
substitution of a goal with T such that the conditions shown below

hold. We say that a rule derivation T[X < d] is covered by a gen-

Figure 3: Generalization Process for Question Q(berlin)

eralized explanation if the constants from d are subsumed by the
concepts from C.

1. the concepts assigned to the head of r subsume the concepts
from ¢

2. for every vector d of constants from adom(I) subsumed by C we
have for head(c;f) (the constants d restricted to the head ofr)
(a) Q(head(d)) exists iff Q(&) exists
(b) r[X « d] is contained in the explanation for Q(head(d))

3. A subgoal of r is failed in all rule derivations covered by C iff
it is replaced with T in E.

Intuitively, the above definition states that an generalized expla-
nation is derived from a rule derivation for a question by general-
izing the constants mentioned in the question using the ontology.
Furthermore, the rule derivations covered by a generalized expla-
nation should be contained in a basic explanation. These conditions
ensure that an explanation 1) generalizes the user question and 2)
summarizes parts of explanations.

EXAMPLE 3. We now further illustrate the inner workings of gen-
eralization using an unary query Q(X ) :—max1Hop(chicago, X).
This query returns all cities that can be reached with at most
one train connection from Chicago. Consider a user question
Q(berlin), i.e., why can Berlin not be reached from Chicago.
The basic explanation to this question is the failed rule deriva-
tion Q(berlin) :— max1Hop(chicago, berlin). To generalize this ex-
planation we move up in the ontology to find concepts that sub-
sume Berlin and only subsume cities missing from the query re-



sult. Figue 3 shows the ontology from the previous example. We
have colored all constants (boxes) belonging to the query result
in green and all missing answers as red. Concepts are colored
red if they only subsume missing answers, green if they only sub-
sume existing answers, and white if they subsume both missing
and existing answers. In the example, the generalized explanation
Q(GermanCity) :— max1Hop(chicago,GermanCity) which uses
concept GermanCity generalizes the explanation for Q(berlin),
because GermanCity subsumes berlin and subsumes only miss-
ing answers. However, concept EuropeanCity provides us with a
more general explanation since it subsumes GermanCity and also
can be used to create a generalized explanation for this question.
In fact, for the given instance and ontology, EuropeanCity is most
general. ACity, the only concept that subsumes EuropeanCity,
can not be used to explain the question because it subsumes existing
answers (e.g., seattle). In our framework, a generalized explana-
tion is sound, but not necessarily complete. That is, it is a compact
representation of a subset of the rule derivations from a basic ex-
planation. For instance, the explanation for Q(berlin) contains a
rule derivation for washington dc which is not covered by the gen-
eralized explanation using EuropeanCity. In Section 5 we will
discuss alternative definitions of generalization, some of which are
sound and complete.

Note that, since we include constants from the instance into
the ontology, generalized explanations may contain constants. For
instance,

E1 = max2Hop(IllinoisCity,berlin):—
max1Hop(IllinoisCity, berlin)

is a generalized explanation for the running example ques-
tion, because its concepts subsume (chicago, berlin) and for any
instance ¢ of I1linoisCity, max2Hop(c, berlin) :— max1Hop(c,
berlin) belongs to the explanation for max2Hop(c, berlin). While
E7 is more general than any generalized explanation using only
constants, there exist other explanations that are more general than
E. We next define the notion of a most general explanation.

DEFINITION 4 (Most General Explanation). Given two general-
ized explanations E with concepts C1,...,Cy and E' with con-
cepts C1,...,Cy, for a question Q(¢), we say that E dominates
E' writtenas E > E' iff

Vie{l,...,n}:C;2C;j
and
Jie{l,...,n}:C;aCj
A most general explanation for a question is a generalized ex-

planation that is not dominated by any other generalized explana-
tion for this question.

From now on we will use 7(C)pss to denote a generalized
explanation using rule 7 where the concepts from C' are bound
to the variables of r and the goals at the positions in list pos are
replaced with T.

EXAMPLE 4 (Most General Explanation). A most general expla-
nation for question max2Hop(chicago, berlin) is

ro(NYStateCity, EuropeanCity, WashingtonCity)

That is, no city in Europe can be reached from any city in
New York state with one intermediate stop in a city in Washington
state, because there are no direct train connections from both
New York and European cities to any Washington city. A most
general explanation for rule r1 is r1(NACity, EuropeanCity),
i.e., there are no direct train connections between North American
and European cities.

