
Open access to the Proceedings of the
Fourteenth Symposium

on Usable Privacy and Security
is sponsored by USENIX.

Programming Experience Might Not Help
in Comprehending Obfuscated

Source Code Efficiently
Norman Hänsch, Friedrich-Alexander-Universität Erlangen-Nürnberg; Andrea Schankin,

Karlsruhe Institute of Technology; Mykolai Protsenko, Fraunhofer Institute for Applied and
Integrated Security; Felix Freiling and Zinaida Benenson, Friedrich-Alexander-Universität

Erlangen-Nürnberg

https://www.usenix.org/conference/soups2018/presentation/hansch

This paper is included in the Proceedings of the
Fourteenth Symposium on Usable Privacy and Security.

August 12–14, 2018 • Baltimore, MD, USA

ISBN 978-1-939133-10-6

Programming Experience Might Not Help in
Comprehending Obfuscated Source Code Efficiently

Norman Hänsch
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Erlangen, Germany

norman.haensch@fau.de

Andrea Schankin
Karlsruhe Institute of

Technology
Karlsruhe, Germany

schankin@teco.edu

Mykolai Protsenko
Fraunhofer Institute for Applied

and Integrated Security
Garching, Germany

mykolai.protsenko@
aisec.fraunhofer.de

Felix Freiling
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Erlangen, Germany

felix.freiling@cs.fau.de

Zinaida Benenson
Friedrich-Alexander-Universität

Erlangen-Nürnberg
Erlangen, Germany

zinaida.benenson@fau.de

ABSTRACT
Software obfuscation is a technique to protect programs from
malicious reverse engineering by explicitly making them harder
to understand. We investigate the effect of two specific
source code obfuscation methods on the program compre-
hension efforts of 66 university students playing the role of
attackers in a reverse engineering experiment by partially
replicating experiments of Ceccatto et al. We confirm that
the two obfuscation methods have a measurable negative ef-
fect on program comprehension in general but also show that
this effect inversely correlates with the programming experi-
ence of attackers. So while the comprehension effectiveness
of experienced programmers is generally higher than for in-
experienced programmers, the comprehension gap between
these groups narrows considerably if source code obfusca-
tion is used. In extension of previous work, an investigation
of the code analysis behavior of attackers reveals that there
exist obfuscation techniques that significantly impede com-
prehension even if tool support exists to revert them, giving
first supportive empirical evidence for the classical distinc-
tion between potent and resilient obfuscation techniques de-
fined by Collberg et al. more than 20 years ago.

1. INTRODUCTION
In many developed economies, software is a major driver of
innovation and industrial growth. To protect their intellec-
tual property, prevent the creation of illegal copies of soft-
ware and to avoid the unauthorized program flow changes
that might benefit the attackers, software vendors employ
various software protection techniques. Software protection
is also a technique employed by cybercriminals to prevent
malware analysis by security researchers.

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2018.
August 12–14, 2018, Baltimore, MD, USA.

Software protection can be achieved in multiple ways. His-
torically, one of the most successful techniques is using spe-
cialized hardware, i.e., to disallow access to source or binary
by moving it into an external tamper-proof execution com-
partment [1, 2]. A slightly weaker possibility to achieve
software protection is to move only critical parts of software
to a trusted processing environment such as a special pro-
cessor mode [3] or a remote server [4]. While such trusted
processing environments are much cheaper than specialized
tamper-proof hardware compartments, both techniques in-
cur a significant economical and organizational overhead.

A comparatively cheap alternative to additional specialized
hardware is to assume that the attacker will eventually be
able to access the code, but that the code is constructed
in such a way that it cannot be easily reverse engineered.
A central method to deter attackers in this context is soft-
ware obfuscation, i.e., a software transformation that makes
the program code harder to comprehend and to analyze. In
contrast to many techniques offered in classical software en-
gineering, software obfuscation is a security technique that
aims at inhibiting software comprehension by attackers. It is
the standard means to protect the bytecode of Android apps
from analysis today, and it is applied in almost all malware
samples spreading in the wild. Understanding the strength
of software obfuscation is therefore key both (1) to raise the
protection level for software vendors and (2) to help malware
analysts to prioritize reverse engineering tasks.

In 2001 Barak et al. [5] showed that perfect obfuscation
(meaning that a program does not expose more informa-
tion than can be derived from its input/ouptut behavior) is
impossible in general. In practice, most software protection
techniques rely on the definition of obfuscation transforma-
tion provided by Collberg et al. [6], which means that the
program’s code is made somewhat more obscure by the ap-
plication of the transformation without introducing a too
high performance overhead.

Reverse engineering is always a combination of human inge-
nuity and tool support. This led Collberg et al. [6] to distin-
guish between resilience and potency of obfuscating trans-
formations: resilience means the ability to withstand an au-

USENIX Association Fourteenth Symposium on Usable Privacy and Security 341

tomated deobfuscation attack, while potency refers to the
grade of “obscurity” for the human reverse engineer added
by the obfuscation. While formal complexity metrics can
help approximate resilience and potency [7], the strength of
obfuscation cannot be fully understood without analyzing
its effect on program comprehension abilities of real users, a
topic which we further study in this paper.

1.1 Related Work
Program comprehension is a mature field in software engi-
neering, where qualitative and quantitative human factors
methods have been used to study software comprehension
and to evaluate tools [8, 9, 10, 11]. However, there is sur-
prisingly little work on software comprehension in the con-
text of software obfuscation. Ceccato et al. [12] pioneered
the area by performing a series of five controlled experi-
ments to measure the influence of code obfuscation on un-
derstanding decompiled Java source code. They studied two
obfuscation methods, identifier renaming and opaque predi-
cates, and showed that they have a measurable effect on the
ability of humans to solve code comprehension and change
tasks. In this work, we partially replicate their study and
confirm their results. Using a similar experimental setup
but with different programs, Viticchié et al. [13] analyzed
the influence of the VarMerge obfuscation. Compared with
clear code, VarMerge obfuscated code led to significant dif-
ferences concerning time and efficiency of the attack, but
not in correctness.

Although attacker modeling has been identified as one of the
fundamental challenges in usable security research [14], user
studies in secure programming has focused on the defenders
so far. Oliveira et al. [15] showed that security is not a pri-
ority in programming tasks and needs additional cognitive
effort. Acar et al. [16, 17] analyzed the influence of the doc-
umentation that programmers use when writing code. In an
experiment with GitHub users, Acar et al. [18] found that
correctly fulfilling security requirements is influenced by the
years of programming experience, but not by professional
status, e.g., student or working programmer. The latter is
most relevant to our work as we investigate the influence of
programming experience on reverse engineering skills.

1.2 Contributions
In this work, we measure the effect of source code obfus-
cation on program comprehension skills of human reverse
engineers by means of a controlled experiment with 66 par-
ticipants and advance the insight into the distinction be-
tween resilience and potency of obfuscating transformations
as defined by Collberg et al. [6]. More specifically, our con-
tributions are as follows:

• Using a slightly different study design, we replicate and
validate the results by Ceccato et al. [12], i.e., we provide
further experimental evidence that source code obfusca-
tion makes program comprehension significantly harder.
• We provide original insight into the effect of two obfus-

cating transformations onto the reverse engineering be-
havior. We show that code analysis behavior differs sig-
nificantly when trying to comprehend the results of an
obfuscation method considered to be potent in compari-
son to a method that is considered to be resilient. We
therefore provide first empirical evidence into the useful-
ness of these concepts that were defined in 1997 [6].

• To better understand the factors influencing the potency
of obfuscation methods, we provide additional original in-
sight into the impact of different programming experience
levels on reverse engineering performance and behavior.
We show that classical programming experience does not
prepare well for the task of comprehending obfuscated
code: While experienced participants were much more effi-
cient than beginners when they worked on non-obfuscated
code, the gap in efficiency narrowed significantly when
given the obfuscated code. Specific obfuscation and de-
bugging experience, however, appears to be helpful.

Overall, if software obfuscation is applied to protect mali-
cious software, our insights may help to improve the educa-
tion of malware analysis professionals. If obfuscation is used
to protect legal software, then our insights may be helpful
to evaluate the quality of protection.

1.3 Outlook
After providing background in Section 2, we state the re-
search hypotheses in Section 3 and describe the experimen-
tal setup and methods in Section 4. Results are presented
in Section 5. We discuss implications and limitations of our
study in Sections 6 resp. 7, and conclude in Section 8.

2. BACKGROUND
We first provide background on the obfuscation techniques
and code analysis. We further give details on the experi-
mental setup of Ceccato et al. [12] upon which we build.

2.1 Obfuscation
The generally accepted view on obfuscation is based on the
notion of program transformation making the code harder
to analyze and to comprehend. Obfuscation can be applied
at any level of abstraction, be it source code, byte-code or
machine code. Here, we focus on source code obfuscation for
two reasons: Firstly, source code obfuscation is still common
in the context of Java since byte-code can be easily decom-
piled.1 Secondly, source code obfuscation has been studied
by Ceccato et al. [12], whose work we partially replicate.

One of the most widely used obfuscation techniques is iden-
tifier renaming where the names of classes, fields and meth-
ods, as well as of local variables are changed to meaningless
character sequences. Since identifiers are usually carefully
selected to reflect their semantic meaning, removal of this
information complicates the process of code comprehension.
Name overloading [19] extends identifier renaming by using
the same names for multiple different entities. We use name
overloading as the first obfuscation technique in our study
and abbreviate it by NO.2

Name overloading does not change the structure of the code.
The obfuscation technique of opaque predicates (abbreviated
as OP) can be used to alter the program’s execution flow. A
predicate is called opaque if its outcome is known at obfusca-
tion time but is hard to deduce by the reverse engineer [19].3

1While the new Android Runtime (ART) supports also the
distribution of native code, using classical bytecode is still
common because of backwards compatibility.
2Ceccato et al. also used NO but called it “identifier renam-
ing” and used the abbreviation IR, see also footnote 6.
3Examples of true and false opaque predicates are (x2 + x)
mod 2 = 0 and x2 + 1 ≤ 0 respectively for any real value x.

