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Abstract

Programmers use databases when they want a high level

of reliability. Specifically, they want the sophisticated

ACID (atomicity, consistency, isolation, and durabil-

ity) protection modern databases provide. However, the

ACID properties are far from trivial to provide, partic-

ularly when high performance must be achieved. This

leads to complex and error-prone code—even at a low

defect rate of one bug per thousand lines, the millions of

lines of code in a commercial OLTP database can harbor

thousands of bugs.

Here we propose a method to expose and diagnose

violations of the ACID properties. We focus on an os-

tensibly easy case: power faults. Our framework in-

cludes workloads to exercise the ACID guarantees, a

record/replay subsystem to allow the controlled injec-

tion of simulated power faults, a ranking algorithm to

prioritize where to fault based on our experience, and

a multi-layer tracer to diagnose root causes. Using our

framework, we study 8 widely-used databases, ranging

from open-source key-value stores to high-end commer-

cial OLTP servers. Surprisingly, all 8 databases exhibit

erroneous behavior. For the open-source databases, we

are able to diagnose the root causes using our tracer, and

for the proprietary commercial databases we can repro-

ducibly induce data loss.

1 Introduction

Storage system failures are extremely damaging—if your

browser crashes you sigh, but when your family photos

disappear you cry. Few people use process-pairs or n-

versioning, but many use RAID.

Among storage systems, databases provide the

strongest reliability guarantees. The atomicity, con-

sistency, isolation, and durability (ACID) properties

databases provide make it easy for application develop-

ers to create highly reliable applications. However, these

properties come at a cost in complexity. Even the rel-

atively simple SQLite database has more than 91 mil-

lion lines of test code (including the repetition of param-

eterized tests with different parameters), which is over

a thousand times the size of the core library itself [11].

Checking for the ACID properties under failure is noto-

riously hard since a failure scenario may not be conve-

niently reproducible.

In this paper, we propose a method to expose and di-

agnose ACID violations by databases under clean power

faults. Unexpected loss of power is a particularly inter-

esting fault, since it happens in daily life [31] and is a

threat even for sophisticated data centers [24, 25, 27, 28,

29, 30, 41, 42] and well-prepared important events [18].

Further, unlike the crash model in previous studies (e.g.,

RIO [16] and EXPLODE [44]) where memory-page cor-

ruption can propagate to disk, and unlike the unclean

power losses some poorly behaved devices suffer [46],

a clean loss of power causes the termination of the I/O

operation stream, which is the most idealized failure sce-

nario and is expected to be tolerated by well-written stor-

age software.

We develop four workloads for evaluating databases

under this easy power fault model. Each workload has

self-checking logic allowing the ACID properties to be

checked for in a post-fault database image. Unlike ran-

dom testing, our specifically designed workloads stress

all four properties, and allow the easy identification of

incorrect database states.

Given our workloads, we built a framework to effi-

ciently test the behavior of databases under fault. Using a

modified iSCSI driver we record a high-fidelity block I/O

trace. Then, each time we want to simulate a fault during

that run, we take the collected trace and apply the fault

model to it, generating a new synthetic trace. We create a

new disk image representative of what the disk state may

be after a real power fault by replaying the synthetic trace

against the original image. After restarting the database

on the new image, we run the consistency checker for the
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workload and database under test.

This record-and-replay feature allows us to systemati-

cally inject faults at every possible point during a work-

load. However, not all fault points are equally likely

to produce failures. User-space applications including

databases often have assumptions about what the OS, file

system, and block device can do; violations of these as-

sumptions typically induce incorrect behavior. By study-

ing the errors observed in our early experiments, we

identify five low-level I/O patterns that are especially

vulnerable. Based on these patterns, we create a rank-

ing algorithm that prioritizes the points where injecting

power faults is most likely to cause errors; this priori-

tization can find violations about 20 times faster while

achieving the same coverage.

Simply triggering errors is not enough. Given the huge

code base and the complexity of databases, diagnosing

the root cause of an error could be even more challeng-

ing. To help in diagnosing and fixing the discovered

bugs, we collect detailed traces during the working and

recording phases, including function calls, system calls,

SCSI commands, accessed files, and accessed blocks.

These multi-layer traces, which span everything from the

block-level accesses to the workloads’ high-level behav-

ior, facilitate much better diagnosis of root causes.

Using our framework, we evaluate 8 common

databases, ranging from simple open-source key-value

stores such as Tokyo Cabinet and SQLite up to com-

mercial OLTP databases. Because the file system could

be a factor in the failure behavior, we test the databases

on multiple file systems (ext3, XFS, and NTFS) as ap-

plicable. We test each combination with an extensive

selection—exhaustively in some cases—of power-fault

points. We can do this because our framework does not

require the time-consuming process of running the entire

workload for every fault, allowing us to emulate thou-

sands of power faults per hour.

To our surprise, all 8 databases exhibit erroneous

behavior, with 7 of the 8 clearly violating the ACID

properties. In some cases, only a few records are cor-

rupted, while in others the entire table is lost. Although

advanced recovery techniques (often requiring intimate

knowledge of the database and poorly documented op-

tions) may reduce the problem, not a single database we

test can be trusted to keep all of the data it promises to

store. By using the detailed multi-layer traces, we are

able to pinpoint the root causes of the errors for those

systems we have the source code to; we are confident that

the architects of the commercial systems could quickly

correct their defects given similar information.

In summary, our contributions are:

• Carefully designed workloads and checkers to

test the ACID properties of databases. Despite

extensive test suites, existing databases still contain

bugs. It is a non-trivial task to verify if a database

run is correct after fault injection. Our 4 workloads

are carefully designed to stress different aspects of

a database, and further are designed for easy valida-

tion of correctness.

• A cross-platform method for exposing reliability

issues in storage systems under power fault. By

intercepting in the iSCSI layer, our framework can

test databases on different operating systems. By

recording SCSI commands (which are what disks

actually see), we can inject faults with high fidelity.

Further, SCSI tracing allows systemic fault injec-

tion and ease of repeating any error that is found.

Although we focus here on databases, this method

is applicable to any software running on top of a

block device.

• A pattern-based ranking algorithm to identify

the points most likely to cause problems when

power faulted in database operations. We iden-

tify 5 low-level patterns that indicate the most vul-

nerable points in database operations from a power-

fault perspective. Further analysis of the root causes

verifies that these patterns are closely related to in-

correct assumptions on the part of database imple-

menters. Using these patterns to prioritize, we can

accelerate testing by 20 times compared to exhaus-

tive testing while achieving nearly the same cover-

age.

• A multi-layer tracing system for diagnosing root

causes of ACID violations under fault. We com-

bine the high-level semantics of databases with the

low-level I/O traffic by tracing the function calls,

system calls, SCSI commands, files, and I/O blocks.

This correlated multi-layer trace allows quick diag-

nosis of complicated root causes.

• Experimental results against 8 popular

databases. We apply our framework to a wide

range of databases, including 4 open-source and 4

commercial systems. All 8 databases exhibit some

sort of erroneous behavior. With the help of the

multi-layer tracer, we are able to quickly pinpoint

the root causes for the open-source ones.

