
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Heading Off Correlated Failures through
Independence-as-a-Service

Ennan Zhai, Yale University; Ruichuan Chen, Bell Labs and Alcatel-Lucent;
David Isaac Wolinsky and Bryan Ford, Yale University

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zhai

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 317

Heading Off Correlated Failures through Independence-as-a-Service

Ennan Zhai†, Ruichuan Chen§, David Isaac Wolinsky†, Bryan Ford†

†Yale University §Bell Labs / Alcatel-Lucent

Abstract

Today’s systems pervasively rely on redundancy to en-

sure reliability. In complex multi-layered hardware/soft-

ware stacks, however – especially in the clouds where

many independent businesses deploy interacting services

on common infrastructure – seemingly independent sys-

tems may share deep, hidden dependencies, undermin-

ing redundancy efforts and introducing unanticipated

correlated failures. Complementing existing post-failure

forensics, we propose Independence-as-a-Service (or

INDaaS), an architecture to audit the independence of

redundant systems proactively, thus avoiding correlated

failures. INDaaS first utilizes pluggable dependency ac-

quisition modules to collect the structural dependency

information (including network, hardware, and software

dependencies) from a variety of sources. With this infor-

mation, INDaaS then quantifies the independence of sys-

tems of interest using pluggable auditing modules, of-

fering various performance, precision, and data secrecy

tradeoffs. While the most general and efficient auditing

modules assume the auditor is able to obtain all required

information, INDaaS can employ private set intersection

cardinality protocols to quantify the independence even

across businesses unwilling to share their full structural

information with anyone. We evaluate the practicality of

INDaaS with three case studies via auditing realistic net-

work, hardware, and software dependency structures.

1 Introduction

Cloud services normally require high reliability, and per-

vasively rely on redundancy techniques to ensure this re-

liability [7, 10, 12, 29]. Amazon S3, for example, repli-

cates each data object across multiple racks in an S3 re-

gion [3]. iCloud rents infrastructures from multiple cloud

providers – both Amazon EC2 and Microsoft Azure –

for redundancy [28]. Seemingly independent infrastruc-

ture components, however, may share deep, hidden de-

pendencies. Failures in these shared dependencies may

lead to unexpected correlated failures, undermining re-

dundancy efforts [19, 27, 34, 44, 47, 74, 75].

In redundant systems, a risk group [35] or RG is a set

of components whose simultaneous failures could cause

a service outage. Suppose some service A replicates crit-

ical state across independent servers B, C and D located

in three separate racks. The intent of this 3-way redun-

dancy configuration is for all RGs to be of size three, i.e.,

three servers must fail simultaneously to cause an outage.

Unbeknownst to the service provider, however, the three

racks share an infrastructure component, such as an ag-

gregation switch S. If the switch S fails for whatever rea-

son, B, C and D could become unavailable at the same

time, causing the service A to fail. We say such common

dependency introduces an unexpected RG, defined as a

smaller than expected RG, whose failure could disable

the whole service despite redundancy efforts.

This example, while simplistic, nevertheless illustrates

documented failures. In an Amazon AWS event [4],

a glitch on one Amazon Elastic Block Store (EBS)

server disabled the EBS service across Amazon’s US-

East availability zones. The failure of the EBS service

caused correlated failures across multiple Elastic Com-

pute Cloud (EC2) instances utilizing that EBS for stor-

age, and in turn disabled applications designed for re-

dundancy across these EC2 instances. The EBS server

in this example was a single common dependency that

undermined the EC2’s redundancy efforts.

Discovering unexpected common dependencies is ex-

tremely challenging [20,22]. Many diagnostic and foren-

sic approaches attempt to localize or tolerate such fail-

ures after they occur [5, 12, 15, 24–27, 31, 37, 43].

These retroactive approaches, however, still require hu-

man intervention, leading to prolonged failure recovery

time [68]. Google has estimated that “close to 37% of

failures are truly correlated” within its global storage sys-

tem, but they lack the tools to identify these failure cor-

relations systematically [20].

Worse, correlated failures can be hidden not just by

inadequate tools or analysts within one cloud provider,

but also by non-transparent business contracts between

cloud providers forming complex multi-level service

stacks [19]. Application-level cloud services such as

iCloud [28] often redundantly rely on multiple cloud

providers, e.g., Amazon EC2 and Microsoft Azure. How-

ever, a storm in Dublin recently took down a local power

source and its backup generator, disabling both the Ama-

zon and Microsoft clouds in that region for hours [16].

Providers of higher-level cloud services cannot read-

ily know how independent the lower-level services they

build on redundantly really are, since the relevant com-

mon dependencies (e.g., power sources) are often propri-

1

318 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

etary internal information, which cloud providers do not

normally share [19, 69, 74].

We propose Independence-as-a-Service or INDaaS, a

novel architecture that aims to address the above prob-

lems proactively. Rather than localizing and tolerating

failures after an outage, INDaaS collects and audits

structural dependency data to evaluate the independence

of redundant systems before failures occur. In particu-

lar, INDaaS consists of a pluggable set of dependency

acquisition modules that collect dependency data, and

an auditing agent that employs a similarly pluggable set

of auditing modules to quantify the independence of re-

dundant systems and identify common dependencies that

may introduce unexpected correlated failures.

In the dependency acquisition phase, we introduce a

uniform representation for different types of dependency

data, enabling dependency acquisition modules to be tai-

lored and reused for a particular cloud provider’s infras-

tructure. As an example, our experimental prototype was

able to collect dependency data from various sources

with respect to network topologies, hardware compo-

nents, and software packages.

