What Questions Remain? An Examination of How
Developers Understand an Interactive Static Analysis Tool

Tyler W Thomas, Heather Lipford, and
Bill Chu
Department of Software and Information
Systems
University of North Carolina at Charlotte
9201 University City Blvd
Charlotte, North Carolina

ABSTRACT

Security vulnerabilities are often accidentally introduced as
developers implement code. While there are a variety of ex-
isting tools to help detect security vulnerabilities, they are
seldom used by developers due to the time or security ex-
pertise required. We are investigating techniques integrated
within the IDE to help developers detect and mitigate se-
curity vulnerabilities. In previous work, we examined the
questions developers ask when investigating security vulner-
abilities with static analysis tools. With those questions as
a lens, we now investigate our proposed approach of interac-
tive static analysis. We evaluated the interactions and per-
ceptions of professional developers as they interacted with
warnings produced by our tool. Our results provide evidence
that our approach effectively communicates security vulner-
ability information to software developers and provides de-
sign guidance for such tools.

1. INTRODUCTION

Security problems are a large and growing concern today [9].
At the heart of this problem are software security vulnera-
bilities [6], bugs in code that can lead to security attacks.
Detecting and resolving these types of problems, especially
later in the development process, is costly and time consum-
ing. Static analysis techniques can help developers detect
vulnerabilities early in the development process — even be-
fore executing the code. However, static analysis tools are
underused [2] in part because of their high false positive rates
[4], and the need for security expertise to write customized
rules to reduce those false positives.

Our goal is to help developers address security concerns and
reduce security vulnerabilities while they write code. We are
examining techniques for helping developers detect and miti-
gate security issues within the Integrated Development Envi-
ronment (IDE). We refer to these techniques as interactive

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.

Symposium on Usable Privacy and Security (SOUPS) 2016, June 22-24,
2016, Denver, Colorado.

Justin Smith and Emerson Murphy-Hill
Department of Computer Science
North Carolina State University
890 Oval Drive
Raleigh, North Carolina

static analysis [15]. We have previously prototyped and
evaluated an interactive static analysis tool named ASIDE
(Application Security in the IDE) for basic vulnerabilities
such as SQL Injection and Cross Site Scripting. We demon-
strated that providing warnings and explanations to devel-
opers alongside their code improves awareness of both these
security vulnerabilities and how to prevent them [13]. We
expanded our approach to include interactive annotation,
where developers are prompted to indicate security-critical
components in the code, both to remind them to perform
security actions and to document application-specific secu-
rity information. This in turn allows a static analysis tool
to reason more accurately about the code and detect more
complex vulnerabilities. We performed an evaluation of this
technique with students and found that they responded pos-
itively to the interface and could make the correct annota-
tions with good accuracy [11].

Our previous studies emphasized the need for clear and con-
textual communication with developers regarding security
vulnerabilities and their mitigations. In this paper, we ex-
tend our previous work by focusing on that communication
and how it addresses the questions that developers have
regarding security vulnerabilities. We also performed this
evaluation with professional developers instead of advanced
students. Our results demonstrate that clearly linking vul-
nerability information to the code enables developers with-
out extensive security expertise to understand and mitigate
such vulnerabilities.

2. RELATED WORK

Much research has been conducted to determine the effec-
tiveness of various tools which aim to detect and remove
vulnerabilities. Static analysis tools are the most commonly
used technique, comprising roughly half of the entire mar-
ket share for security tools [3]. Static analysis techniques
detect vulnerabilities in non-running or “static” source code
by looking for predefined patterns. However, due to high
false positive rates, static analysis tools are seldom used [2]
by regular developers.