2 Design Overview

2.1 Fault Model

We study the reliability of databases under a simple fault

model: clean power fault. Specifically, we model loss of

power as the potential loss of any block-level operations
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Figure 1: Overall Workflow

that have not been acknowledged as committed to persis-

tent storage, with the proviso that if we drop an opera-

tion, we must drop any operations that explicitly depend

on it as well. Although our system can induce the more

complex faults of other fault models [16, 44, 46], which

consider more complex data corruption and inconsistent

behavior, we focus here on the simplest case. Such cor-

ruption and reordering/dropping of operations seem un-

reasonable to expect databases to tolerate, given that they

so badly violate the API contract of the lower-level stor-

age system.

The specifics of our fault model are as follows: a fault

can occur at any point, the size of data written to media

is always an integer block multiple (512 bytes or 4 KB),

the device keeps all promises of durable commit of op-

erations (e.g., completed syncs are honored as are write

barriers), blocks are written (or not) without corruption,

and interrupted or dropped operations have no effect. We

believe this is the most idealized scenario under power

failure, and we expect databases to honor their ACID

guarantees under such faults.

2.2 Overall Workflow

Our testing framework injects simulated power faults by

intercepting iSCSI [4] commands. iSCSI is a standard

allowing one machine (the initiator) to access the block

storage of another machine (the target) through the net-

work. To everything above the block driver on the initia-

tor, iSCSI is completely transparent, making it an ideal

place to intercept disk activity. Further, the iSCSI tar-

get daemon can be implemented in user space [6], which

greatly increases the flexibility of fault injection com-

pared to a more complex kernel-level failure emulation

layer. Finally, iSCSI interception allows a single fault in-

jection implementation to test databases running on any

operating system having an iSCSI initiator (aka all mod-

ern OSes).

Figure 1 shows an overview of our framework. There

are three main components: the worker and checker, a

record and replayer, and a multi-layer tracer. The over-

all workflow goes as follows: First, the worker applies

a workload to stress a database starting from a known

disk image. Rather than simply randomly writing to the

database, the workloads are carefully designed so that the

checker can verify the ACID properties of the post-fault

image. Second, the record and replayer monitors the disk

activities via the iSCSI layer. All blocks in the data trans-

fer commands are recorded. Third, with the recorded

block trace, the replayer simulates a power fault by par-

tially replaying the block operations based on fault injec-

tion policies against a copy of the starting image, creating

a post-fault disk image. Fourth, the checker opens the

database on the post-fault image and verifies the ACID

properties of the recovered database. During each of the

above steps, the multi-layer tracer traces database func-

tion calls, system calls, SCSI commands, accessed files,

and accessed blocks to provide unified information to di-

agnose the root cause of any ACID violations.

3 Worker and Checker

We developed four workloads with different complexi-

ties to check if a database provides ACID properties even

when under fault. In particular, we check (1) atomicity,

which means a transaction is committed “all or nothing”;

(2) consistency, which means the database and applica-

tion invariants always hold between transactions; (3) iso-

lation, which means the intermediate states of a trans-

action are not visible outside of that transaction; and (4)

durability, which means a committed transaction remains

so, even after a power failure or system crash.

Each workload stresses one or more aspects of the

databases including large transactions, concurrency han-

dling, and multi-row consistency. Each workload has

self-checking properties (e.g., known values and orders

for writes) that its associated checker uses to check the

ACID properties. For simplicity, we present pseudo code

for a key-value store; the equivalent SQL code is straight-

forward. We further log timestamps of critical operations

to a separate store to aid in checking.

Workload 1: A single thread performs one transaction

that creates txn size (a tunable parameter) rows:

Begin Transaction

for i = 1 to txn_size do

key = "k-" + str(i)

value = "v-" + str(i)

put(key, value)

end

before_commit = get_timestamp()

Commit Transaction

after_commit = get_timestamp()

We use this workload to see whether large transactions

(e.g., larger than one block) trigger errors. The two

timestamps before commit and after commit record

the time boundaries of the commit. The checker for this

workload is straightforward: if the fault was after the

commit (i.e., later than after commit), check that all

3
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txn size rows are present; otherwise, check that none

of the rows are present. If only some rows are present,

this is an atomicity violation. Being a single-threaded

workload, isolation is not a concern. For consistency

checking, we validate that a range scan gives the same

result as explicitly requesting each key individually in

point queries. Moreover, each retrievable key-value pair

should be matching; that is, key N should always be as-

sociated with value N.

We report a durability error if the fault was clearly af-

ter the commit and the rows are absent. A corner case

here is if the fault time lies between before commit and

after commit. The ACID guarantees are silent as to

what durability properties an in-flight commit has (the

other properties are clear) so we do not report durabil-

ity errors in such cases. We do find that some databases

may change back and forth between having and not hav-

ing a transaction as the point we fault advances during a

commit.

Workload 2: This is a multi-threaded version of work-

load 1, with each thread including its thread ID in the

key. Since we do not have concurrent transactions op-

erating on overlapping rows, we do not expect isolation

errors. We do, however, expect the concurrency handling

of the database to be stressed. For example, one thread

may call msync and force state from another thread to

disk unexpectedly.

Workload 3: This workload tests single-threaded

multi-row consistency by simulating concurrent, non-

overlapping banking transactions. It performs txn num

transactions sequentially, each of which moves money

among a different set of txn size accounts. Each ac-

count starts with some money and half of the money in

each even numbered account is moved to the next higher

numbered account (i.e., half of k-t-2i’s money is moved

to k-t-(2i+1) where t is the transaction ID):

for t = 1 to txn_num do

key_prefix = "k-" + str(t) + "-"

Begin Transaction

for i in 1 to txn_size/2 do

k1 = key_prefix + str(2*i)

k2 = key_prefix + str(2*i+1)

tmp1 = get(k1)

put(k1, tmp1 - tmp1/2)

tmp2 = get(k2)

put(k2, tmp2 + tmp1/2)

end

before_commit[t] = get_timestamp()

Commit Transaction

after_commit[t] = get_timestamp()

end

As with workload 1, we check that each transaction

 







 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: An example workload 4 output table.

is all-or-nothing, that transactions committed before the

fault are present (and those after are not), and that the

results for range-scans and point-queries match. Further,

since none of the transactions change the total amount of

money, the checker tests every pair of rows with keys

of the form k-t-2i, k-t-(2i+1) to see whether their

amounts sum to the same value as in the initial state.

Workload 4: This is the most stressful (and time-

consuming) workload. It has multiple threads, each

performing multiple transactions, and each transaction

writes to multiple keys. Moreover, transactions from the

same or different threads may update the same key, fully

exercising database concurrency control.