The example below demonstrates how our approach can be used
to answer why questions.

EXAMPLE 5 (Why-Question). As an example for answering why
questions consider the explanations for why Lyon can be reached
with at most one transfer from Dijon (two cities in France):

max2Hop(dijon, lyon)

The explanation for this question contains a single derivation
ro(dijon, lyon, paris), i.e., we can reach Lyon from Dijon by trans-
ferring in Paris. Concepts that subsume lyon, dijon, and paris are
FrenchCity, EuropeanCity and ACity. Assigning these con-
cepts to variables in r2 we derive candidate explanations. For each
such candidate we check whether it fulfills the conditions of Defini-
tion 3. The result of this process are the following explanations:

ro(FrenchCity, lyon, paris)
ro(dijon, FrenchCity, paris)
ro(FrenchCity,FrenchCity, paris)

Among these explanations only T2 (FrenchCity, FrenchCity,
paris) is a most general explanation, because lyon and dijon are
both subsumed by the concept FrenchCity. Intuitively, the mean-
ing of this explanation is that in the given database instance I we
can reach any city in France from any other city in France through
Faris.

So far we have only shown one most general explanation for
each rule. However, in general there may exist several most general
explanations for a rule, even if all pairs of concepts in the ontology
that are incomparable according to subsumption have no overlap.

EXAMPLE 6 (Multiple Most General Explanations). Consider the
question max2Hop(newyork, seattle). In the given database in-
stance there are two train connections with at most one transfer
that connect New York to Seattle: we have to either transfer in
Chicago or in Washington DC. We get two most general explana-
tions:

r2(NYStateCity,WashingtonCity,I11linoisCity)
r2(NYStateCity,WashingtonCity,DCCity)

3. Computing Explanations With Datalog

We now illustrate how to compute the most general explanations
for a question using Datalog. As long as the subsumption relation
is materialized or can be computed with Datalog, we can use a
Datalog program without recursion (FO query) to compute the most
general explanations for a question over a UCQ.* Our approach
generates such a Datalog program as follows.

Modelling the Ontology. We introduce view predicates isConcept,
subsumes, and subsumesEqual to model the ontology. Some of
the facts and rules defining these predicates for our running ex-
ample are shown below. We create a fact isConcept(C') for every
concept C in the ontology and introduce rules for creating concepts
representing the constants in the active domain. A subsumption rule
is introduced for every inclusion dependency of the ontology. We
then compute the transitive closure of subsumption. Finally, we
define a predicate that models C.

“We provide implementations of the examples from this pa-
per as a git repository: https://bitbucket.org/bglavic/
tapp-2015-towards-constraint-explanations-datalog-snippets
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has_r, XX(C4,Cs,Cs,G1, G2) :— subsumesEqual (B, C1 ), subsumesEqual(Bs, C> ), subsumesEqual(Bs, C3), 12 der(Bi1, Be, B3, G1,G2).

has_r, not_00(C1,C2,C3):—has_r; not XX(C4, Cs, Cs, true, G2).
has_r, not_00(C1,C2,C3) :—has_ry not XX(C1, Cs, Cs, G1, true).

has_max2Hop_success(C1, C) :— subsumesEqual (B, C1 ), subsumesEqual (B, C2), max2Hop (B, B2).
expl r, fail 00(C,C>,Cs, B, B2) :— subsumesEqual(Bj, C1 ), subsumesEqual(Bs, C> ), subsumesEqual(Bs, C3),
r; fail(Bi, B2, B3), - has_r; not_00(C1,Cs, C3), -~ has max2Hop_success(C1, C2).
dominated r, fail 00(C1,Ca, C3, B, Ba) - expl 1o fail 00(C1, C2, Cs, Bi, B2), expl s £ail 00(Cy, Cy, Ch, B1, B2),dominatess(C1,Ca, Cs, C1, Cy, C5).
most_gen 1, fail 00(C1,C2,Cs, B1, B2) :—expl 1, fail 00(Cy,C2,Cs, B, B2), ~ dominated r>_fail 00(C1, Ca, Cs, By, B2).
whynot_r,_00(C4,C2,C3) :—most_gen r, fail 00(C4, C2, C3, chicago, berlin).

