
IPAPI: Designing an Improved Provenance API

Lucian Carata, Ripduman Sohan, Andrew Rice, and Andy Hopper

Computer Laboratory, University of Cambridge
{firstname.lastname}@cam.ac.uk

Abstract
We investigate the main limitations imposed by existing
provenance systems in the development of provenance-
aware applications. In the case of disclosed provenance
APIs, most of those limitations can be traced back to the
inability to integrate provenance from different sources,
layers and of different granularities into a coherent view
of data production.

We consider possible solutions in the design of an
Improved Provenance API (IPAPI), based on a general
model of how different system entities interact to gener-
ate, accumulate or propagate provenance. The resulting
architecture enables a whole new range of provenance
capture scenarios, for which available APIs do not pro-
vide adequate support.

1 Introduction
Capturing provenance metadata by observing the data
production process (an approach taken by systems like
ES3 [1] or PASS [2]) is limited in terms of recovering
the exact semantics of each operation across multiple ab-
straction levels (application, OS, network). This may
lead to the existence of false positives when describing
dependencies between different data items: for example,
a system that observes provenance at the OS level will
link each output of a process to all of its inputs, even if
a particular output is actually derived at application level
from only a few of the inputs. Consequently, the utility
of recorded provenance diminishes as one looks further
into the history of a particular data item (false relation-
ships accumulate), and real causal dependencies become
harder to distinguish for long derivation chains. In addi-
tion, systems that observe provenance require the use of
provenance-aware kernels, filesystems or runtime envi-
ronments across all the nodes involved in the processing
of data, which hinders their wide adoption in distributed
environments.

It is possible to overcome those drawbacks by requir-
ing applications to explicitly disclose provenance. Doing
so trades off the transparency of provenance capture for
the possibility of recording it in a semantically accurate
way, across various layers. Workflow management sys-
tems are particularly suitable for this approach, and im-

plementations like Kepler [3] or VisTrails [4] take advan-
tage of the data flow and dependencies disclosed in the
workflow’s definition to automatically determine prove-
nance.

Extending this to the general case where data can be
derived through any process requires making applica-
tions provenance-aware: modifying source code to call
specialized provenance APIs for disclosing relationships
between pieces of data. Such APIs have already been
proposed, either as part of observed-provenance systems,
as is the case of DPAPI [5], or as general purpose prove-
nance libraries - the case of CPL [6]. We aim to sys-
tematically discuss the issues that limit the generality of
those APIs, and explore possible solutions in the design
of an improved provenance API (IPAPI).

Current API limitations: There are four major sce-
narios for which current available APIs fail to provide
adequate support.

1. Tracking provenance at granularities smaller than
file level. The existing solutions (both DPAPI and CPL)
are able to create arbitrary provenance objects and an-
notate them with key/value pairs as the process trans-
forms data. However, the main challenge is recovering
the identity of those objects starting from output data. It
is not currently possible to search for the provenance of
some values in a file, as there is no way to determine
which provenance objects hold the corresponding infor-
mation. The same problem appears for operations that do
not directly interact with files, but still generate prove-
nance (as is the case with copy-pasting text between two
editors).

2. Exploring the semantics of disclosed provenance.
Existing APIs fail to consider how the key/value annota-
tions can be consumed in automated ways (for example,
by applications using provenance to reason about data
quality). As long as the meaning of each key/value re-
mains opaque, it is difficult to build applications that use
provenance irrespective of its source.

3. Use in a distributed environment. One of the com-
mon aspects of existing provenance capturing systems is
their orientation towards centralized storage. However,
it would be useful to store provenance close to the data
and easily keep them together when transferring between
hosts or responsibility domains. Repositories similar to

the ones used by distributed versioning systems (like git)
would be more appropriate in this scenario, replacing
huge provenance databases with structures that are more
easily synchronized and managed.