Figure 2 shows an example output table gener-

ated by workload 4. In this example, there are two

threads (THR-1 and THR-2), each thread contains two

transactions (TXN-1 and TXN-2), and each transaction

updates two work-row keys (e.g., k-2 and k-5 for

THR-1-TXN-1). The table has two parts: the first 4 rows

(meta rows) keep themetadata about each transaction, in-

cluding the non-meta keys written in that transaction and

a timestamp taken immediately before the commit. The

next 8 rows (work rows) are the working region shared

by the transactions. Each transaction randomly selects

two keys within the working region, and updates their

values with its thread ID and transaction ID. For exam-

ple, the value v-THR-1-TXN-1 of the key k-2means the

transaction 1 in thread 1 updated the key k-2. All rows

start with initial values (e.g., v-init-1) to give a known

starting state.

The following pseudo-code shows the working logic

of the first transaction of thread one; the runtime values

in the comments are the ones used to generate Figure 2:

me = "THR-1-TXN-1"

Begin Transaction

// update two work rows:

key1 = get_random_key() //k-2

4



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 453

put(key1, "v-" + me)

key2 = get_random_key() //k-5

put(key2, "v-" + me)

// update my meta row:

before_commit = get_timestamp() //TS-00:01

v = key1 + "-" + key2 + "-"

+ str(before_commit) //k-2-k-5-TS-00:01

put(me, v)

Commit Transaction

after_commit[me] = get_timestamp()

Each transaction involvesmultiple rows (onemeta row

and multiple work rows) and stores a large amount of

self-description (i.e., the meta row records the work rows

updated and the work rows specify which meta row is

associated with their last updates). The after commit

timestamps allow greater precision in identifying dura-

bility, but are not strictly necessary.

As with workloads 1–3, we validate that range and

point queries match. In addition, since the table contains

initial values (e.g., k-1 = v-init-1) before the work-

load starts, we expect the table should at least maintain

the original values in the absence of updates—if any of

the initial rows are missing, we report a durability er-

ror. A further quick check verifies that the format of

each work row is either in the initial state (e.g., k-1 =

v-init-1), or was written by a valid transaction (e.g.,

k-2 = v-THR-1-TXN-1). Any violation of the format-

ting rules is a consistency error.

Another check involves multiple rows within each

transaction. Specifically, the work rows and meta rows

we observe need to match. When we observe at least one

row (either a work or a meta row) updated by a transac-

tion Ta and there is a missing row update from Ta, we

classify the potential errors based on the missing row

update: If that row is corrupted (unreadable), then we

report a durability error. If furthermore the transaction

Ta definitely committed after the fault point (i.e., Ta’s

before commit is after the fault injection time), we also

report an isolation error because the transaction’s uncom-

mitted data became visible.

Alternatively, if the row missing the update (from

transaction Ta) contains either the initial value or the

value from a transaction Tb known to occur earlier (i.e.,

transaction Tb’s after commit is before transaction Ta’s

before commit), then we report an atomicity error

since partial updates from transaction Ta are observed. If

furthermore transaction Ta definitely committed before

the fault point, we also report a durability error, and if

it definitely committed after the fault point we report an

isolation error.

Note that because each transaction saves timestamps,

we can determine if a work row might have been legiti-

mately overwritten by another transaction. As shown in

Figure 2, the first transaction of thread 2 (THR-2-TXN-1)

writes to k-7 and k-6, but the two rows are overwrit-

ten by THR-2-TXN-2 and THR-1-TXN-2, respectively.

Based on the timestamp bounds of the commits, we

can determine if these overwritten records are legitimate.

One last check is for transactions that definitely commit-

ted but do not leave any update; we report this as a dura-

bility error.

4 Record and Replay

The record-and-replay component records the I/O traffic

generated by theWorker under the workload, and replays

the I/O trace with injected power faults. As mentioned in

Section 2.2, the component is built on the iSCSI layer.

This design choice gives fine-grained and high-fidelity

control over the I/O blocks, and allows us to transpar-

ently test databases across different OSes.

4.1 Record

Figure 3(a) shows the workflow for the record phase. The

Worker exercises the database, which generates filesys-

tem operations, which in turn generate iSCSI requests

that reach the backing store. By monitoring the iSCSI

target daemon, we collect detailed block I/O operations

at the SCSI command level. More specifically, for ev-

ery SCSI command issued to the backing store, the SCSI

Parser examines its command descriptor block (CDB)

and determines the command type. If the command

causes data transfer from the initiator to the target de-

vice (e.g., WRITE and its variants), the parser records the

timestamp of the command and further extracts the log-

ical block address (LBA) and the transfer length from

the CDB, then invokes the Block Tracer. The Block

Tracer fetches the blocks to be transferred from the dae-

mon’s buffer and records it in an internal data log. The

command timestamp, the LBA, the transfer length, and

the offset of the blocks within the data log are further

recorded in an index log for easy retrieval. In this way,

we obtain a sequence of block updates (i.e., the Worker’s

block trace) that can be used to generate a disk image

representative of the state after a power fault.

The block trace collected from SCSI commands is

enough to generate simulated power faults. However,

given the huge number of low-level block accesses in a

trace, how to inject power faults efficiently is challeng-

ing. Moreover, the block I/Os themselves are too low-

level to infer the high-level operations of the database

under testing, which are essential for understanding why

an ACID violation happens and how to fix it. To address

these challenges, we design a multi-layer tracer, which

correlates the low-level block accesses with various high-

level semantics.

5
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Figure 3: (a) Record phase (b) Replay for testing

In particular, we collect three more types of traces

in the record phase. First, our op2cmd mapper (inside

the Block Tracer, not shown) maps each block operation

(512 B or 4 KB) to the specific SCSI command it is part

of (a single SCSI command can cover over a megabyte);

the resulting mapping (i.e., op2cmd mapping) lets us in-

fer which operations the file system (or database) treated

as one logical unit and thus may be correlated.

Second, the File Tracer connects the blocks being up-

dated to the higher-level files and directories they store.

For a given file system, the meaning of each block is

well-defined (e.g., for ext3 the location of the inode

bitmap is fixed after formatting, and the blocks belong-

ing to a particular file are defined via the corresponding

inode block). The File Tracer first identifies the inode

number for each file (including regular files, directories,

and the filesystem journal). Then, it extracts the cor-

responding data block numbers for each inode. In this

way, the File Tracer generates a mapping (the blk2file

mapping) that identifies the ownership of each block in

the file system. Because each database file usually has a

well-defined functionality (e.g., UNDO/REDO log files),

the blk2file mapping lets us identify which I/O requests

are modifying, say, the UNDO log versus the main index

file. We can also identify which updates are to filesystem

metadata and which are to the filesystem journal. This

trace, together with the op2cmdmapping above, gives us

an excellent picture of the behavior of the database at the

I/O level.

The third type of trace is generated by the Call Tracer,

which instruments the workload and the database and

records all function calls and system calls invoked. Each

call is recorded with an invoke timestamp, a return times-

tamp, and its thread ID. This information not only di-

rectly reveals the semantics of the databases, but also

helps in understanding the lower-level I/O traffic. For ex-

ample, it allows us to tell if a particular I/O was explicitly

requested by the database (e.g., by correlating fsync and

msync calls with their respective files) or if it was initi-

ated by the file system (e.g., dirty blocks from another

file or ordinary dirty block write back).

