
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Customizable and Extensible Deployment
for Mobile/Cloud Applications

Irene Zhang, Adriana Szekeres, Dana Van Aken, and Isaac Ackerman,
University of Washington; Steven D. Gribble, Google and University of Washington;

Arvind Krishnamurthy and Henry M. Levy, University of Washington

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zhang

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 97

Customizable and Extensible Deployment for Mobile/Cloud Applications
Irene Zhang Adriana Szekeres Dana Van Aken Isaac Ackerman

Steven D. Gribble∗ Arvind Krishnamurthy Henry M. Levy
University of Washington

Abstract
Modern applications face new challenges in manag-

ing today’s highly distributed and heterogeneous envi-
ronment. For example, they must stitch together code
that crosses smartphones, tablets, personal devices, and
cloud services, connected by variable wide-area net-
works, such as WiFi and 4G. This paper describes Sap-
phire, a distributed programming platform that simplifies
the programming of today’s mobile/cloud applications.
Sapphire’s key design feature is its distributed runtime
system, which supports a flexible and extensible deploy-
ment layer for solving complex distributed systems tasks,
such as fault-tolerance, code-offloading, and caching.
Rather than writing distributed systems code, program-
mers choose deployment managers that extend Sapphire’s
kernel to meet their applications’ deployment require-
ments. In this way, each application runs on an underlying
platform that is customized for its own distribution needs.

1 Introduction
In less than a decade, the computing landscape has
undergone two revolutionary changes: the development
of small, yet remarkably powerful, mobile devices and
the move to massive-scale cloud computing. These
changes have led to a shift away from traditional desktop
applications to modern mobile/cloud applications.

As a consequence, modern applications have be-
come inherently distributed, with data and code spread
across cloud backends and user devices such as phones
and tablets. Application programmers face new chal-
lenges that were visible only to designers of large-scale
distributed systems in the past. Among them are coordi-
nating shared data across multiple devices and servers,
offloading code from devices to the cloud, and integrating
heterogeneous components with vastly different software
stacks and hardware resources.

To address these challenges, programmers must make
numerous distributed deployment decisions, such as:

• Where data and computation should be located
• What data should be replicated or cached
• What data consistency level is needed

These decisions depend on application requirements –
such as scalability and fault tolerance – which force diffi-
cult performance vs. function trade-offs. The dependency

∗Currently at Google.

between application requirements and deployment de-
cisions leads programmers to mix deployment decisions
with complex application logic in the code, which makes
mobile/cloud applications difficult to implement, debug,
maintain, and evolve. Even worse, the rapid evolution of
devices, networks, systems, and applications means that
the trade-offs that impact these deployment decisions are
constantly in flux. For all of these reasons, programmers
need a flexible system that allows them to easily create
and modify distributed application deployments without
needing to rewrite major parts of their application.

This paper presents Sapphire, a general-purpose
distributed programming platform that greatly simplifies
the design and implementation of applications spanning
mobile devices and clouds. Sapphire removes much of
the complexity of managing a wide-area, multi-platform
environment, yet still provides developers with the fine-
grained control needed to meet critical application needs.
A key concept of Sapphire’s design is the separation of
application logic from deployment logic. That is, deploy-
ment code is factored out of application code, allowing the
programmer to focus on the application logic. At the same
time, the programmer has full control over deployment
decisions and the flexibility to customize them.

Sapphire’s architecture facilitates this separation with
a highly extensible distributed kernel/runtime system.
At the bottom layer, Sapphire’s Deployment Kernel
(DK) integrates heterogeneous mobile devices and cloud
servers through a set of common low-level mechanisms,
including best-efforts RPC communication, failure
detection, and location finding. Between the kernel and
the application is a deployment layer – a collection
of pluggable Deployment Manager (DM) modules
that extend the kernel to support application-specific
deployment needs, such as replication and caching. DMs
are written in a generic, application-transparent way,
using interposition to intercept important application
events, such as RPC calls. The DK provides a simple yet
powerful distributed execution environment and API for
DMs that makes them extremely easy to write and extend.
Conceptually, Sapphire’s DK/DM architecture creates a
seamless distributed runtime system that is customized
specifically for each application’s requirements.

We implemented a Sapphire prototype on Linux
servers and Android mobile phones and tablets. The
prototype includes a library of 26 Deployment Managers

1

98 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

supporting a wide range of distributed management tasks,
such as consistent client-side caching, durable transac-
tions, Paxos replication, and dynamic code offloading
between mobile devices and the cloud. We also built 10
Sapphire applications, including a fully featured Twitter
clone, a multi-player game, and a shared text editor.

Our experience and evaluation show that Sapphire’s
extensible three-layer architecture greatly simplifies
the construction of both mobile/cloud applications
and distributed deployment functions. For example, a
single-line application code change – switching from one
DM to another – is sufficient to transform a cloud-based
multi-player game into a P2P (device-to-device) version
that significantly improves the game’s performance. The
division of function between the DK and DM layers
makes deployments extremely easy to code; e.g., the
DM to support Paxos state machine replication is only
129 lines of code, an order of magnitude smaller than
a C++ implementation built atop an RPC library. We
also demonstrate that Sapphire’s structure provides
fine-grained control over performance trade-offs, deliv-
ering performance commensurate with today’s popular
communication mechanisms like REST.

The next section provides background on current
mobile/cloud applications and discusses related work.
Section 3 overviews Sapphire and its core distributed
runtime system. Section 4 presents the application
programming model. Section 5 details the design of
the Deployment Kernel, while Section 6 focuses on
Deployment Managers, which extend the DK with
custom distributed deployment mechanisms. Sapphire’s
prototype implementation is described in Section 7 and
evaluated in Section 8, and we conclude in Section 10.

2 Motivation and Background
Figure 1 shows the deployment of a typical mobile/cloud
application. Currently, programmers must deploy appli-
cations across a patchwork of user devices, cloud servers,
and backend services, while satisfying demanding
requirements such as responsiveness and availability. For
example, programmers may need to apply caching tech-
niques, perform application-specific code splitting across
clients and servers, and develop solutions for fast and
convenient data sharing, scalability, and fault tolerance.

Programmers use tools and systems when they match
the needs of their application. In some cases an exist-
ing system might support an application entirely; for
example, a simple application that only requires data
synchronization could use a backend storage service
like Dropbox [23], Parse [53] or S3 [58]. More complex
applications, though, must integrate multiple tools and
systems into a custom platform that meets their needs.
These systems include server-side storage like Redis [56]
or MySQL [49] for fault-tolerance, protocols such as

Mobile
Client
Devices

Durable Store

Cloud
Frontend
Servers

Shared
Backend
Services

Server-side
Application
Code

Client-side
Application
Code

Figure 1: Code for today’s applications spans cloud servers
and mobile devices. Client-side code runs on varied mobile
platforms, while server-side code runs in the cloud, typically
using shared backend services like distributed storage.

REST [25] and SOAP [62] or libraries like Java RMI and
Thrift [3] for distributed communication, load-balanced
servers for scalability, client-side caching for lower
wide-area latency, and systems for notification [1],
coordination [9, 33], and monitoring [18].

Sapphire provides a flexible environment whose
extension mechanism can subsume the functions of many
of these systems, or can integrate them into the platform
in a transparent way. Programmers can easily customize
the runtime system to meet the needs of their applications.
In addition, programmers can quickly switch deploy-
ment solutions to respond to environment or requirement
changes, or simply to test and compare alternatives during
development. Finally, Sapphire’s Deployment Manager
framework simplifies the development or extension of
distributed deployment code.

3 Sapphire Overview
Sapphire is a distributed programming platform designed
for flexibility and extensibility. In this section, we cover
our goals in designing Sapphire, the deployment model
that we assume, and Sapphire’s system architecture.

3.1 Design Goals

We designed Sapphire with three primary goals:
1. Create a distributed programming platform span-

ning devices and the cloud. A common platform in-
tegrates the heterogeneous distributed environment
and simplifies communications, code/data mobility,
and replication.

2. Separate application logic from deployment logic.
The application code is focused on servicing client
requests rather than distribution. This simplifies pro-
gramming, evolution, and optimization.

3. Facilitate system extension and customization. The
delegation of distribution management to an exten-
sible deployment layer gives programmers the flexi-
bility to easily make or change deployment options.

Sapphire is designed to deploy applications across mo-
bile devices and cloud servers. This environment causes

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 99

Sapphire
Object C

Sapphire
Object B

Sapphire
Object A

DM p DM q DM r

Deployment Kernel (DK)

Sapphire
Application

Deployment
Management
Layer

Figure 2: Sapphire runtime architecture. A Sapphire application
consists of a distributed collection of Sapphire Objects execut-
ing on a distributed Deployment Kernel (DK). A DK instance
runs on every device or cloud node. The Deployment Manage-
ment (DM) layer handles distribution management/deployment
tasks, such as replication, scalability, and performance.

significant complexity, as the programmer must stitch
together a distributed collection of highly heterogeneous
software and hardware components with a broad spec-
trum of capabilities, while still meeting application goals.