Attempts have been made to improve the false positive rate
and developer usage of these tools. For example, Sadowski
et al. designed a tool called Tricorder for use within Google,
combining code reviews with static analysis. To keep false
positives low, Sadowski et al. allowed developers to write
their own static analyzers and implemented them on a project

Table 1: Groups and Categories of Questions Developers Asked, from [10]

Group

Category

Vulnerabilities, Attacks, and Fixes

Preventing and Understanding Potential Attacks

Understanding Alternative Fixes and Approaches

Assessing the Application of the Fix

Relationship Between Vulnerabilities

Code and the Application

Locating Information

Control Code and Call Information

Data Storage and Flow

Code Background and Functionality

Application Context and Usage

End User Interaction

Individuals

Developer Planning and Self Reflection

Understanding Concepts

Confirming Expectations

Problem Solving Support

Resources and Documentation

Understanding and Interacting with Tools

Vulnerability Severity and Rank

Notification Text

level, removing any analyzers with false positive rates that
were too high. As a result, developers widely used the tool
[8]. Livshits and Lam also designed a tool with emphasis on
reducing the amount of false positives. They created static
analyzers based on input from users. They also found their
tool to be effective, which they attributed to the low false
positive rate [7]. Lastly, Jovanovic evaluated a more spe-
cialized static analysis tool called Pixy. Pixy was designed
purely to tackle cross site scripting vulnerabilities in one lan-
guage, PHP. Jonavovic ultimately concluded that it was an
effective tool because it had a very low false positive rate
and was also effective in detecting zero day vulnerabilities
[5].

We took a different approach, exploring how to raise the
knowledge and practice of software developers in secure pro-
gramming. We proposed interactive static analysis, where
developers interact with a tool during the development pro-
cess to detect and mitigate a range of security vulnerabilities
[12]. The following section provides details on our current
prototype.

All of the above research has focused on the effectiveness
and perception of the tool under exploration. However, in
our previous work we more deeply explored the kinds of
questions developers ask when using static analysis tools to
detect security vulnerabilities [10]. This study examined de-
velopers as they interacted with a commercial static analysis
tool, FindBugs. The qualitative, exploratory study identi-
fied 17 categories of questions regarding understanding vul-
nerabilities and their fixes, understanding the code context
such as the control and data flow, and problem solving and
reasoning support. These categories, summarized in Table 1,
highlight the range of issues that developers face when using
tools to address security vulnerabilities. The questions now
provide us with a lens for analyzing the current evaluation.
We examine how interactive static analysis helped address
the vulnerability questions raised by our participants.

3. ASIDE

Application Security in the IDE (ASIDE) is a prototype in-
teractive static analysis tool, where developers are provided
with assistance in detecting and mitigating security vulner-
abilities as they write code [11, 13]. The goal is to raise
developer awareness and behavior of secure programming in
their code, without requiring a security background. The
current prototype is an Eclipse plugin for both Java and
PHP. Static analysis algorithms are run on the code under
development to detect a variety of potential issues. Warning
icons are then placed in the left margin of the code editing
window (see Figure 1), with interactive options for under-
standing and mitigating vulnerabilities.

51 logger.trace ("Entering doGet ()"):
B String accountName = request.getParameter ("AccountName"):

if (request.getSession().getAttribute ("USER") == null) {
logger.warn ("User not authenticated");
response.sendRedirect (request.getContextPath() + "/login.jsp"):
} else if (((User) request.getSession().getAttribute ("USER"))

Figure 1: Two ASIDE vulnerability warnings

ASIDE currently works on two types of potential vulnerabil-
ities. Type I are vulnerabilities that are independent of the
code context. These are vulnerabilities traditionally found
by static analysis tools. We currently support input vali-
dation, output encoding and SQL injection vulnerabilities.
ASIDE provides short descriptions alongside the warning,
and a “Read More” option for detailed and contextualized
descriptions of the potential vulnerability, ways to mitigate,
and example code. In addition, we have added “quick fixes”
for automatically generating sanitization code for input val-
idation and output encoding warnings using ESAPI’s open
source libraries [1]. Figure 2 shows a screenshot of the warn-
ing notification and quick fix options for an input valida-
tion vulnerability, while Figure 3 shows the high level “Read
More” page for a SQL Injection vulnerability. Based on feed-
back from previous evaluations of ASIDE, we have made all
notifications and communications as contextualized as pos-
sible, including lines of code or variable names where ap-
propriate. For this study the text was hard-coded to ensure

int newBalance = Integer.valueOf(request.getParameter ("NewBalance"

1z

accuracy, and we will fully implement such notifications in
the future based on study feedback.

logger.trace ("Entering doGet()");

String accountName = request.getParameter ("AccountName");

[This will generate code to ensure that "accountName" only
contains alphabetical characters and numbers. All other
characters will throw an exception.