342 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Opaque predicates can be used to extend existing branches
or to insert dead code. We use OP as second obfuscation
technique in our experiments. Appendix A provides code
examples to illustrate both obfuscation techniques.

2.2 Code Analysis and Eclipse
The process of understanding of the program’s code and
its key features is referred to as code analysis. Static code
analysis does not involve actual execution of the program,
whereas in dynamic analysis, code is at least partially exe-
cuted. Usually, code analysis is supported by tools. For the
purpose of Java source code analysis, the Eclipse IDE can be
utilized. It can perform both static and dynamic analysis.
In the following we briefly describe the capabilities of this
tool, as it was used by participants in our study.

The Eclipse IDE supports static analysis by providing ad-
ditional information for the source code, such as showing
the class inheritance hierarchy or call graph, or highlight-
ing cross-references. It can also automate standard modi-
fications of the program performed by the analyst, such as
renaming of variables, methods, and fields, or moving meth-
ods from one class to another. In this paper we refer to the
latter operations as advanced Eclipse commands.

The Eclipse IDE also supports program execution in the de-
bugging mode. Using this mode, the analyst can perform
single-stepping, executing only one instruction at a time,
set breakpoints, watch the variable values, and so on. This
functionality can be useful to follow the execution of the
code under analysis, in order to better understand the de-
pendencies between code and external program’s behavior,
or to identify predicates suspicious of being opaque, namely
those that always have the same value at runtime.

2.3 Obfuscation Studies by Ceccato et al.
Ceccato et al. [20, 21, 12] conducted a series of experiments
using two programs and letting participants solve two code
comprehension tasks and two code modification tasks for
each program. The experiments varied in the type of ob-
fuscation, the type of students (bachelor, master or PhD)
and the universities in which they took place, while the ex-
perimental tasks remained the same. Since the results of
all experiments are summarized in one single paper [12], we
refer to this paper in the following.

One of the programs (called Race in the following) is an
online game that lets two players conduct a car race. An-
other program, called Chat, lets people have public or pri-
vate online conversations. The programs were given to the
participants as source code decompiled from Java bytecode,
as this is the usual way how the reverse engineers work on
Java code. Depending on the experiment, the programs were
provided in different variants: as clear code (unobfuscated),
obfuscated with identifier renaming (which was in fact name
overloading), or obfuscated with opaque predicates. General
software metrics for both programs presented in Table 1
show that the programs are comparable in their complex-
ity. Although Race has a higher number of methods and
lines of codes (LOC) than Chat, it has a lower overall cyclo-
matic number [22] (roughly corresponding to the number of
linearly independent paths in a function’s code).

Ceccato et al. [12] conducted five experiments that cumula-
tively evaluated whether code obfuscation influences perfor-

Race Chat
Metric Clear NO OP Clear NO OP
Classes 14 14 14 13 13 13

Methods 109 109 125 72 72 88
LOC 1215 1215 3783 1030 1030 3642∑

Cyclomatic 244 244 1131 253 253 1775

Table 1: Software metrics calculated for the different
versions of the programs. Due to the nature of NO,
the metrics are the same for NO and Clear.

mance of reverse engineers: Do people solve code compre-
hension tasks slower and less correct on obfuscated code? If
yes, which of the obfuscation methods (NO or OP) reduces
the performance more severely? The code comprehension
tasks from the study can be found in Table 2.4 Overall,
Ceccato et al. found statistically significant differences only
for the obfuscation technique NO, supporting the belief that
opaque predicates help to slow down automated analysis
rather than performance of human reverse engineers.

Task Description

Race:
Box

In order to refuel the car has to enter the
box. The box area is delimited by a red
rectangle. What is the width of the box
entrance (in pixel)?

Race:
Laps

When the car crosses the start line, the
number of laps is increased. Identify the
section of code that increases the number
of laps the car has completed (report the
class name/s and line number/s).

Chat:
Messages

Messages going from the client to the
server use an integer as header to distin-
guish the type of the message. What is the
value of the header for an outgoing public
message sent by the client?

Chat:
Users

When a new user joins, the list of the dis-
played “Online users” is updated. Identify
the section of code that updates the list
of users when a new user joins (report the
class name/s and line number/s).

Table 2: Participants’ tasks for the study of Ceccato
et al. [12] and ours.

3. HYPOTHESES
We formulate research hypotheses that aim at answering the
following research questions:

• Can we validate the results of Ceccato et al. concerning
code comprehension?
• Does obfuscation influence the code analysis behavior of

attackers?
• Does programming experience influence code comprehen-

sion and behavior of the attackers?

4Ceccato et al. also investigated code change tasks that we
do not consider in our study. We present differences between
their and our study in more detail in Section 4.

USENIX Association Fourteenth Symposium on Usable Privacy and Security 343

3.1 Code Comprehension Hypotheses
Considering the effect of code obfuscation on code compre-
hension, we evaluate the following hypothesis:

Obfuscated code is more difficult to comprehend than
clear code.

However, the term “obfuscated code” can be instantiated
in many different ways. To evaluate such a hypothesis it
would be necessary to investigate the effects of a “represen-
tative” set of obfuscation methods and it is not entirely clear
what this could be. We therefore focus on the effects of the
two obfuscation techniques NO and OP and conduct partial
replication of prior work by Ceccato et al. [12].

Ceccato et al. found no significant difference between cor-
rectly comprehending clear code and code obfuscated with
any of the two obfuscation techniques. For the efficiency the
results differed. While no significant difference in the effi-
ciency between working on clear and OP-obfuscated code
was found, efficiency of working on NO-obfuscated code sig-
nificantly decreased compared to working on clear code. Sim-
ilarly, only working on NO-obfuscated code took signifi-
cantly longer than working on clear code. Ceccato et al. [12]
therefore rejected several of their hypotheses concerning OP-
obfuscated code. However, since the number of participants
in the various studies was quite small (10 to 22), we as-
sume that some effects of the obfuscation methods might
have been missed. Therefore, for code comprehension we
formulate the same set of hypotheses as Ceccato et al. [12],
where capitalized words set in italics indicate independent
variables for the statistical analysis:

HC1NO NO-obfuscated code is more difficult to compre-
hend than Clear code.

HC1OP OP-obfuscated code is more difficult to compre-
hend than Clear code.

These hypotheses attempt to approximate the hypothesis on
the general effect of obfuscation presented above.

Following the discussion on the potency of obfuscation meth-
ods [6], i.e., the differing grades of “obscurity” for the human
reverse engineer added by the obfuscation, the next hypoth-
esis aims at insights into the effects of conceptually different
obfuscation techniques. Ceccato et al. found that under-
standing NO-obfuscated code is more difficult than under-
standing OP-obfuscated code. However, this difference was
statistically significant in only one of two experiments that
they conducted with this goal. We seek to validate their
results with the following hypothesis:

HC2 NO-obfuscated code is more difficult to comprehend
than OP-obfuscated code.

Ceccato et al. also report that participants with higher ex-
perience (measured by their study degree: bachelor, master
or PhD student) performed slightly better on both, clear
and obfuscated code (the results were not statistically sig-
nificant). We therefore formulate the following hypothesis:

HC3 The higher the experience of attackers, the easier
they comprehend Clear and Obfuscated code.

3.2 Code Analysis Behavior Hypotheses
Ceccato et al. did not investigate behavior of attackers in
solving their tasks. However, they asked participants some

questions about their analysis behavior in a post-experimental
question, e.g., which percentage of the task time they spent
reading the code, or how many program executions in de-
bugging mode they used. They report some (mostly not
statistically significant) differences in the answers for clear
and obfuscated code. We take their investigation as an in-
spiration for looking at the actual attacker behavior.

In practice, the first step in code comprehension of obfus-
cated code is usually to identify the particular obfuscation
technique and perform experiments with tools for automatic
deobfuscation [23]. It is therefore to be expected that com-
prehension of obfuscated code results in different code anal-
ysis behavior from classical reverse engineering, namely that
behavior attempts to first identify the obfuscation method or
performs simple deobfuscation tasks. In general, we there-
fore evaluate the following hypothesis:

Code obfuscation significantly changes code analysis be-
havior in comparison to analysis behavior for clear code.

Since code analysis behavior appears to target the obfusca-
tion method first, we expect to find differences not only be-
tween clear code and obfuscated code in general, but also dif-
ferences in the behavior between code obfuscated by differ-
ent obfuscation techniques. We therefore explore the novel
behavioral research question by evaluating the following hy-
potheses with regard to the behavior of the attackers for
code comprehension tasks:

HB1NO When analyzing NO-obfuscated code attackers be-
have differently than when analyzing Clear code.

HB1OP When analyzing OP-obfuscated code attackers be-
have differently than when analyzing Clear code.

HB2 When analyzing NO-obfuscated code attackers be-
have differently than when analyzing OP-obfuscated code.

Since comprehending obfuscated code in practice seems to
require additional expertise, we also formulate hypotheses
concerning the influence of experience, as previously done
for code comprehension:

HB3 Experienced attackers behave differently than begin-
ners when analyzing Clear and Obfuscated code.