Finally, all of the traces, including the block trace,

op2cmd mapping, blk2file mapping, and the call trace,

are supplied to the Trace Combiner. The block trace

and call trace are combined based on the timestamps

associated with each entry. For example, based on the

timestamps when a fsync call started and finished, and

the timestamp when a SCSI WRITE command is re-

ceived in between, we associate the blocks transferred

in the WRITE command with the fsync call. Note that

in a multi-threaded environment, the calls from differ-

ent threads (which can be identified by the associated

thread IDs) are usually interleaved. However, for each

synchronous I/O request (e.g., fsync), the blocks trans-

ferred are normally grouped together without interfer-

ence from other requests via a write barrier. So in prac-

tice we can always associate the blocks with the cor-

responding synchronous calls. Besides combining the

block trace and the call trace, the op2cmd mapping and

the blk2file mapping are further combined into the final

trace based on the LBA of the blocks. In this way, we

generate a multi-layer trace that spans everything from

the highest-level semantics to the lowest-level block ac-

cesses, which greatly facilitates analysis and diagno-

sis. We show examples of the multi-layer traces in Sec-

tion 5.1.

4.2 Replay for Testing

After the record phase, the replayer leverages the iSCSI

layer to replay the collected I/O block trace with injected

faults, tests whether the database can preserve the ACID-

properties, and helps to further diagnose the root causes

if a violation is found.

4.2.1 Block Replayer

Figure 3(b) shows the workflow of the replay-for-testing

phase. Although our replayer can inject worse errors

(e.g., corruption, flying writes, illegally dropped writes),

we focus on a “clean loss of power” fault model. Un-

der this fault model, all data blocks transferred before

the power cut are successfully committed to the media,

while others are lost. The Replayer first chooses a fault

point based on the injection policy (see Section 4.2.2).

By starting with a RAM disk image of the block device

at the beginning of the workload, we produce a post-fault

image by selectively replaying the operations recorded in

the Worker’s block trace. This post-fault image can then

6
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Figure 4: Five patterns of vulnerable points based on real traces: (a) repetitive LBA, (b) jumping LBA, (c) head of

command, (d) transition between files, and (e) unintended update to mmap’ed block. op# means the sequence number

of the transfer operation for a data block, cmd# means the SCSI command’s sequence number, x.db is a blinded

database file name, x.log is a blinded database log file name, and fs-j means filesystem journal. The red italic lines

mean a power fault injected immediately after that operation may result in failures (a–d), or a fault injected after later

operations may result in failures (e). For simplicity, only relevant tracing fields are shown.

be mounted for the Checker to search for ACID viola-

tions. Because our power faults are simulated, we can

reliably replay the same block trace and fault determin-

istically as many times as needed.

4.2.2 Fault Injection Policy

For effective testing, we design two fault injection poli-

cies that specify where to inject power faults given a

workload’s block trace.

Policy 1: Exhaustive. Under our fault model, each

block transfer operation is atomic, although multi-block

SCSI operations are not. The exhaustive policy injects a

fault after every block transfer operation, systematically

testing all possible power-fault scenarios for a workload.

Although exhaustive testing is thorough, for compli-

cated workloads it may take days to complete. Randomly

sampling the fault injection points may help to reduce the

testing time, but also reduce the fault coverage. Hence

we propose a more principled policy to select the most

vulnerable points to inject faults.

Policy 2: Pattern-based ranking. By studying the

multi-layer traces of two databases (TokyoCabinet and

MariaDB) with exhaustive fault injection, we extracted

five vulnerable patterns where a power fault occurring

likely leads to ACID violations. In particular, we first

identify the correlation between the fault injection points

and the ACID violations observed. Then, for each fault

point leading to a violation, we analyze the context infor-

mation recorded in the trace around the fault point and

summarize the patterns of vulnerable injection points.

Figure 4 shows examples of the five patterns based on

the real violations observed in our early experiments:

Pattern A: repetitive LBA (Prep). For example, in Fig-

ure 4(a) op#35 and op#49 both write to LBA 1038, which

implies that 1038 may be a fixed location of important

metadata. The parameter for this pattern is the repetition

threshold.

Pattern B: jumping LBA sequence (Pjump). In Fig-

ure 4(b), the operations before op#63 access a large con-

tiguous region (e.g., op#62 , op#61, and earlier oper-

ations which are not shown), and the operations after

op#64 are also contiguous. The LBAs of op#63 and

op#64 are far away from that of the neighbor operations

and are jumping forward (e.g., from 2081 to 5191) or

backward (e.g., from 5191 to 1025). This may imply

switching operation or complex data structure updates

(e.g., after appending new nodes, update the metadata

of a B+ tree stored at the head of a file). The parameters

of this pattern include jumping distance and jumping di-

rection.

Pattern C: head of a SCSI command (Phead). Each

SCSI command may transfer multiple blocks. For exam-

ple, in Figure 4(c), op#153–156 all belong to cmd#43.

If the fault is injected after op#153, 154, or 155, the er-

ror will be triggered. The reason may be that the blocks

transferred in that SCSI command need to be written

atomically, which is blocked by these fault points. The

parameter of this pattern is the minimal length of the

head command.

Pattern D: transition between files (Ptran). In Fig-

ure 4(d), the transition is between a database file (x.db)

and the filesystem journal (fs-j). This pattern may im-

ply an interaction between database and file system (e.g.,

delete a log file after commit) that requires special cod-

ing. The pattern also includes transitions among database

files because each database file usually has a specific

function (e.g., UNDO/REDO logs) and the transition

may imply some complex operations involving multiple

files.

Pattern E: unintended update to mmap’ed blocks

(Pmmap). mmapmaps the I/O buffers for a portion of a file

7
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Figure 5: Replay for diagnosis

into the application’s address space and thus allows the

application to write to the file cache directly. This mech-

anism is attractive to database systems because it allows

the database to circumvent double-buffering of the file

cache when running on top of a file system [22]. As

shown in Figure 4(e), x.db is a mmap’ed file, and LBA

1012 is in the mmap’ed region. Based on the system call

trace, we find that op#331 is caused by calling msync on

the memory map of x.db, which is an explicit request of

the database. On the other hand, op#463, which also up-

dates LBA 1012, is unintended because it happens when

calling fsync on another file (x.log). Other causes for

such implicit updates could be the periodic write back

of dirty pages or dirty page write back due to memory

pressure. In the real trace, injecting a fault immediately

after the implicit update (i.e., op#463 in this case) may

not necessarily cause ACID violations. Instead, injecting

faults later may cause failures. So the pattern considers

all operations between the implicit update and the next

explicit update, and uses sampling to select fault injec-

tion points within the range. The parameter of this pat-

tern is the sampling rate.