To represent this collected dependency data, INDaaS

builds on the traditional fault analysis techniques [52,

60], and further adapts these techniques to audit the in-

dependence of redundant systems. Our fault graph rep-

resentation supports three levels of detail appropriate

in different situations: component-sets, fault-sets, and

fault graphs. INDaaS can use component-sets to identify

shared components even if no failure likelihood informa-

tion is available. With fault-sets, INDaaS can take failure

likelihood information into account. Fault graphs further

enable INDaaS to account for deep internal structures in-

volving multiple levels of redundancy.

In its auditing phase, INDaaS offers multiple auditing

modules to address tradeoffs among performance, preci-

sion, and data secrecy. Our most powerful and informa-

tive auditing methods assume that a single independent

auditing agent is able to obtain all the required structural

dependency data in the clear. This assumption may hold

if the agent is a system run by and within a single cloud

provider, or if the agent is run by a trusted third party

such as a cloud insurance company or a non-profit un-

derwriting agency.

To support independence auditing even across mutu-

ally distrustful cloud providers who may be unwilling to

share full dependency data with anyone, INDaaS offers

private independence auditing or PIA. We have explored

two approaches to PIA. The first uses secure multi-party

computation [72], which offers the best generality in

principle but performs adequately only on small depen-

dency datasets [69]. We therefore focus here on the sec-

ond approach, based on private set intersection cardinal-

ity [38, 58]. This approach restricts INDaaS’s auditing

to the component-set level of detail, but we find it to be

practical and scalable to large datasets.

We have developed a prototype INDaaS auditing sys-

tem, and evaluated its performance with three small

but realistic case studies. These case studies exercise

INDaaS’s two capabilities: 1) proactively quantifying the

independence of given redundancy configurations, and 2)

identifying potential correlated failures. We find that the

prototype scales well. For example, the prototype can

audit a cloud dependency structure containing 27,648

servers and 2,880 switches/routers, and identify about

90% of relevant dependencies, within 3 hours.

Our INDaaS prototype has many limitations, and

would need to be refined and customized to particu-

lar cloud environments before real-world deployment.

Nevertheless, even as a proof-of-concept, we feel that

INDaaS represents one step towards building reliable

cloud infrastructures whose redundancy structures can

avoid various types of unexpected common-mode fail-

ures [23], emergent risks due to overwhelming complex-

ity [44], and proprietary information barriers that natu-

rally arise in the cloud ecosystem [19].

In summary, this paper’s contributions are: 1) the first

architecture designed to audit the independence of re-

dundant cloud systems before or during deployment; 2)

adaptation of fault graph analysis techniques to support

multiple levels of detail in explicit dependency struc-

tures; 3) an efficient fault graph analysis technique that

scales to large datasets representing realistic cloud in-

frastructures; 4) an application of private set intersection

cardinality techniques to enable efficient private indepen-

dence auditing; 5) a prototype implementation and eval-

uation of INDaaS’s practicality with small but realistic

case studies and larger-scale simulations.

2 Architecture Overview

We now present a high-level overview of the INDaaS ar-

chitecture, deferring details to subsequent sections. Fig-

ure 1 illustrates the basic INDaaS workflow, which in-

volves three main roles or types of entities: auditing

client, dependency data source, and auditing agent.

The auditing client, i.e., Alice in Figure 1, requests an

audit of the independence of two or more cloud systems,

which may either be operated by Alice herself or rented

from other cloud providers, and which she believes to

be independent so as to offer redundancy. For example,

Alice may request a one-time independence audit prior to

deploying a new service onto multiple redundant clouds,

like iCloud’s use of both Amazon EC2 and Microsoft

Azure [28]. Alice might also request periodic audits on a

deployed configuration to identify correlated failure risks

that configuration changes or evolution might introduce.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 319

Figure 1: An example INDaaS auditing process, where

an auditing client Alice wishes to audit the independence

of a two-way redundancy deployment.

Dependency data sources (or data sources for brevity)

represent the providers of cloud systems whose inde-

pendence the auditing client wishes to check. The data

sources in practice may be providers of computation,

storage and networking components to be used redun-

dantly by the auditing client. INDaaS might be deployed

so as to utilize data sources either from a single provider

or across multiple providers. In the first case, a stor-

age service like Amazon S3 might provide data sources

for each of multiple Amazon data centers offering intra-

provider redundancy for S3. In the second, inter-provider

scenario, Amazon EC2 and Microsoft Azure might serve

as distinct data sources for redundant services rented

by iCloud. Either way, as shown in Figure 1, each data

source employs pluggable dependency acquisition mod-

ules to collect structural dependency data on its com-

ponents such as network topology, hardware devices, or

even software packages whose dependencies could lead

to common-mode failures (e.g., Heartbleed [23]).

The auditing agent mediates the interaction between

the auditing client and the data sources. In the case where

the auditing agent can obtain the dependency data from

all the relevant data sources, the auditing agent constructs

a dependency graph based on the data from these data

sources. Then, the agent processes the dependency graph

and quantifies its independence, or identifies any unex-

pected common dependencies using a set of pluggable

independence auditing modules. In the case of private in-

dependence auditing, the agent cannot obtain the full de-

pendency data from data sources in cleartext, but super-

vises a private set intersection cardinality protocol per-

formed by the data sources collaboratively.

We briefly summarize the independence auditing pro-

cess as illustrated in Figure 1:

Step 1: The auditing client, Alice, specifies to the au-

diting agent what services she wishes to audit and in

Table 1: Format definition of various dependencies.

Type Dependency Expression

Network <src="S" dst="D" route="x,y,z"/>

Hardware <hw="H" type="T" dep="x"/>

Software <pgm="S" hw="H" dep="x,y,z"/>

what way. This specification includes: a) the relevant

data sources; b) the level of redundancy desired; c) the

types of components and dependencies to be considered;

and d) the metrics used to quantify independence.

Step 2: The auditing agent issues a request to each data

source Alice specified.

Step 3: Each specified data source uses one or more

dependency acquisition modules to collect the depen-

dency data for future independence auditing (see §3).