Sapphire is not designed for deploying backend
services like Spanner [16] or ZooKeeper [33]; its appli-
cations interact with such backend services using direct
calls, similar to current apps. A Sapphire Deployment
Manager can easily integrate a backend service trans-
parently to the application, e.g., using ZooKeeper for
coordination or Spanner for fault-tolerance. Sapphire is
also not designed for building user interfaces; we expect
applications to customize their user interfaces for the
devices they employ.

3.2 System Architecture

Figure 2 shows an application-level view of Sapphire’s
architecture. A Sapphire application, which encompasses
all of the client-side and server-side application logic,
consists of a collection of Sapphire Objects (SOs). Each
Sapphire Object functions as a single unit of distribution,
like a virtual node. Sapphire Objects in an application
share a logical address space that spans all cloud servers
and client-side devices. That is, a Sapphire application
is written so that all SOs can invoke each other directly
through simple location-independent procedure calls.

The bottom layer of Figure 2 is the Deployment Kernel
(DK), which is a flexible and extensible distributed run-
time system. It provides only the most basic distribution
functions, including SO addressing and location tracking,
best effort RPC-based communication, SO migration,
and basic resource management. It does not support more
complex tasks, such as fault tolerance, failure manage-
ment, reliability, and consistency. In this way, the DK
resembles IP-level network messaging – it is a basic ser-
vice that relies on higher levels of software to meet more
demanding program goals. The kernel is thus deployment

agnostic and does not favor (or limit the application to)
any specific approaches to deployment issues.

More complex management tasks are supported in
the deployment layer by extensions to the DK, called
Deployment Managers (DMs). Each Sapphire Object can
optionally have an attached DM – shown in the middle of
Figure 2 – which provides runtime distribution support in
addition to the minimal features of the DK. The program-
mer selects a DM to manage each SO; e.g., he may choose
a DM that handles failures to improve fault-tolerance,
or one to cache data locally on a mobile device for
performance. We have built a library of DMs supporting
common distribution tasks used by applications today.

The separation between the DK and DMs provides
significant flexibility and extensibility within the Sap-
phire distributed programming platform. As extensions
to the DK, Deployment Managers provide additional
distribution management features or guarantees for in-
dividual SOs. Often, these features involve performance
trade-offs; thus, not every application or every SO will
want or need a DM. Finally, by separating application
logic (in the application program) from deployment
logic (provided by DMs), we greatly reduce application
complexity and allow programmers to easily change
application deployment or performance behaviors.

4 Programming Model
The Sapphire application programming model is object
based and could be integrated with any object-oriented
language. Our implementation (Section 7) uses Java.

Sapphire Objects are the key programming abstraction
for managing application code and data locality. To
develop a Sapphire application, the programmer first
builds the application logic as a single object-oriented
program. He then breaks the application into distributed
components by declaring a set of application objects to
be Sapphire Objects. Sapphire Objects can still call each
other via normal method invocation, however, these calls
may now be remote invocations. Finally, the programmer
applies Deployment Managers (DMs) to SOs as desired
for additional distributed management features. In this
section, we will show that the Sapphire programming
model provides: (1) ease of programming in a distributed
environment, (2) flexibility in deployment, and (3)
programmer control over performance.

Defining Sapphire Objects. Programmers define
Sapphire Objects as classes using a sapphireclass

declaration, instead of the standard class declaration.
As an example, Figure 3 shows a code snippet from
our Twitter-clone, BlueBird. All instances of the User
class defined here are independent SOs. In this case, the
programmer has also specified a DM for the class, called
ConsistentCaching, to enhance the object’s performance.

SOs can encapsulate internal language-defined objects

3

100 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1 p u b l i c sapphireclass User uses ConsistentCaching {
2
3 / / u s e r h a n d l e
4 String username;
5 / / p e o p l e who f o l l o w me
6 User[] followers;
7 / / p e o p l e who I f o l l o w
8 User[] friends;
9

10 p u b l i c String getUsername () {
11 r e t u r n username;
12 }
13 p u b l i c User[] getMyFollowers () {
14 r e t u r n followers;
15 }
16 p u b l i c User[] getPeopleIFollow () {
17 r e t u r n friends;
18 }
19 p u b l i c Tweet[] getMyTweets () {
20 r e t u r n myTweets.getTweets ();
21 }
22 }

Figure 3: Example Sapphire object from BlueBird.

(Java objects in our system), such as the User string and
arrays. These are shown as small solid circles in Figure 2;
the solid arrows in the figure are references between
internal objects within an SO. SO-internal objects cannot
move independently or be accessed directly from outside
the SO. The SO is therefore the granularity of distribution
and decomposition in Sapphire. Moving an SO always
moves all of its internal objects along with it; therefore,
the programmer knows that all SO-internal objects will
always be co-located with the SO.

A Sapphire Object encapsulates data and compu-
tation into a “virtual node” that: (1) ensures that each
data/computation unit (a Sapphire Object) will always
have its code and data on the same node, (2) lets the system
transparently relocate or offload that unit, (3) supports
easy replication of units, and (4) provides an easy-to-
understand unit of failure and recovery. These benefits
make Sapphire Objects a powerful abstraction; using
fine-grained programmer-defined Sapphire Objects,
instead of a coarse-grained client/server architecture,
increases both flexibility in distributed deployment and
programmer control over performance.

Calling Sapphire Objects. Sapphire Objects com-
municate using method invocation. The dashed lines
in Figure 2 show cross-SO references, which are used
to invoke the target SO’s public methods. Invocation
is location-independent and symmetric; it can occur
transparently from mobile device to server, from server
to device, from device to device, or between servers in
the cloud. An SO can be moved by its DM or by the DK
as a result of resource constraints on the executing node.
Therefore, between two consecutive invocations from SO
A to SO B, either or both objects can change location; the
DK hides this change from the communicating parties.
Invocations can fail, e.g., due to network or node failure;
DMs help to handle failure on behalf of SOs.

SOs are passed by reference. All other arguments and

return values from SO invocations are passed by value.
For example, the return value of getUsername() in
Figure 3 is a copy of the username object stored inside
the SO, while getMyFollowers() returns a copy of the
array containing references to User SOs. This preserves
the encapsulation and isolation properties of Sapphire
Objects, since it is impossible to export the address of
internal objects within them.

Our goal was to create a uniform programming model
integrating mobile devices and the cloud without hiding
performance costs and trade-offs from the programmer.
Therefore, the programmer makes explicit choices in
the decomposition of the application into SOs; once that
choice is made, the system provides location-independent
communication, which simplifies programming in the
distributed environment.

Choosing Deployment Managers. Programmers
employ the uses keyword to specify a DM when
defining a Sapphire Object. For example, in Figure 3,
the sapphireclass declaration (line 1) binds the
ConsistentCaching DM to the User class. In this case,
every instance of User created by the program will have
the ConsistentCaching DM attached to it. It is easy to
change the DM binding with a simple change to the
sapphireclass definition.

Supporting DMs on a class basis lets programmers
specify different features or properties for different
application components. While the binding between
an SO and its DM could be specified outside of the
language (e.g., through a configuration file), we felt
that this choice should be visible in the code because
deployment decisions about the SO are closely tied to the
requirements of an SO.

Sapphire provides a library of standard DMs, and most
programmers will be able to choose the behavior they
want from the standard library. Additionally, DMs are
extensible; we discuss the API for building them in the
next section. As programmers can build their own DMs
and DMs are designed to be reusable, we expect the
library to grow naturally over time.

An SO can have at most one DM, and each instance of
the SO must use the same DM. We chose these restrictions
for simplicity and predictability, both in the design of
applications and DMs. In particular, the behavior of
multiple DMs attached to an SO depends on the order in
which the functions of the multiple DMs are invoked, and
DMs could potentially interfere with each other. For this
reason, programmers achieve the same result by explicitly
composing DMs using inheritance. This allows the pro-
grammer to precisely control the actions of the composed
DM. Since instances of the same SO should have the
same deployment requirements, we chose not to allow
different DMs for different instances of the same SO.

DMs separate management code into generic, reusable

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 101

modules that: (1) automatically deploy the application
in complex ways, (2) give programmers per-application-
component control over deployment trade-offs, and
(3) allow programmers to easily change deployment
decisions. These advantages make DMs a powerful
mechanism for deploying distributed applications.

5 Deployment Kernel
Sapphire’s Deployment Kernel is a distributed runtime
system for Sapphire applications. At a high level, the goal
of the DK is to create an integrated execution platform
across mobile devices and servers. The key functions pro-
vided by the DK include: (1) management and location
tracking of Sapphire Objects, (2) location-transparent
inter-object communications (RPC), (3) low-level replica
support, and (4) services to simplify the writing and
execution of Deployment Managers.