“? “Potential Security Vulnerability Detected”
W Allow Only Credit Card Numbers

W Allow Only Email Addresses

¥ Allow Only Letters and Numbers |

" Allow Only Minimal HTTP Characters

W Allow Only Social Security Numbers

" Allow Only URL Characters

“? Read More

@ Extract to method (Ctrl+2, M)

[The generated code uses getValidinput method from the
Enterprise Security API (ESAPI). Go to LINK for more information.

@ Change modifier to final

T CaTCIERTEpTIOT =,

Press ‘Tab’ from proposal table or click for focus

System.err.println("Account hasn't been properly updated!"):
e.printStackTrace () ;

Figure 2: ASIDE menu, showing possible quick fixes
for an input validation warning

The vulnerable line is:

stmt.executeupdate(sql);

+ Why was this line marked?

+ What could happen if this warning is ignored?

+ How doyoufixit?

4 Wantadditional resources?

Figure 3: Read more contextualized help page for
SQL injection warning

Type II vulnerabilities require additional application-specific
knowledge in order to detect potential issues. In these cases,
developers are first requested to provide that knowledge, in
the form of an annotation performed by highlighting code.
We currently support access control vulnerabilities. When
ASIDE detects security-sensitive database operations, de-
velopers are requested to annotate the corresponding access
control logic. This request is indicated by a yellow highlight
of the sensitive code, and a yellow question mark along-
side the code. We chose a question mark to convey that
the tool is requesting information, not indicating anything
wrong with the code. Thus, in the example in Figure 4, the
developer was asked to indicate where access control checks
are located for the function updateAccount that accesses sen-
sitive database tables. Clicking on the icon or code provides
a menu where the developer can access ASIDE explanations,
as well as choose to enter annotation mode.

In annotation mode, the developer would then highlight the
statements performing access control for the sensitive op-
eration, highlighted in green in Figure 5. In doing so, the
developer is reminded to add such checks, if they are not al-
ready implemented. ASIDE indicates the annotation with a
green highlight and a small green diamond next to the code.

ASIDE then performs additional static analysis to detect
potential access control vulnerabilities, signifying them with
the same red warning icon as Type I vulnerabilities.

45 String accountName = request.getParameter("AccountName”);

45 AccountMapper accounts = getAccounts();

43 if (((User) request.getSession().getAttribute("USER")).ownAccount(accountName))
49

se accounts . updateAccount (accountiame, @)

51 }

52 else

53 {

55 ¥

Figure 4: Annotation request for a security-sensitive
operation, shown with a yellow highlight and ques-
tion mark icon.

45 String accountName = request.getParameter("AccountName”);
46 AccountMapper accounts = getAccounts();
+ 48 fEf (((User) request.getSession().getAttribute("USER")).ownAccount(accountiame))
49
W se laccounts. updateAccount (accountName, @8);
51 3
52 else
53 {

55 }

Figure 5: An annotation and annotation request
that have been completed.

We have previously evaluated ASIDE’s security performance,
demonstrating its abilities to detect all currently supported
classes of vulnerability [14, 12]. In addition, we have per-
formed several user studies with our evolving versions of
ASIDE [11, 13, 15]. Previous studies have mainly utilized
students, and demonstrated that advanced students can un-
derstand ASIDE and appreciate the awareness of security
vulnerabilities that ASIDE provides. However, they are also
wary of implementing ASIDE’s recommended fixes due to
fears of breaking their functional code. We have continued
to improve the communication and interaction with ASIDE
based on these evaluations. In this study, we focus on pro-
fessional software developers, and specifically whether and
how ASIDE’s design can effectively communicate vulnera-
bility information.

4. METHODOLOGY

As a follow up study to our previous work, we designed an in-
terview and observation-based study to examine software de-
veloper reactions and perceptions to interactive static analy-
sis. Specifically, this included the communication of vulnera-
bility information provided by our tool ASIDE. We recruited
professional software developers using a snowball sampling
technique. We recruited from a variety of sources, includ-
ing developers we knew as well as local software develop-
ment groups. We then asked participants to recommend
additional participants. To compensate developers for their
time, we provided a $25 gift card after the study.