Step 4: In the private independence auditing (or PIA)

case, the data sources collaborate to obtain the auditing

results without revealing the proprietary dependency data

to each other (see §4.2).

Step 5: Each data source returns to the auditing agent

either the full dependency data for structural indepen-

dence auditing (see §4.1), or in the PIA case, returns the

collaboratively computed independence auditing results.

Step 6: The auditing agent returns to Alice an audit-

ing report quantifying the independence of various re-

dundancy deployments, optionally computing some use-

ful information such as the estimates of correlated failure

probabilities and ranked lists of potential risk groups.

3 Dependency Acquisition

Acquiring accurate structural dependency data within

heterogeneous cloud systems is non-trivial, and realis-

tic solutions would need to be adapted to different cloud

environments. As many dependency acquisition tools

have been deployed in today’s clouds for various pur-

poses (e.g., system diagnosis) [2, 5, 6, 14, 15, 18, 31, 36,

37, 39], we expect such tools can be adapted and reused

to collect the dependency data required by INDaaS.

Towards this end, INDaaS leverages pluggable de-

pendency acquisition modules (DAM), and maintains a

uniform representation of different types of dependency

data. Different data sources first collect dependency data

through their dependency acquisition systems or service

monitoring systems, and then adapt the collected data to

a common XML-based format illustrated in Table 1. Fi-

nally, the DAM stores the adapted dependency data in a

database, DepDB, for further processing.

Table 1 shows how our prototype expresses network,

hardware, and software dependencies. Each such depen-

dency corresponds to one of the three most common

causes of correlated failures [22, 68]: incorrect network

3

320 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 2: A sample distributed storage system.

configurations, faulty hardware components, and buggy

or insecure software packages.

A network dependency describes a route from source

S to destination D via various network components in

between, such as routers and/or switches x, y, and z.

A hardware dependency describes a physical compo-

nent, e.g., a disk or CPU of a server. The hw field denotes

a physical component, and type specifies the type of

this component such as CPU, disk, RAM, etc. The dep

field specifies the model number of the component.

A software dependency describes the package infor-

mation of a software component. The pgm field denotes

the software component S itself, hw specifies the hard-

ware H on which the S runs, and dep specifies various

packages x, y and z used by S.

Dependency acquisition examples. Our INDaaS pro-

totype currently includes three dependency acquisition

modules employing existing tools to collect various raw

dependency data, then adapt them into the common

format as discussed above. In particular, we employ

NSDMiner [31, 46] to collect network dependencies,

HardwareLister [61] to collect hardware dependencies,

and apt-rdepends [17] to collect software dependencies.

These first-cut INDaaS modules are in no way intended

to be definitive but merely aim to provide some examples

of realistic dependency acquisition methods.

NSDMiner is a traffic-based network data collector,

which discovers network dependencies by analyzing net-

work traffic flows collected from network devices or in-

dividual packets [31,46]. HardwareLister (lshw) extracts

a target machine’s detailed hardware configuration in-

cluding CPUs, disks and drivers [61]. The apt-rdepends

tool extracts the software package and library dependen-

cies for popular Linux software distributions [17].

Figure 2 illustrates a sample distributed storage sys-

tem. Suppose an auditing client desires two-way redun-

dancy for her service running on two of the three servers

S1-S3 within her cloud. She submits to the auditing agent

a specification indicating: 1) IP addresses of the three

servers, and 2) relevant software components running on

Network dependencies of S1 and S2:

<src="S1" dst="Internet" route="ToR1,Core1"/>

<src="S1" dst="Internet" route="ToR1,Core2"/>

<src="S2" dst="Internet" route="ToR1,Core1"/>

<src="S2" dst="Internet" route="ToR1,Core2"/>

Hardware dependencies of S1 and S2:

<hw="S1" type="CPU" dep="S1-Intel(R)X5550@2.6GHz"/>

<hw="S1" type="Disk" dep="S1-SED900"/>

<hw="S2" type="CPU" dep="S2-Intel(R)X5550@2.6GHz"/>

<hw="S2" type="Disk" dep="S2-SED900"/>

Software dependencies of S1 and S2:

<pgm="QueryEngine1" hw="S1" dep="libc6,libgccl">

<pgm="Riak1" hw="S1" dep="libc6,libsvn1">

<pgm="QueryEngine2" hw="S2" dep="libc6,libgccl">

<pgm="Riak2" hw="S2" dep="libc6,libsvn1">

Figure 3: A sample of the collected dependency data.

these servers. Our current prototype requires the audit-

ing client to list software components of interest man-

ually – e.g., Query Engine and Riak [8] (a distributed

database) in this example. With this specification, the

auditing agent invokes the dependency acquisition mod-

ules (i.e., NSDMiner, lshw, and apt-rdepends) on each

server to collect the network, hardware, and software de-

pendencies, and store them in the DepDB, as shown in

Figure 3.

4 Independence Auditing

After dependency data acquisition, INDaaS performs in-

dependence auditing to generate auditing reports.

As described in §2, INDaaS supports two scenarios.

We first present a structural independence auditing pro-

tocol in §4.1, which assumes data sources are willing

to provide the auditing agent with the full dependency

data, e.g., for auditing a common cloud provider. We later

present a private independence auditing protocol in §4.2

to support analysis across multiple cloud providers un-

willing to reveal the full dependency data to anyone.

4.1 Structural Independence Auditing

Upon acquiring full dependency data from the data

sources, the auditing agent executes our structural in-

dependence auditing (SIA) protocol to generate the de-

pendency graph, determine the risk groups, rank the risk

groups, and eventually generate an auditing report.