A DK instance provides best-effort deployment of a
single Sapphire application. It consists of a set of servers
that run on every mobile and back-end computing device
used by the application, and a centralized Object Tracking
System (OTS) for tracking Sapphire Objects.

The Sapphire OTS is a distributed, fault-tolerant coor-
dination service, similar to Chubby [9], ZooKeeper [33]
and Tango [4]. The OTS is responsible for tracking
Sapphire Objects across DK servers. DK servers only
communicate occasionally with the OTS when creating
or moving SOs. DK servers do not have to contact the
OTS on every RPC because SO references contain a
cached copy of the SO’s last location,

Each DK server hosts a number of SOs by acting as an
event server for the SOs, receiving and dispatching RPCs.
The DK server also hosts and manages the DMs for those
SOs. DK servers instantiate SOs locally by initializing
the SO’s memory, creating its DM (which potentially
has components on multiple nodes), and registering the
SO with the OTS. Once created, the server can move the
SO at any time because SO location and movement are
invisible to the application.

The DK provides primitive SO scheduling and place-
ment. If a DK server becomes overloaded, it will contact
the OTS to find a new server to host the SO, move the
SO to the new server, and update the OTS with the
SO’s new location. The DK API, described in Section 6,
provides primitives that allow DMs to express more
complex placement and scheduling policies, such as
geo-replicated fault-tolerance, load balancing, etc.

To route an RPC to an SO, the calling DK server sends
the RPC request to the destination server cached in the
SO reference. If the destination no longer hosts the SO,
the caller contacts the OTS to obtain the new address. If
the destination server is unavailable, the calling server
returns an error, because RPC in the DK is always best
effort; DMs implement more advanced RPC handling,

like retrying RPCs, routing RPCs between replicas, etc.
DK servers are not fault-tolerant: when they fail,

they simply reboot. That is, on recovery, DK servers
do not recover the SOs that they hosted on failure; they
simply register with the OTS and begin hosting new SOs.
Failures are entirely handled by DMs. We assume there
is a failure detection system, such as FALCON [39], to
notify the OTS when servers fail, which will then notify
the DMs of the SOs that were hosted on the failed server.

We expect devices to be Internet connected most of
the time, since applications today frequently depend on
online access to cloud servers. When a device becomes
disconnected, its DK server continues to run, but the ap-
plication will be unable to make or receive remote RPCs.
Any SOs hosted on a disconnected device will thus be in-
accessible to outside devices and servers. The OTS keeps
a list of mobile device IP addresses to quickly re-register
SOs hosted on those devices when they reconnect. DMs
can provide more advanced offline access.

6 Deployment Managers
A key feature of the Sapphire kernel is its support for the
programming and execution of Deployment Managers,
which customize and control the behavior of individual
SOs in the distributed mobile/cloud environment. The
DK provides direct API support for DMs. That API is
available to DM developers, who we expect to be more
technically sophisticated than application developers,
although the DM framework can be used by anyone to
customize or build new DMs. As this section will show,
DMs can accomplish complex distributed deployment
tasks with surprisingly little code. This is due to the
careful factoring of function between the DMs and the
DK: the DK does the heavy lifting, while the DMs simply
tell the DK what to lift through the DK’s API.

6.1 DM Library

Sapphire provides programmers with a library of DMs
that encompass many management features, including
controls over placement and RPC semantics, fault-
tolerance, load balancing and scaling, code-offloading,
and peer-to-peer deployment. Table 1 lists the DMs that
we have built along with a description and the LoC count
(from SLOCCount [71]) for each one. We built these
DMs both to provide programmers with useful DMs
for their applications and to illustrate the flexibility and
programming ease of the DM programming framework.

6.2 DM Structure and API

We designed the DM API to provide as minimal an
interface as possible while still supporting a wide range
of extensions. A DM extends the functionality of the DK
to meet the deployment requirements of a specific SO by
interposing on DK events for the SO. For example, on an
RPC to the SO, the DK will make an upcall into the DM

5

102 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Table 1: Library of Deployment Managers

Category Extension Description LoC

Primitives Immutable Efficient distribution and access for immutable SOs 19
AtLeastOnceRPC Automatically retry RPCs for bounded amount of time 27
KeepInPlace Keep SO where it was created (e.g., to access device-specific APIs) 15
KeepInCloud Keep SO on cloud server (e.g., for availability) 15
KeepOnDevice Keep SO on accessing client device and dynamically move 45

Caching ExplicitCaching Caching w/ explicit push and pull calls from the application 41
LeaseCaching Caching w/ server granting leases, local reads and writes for lease-holder 133
WriteThroughCaching Caching w/ writes serialized on the server and stale, local reads 43
ConsistentCaching Caching w/ updates sent to every replica for strict consistency 98

Serializability SerializableRPC Serialize all RPCs to SO with server-side locking 10
LockingTransactions Multi-RPC transactions w/ locking, no concurrent transactions 81
OptimisticTransactions Transactions with optimistic concurrency control, abort on conflict 92

Checkpointing ExplicitCheckpoint App-controlled checkpointing to disk, revert last checkpoint on failure 51
PeriodicCheckpoint Checkpoint to disk every N RPCs, revert to last checkpoint on failure 65
DurableSerializableRPC Durable serializable RPCs, revert to last successful RPC on failure 29
DurableTransactions Durably committed transactions, revert to last commit on failure 112

Replication ConsensusRSM-Cluster Single cluster replicated SO w/ atomic RPCs across at least f+1 replicas 129
ConsensusRSM-Geo Geo-replicated SO w/ atomic RPCs across at least f+1 replicas 132
ConsensusRSM-P2P SO replicated across client devices w/ atomic RPCs over f+1 replicas 138

Mobility ExplicitMigration Dynamic placement of SO with explicit move call from application 20
DynamicMigration Adaptive, dynamic placement to minimize latency based on accesses 57
ExplicitCodeOffloading Dynamic code offloading with offload call from application 49
CodeOffloading Adaptive, dynamic code offloading based on measured latencies 95

Scalability LoadBalancedFrontEnd Simple load balancing w/ static number of replicas and no consistency 53
ScaleUpFrontEnd Load-balancing w/ dynamic allocation of replicas and no consistency 88
LoadBalancedMasterSlave Dynamic allocation of load-balanced M-S replicas w/ eventual consistency 177

for that SO. DMs are implemented as objects, therefore
each DM can execute code on each upcall and store state
between upcalls.

A DM consists of three component types: the Proxy, the
Instance Manager, and the Coordinator. A programmer
builds a DM by defining three object classes, one for each
type. Since DMs are intended to manage distribution, the
DK creates a distributed execution environment in which
they operate; i.e., a DM is itself distributed and its compo-
nents can operate on different nodes. When the DK instan-
tiates a Sapphire Object with an attached DM, it also in-
stantiates and distributes the DM’s components. The DK
provides transparent RPC between the DM components
of an SO instance for coordination between components.

Figure 4 shows an example deployment of the DM
components for a single Sapphire Object A. The DK
may instantiate many Proxies and Instance Managers
but at most one Coordinator, as shown in this figure. The
center box (marked “Instance A”) indicates that A has
two replicas, marked replica 1 and replica 2. Each replica
has its own copy of the Instance Manager. Were the DM
to request a third replica of A, the DK would also create
a new Instance Manager for that replica. A replica and its
Instance Manager are always located on the same node.

CentralizedInstance AReferences

Deployment Kernel (DK)

Sapphire Object A with Deployment Manager

Stub

Proxy
Stub

Proxy

Stub

Proxy

Instance Mgr

Instance Mgr

DK-FT

Coordinator

Stub

Proxy

replica 1

replica 2

Figure 4: Deployment Manager (DM) organization. The
components named Proxy, Instance Mgr, and Coordinator are
all part of the DM for one Sapphire Object instance (shown here
with two replicas). DK-FT is a set of fault-tolerant DK nodes,
which also host the OTS, that support reliable centralized tasks
for DMs and the DK.

Each component of the DM is responsible for a
particular set of distributed tasks. Proxies are responsible
for caller-side tasks, like routing method calls. Instance
Managers are responsible for callee-side tasks, like
keeping replicas of the SO synchronized. Note that, due

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 103

Table 2: Deployment Managers Upcall API.

Event Description

onCreate Creation of SO instance
onRPC Method invocation on SO
onFailure Replica failed
onDestroy Coordinator eliminated SO
onHighLatency Avg. RPC latency > limit
onLowMemory Node running out of memory
onMemberChange New replica added to group
onRefRequest Request for an SO reference

to the symmetric nature of SOs, the caller of the method
may be on a cloud server and the SO itself may be on
a client device. Lastly, the Coordinator is responsible
for centralized tasks such as failure handling. All three
components are optional; a DM can define one or more
of the components, and the DK will instantiate only those
components that are defined.

