
Penetration Tests a Turning Point in Security Practices?
Organizational Challenges and Implications in a Software

Development Team∗

Sven Türpe
Fraunhofer SIT

64295 Darmstadt, Germany
tuerpe@sit.fraunhofer.de

Laura Kocksch
Fraunhofer SIT

64295 Darmstadt, Germany
kocksch@sit.fraunhofer.de

Andreas Poller
Fraunhofer SIT

64295 Darmstadt, Germany
poller@sit.fraunhofer.de

ABSTRACT
Many software vendors conduct or commission penetration
testing of their products. In a penetration test security ex-
perts identify entry points for attacks in a software product.
The audits can be an eye-opener for development teams:
they realize that security requires much more attention. How-
ever, it is unclear what lasting benefits developers can reap
from penetration tests. We report from a one-year study
of a penetration test and its aftermath at a major software
vendor, and ask how an agile development team managed
to incorporate the test findings. Results suggest that pen-
etration tests improve developers’ security awareness, but
long-lasting change of development practices is hampered
if security is not properly reflected in the communicative
and collaborative structures of the organization, e.g. by a
dedicated stakeholder. Based on our findings we suggest im-
provements to current penetration test consultancies by ad-
dressing communication and organizational factors in soft-
ware development.

Keywords
Development practices; secure software engineering; pen-
etration testing; organizational factors; structure-agency-
duality; qualitative study

1. INTRODUCTION
Software security is in demand and the industry applies

numerous practices of security development [5]. Most work
on software security focuses on technology, but human and
organizational factors are equally important to understand
and support practitioners [10]. For example, social factors
can influence the adoption of security tools [11]. Research on
human-centered security [8] takes such factors into account
but has so far focused on end users and their interaction with
security mechanisms. Commercial software development, in
contrast, is creative work by teams of trained professionals
embedded in organizations.

We discuss early results of a study on software penetration
testing. We observed a mature, yet security-inexperienced
agile software development team during and after a penetra-
tion test of their product, followed by a training workshop.
External security consultants hired by the team’s employer,
a major software vendor, spent two months attempting to

∗This is a revised version of a CHI’16 poster abstract [7].

hack an instance of the software and reviewing code to find
vulnerabilities. The consultants then submitted their find-
ings as tickets to the developers’ issue tracker and later ran
a three-day security workshop with members of the develop-
ment team. We followed the development team for one year
starting at the time of the penetration test.

Initially we aimed to study possible mid- and long-term
effects of penetration testing on development practices. Af-
ter we realized that there were little observable changes or
improvements to development practices, we amended our
research question and explored the challenges that practi-
tioners on all levels – from individual developers to product
management – encountered when transferring security in-
sight from penetration testing and training into daily prac-
tice. Finally, we suggest to take organizational and struc-
tural factors into account for a longer lasting impact of se-
curity consultancies in a professional software development
team. An aspect of further investigation that is only touched
upon here is the relation between agile development princi-
ples and security as a structural and practical challenge.

Penetration tests and developer training are common in-
dustry practices [5]. While the immediate results of a pene-
tration test are easy to measure, e.g. in the number of fixed
security issues, the benefits for mid- to long-term security
practices are less clear, e.g. organizational initiatives for
proactive security work.

Penetration tests [4] are costly as they require human la-
bor, but they can be a profitable security investment [2].
Security experts explore a system or program from an at-
tacker’s perspective to find vulnerabilities. The result is a
list of security flaws that should be read as a sample of the
vulnerabilities present rather than as a definitive list of de-
fects to fix. Yet it seems that developers often go for the
quick win of fixing the issues on the list without analyzing
root causes and making more profound changes [4]. What
can we learn about the reasons for their actions? The devel-
opers in our setting follow agile practices that are common
in the software industry. Our study thus also promises some
insight into the question of agile security engineering and
assurance [1]. Finally, security training obviously aims for
long-term effects. In security training, teaching attacks and
exploits is common and believed to be beneficial. Does this
have lasting effects beyond awareness? Might developers
have further needs that this approach does not fulfill?