Figure 4: Rules for Computing the Most General Explanations for max2Hop(chicago, berlin)

isBasicConcept(X):-city(X,Y, Z).
isConcept(X):- isBasicConcept(X).
isConcept(acity).

isConcept (nacity).

isConcept(X):—city(X,Y, Z).

subsumes (nacity, acity).
subsumes (X, illinoiscity) :— City (X, illinois, Z).

subsumes(X,Y) :- subsumes(X, Z), subsumes(Z,Y).
subsumesEqual (X, X):- isConcept(X).
subsumesEqual(X,Y):- subsumes(X,Y).

Furthermore, we introduce predicates for checking whether a
list of concepts is dominated by another list of concepts. We in-
troduce separate predicates for each possible list length that may
occur (determined by the input program). The rules for lists of two
concepts are shown below. Each of these rules represents the situa-
tion where one of the subsumption relationships between concepts
is strict whereas the others may or may not be strict. Thus, we need
n rules to define dominatesy.

dominatess(X,Y, Z, A) :— subsumes(X, Z),
subsumesEqual(Y, A).

dominatess(X,Y, Z, A) :— subsumesEqual(X, Z),
subsumes (Y, A).

Modelling Rule Success and Failure. For each rule related to
the user question (can be determined through static analysis of the
program) we add rules returning successful and failed derivations
for this rule. These rules compute basic explanations. The success
rule for a rule r has the same body as r, the head predicate is named
r_success, and the head contains all variables from rule r. Thus,
a success rule for rule r fires iff rule r fires and returns the bindings
of all variables for all successful rule derivations. A fail rule for rule
r checks that each variable is bound to an existing basic concept (a
concept that exists as a constant in the instance) and checks that
the rule r did not fire for this derivation (using the negation of
r_success). For instance, for rule 2 we generate:

1o success(X,Y, Z):—Train(X, Z),Train(Z,Y).
1, fail(X,Y, Z):— isBasicConcept(X),
isBasicConcept(Y),
isBasicConcept(Z),
- ry_success(X,Y, 7).

These types of rules have been successfully applied for Datalog
debugging [KLS12] and computing provenance [KLZ13]. Recall
that for failed rule derivations we need to know which goals have
failed to be able to compute explanations. Instead of using the rules
introduced above we use a predicate r_der with a head that has all
variables from rule r plus one variable for each goal in the body that
models whether this goal is fulfilled for a rule derivation. Below we
show these rules for rule 72 from the running example. For instance,
the third rule returns derivations of rule 2 where the first goal failed
while the second goal succeeded.

ryder(X,Y, Z, true, true) :—max1Hop(X, Z),
max1Hop(Z,Y).
ro.der(X,Y, Z,true, false) :— isBasicConcept(Y'),
max1Hop(X, Z),
—-max1Hop(Z,Y).
ro.der(X,Y, Z, false, true) :— isBasicConcept(X),
-max1Hop(X, Z),
max1Hop(Z,Y).
ro.der(X,Y, Z, false, false) :— isBasicConcept (X),
isBasicConcept(Y),
isBasicConcept(Z),
—max1Hop(X, Z),
—-max1Hop(Z,Y).

For example, in the example instance there is a direct train
connection from Paris to Dijon, but not from Dijon to Berlin. Thus,
the derivation

r2 : max2Hop(paris, berlin) :— max 1Hop(paris, dijon),
max1Hop(dijon, berlin)

fails because subgoal max1Hop(dijon, berlin) fails (while sub-
goal max1Hop(dijon, berlin) succeeds). Based on this rule deriva-



tion, tuple r>_der(paris, berlin, true, false) will be derived by the
second rule shown above.

Modelling Explanations and Generalization. In this step we find
the most general explanations for each rule related to the user
question (and for each combination of failed subgoals in case of
why-not questions). We explain this last step for example question
max2Hop(chicago, berlin) using rule r2 with both subgoals failed.
The generated rules are shown in Figure 4.

The first four rules are helper rules that test the existence of
certain types of rule derivations covered by a list of concepts.
Rule (has_r, XX(C4,C42,Cs)) checks whether a rule derivation
exists for constants (Bi, B2, Bs) belonging to a combination
(C1,C2,C3) of concepts such that the goals are successful/failed
as indicated by G'1 and Gs. For instance, has_r, XX(C4, C2, Cs,
true, true) denotes that there exists a derivation of rule ro for
constants (B1, B2, Bs) which belong to concepts (C1,C2,C3)
such that both goals are won. The following two rules define a
predicate has_r; not_00 that returns combinations of concepts
(C1,C2,C3) for which there exists constants (B, B2, Bs) con-
tained by these concepts such that in the rule derivation r2 (B1, Ba,
Bs) not both goals have failed. Finally, has_max2Hop_success(Ch,
C>) computes which pair of concepts cover at least one existing
tuple in max2Hop.