The DK completely manages DM components; they
run only when invoked, they reside only where the DK
places them and are limited to communicating with other
components in the same DM instance, which are attached
to a single SO. The DK invokes DM components using
upcalls, which are shown in Table 2. Each component
receives a different set of upcalls according to the
component’s responsibilities. By interposing on Sapphire
Object events such as method invocations, DMs can
implement a variety of distributed management features
transparently and generically.

In each upcall, the DM component can perform various
management tasks on the SO using a set of primitives sup-
ported by the DK. Table 3 lists these primitives. The DM
components of an SO instance can communicate directly
with each other through a transparent RPC mechanism
provided by the DK. Note that the DK supports only the
most basic replication functions, namely, creating a new
replica for an SO and reporting on replica locations. All
decisions about the number of replicas, when to create or
delete them, how to synchronize them, and how to handle
failures occur at the DM level.

The left-most box in Figure 4 shows four other SOs.
Each contains a reference to A, shown as an RPC stub in
the figure, to which the DK has attached an instance of
A’s DM Proxy component. Making an RPC to A through
the DK and its DM proceeds as follows. The DK reflects
the call via an onRPC() upcall to the attached Proxy.
The upcall to the Proxy lets A’s DM intercept an RPC on
the caller’s node where, for example, it can implement
client-local caching. If the Proxy wants to forward the call
to replica 1 of A, it simply invokes replica 1’s Instance
Manager which runs in the same DK server as replica
1. The Instance Manager will pass the RPC through to
replica 1 of A.

Because the Proxies and Instance Managers for A

Table 3: DK API for Deployment Managers

Operation Description

invoke(RPC) Invoke RPC on the local SO
invoke(SO,RPC) Invoke RPC on a specific SO
getNode() Get ID for local node
getNodes() Get list of all nodes
pin(node) Move SO to a node.
setHighLatency(ms) Set limit for RPC latency
durable put(SO) Save copy of the SO
durable get(key) Retrieve SO
replicate() Create a replica
destroyReplica(IM) Eliminate a replica
getReplicas() Get list of replicas for SO
getReplica() Get ref to SO instance
setReplica(SO) Set ref to SO instance
copy(SO) Create a copy of the SO instance
diff(SO,SO) Diff two SO instances
sync(SO) Synchronize two SO instances
getIM() Get ref to DM Instance Mgr
setIM(IM) Set reference to DM Instance Mgr
getCoordinator() Get ref to DM Coordinator
getReference(IM) Create DM Proxy for IM
registerMethod(m) Register a custom method for DM
getRegion() Get ID for local region
getNode() Get ID for local node
pin(region) Move SO to region
pin(node) Move SO to node
getRegions() Get list of server regions
getNodes() Get list of nodes in local region

are all part of the same Deployment Manager, they all
understand whether or not the SO (A, in this case) is
replicated, and, if so, how that replication is implemented.
The choice of which replica to call is made inside the
DM components, which are aware of each other and can
communicate with each other directly through RPCs.

Finally, the DK instantiates one Coordinator for each
DM instance, shown in the right-most box of Figure 4.
The OTS manages Coordinators, keeping them fault-
tolerant and centrally accessible. It is well known that
a centralized coordinator can simplify many distributed
algorithms (e.g., eliminating the need for leader election).
Since the DK needs the OTS to tracking Sapphire Objects,
it was easy to provide fault-tolerance for some DMs as
well. We do not expect every DM to have a Coordinator,
and even if there is a Coordinator, it is used sparingly for
management tasks that are easiest handled centrally, such
as instantiating new replicas in the event of failures. In
this sense, Coordinators are similar to other centralized
management systems, like Chubby [9] or ZooKeeper [33].

Programmers can easily extend or compose existing
DMs using inheritance. The new DM inherits all of the be-
havior of the super-DM’s Component object classes. The
programmer can then override or combine upcalls in each
component. While we considered automatic composition,

7

104 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

1 p u b l i c c l a s s LeasedCaching e x t e n d s DManager {
2 p u b l i c c l a s s LCProxy e x t e n d s Proxy {
3 Lease lease;
4 SapphireObject so;
5
6 p u b l i c Object onRPC(SapphireRPC rpc) {
7 i f (! lease.isValid () || lease.isExpired ()) {
8 lease = Sapphire.getReplica (). getLease ();
9 i f (!lease.isValid ()) {

10 throw new SONotAvailableException(
11 ‘‘Could not get lease.’’);
12 } e l s e {
13 so = lease.getSO ();
14 }
15 }
16
17 SapphireObject oldSO = Sapphire.copy(so);
18 Sapphire.invoke(so , rpc);
19 SOStream diff = Sapphire.diff(oldSO , so);
20 i f (diff) Sapphire.getReplica (). update(diff);
21 }
22 }
23
24 p u b l i c c l a s s LCReplica e x t e n d s InstanceManager {
25 p u b l i c s y n c h r o n i z e d Lease getLease ();
26 p u b l i c s y n c h r o n i z e d v o i d update(SOStream);
27 / / Code f o r I n s t a n c e Manager m e t h o d s
28 }
29 }

Figure 5: Example Deployment Manager with arguments.

we believe that the DM programmer should be involved to
ensure that the composed DM implements exactly the be-
havior that the programmer expects. Our experience with
composing DMs has shown that the use of inheritance for
DM composition is straightforward and intuitive.

6.3 DM Code Example

Figure 5 shows a simplified definition of the
LeasedCaching DM that we provide in the Sapphire
Library. We include code for the Proxy component and
the function declarations from the Instance Manager.
This DM does not have a Coordinator because it does not
need centralized management.

The LeasedCaching DM is not replicated, so DK will
only create one Instance Manager. The Instance Manager
hands out mutually exclusive leases to Proxies (which
reside with the remote reference to the SO) and uses time-
outs to deal with failed Proxies. The Proxy with a valid
lease can read or write to a local copy. Read-only opera-
tions do not incur communications, which saves latency
over a slow network, but updates are synchronously pro-
pogated to the Instance Manager in case of Proxy failure.

When the application invokes a method on an SO with
this DM attached, the caller’s Proxy: (1) verifies that it
holds a lease, (2) performs the method call on its local
copy, (3) checks whether the object has been modified
(using diff()), and (4) synchronizes the remote object
with its cached copy if the object changed, using an
update() call to the Instance Manager.

Each Proxy stores the lease in the Lease object (line
3) and a local copy of the Sapphire Object (line 4). If the
Proxy does not hold a valid lease, it must get one from

the Instance Manager (line 8) before invoking its local
SO copy. If the Proxy is not able to get the lease, the
DM throws a SONotAvailableException (line 10). The
application is prepared for any RPC to an SO to fail, so it
will catch the exception and deal with it. The application
also knows that the SO uses the LeasedCaching SOM, so
it understands the error string (line 11).

If the Proxy is able to get a lease from the Instance
Manager, the lease will contain an up-to-date copy of the
SO (line 13). The Proxy will make a clean copy of the SO
(line 17), invoke the method on its local copy (line 18)
and then diff the local copy with the clean copy to check
for updates (line 19). If the SO changed, the Proxy will
update the Instance Manager’s copy of the SO (line 20).
The copy and diff is necessary because the Proxy does not
know which SO methods might write to the SO, thus re-
quiring an update to the Instance Manager. If the DM had
more insight into the SO (i.e., the SO lets the DM know
which methods are read-only), we could skip this step.

The example illustrates a few interesting properties
of DMs. First, DM code is application agnostic and can
perform only a limited set of operations on the SO that it
manages. In particular, it can interpose only on method
calls to its SO, and it manipulates the managed SO as a
black box. For example, there are DMs that automatically
cache an SO, but no DMs that cache a part of an SO. This
ensures a clean separation of object management code
from application logic and allows the DM to be reused
across different applications and objects.

Second, a DM cannot span more than one Sapphire
Object: it performs operations only on the object that it
manages. We chose not to support cross-SO management
because it would require the DM to better understand
the application; as well, it might cause conflicts between
the DMs of different SOs. As a result, there are DMs
that provide multi-RPC transactions on a single SO, but
we do not support cross-SO transactions. However, the
programmer could combine multiple Sapphire Objects
into one SO or implement concurrency support at the
application level to achieve the same effect.

6.4 DM Design Examples

This section discusses the design and implementation of
several classes of DMs from the Sapphire Library, listed
in Table 1. Our goal is to show how the DM API can be
used to extend the DK for a wide range of distributed
management features.

Code-offloading. The code-offloading DMs are useful
for compute-intensive applications. The CodeOffloading
DM supports transparent object migration based on the
performance trade-off between locating an object on a
device or in the cloud, while the ExplicitCodeOffloading
DM allows the application to decide when to move
computation. The ExplicitCodeOffloading DM gives

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 105

the application more control than the automated
CodeOffloading DM, but is less transparent because the
SO must interact with the DM.