3.3 Measurements
We now describe how we measured code comprehension, be-
havior and experience.

3.3.1 Code Comprehension Measurements
We measure code comprehension in exactly the same way as
proposed by Ceccato et al. [12]:

• Correctness (measured per program) is the number of cor-
rectly solved tasks: 0 if no task is solved correctly, 1 if
precisely one task is solved correctly and 2 if both tasks
are correct.
• Time correct (measured per program in minutes) is the

time spent on average for correctly solving tasks for a
program. It is computed as the sum of times spent on
correctly solved tasks divided by the number of correctly
solved tasks. If no answer was given correctly, the partic-
ipant was taken out of the calculations.
• Total time (measured per program in minutes) shows how

long a participant worked on the program, independently
on the correctness of solutions. Although this is not a

344 Fourteenth Symposium on Usable Privacy and Security USENIX Association

code comprehension variable by itself, we use it to derive
the notion of efficiency below.
• Efficiency (measured per program) is Correctness divided

by Total time.

For the tasks that ask to point out a line number where a
certain action is performed (“Race:Laps” and “Chat:Users”
in Table 2), we evaluated the Correctness of the participants’
answers in a different way than Ceccato et al. [12]. Whereas
they accepted only one specific line number as correct an-
swer, we have adopted a less restrictive interpretation that
allowed the following solutions:

• The exact line according to Ceccato et al. [12].
• The line number of the corresponding function header, or

the lines interval of the whole corresponding function.
• The exact line of the corresponding function’s call site.

We think that all three answers provide a sufficient proof
of the participant’s understanding of the code functional-
ity. In the hypotheses testing in the sequel, we consider
Ceccato et al.’s evaluation for comparison. Two other tasks
(“Race:Box” and “Chat:Messages”) were evaluated exactly
as by Ceccato et al.

3.3.2 Behavior Measurements
To record actions performed by participants during code
analysis, we use the Eclipse plugin Fluorite [24] that cre-
ates an XML-log of all commands and events with the cor-
responding timestamps. This data allows us to reconstruct
the reversing procedure of each participant with high preci-
sion. We extract the following information from the logs:

• The number of the file open operations, which correspond
to either opening a new file or switching the focus to the
already opened one.
• The number of executed advanced commands such as au-

tomatic identifier renaming, construction of call graphs
and type hierarchies.5

• The number and the total time of program executions.
• The number of times and the total time of the program

being in debugging mode.
• The total time of code reading, which is defined as the

overall processing duration for the given program minus
the execution and debugging time.

For each action, i.e., program execution, debugging, file open
and advanced command, the start and the end timestamp
relative to the begin of the program processing are used.

3.3.3 Experience Measurements
Cecatto et al. evaluated the experience of the participants
based on whether they were bachelor, master or PhD stu-
dents. They argued that this is a reliable measure since the
authors were in charge of the participants’ courses at the cor-
responding universities [12]. For our study we assume that
the participants might have studied at different universities
before. Moreover, the attended courses can greatly differ
at our university due to different study programs. Further,
Acar et al. [18] found that even differentiating between stu-
dents and non-students showed no significant differences in
their participants’ skills. We therefore evaluated experience
using a more general explorative approach.

5Advanced commands have the command ids starting with
org.eclipse.jdt.ui.edit.text.java.

Individual differences in programming skills, programming
experience or experience in dealing with obfuscated code
may influence the performance of participants and their anal-
ysis behavior. Experience relates to the hypotheses HC3 and
HB3 and is measured as follows:

• Programming Experience is measured on a scale from 1 to
4 using the following question in the pre-study question-
naire: “How would you describe the quality and the type of
the code you wrote so far?” This question originates from
Ceccato et al. [12] and has the following answer options:

1. Few and small programs (e.g., course exercises)
2. Many small programs
3. Small programs and 1 or 2 big programs (e.g., thesis

and projects)
4. Big programs

• Study-relevant Experience refers to the experience and
knowledge in code obfuscation, Java, the usage of Eclipse
for software development, debugging software, the usage
of Eclipse for debugging software. These factors are mea-
sured using questions“Please indicate your experience with
...” in the pre-study questionnaire on a 5-point Likert
scale with values from 1 = very low to 5 = very high;
• Comprehension Skills are measured by considering the ef-

ficiency of a participant when working with Clear code.

4. METHOD
In this section we outline study materials and design, includ-
ing ethical considerations, and describe recruitment and de-
mographics of the participants. Finally, data analysis tech-
niques are presented.

4.1 Study Materials

4.1.1 Code and Questionnaires
Ceccato et al. [12] provided us with original .jar-files for the
clear code of the Chat and Race programs used in their
studies. We obfuscated the source code of both programs
(Chat and Race) either with name overloading (NO) or with
opaque predicates (OP) using the SandMark tool [25] which
was reportedly also used in previous work.6 The resulting
three .jar files were decompiled using JAD [26], leading to
three source code versions of each program: two obfuscated
versions (NO and OP) and the unobfuscated original ver-
sion. These were used by the participants in our study.

We used the questionnaires by Ceccato et al. [12] that were
slightly adapted for our study. For example, we did not ask
the participants to estimate the number of code executions
per task, since we could measure this in our setup. The
questions asked in the survey, their order and under which
circumstances they were presented to the participants can
be found in Appendix B.

4.1.2 Technical Setup
The technical setup of our study was designed to be espe-
cially easy and efficient to replicate. We prepared virtual
machines equipped with the Eclipse IDE for analyzing the

6While Ceccato et al. [12] claim to have investigated the ef-
fect of identifier renaming (IR) using SandMark, SandMark
does not explicitly offer this obfuscation method. So while
we were able to reproduce the obfuscated version of OP, we
could not reproduce the code for IR. We therefore chose the
“closest” obfuscation variant to identifier renaming provided
by SandMark which was name overloading (NO).

USENIX Association Fourteenth Symposium on Usable Privacy and Security 345

programs and with the Firefox browser for filling out the
online questionnaires. All questionnaires and the code com-
prehension tasks were combined into one online question-
naire that was developed with LimeSurvey7. Participants
therefore did not have to change the medium they work on.
This also ensured that the participants did not forget to an-
swer the questions, as they could not proceed to the next
task otherwise. We were also able to take more precise time
measurements than the previous work [12], where the partic-
ipants filled in the questionnaires on paper and wrote down
start and end time of each task.

4.2 Participants
The participants were recruited at an engineering depart-
ment of a German university. The recruiting materials (fly-
ers, posters and emails) required the participants to have at
least basic knowledge of Java and Eclipse.

In total 76 participants took part in our study (8 female).
For the evaluation, data of 10 participants were excluded
from the analysis because they indicated in the survey that
they did not have enough time to successfully complete all
tasks. This leaves a total of 66 participants. Most of them
(44) were bachelor students, 20 master and 2 PhD students.
Ages ranged from 18 to 31 with an average of 22 years.

Most participants were studying computer science (40), fol-
lowed by computational engineering (4) and medical engi-
neering (4). Furthermore, 16 participants (24.2%) stated
that they already participated in a course related to software
obfuscation, 7 participants stated that they already worked
full-time as a programmer. Part-time working experience
was reported by 16 participants.

Concerning previous coding experience, 34 participants (51.5%)
stated that they already wrote one or two big programs. The
two groups who either only worked on few small programs
(19.7%) or on many small programs (21.2%) were almost
equally represented. Participants with high experience in
big programs made up 7.6% of the participants.

4.3 Study Design
4.3.1 Experimental Setup
Our experimental setup is slightly different from Ceccato et
al. [12]. The main differences are summarized in Table 3.
Whereas in their work, each participant attended two ses-
sions on two different days in order to reduce the fatigue
effects, we opted for having only one session per partici-
pant, because a simplified study design allowed us to recruit
more participants and thus obtain more results for robust
statistical analysis.

To reduce the fatigue effects in our study, we reduced the
number of tasks on which each participant worked. For each
program, the participants worked on the two comprehension
tasks from the original study (Table 2). The two additional
change tasks given by Ceccato et al. [12] were omitted.

Moreover, Ceccato et al. [12] used the within subjects de-
sign [27, 28] where each participant worked on all tasks for a
particular study. For example,when they compared between
clear code and OP, all 16 participants worked on clear and
OP-obfuscated code. In the study where the influence of OP

7https://www.limesurvey.org

and NO were compared, all participants performed tasks on
programs obfuscated with NO as well as with OP. This de-
sign is especially useful for small numbers of participants.

Ceccato
et al. [12]

this
paper

Sessions per participant 2 1
Number of tasks per program 4 2
Participants (Clear vs NO) 10 and 221 31
Participants (Clear vs OP) 16 35
Participants (NO vs OP) 13 and 131 66
Participants (total) 74 66

Table 3: Experimental setups by Ceccato et al.
versus this work. Due to different study designs
(within subjects [12] versus between subjects in this
work), data of all our participants (66) could be used
for comparison of NO- versus OP-obfuscated code.
1 Two separate studies were conducted.

We opted for the between subjects design when comparing
the performance of participants working on NO-obfuscated
code with the performance of different participants working
on OP-obfuscated code. For robust statistical analysis, be-
tween subjects design needs a higher number of participants.
However, we let all participants first work on the clear code,
because we decided to assess their level of expertise in pro-
gram understanding in this way (see Section 3.3.3). This
measurement of expertise should therefore be free from fa-
tigue effects. This study design also lets us compare perfor-
mance on non-obfuscated code with performance on obfus-
cated code for each participant (i.e., within subjects).

4.3.2 Groups and Tasks
The overall study design is presented in Table 4. The partic-
ipants were randomly assigned to one of the four experimen-
tal groups. Each participant first worked on the clear code
of one program, and then on the code of the other program
obfuscated with NO or OP. For each program, the partic-
ipant had to solve two tasks that are presented earlier in
Table 2. The tasks were presented in the randomized order.

4.3.3 Procedure and Ethics
The study received approval by the data protection office
of the Friedrich-Alexander-Universität Erlangen-Nürnberg.
Participants worked under anonymous IDs and were informed
at the beginning of their session about data collected during
the experiment. We also explained that our goal is not to
test their individual performance, but to understand in gen-
eral how people work on various code comprehension tasks.