The HCI literature often describes organizations as frame-
works for technological and human interaction. Orlikowski [6]



shows that technologies entering organizations have recipro-
cal effects and co-constitute each other. She takes into ac-
count that technologies are sustained of and reaffirmed by
human action, but also that practices only occur in the con-
text of the organization´s structure. This takes upon the
theory that structure and agency are co-constituted. Orga-
nizations therefore exist in a duality of structure and agency.
Suchman [9] points out in regard to the design of technolo-
gies that there is a difference between plans and actions.
Plans consider a goal, whereas actions are situated and are
necessarily vague to react on obstacles on the way. We ex-
pect in line with these accounts that implementing change
in the daily practices of developers is closely related to the
organization’s structure.

2. METHODOLOGY
Our field site is an agile software development project at

a multinational enterprise comprising 37 team members in
seven Scrum teams spread over premises in Asia, Europe and
North America. A contracted consultancy firm executed a
two-months penetration test of the product, a web dash-
board to analyze business process indicators. The consul-
tants also performed a final on-site training workshop with
23 of the 37 product team members one month after they
handed over the test results. We accompanied the product
team for one year, for a period comprising one full and two
half product release cycles, see Figure 1.

Questionnaires. At the beginning, we created two ques-
tionnaires: the first, before test results were reported, asked
team members about current secure software development
practices, their expectations of the penetration test, and
a self-assessment of their security knowledge. The second
questionnaire, before the training workshop, asked how de-
velopers had attended to identified security issues so far and
what they expected of the upcoming workshop. Question-
naires had 17 and 25 questions, free text fields and Likert-
scale items. Response rates were 42% and 33%.

Workshop Observation. Two researchers observed the
subsequent workshop. They took notes in individual field
diaries to report the actions of workshop participants and of
the consultant who acted as an instructor. The researchers
focused on situations where both parties interacted. In par-
ticular, they aimed to observe explicit or implicit negotia-
tions of how security should be treated in software develop-
ment and of who was to be responsible for taking on security-
related tasks given their particular role in the team.

Data Analysis and Document Review. In the two
months after the workshop, the team was heavily engaged
in fixing the found security weaknesses, almost all of which
could be resolved. We followed this process by analyzing
data from the team’s internal issue tracking system and an
internal wiki to understand work flows and communication
patterns. We also monitored wiki entries and minutes from
coordination meetings on the topic of security.

Interviews. Six to ten months after the workshop we inter-
viewed 14 product team members – developers and managers
– and the consultant. Our semi-structured interviews aimed
to find out how fixing actions spread among the different
Scrum teams, and which follow-up activities and changes in
development practices teams implemented to prevent further
similar defects. After we found that practices had changed
little, we focused on learning more about the interviewees’

roles in the organization and how their involvement in se-
curity reflected this role. We gained insight into how se-
curity was framed as a requirement in development before
and after the penetration test, what aspects of developers’
work routines remained unaffected and its reasons. Inter-
view data and field diaries were transcribed and coded. We
derived codes both from the interview guideline and from
key themes found in the data, e.g. issue fixing practices,
communication practices, management and developer per-
spective. The coding was conducted by two individual re-
searchers. Other material (i.e. wiki, ticket system) was not
coded but only used to prepare interviews or improve our
understanding of the setting.

3. PRELIMINARY RESULTS

3.1 Questionnaires
15 out of 37 team members responded to our first question-

naire. Their work experience varied considerably: four par-
ticipants had less than five, seven between five and ten, and
four more than ten years of work experience. Participants’
descriptions of their work area included various development
topics, roles and activities. They reported to have good gen-
eral knowledge in software development from “experienced’
to “expert”, but very little knowledge in security. Only one
participant considered himself a security “expert”. As their
expectation for the security audit, eight out of 15 developers
stated a high interest in the results, seven responded “neu-
tral” and nobody stated a lack of interest. Most respondents
agreed or strongly agreed that they hoped the audit to be
an impulse to start continuously improving the product se-
curity; three responded “neutral”.