Once the DK creates the Sapphire Object on a mobile
device, the automated CodeOffloading DM replicates the
object in the cloud. The device-side DM Instance Man-
ager then runs several RPCs locally and asks the cloud-
side Instance Manager to do the same, calculating the cost
of running on each side. An adaptive algorithm, based on
Q-learning [70], gradually chooses the lowest-cost option
for each RPC. Periodically, the DM retests the alternatives
to dynamically adapt to changing behavior since the cost
of offloading depends on the type of computation and the
network connection, which can change over time.

Peer-to-peer. We built peer-to-peer DMs to support the
direct sharing of SOs across client mobile devices without
needing to go through the cloud. These DMs dynamically
place replicas on nodes that contain references to the SO.
We implemented the DM using a centralized Coordinator
that attempts to place replicas as close to the callers as
possible, without exceeding an application-specified
maximum number of replicas. We show the performance
impact of this P2P scheme in Section 8.

Replication. The Sapphire Library contains three
replication DMs that replicate a Sapphire Object across
several servers for fault tolerance. They offer guarantees
of serializability and exactly-once semantics, along with
fault-tolerance. They require that the SO is deterministic
and only makes idempotent calls to other SOs.

The Library’s replication DMs model the SO as a repli-
cated state machine (RSM) that executes operations on
a master replica. These DMs all inherit from a common
DM that implements the RSM, then extend the common
DM to implement different policies for replica placement
(e.g., Geo-replicated, P2P).

The RSM DM uses a Coordinator to instantiate the de-
sired number of replicas, designate a leader, and maintain
information regarding membership of the replica group.
The Coordinator associates an epoch number with this
information, which it updates when membership changes.

For each RPC, Instance Managers forward the request
to the Instance Manager of the master replica, which logs
the RPC and assigns it an ID. The master then sends the
ID and epoch number to the other Instance Managers,
which accept it if they do not have another RPC with
the same ID. If the master receives a response from at
least f other Instance Managers, it executes the RPC and
synchronizes the state of the SO on the other replicas. If
one of the replicas fails, the DK notifies the Coordinator,
which allocates a new replica, designates a leader, starts
a new epoch, and informs other replicas of the change.

Scalability. To scale Sapphire Objects that handle
a large number of requests, the Sapphire Library in-

cludes both stateless and stateful scalability DMs. The
LoadBalancedFrontEnd DM provides simple load

balancing among a set number of replicas. This DM
only supports Sapphire Objects that are stateless (i.e.,
do not require consistency between replicas); however,
the SO is free to access state in other Sapphire Objects
or on disk. The ScaleUpFrontEnd DM extends the
LoadBalancedFrontEnd DM with automatic scale-up,

The DM monitors the latency of requests and creates
new replicas when the load on the SO and the latency
increases. Finally, the LoadBalancedMasterSlave
provides scalability for read-heavy workloads by dy-
namically allocating a number of read-only replicas that
receive updates from the master replica. This DM uses
the Coordinator to organize replicas and select the master.
We show the utility of our scalability DMs in Section 8.

Discussion. The DM’s upcall API and its associated
DK API are relatively small (only 8 upcalls and 27 DK
calls), yet powerful enough to cover a wide range of
sophisticated deployment tasks. Most of our DMs are
under a hundred lines of code. There are three reasons for
this efficiency of expression. First is the division of labor
between the DMs and the DK. The DK supports funda-
mental mechanisms such as RPC, object creation and
mobility, and replica management. Therefore, the DK per-
forms the majority of the work in deployment operations,
while the DMs simply tell the DK what work to perform.

Second is the availability of a centralized, fault-tolerant
Coordinator in the DM environment. This reduces the
complexity of many distributed protocols; e.g., in the
ConsensusRSMDMs, the Coordinator simplifies consen-
sus by determining the leader and group membership. Our
three replication DMs share this code but make different
replica placement decisions, meeting different goals
and properties with the same mechanism. Inheritance
facilitates the composition of new DMs from existing
ones; e.g., the DurableTransactions DM builds upon
the OptimisticTransactions DM, adding fault-tolerance
with only 20 more lines of code.

Finally, the decomposition of applications into Sap-
phire Objects greatly simplifies DM implementation. We
implemented the code-offloading DM in only 95 LoC
because we do not have to determine the unit of code to of-
fload dynamically, and because the application provides a
hint that the SO is compute-intensive by choosing the DM.
In contrast, current code-offloading systems [19, 30, 14]
are much more complex because they lack information
on application behavior and because the applications are
not easily composed into locality units, such as objects.

7 Implementation
Our DK prototype was built using Java to accommodate
Android mobile devices. Altogether, the DK consists
of 12,735 lines of Java code, including 10,912 lines of

9

106 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Mobile Cloud

AndroidAndroidAndroid LinuxLinuxLinux

DM Layer

Application

JVMJVMJVMDalvikDalvikDalvik

An
dr

oi
d

SD
K

An
dr

oi
d

SD
K

Backend
Services
Backend
Services

Deployment Kernel (DK)

Figure 6: Sapphire application and runtime system.

Apache Harmony RMI code, which we had to port to
Dalvik. Dalvik was developed based on Apache Harmony,
but does not include an implementation for Java RMI.

Figure 6 shows the prototype’s architecture. We used
Sun’s Java 1.6.0 38 JVM to run Sapphire in the cluster,
while the tablets and phones ran Sapphire on the Android
4.2 Dalvik VM. We used Java RMI for low-level RPCs
between DK nodes. We used Voldemort [69] as the
storage back-end for our checkpointing DMs.

Java RMI provides only point-to-point communication
and only supports calls to Java objects that have a special
Java RMI-provided interface. Thus, we could only use
Java RMI for low-level communication between DK
servers and the OTS. To achieve transparent communi-
cation between SOs and between DM components, we
built a compiler (862 LoC) that creates stubs for SOs and
for DM Instance Managers and Coordinators. Having a
stub for each SO allows the DK server to route RPCs and
invoke DM components on the callee and caller side. DM
Instance Managers and Coordinators also require stubs
because the DK needs to be able to support transparent
RPC from Instance Managers and Proxies. The compiler
generates stubs as Java classes that extend the class of
the target object, replacing all method contents with
forwarding functions into the DK. A stub is therefore a
reference that can be used for transparent communication
with the remote object through the DK.

We also rely on Apache Harmony’s implementation
of RMI serialization – with Java reflection to marshall
and unmarshall objects – for sending, diffing and copying
objects. We did no optimization of Java RMI at all
in this prototype. We could have applied well-known
techniques [44, 54, 50] to improve RPC performance and
expect to do so in the future; however, as we show in our
evaluation, our performance is competitive with widely
used client-server mechanisms, such as REST. In order
to achieve this performance on mobile devices, we had to
fix several bugs that caused performance problems in the
Apache Harmony RMI code that we ported to Android.

Our prototype does not currently include secure
communication between DK servers. Java RMI supports

SSL/TLS, so our prototype could easily support en-
crypted communication between DK servers. We would
also require an authentication mechanism for registering
DK servers on mobile devices, like Google SSO [28].

In today’s applications, mechanisms such as access
control checks are typically provided by the application.
With a unified programming platform like Sapphire, it
becomes possible to move security mechanisms into
the platform itself. While this discussion is outside
the scope of the paper, we are currently exploring the
use of information flow control-based protection for
mobile/cloud applications in the context of Sapphire’s
object and DK/DM structure.

8 Experience and Evaluation
This section presents qualitative and quantitative eval-
uations of Sapphire. We first describe our experience
building new applications and porting applications to
Sapphire. Second, we provide low-level DK performance
measurements, and an evaluation of several DMs and
their performance characteristics. Our experience demon-
strates that: (1) Sapphire applications are easy to build,
(2) the separation of application code and deployment
code, along with the use of symmetric (i.e., non-client-
server) communication, maximizes flexibility and choice
of deployment for programmers, and (3) Deployment
Managers can be used effectively to improve performance
and scalability in a dynamic distributed environment.

8.1 Applications

We consider the design and implementation of several
Sapphire applications with respect to three objectives:

• Development Ease: It should be easy to develop
mobile/cloud applications either from scratch or by
porting non-distributed mobile device applications
to Sapphire. Furthermore, it should be possible to
write application code without explicitly addressing
distribution management.

• Deployment Flexibility: The programmer should
be able to choose from alternative distribution man-
agement schemes and change deployment decisions
without rewriting application code.

• Management Code Generality: It should be possi-
ble to build generic distribution management com-
ponents that can be used widely both within an ap-
plication and across different applications.