We conducted 14 sessions with 7 participants per session on
average. Each session lasted 90 minutes, but the partici-
pants could leave earlier. In particular, if participants found
the tasks too demanding, they could quit and were never-
theless fully paid. They received a 10 EUR gift voucher for
participation. On average they worked for 47 minutes.

Each session started with a short presentation by the same
researcher using the standardized set of slides. First, the
purpose of software obfuscation was introduced, then the
procedure was explained. The screenshots of the two pro-
grams were included, to make the participants familiar with

346 Fourteenth Symposium on Usable Privacy and Security USENIX Association

https://www.limesurvey.org

Group 1st Program (clear code) 2nd Program (obfuscated)

1 Race: Rnd(Box,Laps) NO(Chat): Rnd(Messages,Users)
2 Race: Rnd(Box,Laps) OP(Chat): Rnd(Messages,Users)
3 Chat: Rnd(Messages,Users) NO(Race): Rnd(Box,Laps)
4 Chat: Rnd(Messages,Users) OP(Race): Rnd(Box,Laps)

Table 4: Groups and tasks. Each user first worked on the clear code of one program, and then on the NO- or
OP-obfuscated code of another program. Rnd denotes the randomization of task order within each program.

the programs. One or two additional researchers (depending
on the number of the session participants) were in the lab
to ensure the smooth execution of the experiment.

After the presentation, the participants logged into the vir-
tual machine with their anonymized participant ID. There,
they opened Firefox and started filling out the online sur-
vey. After answering the pre-study questionnaire, they were
shown a password that they entered to unzip the zip-file
with the program code. By entering the password, Eclipse
was automatically set up with the corresponding source code
(unobfuscated for the first program) according to the group
the participants belonged to. Also, the logging of all events
and timings in Eclipse started.

Back in the online survey, a description of the the first pro-
gram was shown. On the next page of the survey the first
task was presented and the solution had to be filled in. When
the first task was successfully completed, the survey asked
the post-task questions. Next, the second task was presented
in the survey. After finishing this task, participants where
asked to close Eclipse. By doing so, a log-file with all events
in Eclipse was sent to our server. Participants then filled out
post-task questions again. Furthermore, the post-program
questions were asked. Then the password for the second
program was shown and the same procedure was repeated
for the second (obfuscated) program.

4.4 Data Analysis
Statistical analysis was performed using SPSS [29]. For all
tests, a significance level of α = 0.05 was employed.

4.4.1 Effect of Code Obfuscation
To compare code comprehension and code analysis behavior
for clear and for obfuscated code, we used Wilcoxon signed-
rank tests (within subjects design). To compare both obfus-
cation methods with each other, we used Mann-Whitney U
tests (between subjects design). Non-parametric tests were
used because the assumption of normal distribution was vi-
olated for most variables (as indicated by Shapiro-Wilk and
Kolmogorov-Smirnov tests).

4.4.2 Impact of Experience
Experience was assessed with three measures: Programming
Experience, Study-relevant Experience, and Comprehension
Skills (Section 3.3.3). We first analyzed the five questions
of Study-relevant Experience. With a factor analysis, we ex-
tracted two factors with eigenvalues larger than 1 (Kaiser
Guttman criterion). These two factors explained 82% of the
variance in the data. Table 5 shows the factor loadings after
varimax rotation. Factor 1 summarizes experience with ob-
fuscated code and debugging and Factor 2 encompasses ex-
perience with Java and Eclipse. Individual experience levels

Factor 1 Factor 2

Code obfuscation .921
Debugging software .798
Java .773
Eclipse for software development .940
Eclipse for debugging .925

Table 5: Factor loadings after varimax rotation. Val-
ues below 0.4 are omitted.

Progr. Obfusc. Java Compr.
Exp. Exp. Exp. Skill1

Obfus.Exp. 0.648**
Java Exp. 0.466** 0.298*
Compr. Skill1 0.323** 0.411** 0.097
Compr. Skill2 0.264* 0.326** 0.140 0.945**

Table 6: Correlations between experience indica-
tors; 1our measurement, 2strict measurement (Cec-
cato et al.); *p<.05, **p<.01.

were computed by averaging across the respective questions.
In summary, we consider four indicators of experience:

• Programming Experience: quality and type of code writ-
ten so far;
• Obfuscation Experience: experience with obfuscation and

debugging;
• Java Experience: experience with Java and using Eclispe;
• Comprehension Skills: efficiency in working on clear code.

The four indicators were moderately correlated with each
other (see Table 6), indicating that they can be integrated
to measure individual levels of experience.

On the basis of the four experience indicators, we divided
participants into experience groups using a data-driven ap-
proach. We ran a cluster analysis, which tries to iden-
tify homogeneous groups of cases, such that observations
in the same group are as similar as possible, and obser-
vations in different groups are as different as possible. A
k-means cluster analysis was performed, setting the param-
eter k to the value 2 to extract two groups of experience.
The final groups, “Beginners” (N = 21) and “Experienced”
(N = 45), differed significantly in all four indicators, all
F ’s(64) > 5.952, p’s< 0.018 (see Table 7).

To assess the moderating effect of experience on code com-
prehension and code analysis behavior, mixed-model Analy-
ses of Variance (ANOVA) were run with Obfucation (Clear
vs. Obfuscated Code) as within subjects factor and Ex-

USENIX Association Fourteenth Symposium on Usable Privacy and Security 347

Beginners Experienced

N = 21 N = 45

Programming Exp. 1.42 ± 0.60 2.96 ± 0.52
Obfuscation Exp. 1.55 ± 0.44 2.99 ± 0.73
Java Exp. 2.30 ± 0.60 3.13 ± 0.80
Compr. Skill 0.07 ± 0.06 0.18 ± 0.20

Table 7: Description of the experience groups
(Mean±SD).

perience (Beginners vs. Experienced) between subjects fac-
tor.8 Effects of obfuscation (irrespective of experience) are
reflected by the main effect Obfuscation. Similarly, effects
of experience (irrespective of the type of code) is reflected in
the main effect Experience. Whether experience moderates
the obfuscation effect (i.e., whether beginners and experts
differ in working with obfuscated code) is reflected by the
interaction between Obfuscation and Experience. If the in-
teraction was significant, we run post hoc t-tests in order
to compare beginners and experienced programmers when
working with obfuscated code.

4.4.3 Effect Sizes and Statistical Power
To assess the practical meaning of the empirical results, we
calculated effect sizes. For Wilcoxon signed-rank tests and
Mann-Whitney U tests, we report r. For ANOVAs we re-
port partial eta-squared (η2p). For unpaired t-tests, we report
Cohen’s d. For paired t-tests, we report Cohen’s dz, which
corrects the effect size for correlations in a within-subjects
design. However, both Cohen’s d and η2p can be greater than
1, making an intuitive interpretation difficult. Therefore, we
also report ω2, which ranges between 0 and 1. It can be in-
terpreted as the percentage of variance in the data that is
explained by the experimental manipulation. For interpre-
tation, we followed the convention provided by Cohen [30].

Cohen’s
Interpretation d & dz r η2p and ω2

no effect < 0.20 <0.10 <0.01
small effect 0.20-0.50 0.10-0.30 0.01-0.06
medium effect 0.50-0.80 0.30-0.50 0.06-0.14
large effect > 0.80 >0.50 >0.14

Table 8: Interpretation of effect sizes.

We assume that effects indicate practical relevance if they
are of at least medium size (Table 8). A power analysis
showed that we were able to detect such an effect in the pop-
ulation with a probability of β = 0.80 in a within subjects
design with a sample of N = 35 participants (i.e., running
a Wilcoxon test) and in a between subjects design with a
sample of N = 134 (i.e., running a Mann-Whitney U test).
Referring to the actual number of participants (Table 3),

8Although the assumption of normal distribution has been
violated for most variables, to our knowledge, there is no
valid non-parametric equivalent to a two-way ANOVA im-
plemented in our analysis tool SPSS. For example, the
Kruskal-Wallis test can be used as non-parametric equiva-
lent to the one-way ANOVA. However, as we are interested
in the interaction between two factors, i.e. Obfuscation and
Experience, the test is not valid in our case.

Evaluation method
This paper Ceccato et al.

Race
Box 78.8% (52/66) 78.8% (52/66)
Laps 78.8% (52/66) 54.5% (36/66)

Chat
Messages 57.6% (38/66) 57.6% (38/66)
Users 31.8% (21/66) 18.2% (12/66)

Table 9: Task correctness rates when evaluating the
results with our evaluation method versus with the
stricter rules by Ceccato et al. (Section 3.3.1).

most of our tests (apart from Clear vs OP) are underpow-
ered, meaning that we might have missed some effects due
to small sample size.

5. RESULTS
We present our results and, if applicable, compare them with
the findings of Ceccato et al. [12]. We start with descriptive
results (Section 5.1), and then analyze differences between
clear and obfuscated code with regard to code comprehen-
sion and analysis behavior (Sections 5.2, 5.3 and 5.4). The
results of these evaluations are summarized in Table 10. Fi-
nally, we assess the moderating effect of experience (Sec-
tion 5.5 and Table 11).

5.1 Descriptive Results
Correctness results are presented in Table 9. Each of the 66
participants worked on four tasks, two with clear and two
with obfuscated code. Using our less strict evaluation of
all 264 solutions (see Section 3.3.1), 163 were rated correct
and the remaining 101 were false. Using the more strict
evaluation by Ceccato et al., our participants scored 138
correct and 126 false answers. In both cases, “Chat: Users”
was the most difficult task, and “Race: Box” the easiest one.

The fastest participant took 21 minutes, the slowest finished
after 90 minutes. For the Chat program 90.9% and for the
Race program 95.5% of the participants agreed or strongly
agreed that the descriptions of the application was clear.