The rule with head expl.r, fail 00(Ci,Cs2,Cs, B, B2)
finds concepts (C1, C2, C's) that form an explanation for a question
max2Hop( B, B2) using rule ro with both goals failed (indicated
by suffix 00 in the predicate name). By binding B; and B to the
constants from an input why-not question, we can compute all such
explanations for this question. The two conditions in the defini-
tion of explanation are checked by 1) checking that the concepts
(B1, B2) are subsumed by the concepts (C1, C2), 2a) by checking
that these concepts do not cover a rule derivation where at least one
of the goals succeeds, and 2b) by checking that the concepts for the
head of 2 (C7 and C2) do not cover an existing max2Hop tuple.
Note that both universal checks of the definition (for every con-
stant belonging to the concepts, the rule derivation fails; and only
non-existing tuples are covered) are encoded as a doubly negated
existential condition (e.g., there are no combinations of constants
belonging to the concepts for which not both goals have failed in
the corresponding rule derivation).

Now that we have the means to compute the set of explanations
for a question, we can proceed to compute the most general such
explanation. The rule dominated. r,_fail 00(C4,C2,Cs, B1, B2)
checks whether for an explanation (C1,C2,C3) for a missing an-

swer (B1, Bz) there exists a more general explanation (C7, C3, C5).

The rule most_gen_r, fail_00(C1,Cs,Cs, B1, B2) then checks
whether an explanation (Ci,C2,C3) is a most general expla-
nation for a question max2Hop(B1, B2), i.e., an explanation is
most general if it is not dominated by any other explanation.
Finally, the last rule returns all most general explanations for
max2Hop(chicago, berlin). These rules can be adapted automati-
cally to another rule r’ and different combination of failed sub-
goals by varying the number of arguments and changing predicate
names.

A few remarks are in order. We can use this Datalog program to
compute the answers to any question max2Hop(c1, c2) by replacing
chicago with ¢; and berlin with c2 in the last rule. An analog pro-
gram can be derived for a why question by switching rule derivation
failure and success in the rules. For example, an explanation for a
why question is a list of concepts that dominate a successful rule
derivation and there is no list of constants subsumed by the con-
cepts for which the rule derivation fails.

4. Comparison with Existing Techniques

The approach from ten Cate et al. [tCCST15] also finds explana-
tions to a missing answer (and could be easily adapted to sup-
port why questions by inverting the conditions in their definition
of explanation) through generalization based on concept subsump-
tion. However, this approach generalizes missing query results and
does not provide any information on what happened within the
query, i.e., it is not taking the provenance of the missing answer
into account. The example below shows that our approach can pro-
vide more insightful explanations by considering the query’s prov-
enance.

EXAMPLE 7. Reconsider our example question max2Hop(dijon,
lyon). The approach from ten Cate et al. would return the concept
pair (FrenchCity,FrenchCity) by generalizing the view rela-
tion max2Hop, i.e., all french cities are reachable from each other.
However, a more insightful explanation is that all french cities are
connected through Paris which corresponds to our most general
explanation r2(FenchCity, FrenchCity, paris).

One novel insight in ten Cate et al.’s [tCCST15] work is that
queries can be used to define the concepts of an ontology. This is
useful for applications where no ontology for the domain is avail-
able or where the ontology is not useful for a particular query. That
is, there are combinations of queries and ontologies for which an
explanation cannot be compactly described by the ontology. For
instance, our geographical ontology is useless for summarizing ex-
planations for a query that selects cities by the size of their pop-
ulation. In the worst-case our approach would return most gen-
eral explanations that are single rule derivations. It would be inter-
esting to apply such query-based ontologies to our problem. This
idea is also closely related to data summarization techniques us-
ing queries [EGAG™14] and Roy et al.’s [RS14] approach for ex-
plaining aggregate query results. Subsumption has been used as
a technique for including semantic knowledge in query evalua-
tion [KG94]. In this framework, results to Datalog programs are re-
duced based on subsumption relationships between facts provided
by the user. For example, a tuple (a, b, co) representing a path be-
tween a and b of cost co may be subsumed by a tuple (a,b,co’)
if co < co’. This work demonstrated that reduction based on sub-
sumption can be applied during query evaluation. It would be in-
teresting to investigate whether this idea can be used to efficiently
compute generalized explanations.