4.1.1 Generating Dependency Graph

To implement structural independence auditing, the au-

diting agent first generates an explicit dependency graph

representation, which will later be used by the pluggable

auditing modules. In designing this representation, we

adapt traditional fault tree models [52, 60] to a directed

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 321

Figure 4: Dependency graphs represented at three different levels of detail: (a) component-set level of detail, (b)

fault-set level of detail, and (c) fault graph level of detail.

acyclic graph structure, and generalize the representation

to express dependencies at any of three different levels of

detail: component-set, fault-set and fault graph.

Component-set. At the most basic level of detail, we

organize dependencies in terms of component-sets. As

shown in Figure 4(a), if a system E1 depends on compo-

nents A1 and A2, and another system E2 depends on com-

ponents A2 and A3, then the two relevant component-sets

are {A1,A2} and {A2,A3}, respectively. E1 and E2 are

the data sources. At this level of detail, for independence

reasoning, we focus only on the presence of shared com-

ponents – e.g., A2 – that may lead to correlated failures.

As Figure 4(a) illustrates, we express component-sets

in a two-level “AND-of-ORs” dependency graph. This

structure consists of two types of nodes: components and

logic gates. If a component fails (or not), it outputs a

1 (or 0) to its higher-layer logic gate. The two types

of logic gates, AND and OR, depict the different logi-

cal relationships among components’ failures. For an OR

gate, if any of its subsidiary components fails, this failure

propagates upwards. For an AND gate, only if all of its

subsidiary components fail, the gate propagates a failure

upwards. The top-level AND gate thus represents redun-

dancy across the data sources (e.g., E1 and E2), each of

which uses an OR gate to connect all its dependent com-

ponents. Our representation also supports n-of-m redun-

dant deployments (n ≤ m) via n-of-m AND gates.

Fault-set. At the fault-set level of detail, we addition-

ally assign some form of weight to each component, e.g.,

probability of failure over some time period. As shown

in Figure 4(b), the failure of A1 or A2 leads to the out-

age of system E1; thus, the two failure events {A1 fails,

A2 fails} form a fault-set. Hereafter, when reasoning at

the fault-set level, we assign each failure event a failure

probability between 0 and 1. Approaches to obtaining re-

alistic failure probabilities are discussed later in §5.1.

Fault graph. The component-set and fault-set levels of

detail assume a single level of redundancy across data

sources (e.g., E1 and E2), each depending on a “flat” set

of components among which any failure causes the re-

spective data source to fail. The fault graph, the richest

level of detail INDaaS supports, can describe more com-

plex dependency structures as shown in Figure 4(c). In a

fault graph, event nodes having no child nodes are called

basic events, the root node is called the top event, and

the remaining nodes are intermediate events. Each node

in a fault graph has a weight expressing the failure prob-

ability of the associated event. A fault graph is evaluated

from basic events to the top event. Each top and interme-

diate event has an input gate connecting the lower-layer

events. For example, in Figure 4(c), the top event’s input

gate is an AND gate representing top-level redundancy,

but the fault graph also expresses internal redundancy via

the internal AND gates at lower levels.

Building the dependency graph. Any dependency

graph, at whichever level of detail, in principle represents

the underlying structure of a top-level service across a

number of redundant systems. Each such system is a data

source where the auditing agent can obtain the depen-

dency data. Automatically building a fault graph with the

5

322 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

dependency data is non-trivial in practice. We summarize

here how the auditing agent builds a dependency graph

at the fault graph level of detail from top to bottom.

Step 1: The fault graph’s top event is the failure of the

entire redundancy deployment R.

Step 2: According to the auditing client’s specifica-

tion (see Step 1 in §2), the auditing agent sends a query to

the dependency information database DepDB for infor-

mation about all servers given in the specification. Each

server’s failure event then becomes a child node of the

top event, and an AND gate connects the top event with

its child nodes to express the servers’ redundancy.

Step 3: The auditing agent then queries DepDB for

each server’s network, hardware, and software depen-

dencies. As a result, each server’s failure event has three

child nodes, i.e., network, software, and hardware fail-

ure events. An OR gate connects the server failure event

with its three child nodes, since the failure of any of these

dependencies effectively causes the server to fail.

Step 4: For the hardware failure event of each server,

the auditing agent gets its dependency data from DepDB,

then uses an OR gate to connect the hardware failure

event with its dependencies’ failure events.

Step 5: For each server’s network failure event, the

auditing agent queries DepDB for network paths rele-

vant to the server, then connects them as child nodes

to the server’s network failure event. The agent puts an

AND gate between the network failure event and child

nodes representing redundant paths, while network de-

vices comprising each path are connected by an OR gate.

Step 6: The auditing agent repeats Step 5 to construct

the child nodes for each server’s software failure event.

Different layers of software components are connected

by an OR gate, and all packages underlying a software

component are connected by an OR gate.

As an example, the redundancy deployment in Fig-

ure 2 may be represented by the fault graph in Fig-

ure 4(c). An information-rich fault graph may be “down-

graded” to the lower fault-set or component-set levels of

detail, by discarding partial information in a fault graph.

Our INDaaS prototype can also compose individual

dependency graphs collected from multiple services into

more complex aggregate dependency graphs (e.g., EC2

instances depending on services offered by EBS and

ELB). Details on dependency graph composition may be

found in the associated technical report [75].

4.1.2 Determining Risk Groups

After building a dependency graph, SIA needs to deter-

mine risk groups (RGs) of interest in the dependency

graph. The SIA provides two pluggable auditing algo-

rithms which make trade-offs between accuracy and effi-

ciency. The minimal RG algorithm computes precise re-

sults, but its execution time increases exponentially with

the size of dependency graph, making it impractical on

large datasets. The failure sampling algorithm, in con-

trast, runs much faster but scarifies accuracy. Both algo-

rithms operate on dependency graphs represented at any

level of detail. Without loss of generality, hereafter we

elaborate on the algorithms at the fault graph level.