We recruited a total of thirteen participants with profes-
sional development experience. Eight of our participants
hold a job title of software engineer, or java or software de-
veloper. Other job titles include systems engineer, software
tester, and security engineer. Participants had an average
of 7.73 years (SD 7.17) of professional programming experi-
ence. Three of our participants were female; ten were male.

We collected our demographic data at the end of the study
to remove any possibility of the survey biasing the partici-
pant’s performance. As a part of this survey, we also asked
participants to rate their programming knowledge and secu-
rity skills on a scale of one to ten. Participants responded
with an average of 7.92 (SD 1.38) for programming skills and

5.31 (SD 2.84) for security knowledge. The high ranking for
programming skills was not surprising, considering all of our
participants had professional software development experi-
ence. What is perhaps more surprising is that the security
knowledge rating was moderate instead of poor. This sug-
gests that our participants did have some form of security
training or education, or, at the very least, had encountered
security sensitive situations while coding.

Participation in the study was done remotely. Participants
would call the evaluator on the phone, and login to our com-
puter through the use of remote desktop software. Partic-
ipants then interacted with our tool, running on our com-
puter, through this software. Participants interacted with
ASIDE running on a project called Gold Rush, an internally
developed Java-based banking application (99 files) used to
teach web application security. Participants were first given
a brief introduction to ASIDE. They were then shown and
allowed to interact with a trainer example, which consisted
of one input validation warning. The purpose of the exam-
ple was to answer any questions they had before beginning,
and to account for Eclipse interface quirks which could not
be removed or fixed in our current prototype.

Participants were then given 6 tasks - to view and respond
to four vulnerability warnings (2 input validation, 1 output
encoding, and 1 SQL injection) and 2 annotation requests
produced by ASIDE. The second input validation task was
more complex. In this instance, unsanitized input entered
the program, but was immediately parsed to a double, mean-
ing malicious code would not be able to enter the system.
However, this would result in an uncaught exception be-
ing thrown. In order to standardize the study, ASIDE was
altered to only show these 6 warnings, and suppress any ad-
ditional warnings. All participants saw the warnings in the
same order.

After showing each participant each warning, we asked the
participant to interact with ASIDE and tell us how they
would respond. After investigating the vulnerability and
choosing a “quick fix” if one was available, we then inter-
viewed participants regarding their understanding of the
vulnerability and their reaction to ASIDE. After visiting all
of the warnings, if they had not visited the “Read More”
pages, we then prompted them to do so. Once they had
observed all of the warnings, we showed them a very brief
example of an annotation request and an annotation. Then,
the participant was asked to respond to two different anno-
tation requests, and provide their comments. For the first
annotation request, access control logic was in the code and
available to be highlighted. The second request was a false
positive - access control logic was not necessary, and was
thus not present in the code.

The phone call was audio recorded, and screen recording
software was used to capture the activities of the participant
on screen. The questions from the previous study on devel-
oper questions (See Table 1) were used for the first round of
coding. Specifically, the primary author coded all responses
and behaviors based on the question that it best related
to. Below, we summarize our results based on this question
categorization. The primary author also did an additional
round of open coding to determine performance and look for
any additional common patterns and interesting responses.

S. RESULTS

Our goal was to understand how interactive static analysis
helps developers in answering their questions regarding se-
curity vulnerabilities. Our results will also help inform the
evolving design of our own tool, ASIDE.

Developers had no major challenges with understanding and
interacting with ASIDE. They were also quite accurate in
their choices for addressing the warnings they saw. All thir-
teen developers chose the correct quickfix for the first input
validation warning. Ten developers either correctly identi-
fied the second input validation warning as a false positive
or provided a correct solution for sanitizing the input and
handling the exception. Eleven out of thirteen developers
chose the correct solution for the output encoding warning.
All thirteen developers also correctly discussed how they
would implement the solution to the SQL injection warning.
Twelve out of thirteen developers successfully completed the
first access control annotation task. However, only eight out
of thirteen responded to the annotation false positive cor-
rectly. Others highlighted the incorrect access control logic,
corresponding to a later sensitive operation.