4. Leveraging existing data as provenance. It is im-
portant to recognize that many applications already out-
put information which could be considered provenance
(e.g as part of logs or standard IO). Current provenance
APIs cannot use this information directly, forcing the
developer to disclose it twice when making the appli-
cation provenance-aware (once as part of normal appli-
cation output, and subsequently when creating prove-
nance objects). Recognizing existing data as provenance
would enable applications to play an active role within a
provenance-aware system without having to be modified
or recompiled.

Why IPAPI? We develop IPAPI as a base for exper-
imenting with various design solutions of a general pur-
pose disclosed provenance system that is complete and
can be used in practice with few constraints, even in het-
erogeneous environments (considering that not all appli-
cations will expose provenance or use IPAPI to do so).

When compared to DPAPI or CPL, the effort required
from the application developer is not increased yet a
whole range of new use cases become possible. The re-
search question we are tackling when considering those
new scenarios asks how disclosed provenance from dif-
ferent sources, layers and of different granularities can
be combined to understand the behavior of a data trans-
formation process.

2 Classifying Provenance-aware Entities
Before looking at the core of the API, it is important
to get a better understanding of the fundamental entities
that have a role in generating, accumulating or propa-
gating provenance metadata. Existing data provenance
models (such as PROV-DM, OPM or Provenir) address
this at a high-level, making it difficult to clarify the rela-
tionships between interacting system entities (processes,
files, pipes, etc) and the provenance they produce. In-
stead, we consider a lower-level model, which allows a
direct mapping between system object types and our API
data structures.

The provenance structure and properties for different
entities will vary depending on their type. For example,
the provenance of some entities needs to take into ac-
count versioning (e.g. files), but this is not necessary in
other cases (processes, pipes) or might be requested on
demand (data structures). Existing APIs prefer a uniform
approach instead.

As illustrated in Figure 1, a distinction is first made
between active and passive entities, based on a simple
criteria: active objects are the ones through which data

Entity

Active Passive

Standalone Dependent Persistent Transient

processes

kernel
pipes

sockets

mmap

files

databases

data structures

environment vars

device files

stdin/out

Data ProvenanceProcess Provenance

Figure 1: Provenance-aware entity types

”flows”, while passive objects just store information.
This can be directly mapped on the existing classifica-
tion of process provenance (active) and data provenance
(passive). However, in order to obtain a complete typ-
ing of provenance, we need to distinguish subcategories
within active and passive entities.

Among active entities, the standalone ones are com-
putational: they can be instantiated from a passive entity
(the binary) to produce, derive or transform data. This in-
cludes processes and OS kernels, but could also refer to
computational abstractions such as middleware services.

The provenance of such entities is dual: on one hand,
it is linked to the provenance of the underlying pas-
sive entity, which describes the process used to obtain
the executable (the build process, compiler parameters,
etc). On the other hand, standalone entities have prove-
nance related to each particular run (command line argu-
ments, environment variables), and are uniquely identifi-
able during their lifetimes.

In the other subcategory, dependent entities are only
instantiated within the remit of another active standalone
entity. They typically represent communication primi-
tives such as pipes, sockets or memory mappings.

Passive entities map data storage abstractions and are
categorized depending on how they change. The persis-
tent ones are accessed or modified through fixed system
interfaces (read, write) and store data for longer periods
of time. Transient entities on the other hand have lim-
ited lifetimes, and might change without the knowledge
of the OS. Typically, they live in volatile memory, even
though sometimes they might be presented to the end-
user as files.

We are now in the position to give a high level de-
scription of how our API considers the accumulation
and propagation of provenance: When standalone enti-
ties are instantiated, they will map the data from vari-
ous passive objects (inputs, context) into local data struc-
tures (transient entities). They will then proceed to apply
transformations, create new data structures, or instanti-
ate other active objects as helpers (for further process-
ing or communication). As dictated by internal control
flow, the standalone entity will then map the results back

into passive objects (files, standard output, etc). Prove-
nance needs to track the hierarchy of active objects and
the two mappings (input→transient entities and transient
entities→output).

3 Design and Implementation
We have designed IPAPI based on the described entity
model, in a way which allows it to scale in both direc-
tions: from tracking provenance of individual operations
to tracking provenance across multiple hosts and enter-
prise domains.