5.2 Name Overloading (HC1NO & HB1NO)
Tasks with clear and obfuscated code were solved with sim-
ilar correctness, T (31) = 91.50, p = 0.373, z = −0.892,
r = −0.113 (Table 10). To show the same level of correct-
ness with obfuscated code, participants needed significantly
longer, T (31) = 384.00, p = 0.008, z = 2.665, r = 0.338.
This speed-accuracy trade-off was reflected in a significant
effect on efficiency, T (31) = 104.00, p = 0.014, z = −2.454,
r = −0.312. Time needed to correctly solve a task, i.e.,
a successful attack, was significantly longer for obfuscated
code, T (21) = 181.00, p = 0.023, z = 2.277, r = 0.351.

Using stricter correctness by Ceccato et al. [12], we also
found no difference concerning the correctness of code com-
prehension between clear and obfuscated code, T (31) =
67.50, p = 0.648, z = −0.456, r = −0.058. The effect of
NO on efficiency was significant, T (31) = 106.00, p = 0.046,
z = −1.994, r = −0.253. The time to correctly solve tasks
showed no difference between the groups, T (20) = 152.00,
p = 0.079, z = 1.755, r = 0.277. However, our sample
size was not sufficient to detect effects of medium size (Sec-
tion 4.4.3), such that we might have missed some effects.

348 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Descriptive Results Parameter-free tests
Clear NO OP Clear Clear NO

Measurement Median IQR Median IQR Median IQR vs NO vs OP vs OP

Correctness 2.000 1.000 2.000 1.000 1.000 1.000 91.50 80.50 496.00
Efficiency 0.130 0.161 0.096 0.079 0.090 0.057 104.00* 125.00** 571.00
Total time 13.163 11.404 18.154 9.028 15.986 11.551 384.00** 456.00* 444.00
Time correct 5.758 5.595 8.888 3.817 6.167 6.702 181.00* 166.00 216.00

Strict correctness as measured by Ceccato et al.:
Correctness 1.000 1.000 1.000 1.000 1.000 1.000 67.50 77.00 492.00
Efficiency 0.111 0.105 0.063 0.082 0.082 0.052 106.00* 161.00 570.00
Time correct 5.439 6.079 8.874 3.817 5.951 7.012 152.00 156.00 207.00

Number of:
File open commands 13.000 19.000 30.000 30.000 19.500 19.250 429.00** 344.50 307.00**
Advanced commands 0.000 3.000 1.000 11.000 1.000 4.250 121.50** 126.00* 479.50
Program executions 1.000 3.000 3.000 5.000 2.000 2.000 216.50 376.00** 478.00
Debugging mode 0.000 1.000 0.000 3.000 2.000 5.000 105.00** 138.00** 560.00

Time spent on:
Program executions 0.383 1.400 1.317 4.467 1.025 1.504 265.50* 388.50* 534.00
Debugging mode 0.000 0.450 0.000 10.117 3.000 11.292 120.00** 131.00* 496.00
Code reading 10.500 9.533 13.683 9.633 10.700 8.004 280.00 323.00 491.50

Table 10: Descriptive results and parameter-free statistics (Wilcoxon & Mann-Whitney-U tests) comparing
clear and obfuscated code; all times are in minutes; *p<.05, **p<.01.

Reduced efficiency and increased total time may be due to
changes in code analysis behavior. Participants opened files
more frequently, T (31) = 429.00, p < 0.001, z = 3.548,
r = 0.451, used more advanced commands, T (31) = 121.50,
p = 0.006, z = 2.771, r = 0.352, and more often the de-
bugging mode, T (31) = 105.00, p = 0.001, z = 3.311,
r = 0.420. Overall they spent more time with program ex-
ecutions, T (31) = 265.50, p = 0.022, z = 2.286, r = 0.290,
and debugging, T (31) = 120.00, p = 0.001, z = 3.408,
r = 0.433. The observed effects were of medium size.

In summary, obfuscating source code with NO significantly
reduced the efficiency of code comprehension (HC1NO). Par-
ticipants changed their code analysis behavior (HB1NO),
i.e., they opened files more frequently, used more advanced
commands, and the debugging mode. The observed effects
were of medium size, indicating their practical importance.
The behavior of participants corresponds to what can be
expected when dealing with NO since the inverse transfor-
mation to NO (rename identifier) is an advanced command
in Eclipse. Other increases can be explained by additional
effort to understand the meaning of individual identifiers.

5.3 Opaque predicates (HC1OP & HB1OP)
If the source code was obfuscated with opaque predicates,
we observed similar effects (Table 10). Participants needed
significantly longer to understand the code, T (35) = 456.00,
p = 0.021, z = 2.309, r = 0.276, in order to reach about
the same level of correctness, T (35) = 80.50, p = 0.198,
z = −1.286, r = −0.154. This is reflected in reduced effi-
ciency, T (35) = 125.00, p = 0.005, z = −2.778, r = −0.332.
Concerning the time needed to correctly solve a task, i.e.,
a successful attack, no difference between clear and obfus-
cated source code was found, T (22) = 166.00, p = 0.200,
z = 1.282, r = 0.193.

Again, using the stricter measurements by Ceccato et al. [12],
participants reached about the same performance in terms
of correctness, T (35) = 77.00, p = 0.980, z = 0.025, r =
0.004, and were marginally less efficient, T (35) = 161.00,
p = 0.054, z = −1.926, r = −0.326.

The impact of code obfuscation was also visible in code anal-
ysis behavior. Participants more often used advanced com-
mands, T (35) = 126.00, p = 0.018, z = 2.359, r = 0.282,
executed the program more frequently, T (35) = 376.00,
p = 0.003, z = 2.979, r = 0.356, executed code longer in
total T (35) = 388.50, p = 0.020, z = 2.328, r = 0.278, used
the debugging mode more often, T (35) = 138.00, p = 0.003,
z = 2.923, r = 0.349, and spent more time debugging,
T (35) = 131.00, p = 0.010, z = 2.580, r = 0.308.

In summary, obfuscating source code with OP significantly
reduced the efficiency of code comprehension (HC1OP). Par-
ticipants changed their analysis behavior (HB1OP), i.e., they
used more advanced commands, executed the program more
frequently, and used the debugging mode more often. The
observed effects were of medium size, indicating their prac-
tical importance. Compared to the changes with NO, the
differences in behavior between Clear and OP appear to
be more random which can be interpreted as an unguided
search for understanding.

5.4 Comparison of Obfuscation Methods
(HC2 & HB2)
The previous analyses showed that both obfuscation meth-
ods, name overloading and opaque predicates, significantly
reduced code comprehension performance. To achieve a sim-
ilar level of comprehension, participants changed their be-
havior of code analysis. A direct comparison between both
obfuscation methods indicates that code comprehension was
hindered similarly, i.e., we found no differences in correct-
ness, total time or efficiency. Also, the effect on time needed

USENIX Association Fourteenth Symposium on Usable Privacy and Security 349

to correctly solve a task, i.e., time for a successful attack,
was small and non-significant, U(50) = 216.00, p = 0.066,
z = −1.839, r = −0.260 (Table 10).

Concerning behavior, participants opened files significantly
more frequently when the source code was obfuscated with
NO than with OP, U(66) = 307.00, p = 0.002, z = −3.027,
r = −0.373. This effect is of medium size.

In summary, both obfuscation methods reduced efficiency
of code comprehension and led to similar behavior of the
participants in almost all aspects. The number of file open-
ings being higher in NO could be due to the fact that the
structure of the code is not changed by the transformation
and thus many aspects of semantics remain. The main ef-
fort is to deduce useful meanings of identifiers using static
and dynamic analysis techniques. We would have expected
a significant difference in using advanced commands for NO
than OP due to the expected higher use of the advanced
command “rename identifier”, but the usage of this particu-
lar primitive does not appear to be different in the data. We
note, however, that our sample size was too small for a be-
tween subjects comparison, such that we might have missed
some effects (Section 4.4.3).

5.5 Impact of Experience (HC3 & HB3)
Here we assess whether experience moderates code compre-
hension and code analysis behavior. We performed ANOVAs
with Obfuscation (clear vs. obfuscated) as within subjects
factor and Experience (beginners vs. experienced) as be-
tween subjects factors (see Section 4.4.2). As the main ef-
fect of Obfuscation replicates the results reported before, we
only report the main effect of Experience and the interac-
tion between Obfuscation and Experience here. Descriptive
results and inferential statistics are presented in Table 11.

5.5.1 General Effect of Experience
The difference between beginners and experienced program-
mers, irrespective of the type of code, is reflected in the
main effect of Experience. Beginners and experienced par-
ticipants spent about the same time to solve the tasks (15.8
minutes vs. 17.6 minutes), F (1, 64) < 1. As experienced
participants solved about 1.4 tasks whereas beginners solved
only 0.8 task in this time correctly, F (1, 64) = 13.907, p =
0.001, η2p = 0.18, ω2 = 0.16, their efficiency was significantly
higher, F (1, 64) = 8.008, p = 0.006, η2p = 0.10, ω2 = 0.10.
The effects were of medium size, explaining 10% to 16% of
the variability in the data. The same results were observed
for the strict correctness of Ceccato et al. [12].

Beginners and experienced programmers showed different
code analysis behaviors. Experienced participants executed
advanced commands ten times more often than beginners,
F (1, 64) = 11.157, p < 0.001, η2p = 0.15, ω2 = 0.13, and
used the debugging mode eight times more often, F (1, 64) =
11.252, p = 0.001, η2p = 0.15, ω2 = 0.13. This was also
visible in the overall time they spent in debugging mode,
F (1, 64) = 4.531, p = 0.037, η2p = 0.07, ω2 = 0.05. The lat-
ter effect was small, the other effects were of medium size.