5. Discussion

So far we have used one particular type of constraint (inclusion
dependencies encoding an ontology) to generalize explanations and
have limited the discussion to one possible notion of explanation.
Under this definition the concepts of an explanation cover a subset
of all rule derivations from a basic explanation and are not allowed
to cover anything else. Obviously, several meaningful variations of
this problem definition exist.

Explanations Based on other Constraint Types. Inclusion depen-
dencies are only one type of constraint that can be used to explain
a why or why-not question. As the following example shows, we
may also be able to answer such questions using other types of con-
straints.

EXAMPLE 8. Consider a base relation
President(Name, Citizenship, Country)

recording presidents, their citizenship, and the country they
were president of. The following denial constraint® has been de-

5 Denial constraints are used to encode patterns that should not occur, i.e., a
denial constraint is violated if it’s body is fulfilled.



fined to encode that a person who is a US president has to have US
citizenship:

:—President(X,Y,Z),Y #us, Z = us.
Assume the user is interested in why her query
Q(X,Y):—President(X,Y, Z),Z = us.

does not return any US presidents that are not US citizens:
Q(X,Y),Y + us. Ignoring the constraint, missing answer ap-
proaches would either enumerate all relevant President tuples
that are missing from the input or try to find one solution that ful-
fills some optimization goal (e.g., smallest side-effect on the view
predicates). However, a more concise explanation is that the con-
straint prevents any tuples from being returned by the query.

Aside from motivating the use of different types of constraints
for answering why or why-not questions, the example above also
points to the possibility of finding explanations at the schema level.
That is, the constraint explains the missing answer independent
of the instance. For that we may draw ideas from semantic query
optimization [CGM90]. This type of generalization may also be
applicable to inclusion dependencies. For instance, we could recast
the denial constraint above as an inclusion dependency: the concept
US presidents is subsumed by the concept US citizens.

Alternative Definitions of Generalization. We have defined a
most general explanation as a combination of concepts that dom-
inate a subset of EXPL(Q(¢),I) for a question Q(¢) and where
none of these concepts can be generalized further without break-
ing this inclusion condition. Alternatively, we could define a most
general explanation as an explanation such that no explanation
exists that covers a larger subset of EXPL(Q(¢),I). Another
meaningful way of defining most general explanations is to re-
lax the condition that an explanation can only cover rule deriva-
tions from basic explanations and search for an explanation that
minimizes the symmetric difference between all its covered rule
derivations and EXPL(Q(¢), ). That is, we could allow expla-
nations to cover rule derivations that are not contained in ba-
sic explanations, i.e., where the derivation does not correspond
to a successful rule firing (for why questions) respective failed
rule firing (for why-not questions). For instance, we may con-
sider an explanation 2 (FrenchCity, FrenchCity, FrenchCity)
for question max2Hop(dijon,lyon) even though the derivation
r2(dijon, lyon, lyon) covered by this explanation is not success-
ful. This type of explanations would be complete, but not nec-
essarily sound. Furthermore, instead of searching for a single
explanation we could search for sets of explanations of minimal
size that precisely cover a basic explanation (both sound and com-
plete). For example, reconsider the question from Example 6. We
may return both explanations shown in this example, because to-
gether they cover the basic explanation for this question. Finally,
we could search for sets of explanations that minimize a measure
based on both the number of explanations in the set and the sym-
metric difference between the combined coverage of this set and

ExprL(Q(C),I).

6. Conclusions

We have presented a framework for computing generalized expla-
nations for answers and non-answers to Datalog queries. General-
ization relies on an existing ontology (modelled as inclusion depen-
dencies) that is mapped to the database instance. Using concepts
from the ontology we can compute concise explanations that are
easy to understand and compactly represent a potentially large sub-
set of a basic explanation. An interesting avenue of future work is
to add support for additional types of constraints (e.g., denial con-
straints as outlined in Section 5). We have demonstrated how to

compute most general explanations using Datalog. In the future we
would like to explore extensions of the approach, e.g., finding min-
imally sized explanations that cover the full set of answers or non-
answers. Furthermore, we would like to investigate more efficient
techniques for finding explanations, e.g., by materializing concept
information or computing explanations independent of instances.
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