Minimal RGs. An RG within a dependency graph is a

group of basic failure events with the property that if all

of them occur simultaneously, then the top event occurs

as well. For example, in Figure 4(a), if A1 and A3 fail

simultaneously, the redundancy deployment fails. Here,

{A1,A3}, {A1,A2}, {A1,A2,A3}, {A2}, and {A2,A3} are

five RGs. Some RGs, however, are more critical than oth-

ers. We define an RG as a minimal RG if the removal of

any of its constituent failure events makes it no longer

an RG. Consider the following two RGs: {A1,A2} and

{A2,A3} in Figure 4(a). Neither are minimal RGs be-

cause {A2} alone is sufficient to cause the top event to oc-

cur; thus, the minimal RGs should be {A2} and {A1,A3}.

As another example, the minimal RGs in Figure 4(c) are

{ToR1 fails}, {Core1 fails, Core2 fails}, etc.

Minimal RG algorithm. The first algorithm for deter-

mining RGs is adapted from classic fault tree analysis

techniques [52, 60]. This algorithm traverses a depen-

dency graph G in a reverse breadth-first order (from basic

events to the top event). Basic events first generate RGs

containing only themselves, while non-basic events pro-

duce RGs based on their child events’ RGs and their in-

put gates. For a non-basic event, if its input gate is an OR

gate, the RGs of this event include all its child events’

RGs; otherwise, if its input gate is an AND gate, each

RG of this event is an element of the cartesian product

among the RGs of its child events. Traversing the depen-

dency graph G generates all the RGs, and in turn all the

minimal RGs through simplification procedures. This al-

gorithm produces precise results, but is NP-hard [59].

Failure sampling algorithm. To address the efficiency

issue, we developed an RG detection algorithm based

on random sampling, which makes a trade-off between

accuracy and efficiency. This algorithm uses multiple

sampling rounds, each of which performs a breadth-first

traversal of the dependency graph G. Within each sam-

pling round, the algorithm assigns either a 1 or a 0 to each

basic event of G based on random coin flipping, where 1

represents failure and 0 represents non-failure. Starting

from such an assignment, the algorithm assigns 1s and

0s to all non-basic events from bottom to top based on

their logic gates and the values of their child events. Af-

ter each sampling round, the algorithm checks whether

the top event fails. If it fails (i.e., its value is 1), then

the algorithm generates an RG consisting of all the basic

events being assigned a 1 in this sampling round. The al-

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 323

gorithm executes a large number of sampling rounds and

aggregates the resulting RGs in all rounds. The failure

sampling algorithm offers the linear time complexity, but

is non-deterministic and cannot guarantee that the result-

ing RGs it identifies are minimal RGs. This failure sam-

pling algorithm is similar in principle to heuristic SAT al-

gorithms such as ApproxCount [67], and these methods

may offer ways to improve INDaaS failure sampling.

4.1.3 Ranking Risk Groups

After determining RGs, we have two algorithms to rank

them and generate the RG-ranking list.

Size-based ranking. To rank RGs at the component-

set level or at the unweighted fault graph level, we use

a simple size-based ranking algorithm which ranks RGs

based on the number of components in each RG. While

this algorithm cannot distinguish which potential compo-

nent failures may be more or less likely, identifying RGs

with fewer components – especially any of size 1 indi-

cating no redundancy – can point to areas of the system

that may warrant closer manual inspection. For example,

in Figure 4(c), the RGs {ToR1} and {libc6} are ranked

highest since they have the least size.

Failure probability ranking. In cases where the prob-

abilities of failure events can be estimated, we provide

a probability-based ranking algorithm to evaluate RGs

at the levels of fault-set and weighted fault graph. This

algorithm ranks RGs by their relative importance. Here,

for a given RG’s failure event (say, C), its relative im-

portance, IC, is computed using the probability of C,

Pr(C), in comparison to the probability of the top event

T , Pr(T): IC = Pr(C)/Pr(T). Specifically, Pr(C) is the

probability that all the events in C occur simultaneously,

and Pr(T) is computed by the inclusion-exclusion prin-

ciple where the involved sets are all the minimal RGs of

T . In Figure 4(b), since the probabilities of events A1,

A2 and A3 are 0.1, 0.2 and 0.3, respectively, we have:

Pr(T) = 0.1 · 0.3+ 0.2 − 0.1 · 0.3 · 0.2 = 0.224. There-

fore, the relative importances of the minimal RGs {A2

fails} and {A1 fails, A3 fails} are: 0.2/0.224 = 0.8929

and 0.03/0.224 = 0.1339, respectively. As a result, {A2

fails} is ranked higher than {A1 fails, A3 fails}.

4.1.4 Generating the Auditing Report

Upon getting the RG-ranking lists for all redundancy

deployments, SIA computes an independence score for

each of them. If the size-based ranking algorithm is used,

a given redundancy deployment R’s independence score

is computed as indep(R) = ∑n
i=1 size(ci), where ci de-

notes the ith RG in the R’s RG-ranking list, and n de-

notes the number of top RGs in the RG-ranking list used

for this independence evaluation. If the failure probabil-

ity based ranking algorithm is used, a given redundancy

deployment R’s independence score is then indep(R) =

∑n
i=1 Ici

, where Ici
denotes the relative importance of ci.

The auditing agent generates an auditing report by

ranking all the redundancy deployments based on their

independence scores, and finally sends the report back to

the auditing client for reference. With the auditing report,

the auditing client might for example select the most in-

dependent redundancy deployment for her service.

The auditing report can also help an auditing client

understand unexpected common dependencies to focus

further analysis. In the case of one documented Amazon

EC2 outage, for example [4], we speculate that the avail-

ability of an INDaaS auditing report might have enabled

the operators to notice that a specific EBS server had be-

come a common dependency, and fix it, thus avoiding the

outage.