Twelve team members responded to our second question-
naire which we distributed after the hand-over of the au-
dit results but before the security workshop. Out of those
twelve, eight had not reviewed the test results before the
workshop. Only one participant stated that his team had
discussed the test results, but ten out of twelve participants
were excited about the upcoming workshop.

To summarize, the team had rather diverse work areas and
professional experience. Team members considered their
general development skills as advanced, but software secu-
rity knowledge as fairly limited. Respondents were mostly
curious about the penetration test and had high expecta-
tions of the upcoming workshop. A majority wished for
profound changes of their team’s security practices.

3.2 Workshop Observation
The workshop had three parts: first, a talk to raise aware-

ness of security as an important topic for developers, sec-
ond, hands-on hacking exercises, and third, a group hacking
challenge. We witnessed a very productive workshop; de-
velopers seemed focused and enjoyed the work. The consul-
tant appeared eloquent, used persuasive rhetoric and showed
much attention to detail and technical expertise. He was
very engaged and aimed to get every participant involved.
He seemed to fulfill the role of a stakeholder for security
by communicating requirements, viewpoints, rationales and
calls for actions for a more security-aware product devel-
opment. His strong rhetoric supported this impression: he
often switched to dichotomous language, security is either
“there” or “not”, developers must “trust no one”, and actors
are either “good” or “evil”.



Figure 1: Timeline showing activities of researchers and external consultants / development team

However, the workshop was more problem-oriented than
solution-oriented. The consultant was strong at conveying
knowledge about security flaws and pitfalls, but he rarely
participated in discussions about how to actually solve re-
vealed security issues, and how to implement further security-
related activities. The workshop left open how to address
security in a development team context and the company’s
ecosystem, e.g., by establishing particular security roles.

3.3 Data Analysis and Document Review
After the workshop, we analyzed the content of the team’s

issue tracking system and meeting minutes in their internal
wiki. The consultant had reported 56 vulnerabilities, 24 of
them rated critical and 14 high on a four-step severity scale.
Issue types included server- and client-side code injection
vulnerabilities, broken cryptography, information exposure
at the application’s interface, as well as access control flaws.
Overall the consultant used 22 different CWE IDs (see http:
//cwe.mitre.org/) to classify the findings.

The majority of issues (about 77%) were fixed in the two
months after the workshop; only 4% were solved before the
workshop. Whether this was due to the workshop or to the
release cycle remains unclear. The developers worked for
more than 4 months on the remaining issues.

Meeting minutes recorded discussion on how to coordi-
nate fixing the identified issues, but we did not see any fur-
ther discussion about security or transfer of the findings to
other areas. One Scrum team added a few generic security
test cases to their readiness checklist, such as “think about
whether the feature may have introduced new security vul-
nerabilities”, but no more specific actions were documented.
We found no additional security content in the wiki, which
the team used intensively for preparing and documenting
work tasks, meetings, and technical matters.

3.4 Interviews
We executed semi-structured interviews six to ten months

after the security workshop. None of the interviewed devel-
opers considered themselves to be a “security expert” after
the workshop. Neither could they point at a security expert
in their team or other persons responsible for the product’s
security. One interviewee answered: “Good question. All of
us [are responsible], or not?”.

Changes After Consulting. Many developers thought
the main outcome of the penetration test and the workshop
to be “awareness”, e.g., one developer stated “I feel like I
have a lot greater awareness of the subject matter”. Some
interviewees described this more specifically as a change in
perception of security risks. For example, one interviewee

pointed out: “no matter what you do, somebody is trying
to penetrate what you do.” Some described the workshop as
an “eye opener” for realizing that security matters for their
work. However, they linked awareness exclusively to other
developers, mostly only within their own Scrum team. The
management was never mentioned as a security stakeholder,
but as a stakeholder for feature development and the devel-
opment schedule.