Table 4 lists several applications that we built or
ported, along with their LoC. We built three applications
from scratch: an online to-do list, a collaborative text
and table editor, and a multi-player game. We also built
a fully-featured Twitter clone, called BlueBird, and
paired it with the front-end UI from Twimight [68], an
open-source Android Twitter client. The table also lists
six non-distributed, compute-intensive applications that

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 107

Table 4: Sapphire applications. We divide each application into
front-end code (the UI) and back-end code (application logic).
The source column indicates whether we developed new native
Sapphire code or ported open-source code to Sapphire.

Back-end Front-end

Application Source LoC Source LoC

To Do List Native 48 Native 132
Text/Table Editor Native 409 Native 533
Multi-player Game Native 588 Native 1,186
BlueBird Native 783 Ported 13,009
Sudoku Solver Ported 76 - -
Regression Ported 348 - -
Image Recognition Ported 102 - -
Physics Engine Ported 108 - -
Calculus Ported 818 - -
Chess AI Ported 427 - -

we ported to Sapphire.

Development Ease. It took relatively little time and
programming experience to develop Sapphire applica-
tions. In particular, the existence of a DM library lets
programmers write application logic without needing
to manage distribution explicitly. Two applications –
the multi-player game and collaborative editor – were
written by undergraduates who had never built mobile
device or web applications and had little distributed
systems experience. In under a week, each student wrote
a working mobile/cloud application of between 1000
and 1500 lines of code consisting of five or six Sapphire
Objects spanning the UI and Sapphire back-end.

Porting existing applications to Sapphire was easy as
well. For the compute-intensive applications, a single
line change was sufficient to turn a Java object into a
distributed SO that could adaptively execute either on the
cloud or the mobile device. We did not have to handle
failures because the CodeOffload DM hides them by
transparently re-executing the computation locally when
the remote site is not available. An undergraduate ported
all six applications – and implemented the CodeOffload
DM as well – in less than a week.

Our largest application was BlueBird, a Twitter clone
that was organized as ten Sapphire Objects: Tweet, Tag,
TagManager, Timeline, UserTimeline, HomeTimeline,
MentionsTimeline, FavoritesTimeline, User and
UserManager. We implemented all Twitter functions
except for messaging and search in under 800 lines. In
comparison, BigBird [22], an open-source Twitter clone,
is 2563 lines of code, and Retwis-J [38], which relies
heavily on Redis search functionality, is 932 lines of code.

Distributed mobile/cloud applications must cope with
the challenges of running on resource-constrained mobile
devices, unreliable cloud servers, and high-latency,
wide-area links. Using Sapphire, these challenges are

handled by selecting DMs from the DM library, which
greatly simplifies the programmer’s task and makes it
easy to develop and test alternative deployments.

Deployment Flexibility. Changing an SO’s DM,
which changes its distribution properties, requires only
a one-line code change. We made use of this property
throughout the development of our applications as we
experimented with our initial distribution decisions and
tried to optimize them.

In BlueBird, for example, we initially chose not to
make Tweet and Tag into SOs; since these objects are
small and immutable, we thought they did not need to be
independent, globally shared objects. Later, we realized
that it would be useful to refer directly to Tweets and
Tags from Timeline objects rather than accessing them
through another SO. We therefore changed them to SOs –
a trivial change – and then employed ExplicitCaching for
both of them to reduce the network delay for reads of the
tweet or tag strings.

As another example, we encountered a deployment
decision in the development of our multi-player game.
TheGame object lasts only for the duration of a game and
can be accessed only from two devices used to play. Since
the object does not need high reliability or availability, it
can be deployed in any number of ways: on a server, on
one of the devices, or on both devices. We first deployed
the Game object on a cloud server and then decided
to experiment with peer-to-peer alternatives. Changing
from the cloud deployment to peer-to-peer using the
KeepOnDevice and ConsensusRSM-P2P managers in
our DM library required only a single line change, and
improved performance (see Section 8.4) and allowed
games to continue when the server is unavailable. In
contrast, changing an application for one of today’s sys-
tems from a cloud deployment to a peer-to-peer mobile
device deployment would require significant application
rewriting (and might even be impossible without an
intermediary cloud component due to the client-server
nature of existing systems).

Management Code Generality. We applied several
DMs to multiple SOs within individual applications
and across applications. For example, many of our
applications have an object that is shared among a small
number of users or devices (e.g., ToDoList, Document,
etc.). To make reads faster while ensuring that users see
immediate updates, we used the ConsistentCaching DM
for all of these applications. Without the DM structure,
the programmers would have to write the caching and
synchronization code explicitly for each case.

Even within BlueBird, which has 10 Sapphire Object
types, we could reuse several DMs. If the deployment
code for each BlueBird SO had to be implemented in
the application, the application would grow by at least

11

108 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

800 LoC, more than doubling in size! This number is
conservative: it assumes the availability of the DM API
and the DK for support. Without those mechanisms, even
more code would be required.

8.2 Experimental Setup

Our experiments were performed on a homogeneous
cluster of server machines and several types of devices
(tablets and phones). Each server contained 2 quad-core
Intel Xeon E5335 2.00GHz CPUs with 8GB of DRAM
running Ubuntu 12.04 with Linux kernel version 3.2.0-
26. The devices were Nexus 7 tablets, which run on a
1.3 GHz quad-core Cortex A9 with 1 GB of DRAM, and
Nexus S phones with a 1 GHz single-core Hummingbird
processor and 512MB of DRAM. The servers were all
connected to one top-of-rack switch. The devices were
located on the same local area network as the servers, and
communicated with the server either through a wireless
connection or T-mobile 3G links.

8.3 Microbenchmarks

We measured the DK for latency and throughput using
closed-loop RPCs. Latencies were measured at the
client. Before taking measurements, we first sent several
thousand requests to warm up the JVM to avoid the
effects of JIT and buffering optimizations.

RPC Latency Comparison. We compared the per-
formance of Sapphire RPC to Java RMI and to two
widely used communication models: Thrift and REST.
Apache Thrift [3] is an open-source RPC library used
by Facebook, Cloudera and Evernote. REST [25] is a
popular low-level communication protocol for the Web;
many sites have a public REST API, including Facebook
and Twitter. We measured REST using a Java client
running the standard HttpURLConnection class and a
PHP script running on Apache 2.2 for method dispatch.

Table 5 shows request/response latencies for intra-node
(local), server-to-server, tablet-to-server, server-to-tablet
and tablet-to-tablet communications on null requests for
all four systems. While Thrift was slightly faster in all
cases, Java RMI and Sapphire were comparable and were
both faster than the Java REST library.

Sapphire uses Java RMI for communication between
DK servers; however, we dispatch method calls to SOs
through the DK. This additional dispatch caused the
latency difference between Java RMI and Sapphire RPC.
The extra cost was primarily due to instantiating and
serializing Sapphire’s RPC data object (which is not
required for a null Java RMI RPC). We could reduce
this cost by using a more efficient RPC and serialization
infrastructure, such as Thrift.

Note that even without optimization, Sapphire was
faster than REST, which is probably the most widely used
communication framework today. Furthermore, we could

Table 5: Request latencies (ms) for local, server-to-server,
tablet-to-server, server-to-tablet and tablet-to-tablet. Note that
REST does not support communication to tablets.

RPC Protocol Local S→S T→S S→T T→T

Sapphire 0.08 0.16 5.9 3.4 12.0
Java RMI 0.05 0.12 4.6 2.0 7.2
Thrift 0.04 0.11 2.0 2.0 3.6
REST 0.49 0.64 7.9 - -

not show REST performance for server-to-tablet and
tablet-to-tablet because REST’s client-server architecture
cannot accept HTTP requests on the tablet. Thus, REST
can be used only for tablet-to-server communication, re-
quiring the application to explicitly manage communica-
tion forms such as server-to-client or client-to-client.

Throughput Comparison. We measured request
throughput for the Sapphire DK and Java RMI. The
results (Figure 7) showed similar throughput curves, with
Java RMI object throughput approximately 15% higher
than that for Sapphire Objects. This is because Sapphire
null RPCs are not truly empty: they carry a serialized
structure telling the DK how to direct the call. To break
the cost down further, we measured the throughput of a
Java RMI carrying a payload identical to that of the Sap-
phire null RPC. This reduced the throughput difference to
3.6%; this 3.6% is the additional cost of Sapphire’s RPC
dispatching in the DK, with the remainder due to the cost
of serialization for the dispatching structure. Again, there
are many ways to reduce the cost of this communication in
Sapphire, but we leave those optimization to future work.

0K

20K

40K

60K

80K

100K

120K

 0 20 40 60 80 100 120

R
eq

ue
st

s/
s

Clients

Java RMI null RPC
Sapphire null RPC

Figure 7: Throughput of a Sapphire Object versus an RMI
Object.

Sapphire DK Operation Cost. We measured the
latency of several DK services. DK call latency depends
on the size and complexity of the object, since we use
Java serialization. Table 6 shows latency results for
creating, replicating, and moving SOs on servers and
tablets. Operation latencies were low when executed on
cloud servers. Tablets were considerably slower than
cloud servers. However, we expect most management
operations such as these to be performed in the cloud (i.e.,
we do not expect tablets to create large numbers of SOs).