In summary, experienced programmers solved 36% more
tasks correctly in about the same time as beginners, which
was reflected in a higher efficiency. To analyze the code,
experienced participants used advanced commands and the
debugging mode more often, which is consistent with the
expected behavior of experienced reverse engineers.

5.5.2 Experience as Moderator of Comprehension
Solving tasks with obfuscated code requires more time to
keep the level of correctness, i.e., efficiency is lower. More-
over, working on obfuscated code requires a change in code
analysis behavior (see Sections 5.2 and 5.3). We are now in-
terested in whether beginners and experienced programmers
show similar or different changes. Statistically, this effect is
reflected by the interaction between Obfuscation and Expe-
rience in the ANOVAs.

With regard to code comprehension, experience moderated
the obfuscation effect on efficiency significantly, F (1, 64) =
4.385, p = 0.040, η2p = 0.05, ω2 = 0.05. Beginners’ ef-
ficiency did not significantly change when working on ob-
fuscated code (0.06 tasks per minute) compared to clear
code (0.07 tasks per minute), t(20) < 1. In contrast, expe-
rienced programmers were significantly more efficient with
clear code (0.19 tasks per minute) than with obfuscated code
(0.08 tasks per minute), t(44) = 3.499, p = 0.011, dz = 0.68.
When working with obfuscated code, their efficiency almost
dropped to those of beginners (i.e., 0.08 vs. 0.07 tasks per
minute). This difference between beginners and experienced
programmers was statistically not significant, t(64) = 1.387,
p = 0.174, d = 0.37. One may argue that the statistical
power was not sufficient to detect the effect. Indeed, the
small effect size d < 0.50 indicates that there is probably a
small effect in the population. That is, programming experi-
ence may have an advantage for comprehending obfuscated
code efficiently but this advantage is probably only minor
(see Figure 1). This issue needs further investigation with a
more appropriate sample size.

This drop in efficiency for experienced participants, F (1, 64) =
1.609, p = 0.209, η2p = 0.03, ω2 = 0.01, might be due to
an increase in total time in order to keep a similar level of
correctness, F (1, 64) < 1. That is, experienced program-
mers invested more time to keep a high level of correctness,
whereas beginners did not. However, the effects were of
quite small size and the sample size was insufficient to de-
tect these effects statistically. Also, we were not able to
replicate them using the strict measurements by Ceccato et
al. [12], although they point into the same direction.

When working on obfuscated code compared to clear code,
experienced programmers changed their code analysis be-
havior, whereas beginners did not (Figure 1). This moder-
ating effect of experience occurred for the usage of advanced
commands, F (1, 64) = 5.321, p = 0.024, η2p = 0.08, ω2 =
0.06, and the usage of the debugging mode, F (1, 64) = 7.615,
p = 0.008, η2p = 0.11, ω2 = 0.09. All effects were of medium
size, explaining 6% to 9% of the variability in the data.

In summary, code comprehension and analysis behavior of
beginners was not much impacted by obfuscated code. As
expected, experienced programmers were more efficient when
working with clear code. However, code obfuscation im-
peded code comprehension. The efficiency dropped by 57%
to those of beginners. In our view, this is the most in-
teresting result of our study. To keep the higher level of
correctness compared to beginners, experienced program-
mers invested more time to solve the tasks. They changed
their code analysis strategies, i.e., they used more often ad-
vanced commands and the debugging mode. Overall they
spent more time with reading the source code. It appears

350 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Descriptive Results ANOVA
Beginner Experienced

Clear Obfucated Clear Obfuscated Obf. ×
Measurement Mean SD Mean SD Mean SD Mean SD Obf. Exp. Exp.

Correctness 0.90 0.77 0.86 0.85 1.53 0.66 1.27 0.72 1.377 13.907** 0.669
Efficiency 0.066 0.059 0.057 0.060 0.185 0.202 0.079 0.059 6.185* 8.008** 4.385*
Total Time 14.4 7.6 17.3 11.8 13.9 9.1 21.3 10.8 8.917** 0.815 1.609
Time correct 8.4 3.9 10.4 8.9 6.3 5.2 9.5 5.9 3.183 0.768 0.170

Strict correctness as measured by Ceccato et al.:
Correctness 0.62 0.74 0.71 0.78 1.27 0.62 1.18 0.68 0.001 16.213** 0.604
Efficiency 0.049 0.061 0.048 0.057 0.151 0.188 0.075 0.059 3.061 8.145** 2.925
Time correct 10.0 7.7 7.6 2.8 6.3 5.4 9.1 5.9 0.015 0.329 2.743

Number of:
File open comm. 18.7 18.1 23.0 20.5 17.4 16.7 30.2 17.2 6.719* 0.752 1.641
Advanced comm. 0.3 0.8 0.4 0.8 2.3 3.4 5.4 7.1 5.662* 11.157** 5.321*
Program exec. 0.8 0.9 2.6 2.6 2.5 4.0 4.5 6.7 6.286* 3.225 0.021
Debugging mode 0.1 0.3 0.4 0.9 0.9 1.9 3.0 3.4 13.368** 11.252** 7.615**

Time spent on:
Program exec. 0.8 1.6 3.2 4.4 1.5 2.5 3.4 7.7 5.800* 0.169 0.081
Debugging mode 0.1 0.2 3.1 9.2 1.7 4.5 7.0 8.4 12.793** 4.531* 1.019
Code reading 14.0 8.7 12.1 8.0 11.0 8.1 13.8 9.1 0.064 0.157 2.110

Table 11: Descriptive results and inferential statistics comparing clear and obfuscated code for beginners and
experienced programmers; all times are in minutes; *p<.05, **p<.01.

that classical programming experience does not help much
in comprehending obfuscated source code.

5.5.3 Exploration: Areas of Experience
The previous analysis shows that no evidence was found
that experienced programmers, who were much more effi-
cient with clear code than beginners, differ from the latter
when the source code was obfuscated. In the following we
explore whether experience in a particular area may prevent
from the drop in efficiency.

We correlated the level of experience (in one of the four ar-
eas of experience we had measured, see Sectionsec:analysis-
experience) with the efficiency in working with obfuscated
code (Pearson correlation). A positive correlation indicates
that more experienced participants were able to keep a higher
level of efficiency. Maybe not surprisingly, this was indeed
the case if participants had experience with obfuscated code
and debugging before, r = 0.43, p < 0.001. Neither program-
ming experience in general, r = 0.14, p = 0.271, experience
with Java and Eclipse, r = 0.08, p = 0.544, nor comprehen-
sion skills (measured as efficiency in working on clear code),
r = 0.16, p = 0.191, did help. We conclude that reverse en-
gineering needs special training in obfuscation techniques.

6. DISCUSSION
Before this study, we knew that obfuscation impeded pro-
gram comprehension [12]. We were able to reproduce these
findings for the same obfuscation methods, NO and OP, that
were previously studied. We also obtained original results
by studying the reverse engineering behavior. As might be
expected, we found many significant differences in behav-
ior between clear and obfuscated versions. These differences
appeared to be more intentional for NO than OP. Partici-
pants appeared to have a clear strategy in countering NO
but were still inhibited severely regarding efficiency. Given

OP-obfuscated code, the analysis behavior appeared to be
more random both in numbers of commands and time spent
on different activities. With such a behavior, a decrease in
efficiency is an understandable consequence.

Overall, the different behaviors for NO and OP are a first
empirical support of the taxonomy of Collberg et al. [6]
who distinguished obfuscating transformations regarding re-
silience and potency. For NO we found significant decreases
in efficiency despite clear and understandable adaptions in
behavior by participants. Such a strategic behavior change
was not observable with OP. NO therefore appears to belong
to the class of potent obfuscation techniques, increasing the
“obscurity” for the human reverse engineers.

Furthermore, obfuscation seems to “reduce experience”, i.e.,
the effect of software engineering experience on the success
of program comprehension is much lower for obfuscated code
than for unobfuscated code. This insight is important since
it indicates that code comprehension in the realm of ob-
fuscated software may be different from comprehension of
traditional programs. We conjecture that comprehension
strategies follow a two-step approach: in the first step the
particular obfuscation method is identified; in a second step,
an inverse transformation is attempted. Such a strategy can,
however, only be applied if reverse engineers have (1) an
understanding of different obfuscation techniques, and (2)
the ability to inverse the obfuscation using ingenuity and/or
tools. This is consistent with the findings of our experiment
where understanding of obfuscation methods was more help-
ful than general programming experience.

7. LIMITATIONS
Because the analyzed programs and tasks could be of differ-
ent difficulty, we used counterbalancing to mitigate this con-
cern. We did not counterbalance clear and obfuscated code

USENIX Association Fourteenth Symposium on Usable Privacy and Security 351

Figure 1: On clear code, experienced users were more efficient than beginners. This advantage of experience
disappeared when the code was obfuscated. Experienced users invested more time to keep their level of
correctness, but beginners did not. Beginners did not change their code analysis behavior when working
on obfuscated code. Experienced users opened files more frequently and used advance commands and the
debugging mode more often than when working on clear code. (Error bars indicate confidence intervals.)

tasks, as the participants worked on the clear code first. This
was necessary for precise assessment of their comprehension
skills. Therefore, learning effects may have positively influ-
enced performance on obfuscated code, such that effects of
obfuscation on code comprehension and behavior may actu-
ally be stronger than we found. In contrast, fatigue effects
could have negatively influenced performance on obfuscated
code. To counter this limitation, we analyzed only the data
of participants who indicated that they had enough time to
perform all tasks.

The sampling of experience was performed post hoc by plac-
ing participants into groups and not as a planned sampling
based on experience. The representativeness of the sample
(students) is limited, although the study by Acar et al. [18]
provided evidence that experience may be a more important
indicator of expertise than student status. A similar study
with professionals using their own analysis equipment and
a more realistic scenario (e.g., malware analysis) would be
desirable, but would be hard to pursue given the scarcity of
obfuscation analysis resources in the professional market.