4.2 Private Independence Auditing

We now address the challenge of independence auditing

across mutually distrustful data sources, e.g., multiple

cloud providers, who may be unwilling to share depen-

dency data with each other or any third-party auditor. To

reflect the motivating deployment model, we use the term

cloud providers instead of data sources when describing

the private independence auditing (PIA) protocol.

The most general and direct approach, explored by

Xiao et al. [69], is to use secure multi-party computa-

tion (SMPC) [72] to compute and reveal overlap among

the datasets of multiple cloud providers while keeping

the data themselves private. This approach works in the-

ory, but scales poorly in practice due to its inherent com-

plexity. We find SMPC to be impractical currently even

for datasets with only a few hundreds of components.

We thus focus henceforth on a more scalable ap-

proach built on private set intersection cardinality tech-

niques [21, 38, 58, 73]. This approach sacrifices general-

ity and dependency graph expressiveness, operating only

at the component-set level of detail. The basic idea is to

evaluate Jaccard similarity [32] using a private set inter-

section cardinality protocol [58] to quantify the indepen-

dence of redundancy configurations.

4.2.1 Trust Assumptions

As described in §2, our architecture consists of entities

filling three roles: auditing client, cloud providers (i.e.,

data sources in Figure 1), and auditing agent.

We assume that auditing clients are potentially mali-

cious and wish to learn as much as possible about the

cloud providers’ private dependency data. We assume

cloud providers and the auditing agent are honest but cu-

rious: they run the specified PIA protocol faithfully but

7

324 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

may try to learn additional information in doing so. We

assume there is no collusion among cloud providers and

the auditing agent. We discuss some potential solutions

to dealing with dishonest parties in §5.2.

4.2.2 Technical Building Blocks

There are three technical building blocks that we utilize

throughout the PIA design.

Jaccard similarity. Jaccard similarity [32] is a

widely-adopted metric for measuring similarity across

multiple datasets. Jaccard similarity is defined as

J(S0, · · · ,Sk−1) = |S0∩·· ·∩Sk−1|/|S0∪·· ·∪Sk−1| where

Si denotes the ith dataset. A Jaccard similarity J close to 1

indicates high similarity, whereas a J close to 0 indicates

the datasets are almost disjoint. In practice, datasets with

similarity J ≥ 0.75 are considered significantly corre-

lated [62]. While there are many other similarity metrics,

e.g., the Sørensen-Dice index [57], we choose Jaccard

similarity because it is efficient, easy to understand, and

extends readily to more than two datasets.

MinHash. Computing the Jaccard similarity incurs a

complexity linear with the dataset sizes. In the pres-

ence of large datasets, an approximation of the Jaccard

similarity based on MinHash is often preferred [11]. The

MinHash technique [13] extracts a vector {h
(i)

min(S)}
m
i=1

of a dataset S through deterministic sampling, where

h(1)(·), · · · ,h(m)
(·) denote m different hash functions, and

h
(i)

min(S) denotes the item e ∈ S with the minimum value

h(i)(e). Let δ denote the number of datasets satisfying

h
(i)

min(S0) = · · ·= h
(i)

min(Sk−1). Then, the Jaccard similarity

J(S0, · · · ,Sk−1) can be approximated as δ/m. Here, the

parameter m correlates to the expected error to the pre-

cise Jaccard similarity — a larger m (i.e., more hash func-

tions) yields a smaller approximation error. Broder [13]

proves that the expected error of MinHash-based Jaccard

similarity estimation is O(1/
√

m).

Private set intersection cardinality. A private set in-

tersection cardinality protocol allows a group of k ≥ 2

parties, each with a local dataset Si, to compute the num-

ber of overlapping elements among them privately with-

out learning any elements in other parties’ datasets. We

adopt P-SOP, a private set intersection cardinality pro-

tocol based on commutative encryption [58]. In P-SOP,

all parties form a logical ring, and agree on the same

deterministic hash function (e.g., SHA-1 or MD5). In

addition, each party has its own permutation function

used to shuffle the elements in its local dataset, as well

as its own public/private key pair used for commutative

encryption [50, 56]. Commutative encryption offers the

property that EK(EJ(M)) = EJ(EK(M)) where EX de-

notes using X’s public key to encrypt the message M.

In P-SOP, each party first makes every element in its

own dataset Si identical. Specifically, any element e ap-

pearing t times in Si is represented as t unique elements

{e�1, · · · ,e�t}, with ‘�’ being a concatenation operator.

Each party then hashes and encrypts every individual el-

ement in its dataset, and randomly permutes all the en-

crypted elements. Afterwards, each party sends the en-

crypted and permuted dataset to its successor in the ring.

Next, once the successor receives the dataset, it simply

encrypts each individual element in the received dataset,

permutes them, and sends the resulting dataset to its suc-

cessor. The process repeats until each party receives its

own dataset whose individual elements have been en-

crypted and permuted by all parties in the ring. Finally,

all parties share their respective encrypted and permuted

datasets, so that they can count the number of common

elements in these datasets, i.e., |∩i Si|, as well as the num-

ber of unique elements in these datasets |∪i Si|.

4.2.3 Generating Dependency Graph

To perform private independence auditing, each cloud

provider pi (holding an individual data source) within

a given redundancy deployment R first generates its

local dependency graph at the component-set level.

In addition, each pi needs to normalize its generated

component-set. This normalization ensures that the same

component shared across different cloud providers al-

ways has the same identifier.

Common sources of correlated failures across cloud

providers are third-party components such as routers and

software packages [19]. Therefore, our current PIA pro-

totype normalizes two types of components: 1) third-

party routing elements (e.g., ISP routers), and 2) third-

party software packages (e.g., the widely-used OpenSSL

toolkit). PIA normalizes these components as follows:

1) for routers, PIA uses their accessible IP addresses

as unique identifiers, and 2) for software packages,

PIA uses their standard names plus version numbers as

unique identifiers. In so doing, any given component

in all cloud providers’ generated component-sets has a

unique normalized identifier.