The SO instantiation process can be expensive because

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 109

Table 6: Sapphire DK API latencies (ms).
create replicate move (over WiFi)

Object S T S T S→S T→S S→T T→T

Table 1.1 28 0.5 15 1.9 42 16 66
Game 1.1 29 0.5 16 2.1 49 19 67
TableMgr 1.1 27 0.6 18 2.2 50 16 78

the DK must create several objects locally: the SO, the
SO stub, the DM Proxy and the DM Instance Manager.
The DK must also create the DM Coordinator remotely
on a DK-FT node and register the SO with the OTS.
Communication with the DK-FT node and the OTS
accounted for nearly half the instantiation latency.

8.4 Deployment Manager Performance

We measured the performance of five categories of
DMs: caching, replication, peer-to-peer, mobility, and
scalability. Our goal was to examine their effectiveness
as extensions to the DK and the costs and trade-offs of
employing different DMs.

Caching. We evaluated two caching DMs:
LeaseCaching and ConsistentCaching. As expected,
caching significantly improved the latency of reads in both
cases. For theTodoList SO, which uses the LeaseCaching
DM, caching reduced read latency from 6 ms to 0.5 ms,
while write latency increased from 6.1 ms to 7.5 ms. For
the Game SO, which uses the ConsistentCaching DM, all
read latencies decreased, from 7-13 ms to 2-3 ms. With
consistent caching, the write cost to keep the caches and
cloud synchronized was significant, increasing from 29
ms to 77 ms. Overhead introduced by the DM was due
to the use of serialization to determine read vs. write
operations. For writes, the whole object was sent to be
synchronized with the cloud, instead of a compact patch.

Code offloading. We measured our ported, compute-
intensive applications with the CodeOffloading DM
for the Nexus 7 tablet and the Galaxy S smartphone.
Figure 8 shows the latencies for running each application
locally on the device (shown as Base), offloaded to the
cloud over WiFi, and offloaded over 3G. The offloading
trade-offs varied widely across the two platforms due
to differences in CPU speed, wireless, and cellular
network card performance. For example, for the Calculus
application, cloud offloading was better for the phone
over both wireless and 3G; however, for the tablet it
was better only over wireless. For the Physics engine,
offloading was universally better, but it was particularly
significant for the mobile device, which was not able to
provide real-time simulation without code offloading.

These cross-platform differences in performance show
the importance of flexibility. An automated algorithm
cannot always predict when to offload and can be costly.
Therefore, it is important for the programmer to be able to
easily change deployment to adapt to new technologies.

0

100

200

300

400

500

BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G

m
illi
se
co
nd
s

Execution Network

RegressionCalculusSudoku OCRPhysics ChessAI

0

100

200

300

400

500

BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G BaseWiFi 3G

m
illi
se

co
nd

s

Phone
1190 ms

RegressionCalculusSudoku OCRPhysics ChessAI

Tablet

Figure 8: Code offloading performance.

0K

50K

100K

150K

200K

250K

300K

 0 20 40 60 80 100 120 140

R
eq

ue
st

s/
s

Clients

1 node
2 nodes
3 nodes

Figure 9: Effects of applying the LoadBalancedFrontEnd DM.

Scalability. We built the LoadBalancedFrontEnd DM
to scale a stateless SO under heavy load. The DM creates
a given number of non-consistent replicas of an SO and
assigns clients to the replicas in a round-robin fashion.
Figure 9 shows the throughput of the SO serving null
RPCs when the DM creates up to 3 replicas. Throughput
scaled linearly with the number of replicas until the
network saturated at 257,365 requests/second.

Peer-to-Peer Deployments. Sapphire lets program-
mers move objects easily between clients and servers,
enabling P2P deployments that would be difficult or
impossible in existing systems. We measured three
deployments for the Game SO from our multi-player
game: (1) without a DM, which caused Sapphire to
deploy the SO on the server where it is created; (2) with
the KeepOnDevice DM, which dynamically moved the
Game object to a device that accessed it; and (3) with the
ConsensusRSM-P2P DM, which created synchronized
replicas of the Game SO on the callers’ devices.

For each deployment, Figure 10 shows the latency of
the game’s read methods (getScrambleLetters(),
getPlayerTurn() and getLastRoundStats()) and
write methods (play() and pass()). With the Game
SO in the cloud, read and write latencies were high for
both players. With the KeepOnDevice DM, the read
and write latencies were extremely low for the device
hosting the SO, but somewhat higher for the other
player, compared to the cloud version. Finally, with the
ConsensusRSM-P2P DM, read latencies were much

13

110 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0

5

10

15

20

Host Guest Host Guest Host Guest

m
ilis

ec
on

ds

getPlayerTurn getScrambleLetters getLastRoundStats pass play

29 26

No DM KeepOnDevice DM

30 6228

ConsensusRSM-P2P DM

Figure 10: Multi-player Game: different deployment schemes.

lower for both devices, while write latencies were higher.
In our scenario, the two tablets and the server were on the
same network. In cases where the two players are close
on the network and far from the server, the peer-to-peer
DMs would provide a valuable deployment option.

With the DMs, no cloud servers were needed to support
the Game SO; this reduced server load, but Game SOs
were no longer available if the hosting device were
disconnected. This experiment shows the impact of
different deployment options and the benefit of being
able to flexibly choose alternative deployments to trade
off application performance, availability, and server load.

9 Related Work
Researchers have built many systems to help applications
cope with deployment issues. Code-offloading systems,
like COMET [30], MAUI [19], and CloneCloud [14],
automatically offload computationally intensive tasks
from mobile devices to cloud servers. Distributed storage
systems [21, 12, 16] are a popular solution for server-side
scalability, durability and fault-tolerance. Systems like
PADS [7], PRACTI [6] and WheelFS [65] explored
configurable deployment of application data but not
runtime management of the entire application. Systems
like Bayou [67], Cimbiosys [55] and Simba [2] offer
client-side caching and offline access for weakly con-
nected environments. Each of these systems only solves
a subset of the deployment challenges that mobile/cloud
applications face. Sapphire is the first distributed sys-
tem to provide a unified solution to deployment for
mobile/cloud applications.

When building Sapphire’s DM library, we drew inspira-
tion from existing mobile/cloud deployment systems, in-
cluding those providing: wide-area communication [34],
load-balancing [31, 72], geographic replication [43, 63],
consensus protocols [37, 52], and DHTs [64, 57, 45].

Similar to our goal with Sapphire, previous language
and compiler systems have tried to unify the distributed
environment. However, unlike Sapphire, these solutions
have no flexibility. They either make all deployment
decisions for the application – an approach that doesn’t
work for the wide range of mobile/cloud requirements
– or they leave all deployment up to the programmer.

Compilers like Coign [32], Links [15], Swift [13] and
Hop [60] automatically partition applications, but give
programmers no control over performance trade-offs.
Single language domains like Node.js [51] and Google
Web Toolkit [29] create a uniform programming language
across browsers and servers, but leave deployment up to
the application. For mobile devices, MobileHTML5 [47],
MobiRuby [48] and Corona [17] support a single cross-
platform language. Sapphire supports a more complete
cross-platform environment, but programmers can select
deployments from an extensive (and extensible) library.

The DK’s single address space and distributed object
model are related to early distributed programming sys-
tems such as Argus [41], Amoeba [66] and Emerald [35].
Modern systems like Orleans [10] and Tango [4] provide
cloud- or server-side services. Fabric [42] extends the
work in this space with language abstractions that provide
security guarantees. These systems were intended for
homogeneous, local-area networks, so do not have the
customizability and extensibility of the Sapphire DK.

Overall, existing or early distributed programming
systems are not general-purpose, flexible or extensible
enough to support mobile/cloud application require-
ments. Therefore, in designing Sapphire, we drew
inspiration from work that has explored customizability
and extensibility in other contexts: operating systems [24,
8, 26, 59, 40], distributed storage [7, 20, 65, 61, 27],
databases [11, 5], and routers and switches [36, 46].

10 Conclusion
This paper presented Sapphire, a system that simplifies
the development of mobile/cloud applications. Sapphire’s
Deployment Kernel creates an integrated environment
with location-independent communication across mobile
devices and clouds. Its novel deployment layer contains a
library of Deployment Managers that handle application-
specific distribution issues, such as load-scaling, replica-
tion, and caching. Our experience shows that Sapphire:
(1) greatly eases the programming of heterogeneous,
distributed cloud/mobile applications, (2) provides great
flexibility in choosing and changing deployment deci-
sions, and (3) gives programmers fine-grained control
over performance, availability, and scalability.