8. CONCLUSIONS
In this work we measured effects of source code obfusca-
tion on program comprehension skills of reverse engineers
by means of a controlled experiment with 66 participants.
We successfully replicated results by Ceccato et al. [12] that
obfuscation techniques have a significantly negative effect

on program comprehension. We also showed that the ob-
fuscation methods NO and OP lead to significantly differ-
ent analysis behavior. The differences provided insight into
the relative strength of NO which withstood reverse engi-
neering efforts, although it was clearly identifiable and the
de-obfuscation tool (rename identifer) was available. This
supports the distinction between resilience and potency of
obfuscating transformations as defined by Collberg et al. [6]
more than 20 years ago.

Future research should focus more specifically on the behav-
ior of humans when facing obfuscated code. Do they follow
a two-step approach as conjectured above? What if an un-
known obfuscation technique or the combination of several
is used? How do performance results change for professional
malware analysts, or when deobfuscation tools are used?

Acknowledgment
This work was supported by the “Bavarian State Ministry
of Education, Science and the Arts” as part of the FORSEC
research association. We thank the anonymous reviewers
for their helpful comments, and we are indebted to Mari-
ano Ceccato, Brian Glass, Tilo Müller, Yan Zhuang and our
shepherd Joseph Bonneau for their invaluable support.

352 Fourteenth Symposium on Usable Privacy and Security USENIX Association

9. REFERENCES
[1] J. Dyer, M. Lindemann, R. Perez, R. Sailer, L. van

Doorn, S. W. Smith, and S. Weingart, “Building the
IBM 4758 Secure Coprocessor,” IEEE Computer,
vol. 34, no. 10, pp. 57–66, 2001.

[2] U. Piazzalunga, P. Salvaneschi, F. Balducci,
P. Jacomuzzi, and C. Moroncelli, “Security strength
measurement for dongle-protected software,” IEEE
Security & Privacy, vol. 5, no. 6, pp. 32–40, 2007.

[3] T. Alves and D. Felton, “TrustZone: Integrated
hardware and software security,” ARM, Tech. Rep.,
Jul. 2004.

[4] O. Dvir, M. Herlihy, and N. Shavit, “Virtual leashing:
Creating a computational foundation for software
protection,” J. Parallel Distrib. Comput., vol. 66,
no. 9, pp. 1233–1240, 2006. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2006.04.013

[5] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich,
A. Sahai, S. P. Vadhan, and K. Yang, “On the
(im)possibility of obfuscating programs,” in
Proceedings of the 21st Annual International
Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’01. London, UK, UK: Springer-Verlag,
2001, pp. 1–18. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646766.704152

[6] C. Collberg, C. Thomborson, and D. Low, “A
taxonomy of obfuscating transformations,” Technical
Report 148, Department of Computer Science,
University of Auckland, Jul. 1997. [Online]. Available:
http://citeseer.ist.psu.edu/collberg97taxonomy.html

[7] A. Capiluppi, P. Falcarin, and C. Boldyreff, “Code
defactoring: Evaluating the effectiveness of java
obfuscations,” in Reverse Engineering (WCRE), 2012
19th Working Conference on, Oct 2012, pp. 71–80.

[8] M.-A. Storey, “Theories, tools and research methods in
program comprehension: past, present and future,”
Software Quality Journal, vol. 14, no. 3, pp. 187–208,
2006.

[9] M. D. Penta, R. K. Stirewalt, and E. Kraemer,
“Designing your next empirical study on program
comprehension,” in Program Comprehension, 2007.
ICPC’07. 15th IEEE International Conference on.
IEEE, 2007, pp. 281–285.

[10] B. Cornelissen, A. Zaidman, A. Van Deursen,
L. Moonen, and R. Koschke, “A systematic survey of
program comprehension through dynamic analysis,”
Software Engineering, IEEE Transactions on, vol. 35,
no. 5, pp. 684–702, 2009.

[11] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk,
“Feature location in source code: a taxonomy and
survey,” Journal of Software: Evolution and Process,
vol. 25, no. 1, pp. 53–95, 2013.

[12] M. Ceccato, M. Di Penta, P. Falcarin, F. Ricca,
M. Torchiano, and P. Tonella, “A family of
experiments to assess the effectiveness and efficiency
of source code obfuscation techniques,” Empirical
Software Engineering, vol. 19, no. 4, pp. 1040–1074,
2014.

[13] A. Viticchié, L. Regano, M. Torchiano, C. Basile,
M. Ceccato, P. Tonella, and R. Tiella, “Assessment of
source code obfuscation techniques,” in Source Code
Analysis and Manipulation (SCAM), 2016 IEEE 16th

International Working Conference on. IEEE, 2016,
pp. 11–20.

[14] S. Garfinkel and H. R. Lipford, “Usable security:
History, themes, and challenges,” Synthesis Lectures
on Information Security, Privacy, and Trust, vol. 5,
no. 2, pp. 1–124, 2014.

[15] D. Oliveira, M. Rosenthal, N. Morin, K.-C. Yeh,
J. Cappos, and Y. Zhuang, “It’s the psychology stupid:
how heuristics explain software vulnerabilities and
how priming can illuminate developer’s blind spots,”
in Proceedings of the 30th Annual Computer Security
Applications Conference. ACM, 2014, pp. 296–305.

[16] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek,
and C. Stransky, “You get where you’re looking for:
The impact of information sources on code security,”
in Security and Privacy (SP), 2016 IEEE Symposium
on. IEEE, 2016, pp. 289–305.

[17] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim,
M. L. Mazurek, and C. Stransky, “Comparing the
usability of cryptographic apis,” in Security and
Privacy (SP), 2017 IEEE Symposium on. IEEE,
2017, pp. 154–171.

[18] Y. Acar, C. Stransky, D. Wermke, M. L. Mazurek, and
S. Fahl, “Security developer studies with github users:
Exploring a convenience sample,” in Thirteenth
Symposium on Usable Privacy and Security (SOUPS
2017). Santa Clara, CA: USENIX Association, 2017,
pp. 81–95. [Online]. Available:
https://www.usenix.org/conference/soups2017/
technical-sessions/presentation/acar

[19] C. Collberg and J. Nagra, Surreptitious Software:
Obfuscation, Watermarking, and Tamperproofing for
Software Protection, 1st ed. Addison-Wesley
Professional, 2009.

[20] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin,
F. Ricca, M. Torchiano, and P. Tonella, “Towards
experimental evaluation of code obfuscation
techniques,” in Proceedings of the 4th ACM workshop
on Quality of protection. ACM, 2008, pp. 39–46.

[21] M. Ceccato, M. D. Penta, J. Nagra, P. Falcarin,
F. Ricca, M. Torchiano, and P. Tonella, “The
effectiveness of source code obfuscation: an
experimental assessment,” in Program Comprehension,
2009. ICPC’09. IEEE 17th International Conference
on. IEEE, 2009, pp. 178–187.

[22] T. J. McCabe, “A Complexity Measure,” IEEE
Transactions on Software Engineering, vol. SE-2,
no. 4, pp. 308–320, Dec. 1976.

[23] B. Yadegari, B. Johannesmeyer, B. Whitely, and
S. Debray, “A generic approach to automatic
deobfuscation of executable code,” in 2015 IEEE
Symposium on Security and Privacy, SP 2015, San
Jose, CA, USA, May 17-21, 2015, 2015, pp. 674–691.
[Online]. Available:
https://doi.org/10.1109/SP.2015.47

[24] Y. Yoon and B. A. Myers, “Capturing and analyzing
low-level events from the code editor,” in Proceedings
of the 3rd ACM SIGPLAN Workshop on Evaluation
and Usability of Programming Languages and Tools,
ser. PLATEAU ’11. New York, NY, USA: ACM,
2011, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/2089155.2089163

USENIX Association Fourteenth Symposium on Usable Privacy and Security 353

https://doi.org/10.1016/j.jpdc.2006.04.013
http://dl.acm.org/citation.cfm?id=646766.704152
http://citeseer.ist.psu.edu/collberg97taxonomy.html
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://doi.org/10.1109/SP.2015.47
http://doi.acm.org/10.1145/2089155.2089163

[25] C. Collberg, G. Myles, and A. Huntwork,
“Sandmark–a tool for software protection research,”
IEEE security & privacy, no. 4, pp. 40–49, 2003.

[26] P. Kouznetsov, “Jad-the fast java decompiler,” URL:
http://www. kpdus. com/jad. html, 2006.

[27] A. Field and G. Hole, How to design and report
experiments. Sage, 2002.

[28] G. Leroy, Designing User Studies in Informatics.
Springer Science & Business Media, 2011.

[29] A. Field, Discovering statistics using IBM SPSS
statistics - 4th edition. Sage, 2013.

[30] J. Cohen, Statistical power analysis for the behavioral
sciences . Hilsdale. NJ: Lawrence Earlbaum
Associates, 1988.

APPENDIX
A. EXAMPLES OF OBFUSCATED CODE
We illustrate the code obfuscation techniques by showing
excerpts of code from our study in the Race program. List-
ing 1 shows the definition of the method changeSpeed from
the file MovingCarModel.java, which changes the speed by a
certain value (given as a parameter) depending on whether
the car still has fuel (a value stored in the variable gas).