In summary, we extract the five block-level patterns

from the real failure logs of two databases. Three of them

(Prep, Pjump, and Phead) are independent of file systems

and OSes, two (Ptran and Pmmap) require knowledge of the

filesystem structure, and Pmmap is further associated with

system calls. Intuitively, these patterns capture the criti-

cal points in the I/O traffic (e.g., updates to some fixed lo-

cation of metadata or transition betweenmajor functions)

so we use them to guide fault injection. Specifically, af-

ter obtaining the traces from the record phase, we check

them against the patterns. For each fault injection point,

we see if it matches any of the five patterns, and score

each injection point based on how many of the patterns it

matches. Because a fault is always injected after a block

is transferred, we use the corresponding transfer oper-

ation to name the fault injection point. For example, in

Figure 4(a) op#35 and op#49 match the repetitive pattern

(assuming the repetition threshold is 2), so each of them

has the score of 1, while op#36 and op#37 remain 0. An

operation can gain a score of more than 1 if it matches

multiple patterns. For example, an operation may be si-

multaneously a repetitive operation (Prep), the first op-

eration of a command (Phead), and represent a transition

between files (Ptran), yielding a score of 3. After scoring

the operations, the framework injects power faults at the

operations with the highest score. By skipping injection

points with low scores, pattern-based ranking reduces the

number of fault injection rounds needed to uncover fail-

ures. We show real examples of the patterns and the ef-

fectiveness and efficiency of this fault injection policy in

Section 5.

4.3 Replay for Diagnosis

Although identifying that a database has a bug is use-

ful, diagnosing the underlying root cause is necessary in

order to fix it. Figure 5 shows the workflow of our diag-

nosis phase. Similar to the steps in replay for testing, the

replayer replays the Worker’s block trace up to the fault

point (identified in the replay for testing phase) that lead

to the ACID failure. Again, the Checker connects to the

database and verifies the database’s state. However, for

diagnosis we activate the full multi-layer tracing. More-

over, the blocks read by the database in this phase are

also collected because they are closely related to the re-

covery activity. The Checker’s block trace, blocks-to-

files mapping (collected during the record phase), and

the function calls and system calls trace are further com-

bined into Checker’s multi-layer trace. Together with the

check log of the integrity checker itself, these make iden-

tifying the root cause of the failure much easier. Further

exploring the behavior of the system for close-by fault

points that do not lead to failure [45] can also help. We

discuss diagnosis based on the multi-layer traces in more

detail in Section 5.1.

5 Evaluation

We built our prototype based on the Linux SCSI target

framework [6]. The Call Tracer is implemented using

PIN [8]. The File Tracer is built on e2fsprogs [3] and

XFS utilities [12]. We use RHEL 61as both the iSCSI tar-

get and initiator to run the databases, except that we use

Windows 7 Enterprise to run the databases using NTFS.

We apply the prototype to eight widely-used

databases, including three open-source embedded

1 All results were verified with Debian 6, and per time constraints a

subset were verified with Ubuntu 12.04 LTS.
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databases (TokyoCabinet, LightningDB, and SQLite),

one open-source OLTP SQL server (MariaDB), one pro-

prietary licensed2 key-value store (KVS-A), and three

proprietary licensed OLTP SQL databases (SQL-A,

SQL-B, and SQL-C). All run on Linux except SQL-C,

which runs on NTFS.

Since none of the tested databases fully support raw

block device access,3 the file system could be another

factor in the failure behavior. Hence for our Linux ex-

periments, we tested the databases on two different file

systems: the well-understood and commonly deployed

ext3, and the more robust XFS. We have not yet fully

implemented the Call Tracer and the File Tracer for Win-

dows systems but there are no core technical obstacles in

implementing these components using Windows-based

tooling [7, 9]. Also, for the proprietary databases with-

out debugging symbols, we supply limited support for

diagnosis (but full support for testing).

5.1 Case Studies

In this subsection, we discuss three real ACID-violation

cases found in three databases, and show how the multi-

layer traces helped us quickly diagnose their root causes.

5.1.1 TokyoCabinet

When testing TokyoCabinet under Workload 4, the

Checker detects the violations of atomicity (a transaction

is partially committed), durability (some rows are irre-

trievable), and consistency (the retrievable rows by the

two query methods are different). These violations are

non-deterministic—they may or may not manifest them-

selves under the same workload—and the failure symp-

toms vary depending on the fault injection point, mak-

ing diagnosis challenging. The patterns applicable to this

case include Pjump, Phead , Ptran, and Pmmap.

For a failing run, we collect the Checker’s multi-

layer trace (Figure 6(b)). For comparison purposes, we

also collect the Checker’s trace for a bug-free run (Fig-

ure 6(a)). By comparing the two traces, we can easily see

that tchdbwalrestore is not invoked in the failing run.

In the parent function (tchdbopenimpl) there is a read

of 256 bytes from the database file x.tcb in both traces,

but the content read is different by one bit (i.e., 108 vs.

118 in op#1). Further study of the data structures defined

in the source code reveals that the first 256 bytes con-

tain a flag (hdb->flags), which determines whether to

2 Due to the litigious nature of many database vendors (see

“The DeWitt Clause” [1]), we are unable to identify the commercial

databases by name. We assure readers that we tested well recognized,

well regarded, and mainstream software.
3 Nearly all modern databases run through the file system. Of the

major commercial OLTP vendors, Oracle has removed support for raw

storage devices [33], IBM has deprecated it for DB2 [23], and Mi-

crosoft strongly discourages raw partitioning for SQL Server [26].










































Figure 6: Example of multi-layer traces adapted from the

real traces of TokyoCabinet. (a) Checker’s trace when no

violations were found. (b) Checker’s trace when ACID

violations were found. (c) Worker’s trace around the

power fault points leading to ACID violations. LBA, and

address) are reduced and only relevant fields and lines

are shown.

invoke tchdbwalrestoreon startup. The one bit differ-

ence in op#1 implies that some write to the beginning of

x.tcb during the workload causes this ACID violation.

We then look at the Worker’s multi-layer trace near

the power-fault injection points that manifest this failure

(Figure 6(c)). The majority of the faults within op#30–98

cause ACID violations, while power losses after op#99

do not cause any trouble. So the first clue is op#99

changes the behavior. Examining the trace, we notice

that the beginning of x.tcb is mmap’ed, and that op#99 is

caused by an explicit msync on x.tcb and sets the con-

tent to 118. By further examining the writes to x.tcb

before op#30–98, we find that op#29 also updates x.tcb

by setting the content to 108. However, this block up-

date is unintended: an fsync on the write-ahead log

x.tcb.wal triggers the OS to also write out the dirty

block of x.tcb.