As with our previous evaluations, participants responded
positively towards using the tool and the additional aware-
ness it provides:

“I’'m not a security expert. It offers a different perspective,
so I kind of felt like one while I was using it, just because
it helps me recognize those things. It’s also training too. I
think it would be really valuable for developers to be using,
especially if it’s detecting vulnerabilities as they write them.”
-p4

We categorized the remaining behavior and perceptions of
developers based on the relevant set of questions from Ta-
ble 1 and concerns they were addressing at the time. We
present only the most relevant question categories we found
below, in order of how participants stepped through their
tasks.

5.1 Notification Text

Questions in this category address how the notification re-
lated to the code. The first interaction developers have with
ASIDE is clicking on the warning icon to view the notifica-
tion text. Developers appeared to have little difficulty un-
derstanding the source of the warning - what in the code was
triggering ASIDE. Integrating the warnings within the code,
and further contextualizing the text of the explanations, re-
duced developer questions. Developers also commented pos-
itively about the contextualized text. Their performance in
using the ASIDE tool to choose the right solution also indi-
cates that the text was effective. Developers did often reread
the text from the warnings to try to fully determine what
was meant by the wording. They sometimes suggested a
standard template response with one section that explains
why the line was flagged and another for explaining the con-
sequences if the issue is left alone. However, they indicated
little difficulty in understanding the purpose of the warnings:

“The nice thing about these tools is it brings it to your atten-
tion. It could be thousands of lines of code here. If I looked
at that one line of code for a long time I’d probably see it,
but that’s the nice thing about the tool. It gets you focused
to that spot.” -p8

5.2 Preventing and understanding potential at-
tacks

Questions in this category involve understanding why there
is a vulnerability and what kinds of attacks could occur as
a result. Once our participants understood the warning,
they then sought to determine the cause and whether it was
instead a false positive. Developers did not seem to ques-
tion why the warning was triggered, but instead focused on
whether the issue was actually exploitable. In 21 instances,
8 developers explicitly or implicitly indicated that whether
or not code was vulnerable depended on whether or not a
perceived exploit was possible. If no exploit was observed or
the developer determined that an exploit was not possible,
the developer did not consider the code to be vulnerable. In
other words, they seemed to believe the tool — that there was
potential for a vulnerability. But they then examined the
larger code context to determine if that issue could result in
a security problem. This led to some developers pronounc-
ing some vulnerability warnings as false positives, since they
did not appear exploitable. For example:

“It might not be the most effective cross-site scripting but
in this case I feel like just because of the way current users
initialize, it’s not really that big of an issue.” -p13

“If it’s not sanitized it’s known as a XSS attack. It’s going
to depend on the implementation of account.”-pl

This phenomenon was particularly noticeable in the case of
output encoding warnings. For this warning, unsanitized
output was printed to a webpage. Two developers indi-
cated that this was not a vulnerability since the data should
originate from a trusted source. The developers explicitly
stated that input validation should be performed where data
originates, and once in the system it should be considered
trusted. This caused them to take no action and pronounce
the warning to be a false positive.

“I would think that we would take care of this somewhere
else, I would think we wouldn’t want any kind of injected, we
would validate the user name at the time when they select
it, not here.” -p3

“I have to say my initial gut feel when looking at this code
would be that its a more of false positive type of an issue.
Because, I would have assumed they would have been checked
in when I got the user.”-p6

However, secure programming best practices still advocate
for sanitization of such output. If input validation was some-
how not performed at a taint source due to an unknown vul-
nerability or due to unknown data flows in the system, the
code would then be exploitable in a cross site scripting or
log poisoning attack.

Developers actively tried to understand attack vectors. Al-
though only 3 discussed the perspective of the attacker, in
8 cases developers evaluated a warning based on where pos-
sibly malicious content could enter the program. ASIDE
generally places warnings where the vulnerability is best
addressed. This means that for input validation warnings,
ASIDE places the warning on the line where data enters the
program. This type of warning may have helped developers
identify attack vectors.

“The issue here is that they would put some code in the user-

name and they would evaluate that.”-p3

However, ASIDE did not provide concrete information on
specific exploits, and this was a frequently requested addi-
tion to the “Read More” help pages.