The API is written in C++ and packaged as a library
to which applications link either statically or dynami-
cally. For minimum functionality, the application de-
veloper just needs to include the IPAPI header file. At
runtime, the library self-initializes, overriding part of the
program startup sequence. In the process, a number of
provenance objects corresponding to the standalone en-
tity that linked to the library are automatically generated,
storing information about the running process, its parent
and the active context (command line arguments, envi-
ronment). This means that even with minimal application
changes, we manage to track basic process provenance.
As in existing APIs, arbitrary key/value pair annotations
can be added to provenance objects when required.

For data provenance, the developer needs to explic-
itly create those provenance objects representing pas-
sive entities, and then disclose the relationships between
them and other provenance objects by calling either the
obj relation or the key relation member function.
The first one discloses actual data flow between two
objects (as is the case with basic input-output relation-
ships), while the second enables associations between
different key/value pairs (playing the role of a foreign
key relationship).

The key relation function also allows for higher
levels of provenance abstraction (provenance of prove-
nance). Unlike CPL, we define provenance of prove-
nance as more than just a way to keep track of the context
in which provenance was generated. Instead, we con-
sider higher order provenance as a way to explain ex-
isting provenance relationships. Take the example of an
application that reads the name of its input file from a
configuration file. First-order provenance will identify
a link between the application and two particular input
files. Second order provenance can explain the relation-
ship more abstractly: namely, that the name of the second
input depends on a value read from the configuration file.

Provenance Repositories: All resulting metadata
is persisted in decentralized provenance repositories,
grouping data and its associated provenance as a single
manageable unit. The provenance objects which are not
directly linked to any persistent entity (like the prove-

nance objects of data passing through a pipe) are stored
in the location of the active entity that produced them.
Also, provenance from one repository can reference ob-
jects from other repositories – a key aspect of being able
to scale our system across multiple hosts.

Similar to versioning systems, provenance repositories
are managed using a dedicated tool, prov. Its purpose
is to maintain correct provenance when entities are relo-
cated (moved locally, transferred to other systems, etc).

3.1 Namespacing and Identity

We use a custom naming scheme allowing global prove-
nance object identification across multiple granularities.
Each object is part of a hierarchical namespace which is
partially controlled by the API, with further levels cus-
tomizable by application developers. For example, con-
sider the namespace OS::ping::sockets. Each level
identifies a particular provenance granularity, going from
coarse (OS) to fine (sockets). The first two levels are de-
fined by the API when the provenance-aware ping starts
execution. The sockets level is then defined by the de-
veloper to hold the provenance of dependent entities used
by the application.

The identity of a new provenance object within a
namespace is defined by binding each namespace level
except the last to an existing provenance object and then
assigning a namespace-unique ID to the new object we
are creating. In our example, when disclosing the prove-
nance for a particular socket, we need to first bind the
OS and ping namespace levels to existing objects (rep-
resenting provenance metadata for the host machine and
the instance of the ping application), then give an ID to
our socket. The whole process is simplified by the auto-
matic binding of API-managed namespace levels.

Using this scheme, we can start from any provenance
object and understand it at different granularities by con-
sidering the bindings from each level in its namespace.

3.2 Granularity Control

We have seen how namespaces can be used to demarcate
granularity boundaries. However, the sub-file granular-
ity issue presented in the introduction is not completely
solved. In order to determine the identity of a prove-
nance object that is linked to certain values in a file, one
needs to define correspondences between fragments of a
passive object and their provenance.

The map function implements this functionality, allow-
ing developers to link provenance objects to specific lo-
cations in passive entities. We currently support map-
ping continuous (possibly overlapping) regions defined
by [start position, end position], but we plan generic sup-
port based on the explicit declaration of the output data
format in the near future.