The whole picture becomes more clear with the

collected trace of high-level function calls. It

turns out that at the beginning of each trans-

action (tchdbtranbegin(), not shown), the flag

(hdb->flags) is set to 0 (tchdbsetflag(0)), and then

set to 1 (tchdbsetflag(1)) after syncing the initial

x.tcb.wal to disk (fsync(6)). If the synchronization

of x.tcb.wal with disk is successful, the flag 0 should

be invisible to disk. In rare cases, however, the fsync on

x.tcb.wal causes an unintended flush of the flag 0 to

x.tcb on disk (as captured by op#29). In this scenario, if

9
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Figure 7: Examples of multi-layer traces adapted from real traces of LightningDB (a–d) and SQLite (e): (a) Light-

ningDB Checker’s trace, (b) Worker’s trace around the bug-triggering fault point (op#401), (c) Checker’s check log

showing the size of data.mdb after op#342–401, (d) Checker’s check log showing the size of data.mdb after op#402,

and (e) SQLite Worker’s trace around the fault points (op#56–64) that cause durability violations.

a power fault is injected at the points between op#29 and

99, it will interrupt the transaction and the post-fault disk

image has the flag set to 0. Upon the recovery from the

post-fault disk image, the database will mistakenly think

x.tcb.wal has not been initialized (because the on-disk

flag is 0), and skip the tchdbwalrestore() procedure.

Consequently, an incomplete transaction is exposed to

the user.

The unintended updates to the mmap’ed file could be

caused for two reasons. One is the flushing of dirty pages

by kernel threads due to memory pressure or timer ex-

piry (e.g., dirty writeback centisecs), the other is

the internal dirty page flushing routines of file systems.

Since we can see the fsync call that causes the unin-

tended update, it is clear that the fact that ext3 and XFS

are aggressive in flushing blocks when there is a sync is

to blame. However, regardless if it is due to the kernel

or the file system, the programmer’s incorrect assump-

tion that a change to a mmap’ed files will not be asyn-

chronously written back is the underlying root cause.

One solution to this problem is using failure-atomic

msync [34], which prevents the non-explicit write back

to the mmap’ed file.

5.1.2 LightningDB

When testing LightningDB on ext3 under Workload 4,

the Checker, which links the database library into its ad-

dress space, crashes on certain queries. The applicable

patterns include Prep, Phead , and Ptran.

The Checker’s multi-layer trace (Figure 7(a)) shows

that before the crash there are two pread64s (the 2nd

one is omitted in the figure) from the head (LBA 6056) of

the database file data.mdb; also, data.mdb is mmap’ed

into memory. The size of the mapping is 1,048,576 bytes

(256 4 KB-pages), which exceeds the actual length of

the file. The last function logged before the crash is

mdb page get, which returns the address of a page. The

LightningDB documents [5] and source code reveal that

the first two pages of this file are metapages, which main-

tain the valid page information of the internal B+ tree,

and that the mapping is 256 pages by default for perfor-

mance reasons. Given this information, we suspect that

the crash is caused by referencing a mmap’ed page that is

valid based on the metapages but lies beyond the end of

the backing file.

The Worker’s trace (Figure 7(b)) and the Checker’s

check logs ((c) and (d)) verify our hypothesis. In this

example, a power fault after op#401 leads to the crash,

while a fault any other time (e.g., after op#342–400 and

op#402) causes no problem. As shown in (b), op#401 is

an update to the head (LBA 6056) of data.mdb, which

maintains the valid page information. However, after ap-

plying op#401, the size of data.mdb did not get updated

in the file system (Figure 7 (c)). Only after op#402,

which is an update to the filesystem metadata, is the

length of the file increased to 667,648 bytes (Figure 7

(d)), and thememory-mapping is safe to access from then

on.

Based on the traces we can further infer that op#399,

400, and 402 form a filesystem journal transaction that

updates the length metadata for data.mdb. The content

of op#399 (i.e., “98...01”, which is 98393bc001 in the

real trace) matches the magic number of the ext3 journal

and tells us that it is the first block (i.e., the descriptor

block) of the journal transaction. op#402 (with content

“98...02”) is the last block (i.e., the commit block) of the

journal transaction. op#400 is a journaled length update

that matches the format of the inode, the superblock, the

group descriptor, and the data block bitmap, all of which

need to be updated when new blocks are allocated to

lengthen a file. This is why the length update is invisible

in the file system until after op#402: without the com-

mit block, the journal transaction is incomplete and will

never be checkpointed into the main file system.

Note that op#401 itself does not increase the file size

since it is written to the head of the file. Instead, the

file is extended by op#342–398, which are caused by ap-

pending B+ tree pages in the memory (via lseeks and
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pwrites before the mdb env sync call) and then calling

fdatasync on data.mdb. On ext3 with the default “or-

dered” journaling mode, the file data is forced directly

out to the main file system prior to its metadata being

committed to the journal. This is why we observe the

journaling of the length update (op#399, 400, and 402)

after the file data updates(op#342–398).

The fact that the journal commit block (op#402) is

flushed with the next pwrite64 in the same thread

means fdatasync on ext3 does not wait for the comple-

tion of journaling (similar behavior has been observed

on ext4). LightningDB’s aggressive mmap’ing and ref-

erencing pages without verifying the backing file fi-

nally trigger the bug. We have verified that chang-

ing fdatasync to fsync fixes the problem. Another

platform-independent solution is checking the consis-

tency between the metapage and the actual size of the

file before accessing.

Because we wanted to measure how effective our sys-

tem is in an unbiased manner, we waited to look at Light-

ningDB until after we had finalized and integrated all

of our components. It took 3 hours to learn the Light-

ningDB APIs and port the workloads to it, and once we

had the results of testing, it took another 3 hours to di-

agnose and understand the root cause. As discussed in

more detail in Section 5.3, it takes a bit under 8 hours

to do exhaustive testing for LightningDB, and less than

21 minutes for pattern-based testing. Given that we had

no experience with LightningDB before starting, we feel

this shows that our system is very effective in finding and

diagnosing bugs in databases.

5.1.3 SQLite

When testing SQLite under any of the four workloads,

the Checker finds that a transaction committed before a

power fault is lost in the recovered database. The appli-

cable patterns include Prep, Phead , and Ptran.

Figure 7(e) shows the Worker’s multi-layer trace. At

the end of a transaction (TXN-1), the database closes and

unlinks the log file (x.db-journal), and returns to the

user immediately as implied by the “after commit” mes-

sage. However, the unlink system call only modifies the

in-memory data structures of the file system. This behav-

ior is correctly captured in the trace—i.e., no I/O traffic

was recorded after unlink. The in-memorymodification

caused by unlink remains volatile until after completing

the first fsync system call in the next transaction, which

flushes all in-memory updates to the disk. The SQLite

documents [10] indicate that SQLite uses an UNDO log

by default. As a result, when a power fault occurs after

returning from a transaction but before completing the

next fsync (i.e., before op#65), the UNDO log of the

transaction remains visible on the disk (instead of being

unlinked). When restarting the database, the committed

transaction is rolled back unnecessarily, which makes the

transaction non-durable.

One solution for this case is to insert an additional

fsync system call immediately after the unlink, and do

not return to the user until the fsync completes. Note

that this case was manifested when we ran our experi-

ments under the default DELETE mode of SQLite. The

potential non-durable behavior is, surprisingly, known to

the developers [2]. We ran a few additional experiments

under the WAL mode as suggested by the developers,

and found an unknown error leading to atomicity viola-

tion. We do not include the atomicity violation in Table 1

(Section 5.2) since we can reproduce it even without in-

jecting a power fault.