When faced with annotation requests, developers sometimes
asked questions about the purpose of the annotation. Four
developers did not fully understand the reason for creating
annotations. We did not mention access control vulnerabil-
ities to participants, and it is possible that many did not
understand what they were. It is also possible that they did
not understand how the tool could use the annotations to
detect vulnerabilities, particularly since we did not actually
provide a warning of an access control vulnerability. Some
seemed to view annotation more as a task they had to do for
the tool, rather than providing input to the tool to help it
detect issues. Thus, while participants were capable of per-
forming the annotation task, they were not able to reason
about the potential for access control vulnerabilities as well
as they could the injection-based vulnerabilities. One impli-
cation is that we need to further improve the explanations
surrounding the need for annotation and its purpose.

“I was confused as to whether or not I was actually checking
anything or just simply annotating it. ~p2

5.3 Vulnerability Severity and Ranking

Unlike some other static analysis tools, ASIDE does not
provide any severity or confidence ratings for the warnings.
However, developers judged the severity of the warning based
upon the perceived severity of potential exploits. SQL in-
jection was almost always seen as particularly severe. Cross
site scripting was, on the whole, perceived to be less severe
than SQL injection:

“I’'m not sure cross site scripting is on top of my kinda se-
curity issues list in this case, i’d be more worried about this
actually just working.” -p13

In discussing severity, participants desired worst case exam-
ples to help them reason about the seriousness of the various
warnings they encountered.

“I wished it would give examples of what the insertion of ma-
licious code/ XSS what it might do. If you say to someone,
someone could go through the stop sign, that’s one thing.
If you say someone could go through the stop sign and get
killed, you see it as a different severity.” -p8

While secure programming best practices recommends de-
velopers fix all vulnerabilities, participants clearly desired
knowledge of how serious issues were in order to prioritize
their changes. ASIDE did not help them judge this severity,
but could easily include more detailed exploit information
in the Read More explanations.

5.4 Understanding Alt Fixes and Approaches

Questions in this category related to understanding and com-
paring the alternatives for fixing the vulnerability warning.
For the input validation and output encoding vulnerabilities,
ASIDE provided a list of “quick fixes,” generating code that
sanitized the data based upon the type of input or output.
For SQL injection, the detailed explanation advocated using
Prepared statements, and provided examples, but did not
automatically generate the code. Because of this support,

participants did not research additional alternatives outside
of ASIDE, even though links for more information were pro-
vided in the detailed help pages for each warning. Develop-
ers seemed to understand the menu options, although there
was confusion over the output encoding options of “Sanitize
HTML” and “Sanitize URL.” Some participants wanted to
choose both. Thus, the encoding options were not as self-
explanatory as the input validation options, and still need
better explanation of how to choose between them.

Developers did carefully consider which options were the
best fit for the code. For example, participants were asked
to validate input for a username. ASIDE offered the op-
tion to “Allow Only Letters and Numbers”, which was the
best choice. However, participants who felt that usernames
should contain only letters desired an “Allow Only Letters”
option. Participants wanted the sanitization to be very spe-
cific to the type of characters which were valid in the given
context, and were bothered by not having the exact right op-
tion provided. Four participants thought they could write
their own solution that would be more specific to the use
case, and mentioned using regular expressions to do so. In
this case, they placed higher trust in their own solutions
than those of the tool, likely due to their previous experi-
ence with regular expressions and these types of functions.
Given developers’ desires for fitting the use case, we should
consider ways to help developers customize quick fixes or
provide ways to link to additional options. We should also
consider providing fixes for data types instead of use cases,
since they would lend well to additional customization by
the developer.

“Here I would like to see numbers only, but I don’t quite see
an option for that. I would probably go ahead and activate
the letters and numbers quickfix and then modify it so that
it’s just numbers.” -pl

Despite a few developers’ desires to write their own sani-
tization functions, many developers strongly desired quick
fixes whenever possible. Several even speculated on how to
provide a quick fix option for SQL injection vulnerabilities,
which would involve automatically turning dynamic state-
ments into prepared statements in the code. Quick fixes
may provide a significant boost to the effectiveness of static
analysis since it reduces or removes the possibility of the
developer improperly implementing a fix.