3.3 Retrieving Provenance Data
The key requirement for integrating multiple sources of
provenance is an extensible provenance retrieval API. As
part of IPAPI, we define an interface for fetching prove-
nance objects (the pquery function), which can use plu-
gins along the provenance retrieval path. Those plug-
ins can be easily developed on a per-application basis
and have access to the data returned by scanning the
provenance repositories. They can augment or mod-
ify this data, parsing output files, connecting to other
provenance systems’ databases or by mapping from one
key/value dictionary to another before returning the re-
quested provenance objects.

Consider the example of a service that evaluates the
quality of data based on certain key/value pairs from
provenance. In order to integrate a new provenance-
aware application with this service, all we have to do is
write a plugin that takes existing disclosed provenance
key/value pairs from the application and maps them to
the format expected by the service. This provides a solu-
tion to the variable semantics of data provenance.

4 Use Case
We highlight a typical use case not supported by existing
APIs, in which IPAPI manages to keep track of prove-
nance with minimal developer effort. The example is
based on four provenance-aware applications: a shell,
provsh, a ”sensor” application (which generates data
values), a ”filter” application and a ”plotter” application.
The applications are started from provsh, and communi-
cate through pipes (sensor | filter | plotter).

The sensor application launches a number of threads,
and each thread starts outputting data values in the same
range. Some of the threads are picked at random to con-
sistently emit values outside the range (simulating de-
fective sensors). Next along the processing chain, the
filter application passes all the inputs that meet certain
criteria (for example, the ones that are above a certain
threshold) to its output. In the plotting application, we
look at a graphical display of the values and would like
to know from what sensor a particular implausible value
came from (we are trying to identify the malfunction-
ing sensors based on recorded provenance). Even though
the applications do not know about each other (they are
loosely coupled), their I/O interactions are not based on
persistent files (but on pipes), and the requested prove-
nance granularity is that of individual values, the source
of the outliers can be successfully identified.

5 Limitations
The limitation of any provenance API is the reliance on
the correctness of developer-disclosed information. This
is a problem when using provenance for security related

tasks, such as intrusion detection: a virus might choose
to disclose false provenance to cover its tracks and make
it impossible to determine which parts of the system it
has affected. We believe that the way forward is to com-
bine disclosed provenance with a low-overhead observed
provenance system, and check for provenance consis-
tency between the two. A trust-based model that clas-
sifies active provenance entities could also be a viable
solution, but would require more user input.

6 Conclusion
We have highlighted the problems and limitations of
current provenance APIs, and addressed those problems
in the design of IPAPI. We are using IPAPI to under-
stand more about provenance in distributed (heteroge-
neous) environments, where applications might want to
use provenance in computations or automated inferences.

Availability
In order to encourage discussion and use, we have
open-sourced IPAPI, under a BSD License. It is
available together with its full documentation from
http://github.com/lc525/ipapi

Acknowledgments
The authors would like to thank George Coulouris, Sherif
Akoush and the other members of the FRESCO project
for their insights and feedback on the contents of this
research.

References
[1] J. Frew, D. Metzger, and P. Slaughter, “Automatic capture and

reconstruction of computational provenance,” Concurrency and
Computation: Practice and Experience, vol. 20, no. 5, pp. 485–
496, 2008.

[2] K. Muniswamy-Reddy, D. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proceedings of the 2006
USENIX Annual Technical Conference, pp. 43–56, 2006.

[3] I. Altintas, O. Barney, and E. Jaeger-frank, “Provenance collection
support in the Kepler scientific workflow system,” in In Proceed-
ings of the International Provenance and Annotation Workshop
(IPAW, pp. 118–132, Springer-Verlag, 2006.

[4] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, “Vistrails: Visualization meets data management,” in
In ACM SIGMOD, pp. 745–747, ACM Press, 2006.

[5] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor, “Layering
in provenance systems,” in Proceedings of the 2009 conference
on USENIX Annual technical conference, USENIX’09, (Berkeley,
CA, USA), p. 10, USENIX Association, 2009.

[6] P. Macko and M. Seltzer, “A general-purpose provenance library,”
in Proceedings of the 4th USENIX conference on Theory and Prac-
tice of Provenance, TaPP’12, (Berkeley, CA, USA), p. 6, USENIX
Association, 2012.