4.2.4 Auditing Independence Privately

If cloud providers involved in a potential redundancy

deployment have relatively small component-sets, PIA

takes these (normalized) component-sets Si directly as

input to the private set intersection cardinality protocol

(P-SOP) to compute the number of common components

| ∩i Si| and the number of unique components | ∪i Si|

across cloud providers. With the two numbers, PIA can

compute the Jaccard similarity as | ∩i Si|/| ∪i Si| to eval-

uate the independence of this redundancy deployment.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 325

Otherwise, if cloud providers in a potential redun-

dancy deployment have large component-sets, PIA uses

m hash functions based on the MinHash technique to

map each such component-set to a much smaller dataset

Si, and then takes these MinHash-generated datasets as

input to the P-SOP as normal to get the number of com-

mon components across cloud providers, i.e., | ∩i Si|. As

discussed in §4.2.2, the Jaccard similarity can then be ap-

proximated as | ∩i Si|/m. This MinHash-based approach

leads to much higher efficiency but lower accuracy. To

increase the accuracy, we can use more hash functions in

MinHash. How to make the trade-off between efficiency

and accuracy depends on the application domain.

4.2.5 Generating the Auditing Report

In the design as so far, each cloud provider pi has com-

puted the Jaccard similarities (or estimated Jaccard sim-

ilarities using MinHash) corresponding to all the redun-

dancy deployments involving pi. After collecting these

Jaccard similarities from all cloud providers, the audit-

ing agent generates an auditing report ranking all the re-

dundancy deployments based on the Jaccard similarities,

and finally sends this report to the auditing client. For

an n-of-m redundancy deployment (n ≤ m), the auditing

agent needs to obtain the Jaccard similarity across all the

n cloud providers and the similarity across all the m cloud

providers, then generate the auditing report.

At the client side, since the auditing client receives

only a list ranking all potential redundancy deployments,

she obtains no proprietary information about the partici-

pating cloud providers’ internal infrastructures other than

the information produced intentionally to describe their

degree of independence.

5 Limitations and Practical Issues

This section discusses a few INDaaS’s limitations and

areas for further exploration, as well as some practical

issues regarding INDaaS deployment.

5.1 Limitations and Potential Solutions

Failure probability acquisition. Part of INDaaS’s util-

ity depends on the acquisition of accurate failure proba-

bility information. Without this, we cannot perform some

auditing operations, e.g., dependency graph generation at

the fault-set level and failure probability based ranking.

Collecting failure probabilities automatically is a chal-

lenging problem in practice, however. Gill et al. proposed

one approach [22]: they estimate failure probability by

dividing the number of components of a given type that

have ever failed during a time period, by the total com-

ponent population of that given type. They successfully

provide the failure probabilities of various network de-

vices (e.g., aggregation switches and core routers) dur-

ing a one year period. Regarding the failure probabili-

ties of software dependencies, the Common Vulnerabil-

ity Scoring System (or CVSS) [48] can be used to pro-

vide vulnerability-related failure probabilities for many

software libraries and packages.

Complex dependency acquisition. Our current soft-

ware dependency collector takes only static software de-

pendency data into account. In practice, many cloud out-

ages have been caused by more tricky bugs within com-

plex cloud software stacks [5,40,47,51]. Collecting such

software dependency data would be challenging, and we

are not aware of any existing systematic solutions. A

potential solution may need to access the logs gener-

ated by various cloud components, and their configura-

tion scripts. For example, we might be able to adapt soft-

ware failure detection techniques based on mining con-

sole logs [70]. Joukov et al. [33] developed a tool that

discovers static dependencies between Java programs by

parsing these programs’ code. In addition, traffic-aware

optimizations, e.g., the UDS, BDS and ASD mechanisms

proposed by Li et al. [41, 42], can greatly reduce the

workload of the network dependency acquisition.

5.2 Practical Issues

The motivation for auditing clients to use INDaaS is

straightforward: they can choose redundancy deploy-

ments with better independence property, and can under-

stand unexpected common dependencies which may lead

to correlated failures. On the other hand, especially in

the PIA case the cloud providers who offer data sources

may not explicitly benefit from honestly participating in

such a process. We now discuss what incentives the cloud

providers have to join PIA, and how they deal with dis-

honest cloud providers.

Do cloud providers have incentives to join? By par-

ticipating in PIA, a cloud provider has the opportunity to

better understand its potential dependency issues in rela-

tion to other cloud providers. While the cloud provider

may not learn which specific components overlap with

others, it can learn to what extent common dependen-

cies exist between itself and other cloud providers. PIA

thus gives cloud providers the opportunity to improve

the independence of their deployments. Another po-

tential incentive is that cloud providers not participat-

ing in PIA will not appear among the alternative cloud

providers that PIA offers to auditing clients. As a re-

sult, the clients may be less likely to learn or consider

these non-participating alternatives while evaluating var-

ious redundancy deployments. These non-participating

cloud providers may lose potential customers due to the

9

326 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

lack of the PIA “reliability label” or merely due to not be-

ing on the PIA “certified provider list”. Finally, PIA of-

fers cloud providers the opportunity to improve their rep-

utation for transparency and reliability, without risking

significant leaks of proprietary secrets about their infras-

tructure. Joining PIA offers cloud providers a privacy-

preserving way to increase the effective transparency of

their infrastructures.

Will cloud providers behave honestly? Some cloud

providers might execute PIA dishonestly, for example,

by declaring a subset of their actual component-sets. In

doing so, these providers might benefit from their dis-

honesty by appearing to have a smaller set intersection

and hence greater independence than other providers.

Thus, dishonest cloud providers might be ranked higher

in the resulting ranking list. To address this issue, we

could use the trusted hardware (e.g., TPM) to remotely

attest whether cloud providers are performing PIA as re-

quired. Recent efforts such as Excalibur [53] have de-

ployed TPM into some cloud platforms successfully.