Listing 1: Clear code from Race MovingCarModel.java

1 public void changeSpeed (int i)
2 {
3 i f (s t a r t e d)
4 i f (gas == 0)
5 {
6 speed += i ;
7 i f (speed > maxSpeed / 10)
8 speed = maxSpeed / 10 ;
9 else

10 i f (speed < minSpeed / 10)
11 speed = minSpeed / 10 ;
12 } else
13 {
14 speed += i ;
15 i f (speed > maxSpeed)
16 speed = maxSpeed ;
17 else
18 i f (speed < minSpeed)
19 speed = minSpeed ;
20 }
21 }

Listing 2 shows the same code after applying name over-
loading where all identifiers have been renamed to some ar-
bitrary values that have nothing to do with program se-
mantics. The comparison between Listings 1 and 2 shows
that apart from changing names of identifiers, the code stays
structurally the same (e.g. lines 6 and 27 correspond).

Listing 3 shows the code from Listing 1 after introducing
opaque predicates. In the given version of Sandmark, opaque
predicates are generated using queries to a tree data struc-
ture which is manipulated in randomly looking ways. Pred-
icates are then used to insert dead code that uses valid iden-
tifiers in random ways (see for example lines 45–47). To
determine the truth value of a predicate (and therefore to
eliminate dead code), an analyst has to first understand the

way in which the tree was changed. The example shows that
while all original code is maintained (e.g. line 6 corresponds
to line 57), opaque predicates can be used to considerably
complicate a program’s control flow.

Listing 2: Code from Listing 1 obfuscated with NO

22 public void m1 (int i)
23 {
24 i f (f 2 2)
25 i f (f 1 9 == 0)
26 {
27 f 5 += i ;
28 i f (f 5 > f 6 / 10)
29 f 5 = f 6 / 10 ;
30 else
31 i f (f 5 < f 7 / 10)
32 f 5 = f 7 / 10 ;
33 } else
34 {
35 f 5 += i ;
36 i f (f 5 > f 6)
37 f 5 = f 6 ;
38 else
39 i f (f 5 < f 7)
40 f 5 = f 7 ;
41 }
42 }

Listing 3: Code from Listing 1 obfuscated with OP
43 public void changeSpeed (int i) {
44 i f (Node . g e t I () != Node . getH ()) {
45 l a s tFue l = (0L + time2) − (long) lap ;
46 s t a r t ed = l a s tFue l == 0L ;
47 Node . getF () . s e tL e f t (Node . getH () . g e tLe f t ()) ;
48 } else {
49 Node . getG () . g e tLe f t () . swap (
50 Node . getG () . getRight ()) ;
51 i f (s t a r t ed)
52 i f (Node . g e t I () == Node . getH ()) {
53 i f (gas == 0) {
54 i f (Node . getF () == Node . getG ()) {
55 Node . getF () . s e tL e f t (
56 Node . g e t I () . getRight ()) ;
57 speed += i ;
58 } else {
59 [. . .]
60 }
61 i f (Node . g e t I () != Node . getH ()) {
62 lap = 1 + maxSpeed / s t a tu s ;
63 time += maxSpeed ;
64 Node . getH () . s e tL e f t (
65 Node . getH () . g e tLe f t ()) ;
66 } else {
67 Node . getF () . getRight () . swap (
68 Node . getF () . getRight ()) ;
69 i f (speed > maxSpeed / 10) {
70 i f (Node . getF () != Node . getG ()) {
71 Node . getF () . g e tLe f t () . swap (
72 Node . getH () . g e tLe f t ()) ;
73 t rack = track ;
74 } else {
75 speed = maxSpeed / 10 ;
76 Node . getF () . s e tL e f t (
77 Node . getF () . g e tLe f t ()) ;
78 }
79 [. . .]
80 }

354 Fourteenth Symposium on Usable Privacy and Security USENIX Association

B. THE ONLINE SURVEY
In this section we present the full survey used in the study.
This survey was slightly adapted from the materials of Cec-
cato et al. [12] to reflect the fact that we measured times of
task completion and programming behavior, whereas Cec-
cato et al. asked their participants to note down their start-
ing and finishing times, and to estimate the percentage of
time they spent on reading and running the code, and exe-
cuting the code in debugging mode.

B.1 Pre-Test Questions
At first the participants filled out a pre-test questionnaire in
the online survey.

Q1. What is your position?

() Bachelor student

() Master student

() Diploma student

() PhD student

() Post Doc

() Professor

() Other:

Q2. What is your study subject? (this question was only
displayed for participants who are either Bachelor, Mas-
ter or Diploma student)

Q3. At which department are you working? (this question
was only displayed for participants who are either PhD
student, Post Doc or Professor)

Q4. How old are you?

Q5. How would you describe the quality and the type of the
code you wrote so far?

() Few and small programs (e.g., course exercises)

() Many small programs

() Small programs and few (1 or 2) big programs (e.g.,
thesis and projects)

() Big programs

Q6. Have you ever worked as computer programmer?

() No

() Yes, part-time

() Yes, full-time

Q7. Do you have high or very high experience in any pro-
gramming language(s)? If yes, please name them:

Q8. Did you participate in a Software Reverse Engineering
or Hacking Lab Course?

() Yes

() No

() Other:

What is your experience/knowledge in... (5-point Likert
scale from “very low” to “very high”)

Q9. code obfuscation?

Q10. Java?

Q11. the usage of Eclipse for software development?

Q12. debugging software?

Q13. the usage of Eclipse for debugging software?

Before being able to work on the programs a password was
displayed in the survey to gain access to the directory of the
source files of the first program. This was done in order to
prevent participants from analyzing the source code before
the tasks to solve were presented.

B.2 Program Descriptions
After the participants got access to the the source files for
a program, a short description about the program’s general
usage was displayed in the survey.

Race program
CarRace is a network game that allows two players run a
car race.

The player that first completes the total number of laps
wins the race. Use the arrow keys to control the car (your
car is the green one). Keep “up” and “down” keys pressed to
accelerate and brake. Press “right” and “left” arrows to turn
right and left.

The car constantly consumes fuel, when the car runs out of
fuel the speed drops. In order to avoid this case the players
should stop at the box to refuel. The number of completed
laps and the fuel level is displayed on the upper part of the
window.

Chat program
ChatClient is a network application that allows people to
have text based conversation through the network. Conver-
sations can be public or private, depending on how they are
initiated.

The application shows on the right a list of available rooms.
When the application starts, the “default” room is accessed.
It is a public room where all the users are participating.
In order to access another room (e.g., Room 1) the name
of the room must be clicked from the “Available Rooms”
list, a new tab will be visualized. All the messages sent to
a conversation within a room are received to all the users
registered to that room.

A private conversation (only two users) can be initiated by
clicking the name of a user from the “Online Users” list.

B.3 Questions after each task
After the completing the Pre-Test Questions the partici-
pants worked on the tasks as specified in the main part of the
paper in Table 2. The tasks were presented in random order.
After each task the following question had to be answered
by all participants.

Q14. Did you have enough time to solve this task?

() Yes

() No

Only if the participant had enough time, the next questions
were displayed and had to be answered using a 5-point Likert
scale from “strongly agree” to “strongly disagree”.

Q15. I had enough time to perform the tasks

Q16. The description of the task was perfectly clear to me

USENIX Association Fourteenth Symposium on Usable Privacy and Security 355

Q17. I experienced no difficulty in the identification of the
segment of code relevant for the task

Q18. The debugging environment is useful to execute the
task

Q19. I found the Eclipse Refactor facility useful for this task

Q20. For this task I spent a lot of time reading the code

Q21. For this task I spent a lot of time running the code

B.4 Questions after completing both tasks for
a program
After both tasks and the corresponding questions about them
were answered, questions regarding the programs itself were
posed. Again, a 5-point Likert scale from “strongly agree”
to “strongly disagree” had to be used.

Q22. The description of the application was clear

Q23. I experienced no difficulty in understanding the pro-
gram

Q24. Running the code was useful to understand the code

The completion of these answers for the first program led to
the password for getting access to the second program being
displayed.

B.5 Post-Test Questions
After the questions about the second program were answered,
some post-test questions had to be answered using a 5-point
Likert scale from “strongly agree” to “strongly disagree”.

Q25. I experienced no difficulty in using the development
environment (Eclipse)

Q26. I experienced no difficulty in using the Eclipse debug-
ger

The experiments were conducted over the course of two
semesters. For the second semester we added two questions
at the end of the survey in which the participants could indi-
cate if they worked on similar code before. These questions
were added after an additional analysis of the literature on
code comprehension, where the so-called domain experience
emerged as an additional performance factor [8].

Q27. Have you ever programmed any kind of program which
was in your personal opinion similar to the chat pro-
gram? If yes, please specify

Q28. Have you ever programmed any kind of program which
was in your personal opinion similar to the race game?

356 Fourteenth Symposium on Usable Privacy and Security USENIX Association

	Introduction
	Related Work
	Contributions
	Outlook

	Background
	Obfuscation
	Code Analysis and Eclipse
	Obfuscation Studies by Ceccato et al.

	Hypotheses
	Code Comprehension Hypotheses
	Code Analysis Behavior Hypotheses
	Measurements
	Code Comprehension Measurements
	Behavior Measurements
	Experience Measurements

	Method
	Study Materials
	Code and Questionnaires
	Technical Setup

	Participants
	Study Design
	Experimental Setup
	Groups and Tasks
	Procedure and Ethics

	Data Analysis
	Effect of Code Obfuscation
	Impact of Experience
	Effect Sizes and Statistical Power

	Results
	Descriptive Results
	Name Overloading (HC1NO & HB1NO)
	Opaque predicates (HC1OP & HB1OP)
	Comparison of Obfuscation Methods (HC2 & HB2)
	Impact of Experience (HC3 & HB3)
	General Effect of Experience
	Experience as Moderator of Comprehension
	Exploration: Areas of Experience

	Discussion
	Limitations
	Conclusions
	References
	Examples of Obfuscated Code
	The Online Survey
	Pre-Test Questions
	Program Descriptions
	Questions after each task
	Questions after completing both tasks for a program
	Post-Test Questions