5.5 Assessing the Application of the Fix
Questions in this group related to how to apply the fixes
and the impact on the code as a result. Developers did not
question the difficulty of applying a quick fix, and expected
this to be an easy process. Note that in this study we did
not ask participants to generate and verify the fix. Instead,
we queried developers for what they thought would happen
and their concerns. They were hesitant to commit to saying
that the chosen solution would make the code secure with-
out viewing and testing the generated code. After choosing
a quick fix for each vulnerability warning, developers were
asked to respond with a number from 1 to 10 (with 1 being
very weak and 10 being very strong) indicating how confi-
dent they were that the chosen quick fix would fix the prob-
lem. Among all tasks and all developers, the average given
was 7.96 (SD 2.12), indicating generally high confidence.

While two developers expressed concern that the quick fix

could break the code, the rest appeared to trust that it would
not alter the functionality. This is in contrast to our pre-
vious evaluations of ASIDE with students, who were very
fearful of implementing ASIDE’s recommendations for fear
of breaking their code. However, developers would often
comment if they noticed some sort of logic issue or function-
ality concern in addition to the vulnerability. In many cases,
they expressed concern that more steps may be necessary to
properly secure the code beyond what ASIDE was flagging
as an issue.

While they did not expect the quick fixes to break the code,
developers were hesitant to trust the security capabilities of
the generated code. This suggests that tools which provide
quick fixes for vulnerabilities should generate code which is
well commented and easy to read and understand in order to
gain the developers’ trust. Effort should also be placed into
convincing the developers of the effectiveness of the solution.

5.6 Code Background and Functionality
Questions here relate to what the code is doing and why
it’s written the way it is. Participants felt it necessary to
understand the application’s functionality before applying
a fix. Most of the time that participants spent thinking
was spent trying to understand the underlying code. They
often talked about how the code worked and sometimes jus-
tified their response to the warning based on it. Developers
would also sometimes critique the code, particularly when
they identified an issue in which the application logic did
not make sense in a real world application. Lastly, partic-
ipants sometimes expressed confusion over unneeded code
and questioned whether or not it contributed to the vulner-
ability.

“I guess, the question is what is the account? Is the account
like your username or is the account the actual, like a bank
account name?’-p2

The study used code the developer was not familiar with,
likely leading to greater time spent understanding the code
context in order to support decisions. While our tool did not
specifically help developers with understanding the back-
ground functionality, the warnings and tool interaction also
did not seem to interfere. Developers were able to reason
about the security implications based on the warnings, and
relate the warning to the surrounding code. This demon-
strates the potential benefits of embedding security warnings
within the code development view.

5.7 Resources and Documentation

Questions in this grouping regarded how to find additional
information and resources, and their reliability. As shown
in Figure 2, ASIDE provides short explanations of warn-
ings and quick fixes alongside the menu. Developers all read
these explanations in detail. However, only 5 developers
visited the more detailed “Read More” help page without
prompting. Participants stated that the “Read More” op-
tion, shown in the menu with the rest of the quick fixes, did
not stand out as containing additional information. Partic-
ipants suggested placing a link to the detailed pages in the
shorter menu explanations to make it more visible. While
none did so, others mentioned they would be likely to google
for more information if they wanted it.

Participants appeared to trust and appreciate the help pages,

and never questioned the correctness of the explanations or
suggested solutions. In particular, participants praised the
ability to expand and shorten sections as needed, as well as
the copy/pastable concrete code examples:

“Ah ha! There’s an example. That’s a good example. How
would you fix it? View example prepared statement. Ah,
what’d you know. That’s exactly what I was hoping it would
show.” -pl

“Yes! I feel confident now. That’s exactly what I wanted to
see.” -p8

Thus, while our tool still needs to make these resources more
visible, it appears that having the ability to explore layered
explanations, growing ever more detailed, alongside their
code was appreciated by developers and contributed to their
understanding of what the tool was asking them to do.