5.2 Result Summary

Table 1 summarizes the ACID violations observed un-

der workloads 1–3 (W-1 through W-3) and three differ-

ent configurations of workload 4 (W-4.1 throughW-4.3).

W-4.1 uses 2 threads, 10 transactions per thread, each

transaction writes to 10 work rows, and the total number

of work rows is 1,000. W-4.2 increases the number of

threads to 10, the number of work rows being written per

transaction to 20, and the total number of work rows to

4,000. W-4.3 further increases the number of work rows

written per transaction to 80.

Table 1 shows that 12 out of 15 database/filesystem

combinations experienced at least one type of ACID

violation under injected power faults. Under rela-

tively simple workloads (i.e., W-1, W-2, and W-3),

11 database/filesystem combinations experienced one or

two types of ACID violations. For example, SQL-B vi-

olated the C and D properties under workload 3 on both

file systems. On the other hand, some databases can han-

dle the power faults better than others. For example,

LightningDB does not show any failures under power

faults with the first three workloads. Another interesting

observation is that power faulting KVS-A causes hangs,

preventing the Checker from further execution in a few

cases. We cannot access the data and so cannot clearly

identify which sort of ACID violation this should be cat-

egorized as.

Under the most stressful workload more violations

were found. For example, TokyoCabinet violates the

atomicity, consistency, and durability properties, and

LightningDB violates durability under the most stressful

configuration (W-4.3).

The last four columns of Table 1 show for each type of

ACID violation the percentage of power faults that cause

that violation among all power faults injected under the

exhaustive policy, averaged over all workloads. An in-

teresting observation is that the percentage of violations

for XFS is always smaller than that for ext3 (except for

SQL-B, which shows a similar percentage on both file
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DB FS W-1 W-2 W-3 W-4.1 W-4.2 W-4.3 A C I D

TokyoCabinet ext3 D D D A C D A C D A C D 0.15 0.14 0 16.05

XFS — D D A C D D A C D <0.01 0.01 0 4.38

MariaDB ext3 D D D D D D 0 0 0 1.36

XFS D D D D D D 0 0 0 0.49

LightningDB ext3 — — — — — D 0 0 0 0.05

XFS — — — — — — 0 0 0 0

SQLite ext3 D D — D D D 0 0 0 19.15

XFS — — D D D D 0 0 0 10.60

KVS-A ext3 — — Hang* — — — 0 0 0 0

XFS — — — — — — 0 0 0 0

SQL-A ext3 D D D D D D 0 0 0 3.31

XFS D D D D D D 0 0 0 0.92

SQL-B ext3 D D C D C D C D C D 0 8.96 0 3.24

XFS C D D C D C D C D C D 0 7.77 0 3.90

SQL-C NTFS D D D D D D 0 0 0 8.08

Table 1: ACID violations observed under workloads 1–3 (W-1 through W-3) and three configurations of workload

4 (W-4.1 through W-4.3). “—” means no failure was observed. The last four columns show for each type of ACID

violation the percentage of power faults that cause that violation among all power faults injected under the exhaustive

policy, averaged over all workloads. *The checker never reported errors for KVS-A, but in some cases power loss

caused a hang in the database code during recovery afterwards. This could potentially be categorized as either an I or

a D error; regardless the database is not usable.

systems). This may indicate that XFS is more robust for

databases compared to ext3.

Some violations are difficult to trigger. For example,

LightningDB violates durability under only 0.05% of the

power faults injected under the exhaustive policy. Here

the exhaustive approach is not very efficient, and a ran-

dom sampling approachwould be likely to miss the error.

Overall, violation of durability is the most prevalent

failure, being found in 7 out of the 8 tested databases

and ranging from 0.05% up to 19.15% among all power

faults injected. A common type of durability violation

is a transaction committed before the power fault being

missing after recovery. TokyoCabinet, SQLite, and SQL-

B have this failure behavior.

Another common type of durability violation is partial

table corruption. Examples include non-retrievable rows,

rows retrievable but with corrupted data, or a database

crash when touching certain rows. TokyoCabinet, Light-

ningDB, and SQL-B exhibit such failures.

The third type of durability violation is failing to con-

nect to the database upon restart from the post-fault disk

image. As a result, the whole table was non-durable.

MariaDB, SQL-A, SQL-B, and SQL-C have demon-

strated this failure behavior. Our best efforts at manu-

ally recovering from this condition failed, except that for

MariaDB there is an additional recovery procedure that

can allow full recovery. This suggests that for MariaDB

the data is likely intact, but the default recovery proce-

dure failed to recognize it upon restart. Although that

may be a reasonable strategy for arbitrary image corrup-

tion, we do not feel this is completely acceptable behav-

ior under the easy fault model we apply.

5.3 Effectiveness of Patterns

We now evaluate the effectiveness of our pattern-based

ranking algorithm at identifying the most vulnerable

fault injection points. The five patterns we use (see

Section 4.2.2) were extracted based on the ACID vi-

olations observed in TokyoCabinet and MariaDB with

the exhaustive policy, and we apply them to all 8 tested

databases. For SQL-C, we apply only the filesystem-

independent and OS-independent patterns (i.e., Prep,

Pjump, and Phead).

Table 2 compares the pattern-based policy with the

exhaustive policy under W-4.1 and W-4.3 on ext3 (the

results on XFS and under other workloads are similar).

Overall, the pattern-based policy is very effective. In-

jecting power faults at points with scores exceeding 2 can

manifest all the types of ACID violations detected by ex-

haustive testing, except in one or two cases per configu-

ration. For SQL-A, the points with scores exceeding 2 do

not suffice; using the score 2 points in addition, however,

does suffice to manifest the ACID violations.

The patterns we identified using analysis from only 2

of the databases generalized well to the other 6. Espe-

cially for LightningDB, we performed all of the work-
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DB W-4.1 W-4.3

match? top? match? top?

TokyoCabinet Y Y Y* Y

MariaDB Y Y Y Y

LightningDB — — Y Y

SQLite Y Y Y Y

KVS-A — — — —

SQL-A Y N Y N

SQL-B Y N Y* Y

SQL-C Y Y Y Y

Table 2: Comparison of exhaustive and pattern-based

fault injection policies. Y in the match? column means

injecting faults at the operations identified by the pattern

policy can expose the same types of ACID violations as

exposed under the exhaustive policy. Y in the top? col-

umn means that power faults need to be injected only at

the score 3 or higher points. “—” means no error is de-

tected under both polices. *Extrapolated from a partial

run, given the long time frame.

loads, testing, and diagnosis presented in Section 5.1.2

without any further iteration on the framework. Yet we

were still able to catch a bug that occurs in only 0.05%

of the runs.

5.4 Efficiency of Patterns

We further evaluate the efficiency of our pattern-based

policy in terms of the number of fault injection points

and the execution time for testing databases with the

power faults injected at these points. Table 3 compares

the number of fault injection points under the exhaustive

and pattern-based policies for W-4.3 on ext3 (the results

for the other cases are similar). Under this setting only

the points with scores exceeding 2 are needed to manifest

the same types of ACID violations as the exhaustive pol-

icy (except for SQL-A, which requires points with scores

exceeding 1). Compared to the exhaustive policy, the

pattern-based policy reduces the number of fault injec-

tion points greatly, with an average 21x reduction, while

manifesting the same types of ACID violations.