Acknowledgements
This work was supported by the National Science
Foundation (grants CNS-0963754, CNS-101647, CSR-
1217597), an NSF Graduate Fellowship, the ARCS
Foundation, an IBM PhD Scholarship, Google, and the
Wissner-Slivka Chair in Computer Science & Engineer-
ing. We thank our shepherd Doug Terry and the reviewers
for their helpful comments on the paper. Finally, we’d
like to thank the UW Systems lab for their support and
feedback throughout the project.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 111

References
[1] A. Adya, G. Cooper, D. Myers, and M. Piatek. Thialfi: A

client notification service for internet-scale applications.
In Proc. of SOSP, 2011.

[2] N. Agrawal, A. Aranya, and C. Ungureanu. Mobile data
sync in a blink. In Proc. of HotStorage, 2013.

[3] Apache. Apache Thrift, 2013. http://thrift.apache.org.

[4] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-
hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck.
Tango: Distributed data structures over a shared log. In
Proc. of SOSP, 2013.

[5] D. Batoory, J. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda,
B. Twichell, and T. Wise. Genesis: An extensible database
management system. IEEE Transactions on Software
Engineering, 1988.

[6] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng.
Practi replication. In Proc. of NSDI, 2006.

[7] N. M. Belaramani, J. Zheng, A. Nayate, R. Soulé,
M. Dahlin, and R. Grimm. PADS: A policy architecture
for distributed storage systems. In Proc. of NSDI, 2009.

[8] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E.
Fiuczynski, D. Becker, C. Chambers, and S. Eggers. Ex-
tensibility safety and performance in the SPIN operating
system. In Proc. of SOSP, 1995.

[9] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proc. of OSDI, 2006.

[10] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and
J. Thelin. Orleans: cloud computing for everyone. In
Proc. of SOCC, 2011.

[11] M. J. Carey, D. J. DeWitt, J. E. Richardson, and E. J.
Shekita. Object and file management in the EXO-
DUS extensible database system. Computer Sciences
Department, University of Wisconsin, 1986.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems, 2008.

[13] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng. Secure web applications via automatic
partitioning. In Proc. of SOSP, 2007.

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
CloneCloud: Elastic execution between mobile device
and cloud. In Proc. of EuroSys, 2011.

[15] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links:
Web programming without tiers. In Proc. of FMCO, 2006.

[16] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In Proc. of OSDI, 2012.

[17] Corona SDK, 2013. http://www.coronalabs.com/.

[18] J. Cowling, D. R. Ports, B. Liskov, R. A. Popa, and
A. Gaikwad. Census: Location-aware membership
management for large-scale distributed systems. Proc. of
USENIX ATC, 2009.

[19] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: making
smartphones last longer with code offload. In Proc. of
MobiSys, 2010.

[20] M. Dahlin, L. Gao, A. Nayate, A. Venkataramana, P. Yala-
gandula, and J. Zheng. PRACTI replication. In Proc. of
NSDI, 2006.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In Proc. of SOSP, 2007.

[22] D. Diephouse and P. Brown. Building a
highly scalable, open source Twitter clone,
2009. http://fr.slideshare.net/multifariousprb/
building-a-highly-scalable-open-source-twitter-clone.

[23] Dropbox, 2013. http://dropbox.com.

[24] D. R. Engler, M. F. Kaashoek, et al. Exokernel: An op-
erating system architecture for application-level resource
management. In Proc. of SOSP, 1995.

[25] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
University of California, Irvine, 2000.

[26] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and
O. Shivers. The Flux OSKit: A substrate for kernel and
language research. In Proc. of SOSP, 1997.

[27] R. Geambasu, A. A. Levy, T. Kohno, A. Krishnamurthy,
and H. M. Levy. Comet: An active distributed key-value
store. In Proc. of OSDI, 2010.

[28] 2013. https://developers.google.com/google-apps/
marketplace/sso.

[29] Google web toolkit. https://developers.google.com/
web-toolkit/, October 2012.

[30] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and
X. Chen. COMET: Code offload by migrating execution
transparently. In Proc. of OSDI, 2012.

[31] HAProxy: A reliable, high-performance TCP/HTTP load
balancer, 2013. http://haproxy.1wt.eu/.

[32] G. C. Hunt and M. L. Scott. The coign automatic
distributed partitioning system. In Proc. of OSDI, 1999.

[33] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for internet-scale
systems. In Proc. of USENIX ATC, 2010.

[34] A. D. Joseph, A. F. de Lespinasse, J. A. Tauber, D. K.
Gifford, and M. F. Kaashoek. Rover: a toolkit for mobile
information access. In Proc. of SOSP, 1995.

[35] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained
mobility in the Emerald system. In Proc. of SOSP, 1987.

15

112 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[36] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. In Proc. of SOSP,
1999.

[37] L. Lamport. Paxos made simple. ACM Sigact News, 2001.

[38] C. Leau. Spring Data Redis - Retwis-J, 2013.
http://docs.spring.io/spring-data/data-keyvalue/
examples/retwisj/current/.

[39] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and
M. Walfish. Detecting failures in distributed systems with
the falcon spy network. In Proc. of SOSP, 2011.

[40] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
Policy/mechanism separation in Hydra. In Proc. of SOSP,
1975.

[41] B. Liskov, D. Curtis, P. Johnson, and R. Scheifler.
Implementation of Argus. In Proc. of SOSP, 1987.

[42] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and
A. C. Myers. Fabric: A platform for secure distributed
computation and storage. In Proc. of SOSP, 2009.

[43] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen. Don’t settle for eventual: Scalable causal consistency
for wide-area storage with COPS. In Proc. of SOSP, 2011.

[44] J. Maassen, R. Van Nieuwpoort, R. Veldema, H. Bal,
T. Kielmann, C. Jacobs, and R. Hofman. Efficient Java
RMI for parallel programming. ACM Transactions on
Programming Languages and Systems, 2001.

[45] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-
peer information system based on the XOR metric. In
Proc. of IPTPS, 2002.

[46] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Open-
Flow: Enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review, 2008.

[47] Moblie HTML5, 2013. http://mobilehtml5.org.

[48] MobiRuby, 2013. http://mobiruby.org/.

[49] MySQL, 2013. http://www.mysql.com/.

[50] C. Nester, M. Philippsen, and B. Haumacher. A more
efficient RMI for Java. In Proc. of Java Grande, 1999.

[51] Node.js, 2013. http://nodejs.org/.

[52] B. M. Oki and B. H. Liskov. Viewstamped replication:
A new primary copy method to support highly-available
distributed systems. In Proc. of PODC, 1988.

[53] Parse, 2013. http://parse.com.

[54] M. Philippsen, B. Haumacher, and C. Nester. More
efficient serialization and RMI for Java. Concurrency:
Practice and Experience, 2000.

[55] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,
M. Walraed-sullivan, T. Wobber, C. C. Marshall, and
A. Vahdat. Cimbiosys: A platform for content-based
partial replication. In Proc. of NSDI, 2009.

[56] Redis: Open source data structure server, 2013.
http://redis.io/.

[57] A. Rowstron and P. Druschel. Pastry: Scalable, de-
centralized object location, and routing for large-scale
peer-to-peer systems. In Proc. of Middleware, 2001.

[58] Amazon S3, 2013. http://aws.amazon.com/s3/.

[59] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing
with disaster: Surviving misbehaved kernel extensions. In
Proc. of OSDI, 1996.

[60] M. Serrano, E. Gallesio, and F. Loitsch. Hop: a language
for programming the web 2.0. In OOPSLA Companion,
2006.

[61] A. Siegel, K. Birman, and K. Marzullo. Deceit: A flexible
distributed file system. In Proc. of the Workshop on the
Management of Replicated Data, 1990.

[62] Simple object access protocol. http://www.w3.org/TR/
soap/.

[63] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Trans-
actional storage for geo-replicated systems. In Proc. of
SOSP, 2011.

[64] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proc. of SIGCOMM,
2001.

[65] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F.
Kaashoek, and R. Morris. Flexible, wide-area storage for
distributed systems with WheelFS. In Proc. of NSDI, 2009.

[66] A. S. Tanenbaum, R. Van Renesse, H. Van Staveren, G. J.
Sharp, and S. J. Mullender. Experiences with the Amoeba
distributed operating system. Commun. ACM, 1990.

[67] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update
conflicts in bayou, a weakly connected replicated storage
system. In Proc. of SOSP, 1995.

[68] Twimight open-source Twitter client for Android, 2013.
http://code.google.com/p/twimight/.

[69] Voldemort: A distributed database, 2013. http:
//www.project-voldemort.com/voldemort/.

[70] C. Watkins and P. Dayan. Q-learning. Machine Learning,
1992.

[71] D. A. Wheeler. SLOCCount, 2013. http:
//www.dwheeler.com/sloccount/.

[72] Zen load balancer, 2013. http://www.zenloadbalancer.
com/.

16