While participants highlighted awareness as the major
outcome they could not point to any specific changes in
their work routines. When asked for the biggest changes in
their work process one participant answered: “The biggest
changes? They were not that big. [...] I don’t know a
good answer to that.” Interviewees also said the develop-
ment team had not created additional artifacts as reminders
or for knowledge transfer while fixing the security issues:
“What kind of artifacts? [repeating the interviewer’s ques-
tion] I cannot think of any.” This finding pointed us to a lack
of coordination and communication about security beyond
fixing the issues revealed by the security audit.

No Additional Resources. One reason for this lack of at-
tempts to further anchor security as a development topic is
that feature development received higher priorities than im-
proving the product security. One developer stated “[w]hat
they [the developers] are considering is [...] if security is not
on the list, then is it really worth the time and extra en-
ergy to do it?” pointing out that developers did not receive
additional resources for security. The developers were thus
caught in a situation where they were committed to produc-
ing a high-quality product without security flaws, but were
limited to personal efforts or low-key agreements within their
own Scrum team. Security was not considered a sales pitch
for the management, hence not requested by customers and
not on the feature list.

Not only was security not on the list of feature develop-
ment, developers felt their superiors would not give them
credit for security initiatives: “if we did not do it, nobody
would notice”. Apparently, there was no structure helping
developers to act upon security. One participant reflected on
that and said: “it would be better if it was clarified [as a re-
quirement] from above”. Feature development does not just
come first and has a higher priority but is the only context
where communication between developers and management
worked. During the security issue fixing there were no clear
guidelines who, when or how they should be fixed. The
different product teams resolved the issues highly idiosyn-
cratically and with only informal communication between
them. No knowledge distribution was organized and several

http://cwe.mitre.org/
http://cwe.mitre.org/


developers stated they were eager to get to know something
about the fixing process, especially on their own code, even
though they were busy with feature development.

Setting Priorities. Fixing the issues was considered differ-
ently by the developers and the management. While man-
agement was concerned with getting the “number down” so
they could “argue internally”, developers had in mind risks
for the product‘s release. Particularly“big” issues were those
that had many cross-component dependencies and thus, when
fixed locally, jeopardized the product’s functionality. Secu-
rity in terms of the security issues was translated into the
fixing process, but no equivalent was found after the fixing
was completed. Security had not entered daily practices nor
its structural surroundings. Ensuring the product’s release
and developing new features were the goals that manage-
ment and developers agreed upon.

The process of setting development priorities did not be-
come clearer during further interviews. Interviewees from
management considered security as a pervasive quality of the
product, hence, understood security as an issue autonomous
Scrum teams needed to address in their development activ-
ities. They deemed security training sufficient to foster this
understanding. But since security as a product feature was
supposedly invisible to customers, it was not a topic further
discussed between development and product management.

4. DISCUSSION AND CONCLUSION
We found the security consulting successful yet limited in

its effect. Penetration testing and training were successful in
the sense that interviewees enjoyed the workshop, reported
increased security awareness, and were able to address the
issues reported to them. However, our participants did not
report tangible changes in their development practices or
planned product modifications beyond fixing the reported
vulnerabilities. What prevents them from going further and
where might they need support?

Adopting secure development practices is not simply a de-
veloper awareness problem, but requires dealing with com-
plex organizational and social factors in software developing
companies. This is in line with Orlikowski´s theme of struc-
ture and agency in co-constitution [6]. Development work is
organized around the exchange of goals and results between
management and Scrum teams; quality goals are only com-
municated as ensuring the product’s release and its feature
development. Following the Scrum methodology, develop-
ment teams are self-organizing and hold all technical exper-
tise needed, whereas management aligns requirements with
business needs. Reinforced by actions of both parties, this
structure resists change like adopting security practices.