Table 4 further compares the two policies in terms of

the execution time required in the replay for testing. Note

that the pattern-based policy is very efficient, with an av-

erage 19x reduction in execution time compared to the

exhaustive policy. For example, we estimate (based on

letting it run for 3 days) that exhaustive testing of SQL-B

would take over 2 months, while with the pattern-based

policy, the testing completed in about 2 days.

DB Exhaustive Pattern %

TokyoCabinet 41,625 7,084 17.0%

MariaDB 1,013 14 1.4%

LightningDB 5,570 171 3.1%

SQLite 438 23 5.3%

KVS-A 4,193 69 1.7%

SQL-A 1,082 53* 4.9%

SQL-B 20,200 936 4.6%

SQL-C 313 2 0.6%

Average — — 4.8%

Table 3: Comparison of our two policies in terms of

the number of fault injection points under W-4.3. The

pattern-based policy includes only points with scores ex-

ceeding 2 *except for SQL-A, which includes points

with scores exceeding 1.

DB Exhaustive Pattern %

TokyoCabinet 12d 1h* 2d 0h 16.6%

MariaDB 3h 27m 3m 2s 1.5%

LightningDB 7h 56m 20m 44s 4.4%

SQLite 13m 12s 0m 42s 5.3%

KVS-A 5h 17m 5m 32s 1.7%

SQL-A 3h 33m 10m 37s 5.0%

SQL-B 71d 1h* 2d 9h 3.4%

SQL-C 3h 23m 2m 34s 5.1%

Average — — 5.4%

Table 4: Comparison of our two policies in terms of re-

play for testing time under W-4.3. *Estimated based on

progress from a 3-day run.

6 Comparison to EXPLODE

EXPLODE [44] is most closely related to our work. It

uses ingenious in situmodel checking to exhaust the state

of storage systems to expose bugs, mostly in file systems.

Part of our framework is similar: we also use a RAM

disk to emulate a block device, and record the result-

ing trace. However, our fault models are different. EX-

PLODE simulates a crash model where data may be cor-

rupted before being propagated to disk, and where buffer

writes are aggressively reordered. This is quite harsh to

upper-level software. Our fault model focuses on faults

where the blame more squarely lies on the higher-level

software (e.g., databases) rather than on the OS kernel

or hardware device. Besides, unlike EXPLODE, we pro-

vide explicit suggestions for workloads that are likely to

uncover issues in databases, and explicit tracing support

to pin found errors to underlying bugs.

When applied to our problem—i.e., testing and di-

agnosing databases under power fault—EXPLODE has

13
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some limitations. First, the number of manually-defined

choice points is limited. The size of the current write

set between two choices could be huge, which is espe-

cially likely under heavy database transactions. It would

be prohibitively expensive, if not impossible, for a model

checking tool to exhaust every subset or permutation of

the write set on every path. As is, EXPLODE has such a

large set of states to explore that in practice it terminates

when the user loses patience [44]. Meanwhile, many of

the simulated crash images could contain harsh corrup-

tion that is unrealistic under power fault. Second, EX-

PLODE enforces deterministic thread scheduling. This

factor, together with the coarse-grained choices, may

hide certain types of bugs involving concurrent transac-

tions, a common case in databases. For instance, in a

database using mmap, the pages maintained in the write

set in EXPLODE is likely different from a native run.

Specifically, a thread T1 may call fsync (which causes

the write set to shrink) in its transaction, but due to the

enforced scheduling, thread T2 may lose its chance to

update the pages before the shrink. Since EXPLODE

generates crash images whenever the write set shrinks, it

cannot generate an image (and manifest a bug) that re-

quires updates from both T1 and T2. Third, even if a

bug is triggered, pinpointing the root cause in a database

is still challenging given the code size and complexity.

Finally, EXPLODE is built on the Linux kernel, which

does not allow testing Windows databases.

On the other hand, by exploring the state space, EX-

PLODE could exercise different code paths and make

corner cases appear as often as common ones, which is a

merit of model checking. Thus, we view EXPLODE-like

approaches as complementary.

7 Related Work

Testing databases Previous work mostly focuses on

functional testing of databases rather than on resilience

to external faults. Slutz [38] generates millions of valid

SQL queries, and then compares the results from mul-

tiple databases; if one database disagrees then that in-

dicates a probable bug. Chays et al. [14] proposes

a set of tools that automatically generate schema-

compliant queries for testing. To improve test coverage,

Bati et al. [13] propose a genetic approach for generating

random test cases for database engines. All of these ap-

proaches focus on database bugs in fault-free operation,

rather than when power is lost.

Subramanian et al. [39] examines the effects of disk

corruption on MySQL. Unlike [39], we study the effects

of power faults on a range of databases, including closed-

source ones, and assume an easy, “perfect” block device

under power fault.

Reliability analysis of storage software Similar to

EXPLODE [44], MODIST [43] applies model checking

to distributed systems and evaluates replicated Berkeley

DB. RapiLog [21] analyzes the durability of databases

and simplifies the logging by leveraging a formally-

verified kernel and synthesized driver. Again, we

view these formal methods as complementary. Thanu-

malayan et al. [35] proposes an abstract persistent model

(APM) of filesystem properties and studies the effects on

application consistency after simulating crashes in the

filesystem model. Unlike their modeling approach, we

test databases running on real file systems and do not in-

tentionally manipulate the order or content of the blocks.

The NoFS [17] shows how a file system can be designed

to maintain consistency in the face of crashes; we pre-

sume that a database written using the NoFS techniques

would be more resilient than those we tested. The IRON

file system [36] implements additional redundancy and

recovery methods in order to better survive various fail-

ures. Again, similar ideas could be applied to databases,

although a direct mapping from concepts such as inodes

and superblocks to their database equivalents may be

nontrivial.

Reliability analysis of storage hardware Several

studies have looked at the failure behavior of storage

hardware, from spinning magnetic disks [15, 32, 37]

to flash memory [19, 20, 40, 46]. Schroeder et al. [37]

considers in-the-wild failure probabilities, while

Chen et al. [15] considers how RAID improves the

durability and reliability of storage systems. Nightin-

gale et al. [32] analyzes hardware failures on PCs

including disk subsystem failures. However, none

of these studies looks at how the software using the

hardware actually responds to faults.

8 Conclusions

We have shown that even ostensibly well-tested

databases can lose data. This should be a wake-up call

for any author of storage systems software: undirected

testing is not enough. Thorough testing requires purpose-

built workloads designed to highlight failures, as well as

fault injection targeted at those situations in which stor-

age system designers are likely to make mistakes. We

can offer no panacea; creating failure-proof storage soft-

ware is hard. But unless careful attention is paid to cor-

rectness, we will continue to cluck our tongues and sigh,

while users will continue to cry.
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