6. CONCLUSIONS

We conducted a study to analyze how developers under-
stand an interactive static analysis tool in the context of the
questions we identified in our previous study. With only a
few exceptions, our tool did seem to effectively communi-
cate vulnerability information to developers. Providing this
information within the code view helped developers under-
stand the source and reason about solutions. We believe
that contextualizing the text of messages and help pages
improved understanding over our previous versions of our
tool’s interface. However, we also note the need to continue
to improve the explanations for annotation requests, where
developers are requested to provide security-related informa-
tion. What did surprise us was how participants considered
the possible exploits for a vulnerability, and their severity,
and wanted more details of the implications of not fixing the
issue. Participants were not so fearful of impacting function-
ality, but instead concerned with whether the solution was
truly needed and actually resolved the security issue. Not
surprisingly, participants desired quick fix options and con-
crete examples for mitigating vulnerabilities. Yet, they also
expressed desire to customize these solutions to fit the spe-
cific use case in question. Thus, there may be a tension
in supporting a set of clear and limited options for usabil-
ity, and providing sufficiently flexible options to fit any code
context.

7. ACKNOWLEDGMENTS

This work was partially supported by NSF grants 1129190,
1318854, and DOE award number P200A 130088. We would
also like to thank Jun Zhu and Mahmoud Mohammadi for
their work on the ASIDE implementation.

8. REFERENCES

[1] Owasp extended security api (esapi).
https://www.owasp.org/index.php/Category: OWASP,
2016.

[2] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler,

J. Penix, and W. Pugh. Using static analysis to find
bugs. IEEE Softw., 25(5):22-29, Sept. 2008.

[3] M. Brandel. Cs online article.
http://www.csoonline.com/article/2123602.html,
01,/20/20009.

[4] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge. Why don’t software developers use
static analysis tools to find bugs? In Proceedings of

[5]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

the 2013 International Conference on Software
Engineering, ICSE 13, pages 672—681, Piscataway,
NJ, USA, 2013. IEEE Press.

N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: a static
analysis tool for detecting web application
vulnerabilities. In 2006 IEEE Symposium on Security
and Privacy (S P’06), pages 6 pp.—263, May 2006.

S. Kerner. eweek.com article. software vulnerabilities
lead to internal security problems kaspersky.
http://www.eweek.com/security /software-
vulnerabilities-lead-to-internal-security-problems-
kaspersky.html,

12/05/2013.

V. B. Livshits and M. S. Lam. Finding security
vulnerabilities in java applications with static analysis.
In Proceedings of the 14th Conference on USENIX
Security Symposium - Volume 14, SSYM’05, pages
18-18, Berkeley, CA, USA, 2005. USENIX
Association.

C. Sadowski, J. van Gogh, C. Jaspan, E. Séderberg,
and C. Winter. Tricorder: Building a program analysis
ecosystem. In Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ICSE
’15, pages 598-608, Piscataway, NJ, USA, 2015. IEEE
Press.

T. Schlein. The rise of the chief security officer: What
it means for corporations and customers.
http://www.forbes.com/sites/the-rise-of-the-chief-
security-officer/,

2015.

J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and
H. R. Lipford. Questions developers ask while
diagnosing potential security vulnerabilities with
static analysis. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 248-259, New York, NY,
USA, 2015. ACM.

T. Thomas, B. Chu, H. Lipford, J. Smith, and

E. Murphy-Hill. A study of interactive code
annotation for access control vulnerabilities. In
Proceedings of the 2015 IEEE Symposium on Visual
Languages and Human-Centric Computing, VLHCC
’15, Washington, DC, USA, 2015. IEEE Computer
Society.

J. Xie, B. Chu, H. R. Lipford, and J. T. Melton.
Aside: Ide support for web application security. In
Proceedings of the 27th Annual Computer Security
Applications Conference, ACSAC '11, pages 267-276,
New York, NY, USA, 2011. ACM.

J. Xie, H. Lipford, and B.-T. Chu. Evaluating
interactive support for secure programming. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’12, pages
27072716, New York, NY, USA, 2012. ACM.

J. Zhu, B. Chu, H. Lipford, and T. Thomas.
Mitigating access control vulnerabilities through
interactive static analysis. In ACM Symposium on
Access Control Models and Technologies. ACM, 2015.
J. Zhu, J. Xie, H. R. Lipford, and B. Chu. Supporting
secure programming in web applications through
interactive static analysis. Journal of Advanced
Research, 5(4):449-462, 2014.