Developers expressed needs for knowledge distribution and
security requirement definitions, but the organizational struc-
ture hampers efforts to satisfy these needs. Product man-
agement prioritizes features by expected business value. Se-
curity is deemed not marketable as a feature and treated
merely as a matter of quality to be addressed by developers.
It is nobody’s role to counteract this bias since a “security
buddy” [3] or similar roles do not exist. On the other hand,
management encourages defect fixing by monitoring defect
counts and enforcing policies.

Facilitating learning beyond awareness and defect fixing
may however require more than only adjusted management
priorities. Our workshop observations highlight a gap. While
vulnerabilities and attacks are an important element of secu-

rity training, developers and their managers ultimately need
coping strategies, such as design patterns, development prac-
tices, and aids for decision-making. While the agile idea of
self-organizing teams can facilitate experimenting with prac-
tices and tools, someone has to invent and supply those.

Mentioned organizational and structural factors could be
addressed by activities and tools, e.g., training could in-
crease managers’ awareness of organizational obstacles to
security. Tools could make the product’s security status
visible to product management fostering an understanding
that security can be a feature, can become visible and can
be marketed to customers. Security audits could also fea-
ture suggestions for how to foster discussions of security’s
role in the organization. If we want to incorporate security
in organizations we have to take into account social factors
like the relationship between structure and practice.

From viewpoints that specifically consider communication
across distributed teams our findings may not come as much
of a surprise. But in secure software engineering organiza-
tional and collaborative factors of development are underap-
preciated. This field would thus profit from further atten-
tion from HCI and CSCW scholars and an organizational
perspective on security requirements.

5. REFERENCES
[1] K. Beznosov and P. Kruchten. Towards agile security

assurance. In Proc. New Security Paradigms
Workshop, NSPW ’04, pages 47–54. ACM, 2004.

[2] R. Böhme and M. Félegyházi. Optimal information
security investment with penetration testing. In
T. Alpcan, L. Buttyán, and J. S. Baras, editors, Proc.
GameSec ’10, pages 21–37. Springer, 2010.

[3] S. Lipner. The trustworthy computing security
development lifecycle. In Proc. ACSAC’04, pages
2–13, Dec. 2004.

[4] G. McGraw. Software Security: Building Security In.
Addison-Wesley Professional, 2006.

[5] G. McGraw, S. Migues, and J. West. Building Security
In Maturity Model (BSIMM) version 6, 2015.

[6] W. J. Orlikowski. The duality of technology:
Rethinking the concept of technology in organizations.
Organization Science, 3(3):398–427, 1992.

[7] A. Poller, L. Kocksch, K. Kinder-Kurlanda, and F. A.
Epp. First-time security audits as a turning point?
challenges for security practices in an industry
software development team. In Proc. CHI’16 EA,
pages 1288–1294. ACM, 2016.

[8] A. Sasse. Designing for Homer Simpson-d’oh.
Interfaces: The Quarterly Magazine of the BCS
Interaction Group, 86:5–7, 2011.

[9] L. A. Suchman. Plans and Situated Actions: The
Problem of Human-Machine Communication.
Cambridge Univ. Press, 1987.

[10] R. Werlinger, K. Hawkey, D. Botta, and K. Beznosov.
Security practitioners in context: Their activities and
interactions with other stakeholders within
organizations. Int. J. of Human-Computer Studies,
67(7):584–606, 2009.

[11] S. Xiao, J. Witschey, and E. Murphy-Hill. Social
influences on secure development tool adoption: Why
security tools spread. In Proc. CSCW ’14, pages
1095–1106. ACM, 2014.


	1 Introduction
	2 Methodology
	3 Preliminary Results
	3.1 Questionnaires
	3.2 Workshop Observation
	3.3 Data Analysis and Document Review
	3.4 Interviews

	4 Discussion and Conclusion
	5 References