A less technical solution is to rely on the common

business practice of “trust but leave an audit trail.” For

most executions of PIA, the auditing client simply trusts

the participating cloud providers to feed honest and ac-

curate information into the protocol, but the providers

must also save and digitally sign the data they used.

If an auditing client suspects dishonesty, or during oc-

casional “spot-checks,” a specially-authorized indepen-

dent authority – analogous to the IRS – might perform

a “meta-audit” of the provider’s PIA records, so that a

persistently dishonest participant risks eventually getting

caught.

6 Implementation and Evaluation

This section first describes our INDaaS prototype im-

plementation (§6.1), then evaluates its practicality (§6.2)

and performance (§6.3).

6.1 Implementation and Deployment

We have built an INDaaS prototype system written in a

mix of Python and Java. For clarity, this section focuses

first on our implementation of SIA, followed by PIA.

6.1.1 Structural Independence Auditing

Figure 5a shows the key components of an INDaaS pro-

totype in the SIA scenario.

Auditing client. Our auditing client software, currently

written in Python, is deployed on a machine main-

tained by the cloud provider itself, e.g., Node A in Fig-

ure 5a. The auditing client communicates with the audit-

(a) Structural Independence Auditing (SIA).

(b) Private Independence Auditing (PIA).

Figure 5: INDaaS implementation and deployment.

ing agent to send the specification and receive the audit-

ing report.

Dependency acquisition. The dependency acquisition

modules, written in Python, are deployed on each worker

machine to support the audited redundancy deployment

in a cloud, e.g., Node C-E in Figure 5a. Our current

dependency acquisition implementation includes three

open-source tools: NSDMiner [46], lshw [61], and apt-

rdepends [17], which are used to collect network, hard-

ware, and software dependencies, respectively. Since

each worker machine executes its local dependency ac-

quisition modules separately, the dependency acquisition

process can be parallelized.

Auditing agent. The auditing agent, written in Python

with the NetworkX [49] library, is deployed on another

machine, e.g., Node B in Figure 5a. It collects the depen-

dency data from the dependency acquisition modules on

each worker machine over the SSH channels. The agent

then audits the collected dependency data, and returns

the auditing report back to the auditing client.

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 327

(a) Common network dependency. (b) Common hardware dependency. (c) Common software dependency.

Figure 6: Practicality evaluation through three case studies: (a) common network dependency, (b) common hardware

dependency, and (c) common software dependency.

6.1.2 Private Independence Auditing

Figure 5b presents the key components of our INDaaS

prototype in the PIA scenario.

Auditing client and auditing agent. In PIA, the au-

diting client and auditing agent are implemented and de-

ployed in a similar way as in SIA, except that the auditing

agent is deployed on a machine maintained by a third-

party auditor, i.e., not by any audited cloud provider.

Dependency acquisition and proxy. For each cloud

provider, there are three dependency acquisition mod-

ules deployed on each of its worker machines, as in

SIA. Moreover, we implemented a proxy in Java for each

cloud provider. The proxy first collects dependency data

from the dependency acquisition modules deployed in its

own cloud, and then runs the private set intersection car-

dinality protocol (P-SOP) together with the proxies op-

erated by other cloud providers. In particular, we imple-

mented the P-SOP protocol with MD5, Java permutation,

and the commutative RSA encryption scheme [56].

6.2 Practicality Evaluation: Case Studies

This section evaluates INDaaS’s practicality through

three small but realistic case studies with respect to un-

expected common network, hardware, and software de-

pendencies, respectively.

6.2.1 Common Network Dependency

Our first case study targets a scenario similar to the ex-

ample given in the introduction. A data center operator,

Alice, wants to deploy a new service S in her data center,

and replicates the critical states of S across two servers

within her data center. Before service deployment, Alice

uses INDaaS to structurally audit the data center net-

work in order to avoid potential correlated failures result-

ing from common network dependencies. We used a real

data center topology [9] to model Alice’s data center net-

work. As shown in Figure 6a, this data center has many

Top-of-Rack (ToR) switches (i.e., e1-e33) each of which

is connected to an individual rack. There are four core

routers (i.e., b1, b2, c1, and c2) connecting ToR switches

to the Internet.

The INDaaS first collects network dependencies, and

then executes the SIA protocol to provide auditing at

the fault graph level. The auditing report generated by

our prototype, based on the failure sampling algorithm

(which we ran for 106 rounds) and the size-based rank-

ing algorithm, suggests that {Rack 5, Rack 29} is the

most-independent deployment in this scenario.

A formal analysis indicates that there are 190 different

two-way redundancy deployments, among which 27 do

not have unexpected RGs. This means, without INDaaS,

a random selection leads to only 14% probability for

Alice to avoid correlated failures. Furthermore, if we as-

sume the failure probability of all network devices is 0.1,

the redundancy deployment {Rack 5, Rack 29} is indeed

the one with the lowest failure probability.

6.2.2 Common Hardware Dependency

As shown in Figure 6b, we have built a simple IaaS

cloud in the lab with four servers and four switches.

We used OpenStack to support the automatic virtual ma-

chine (VM) management, and deployed various services

on VMs for different uses. In particular, we deployed an

S3-like Riak [8] cloud storage service. For redundancy,

Riak was run on two VMs (VM7 and VM8).

Before releasing the Riak storage service for public

use, we ran SIA to check whether there would be any

unexpected RGs. We chose to use the minimal RG al-

gorithm and the size-based ranking algorithm. The top

4 RGs in the RG ranking list generated by our proto-

type are: {Sever2}, {Switch1}, {Core1 & Core2}, and

{VM7 & VM8}. Note that SIA randomly orders RGs

with the same size. With this list, we noticed that we had

failed to improve the reliability of Riak service via re-

dundant VMs, because the automatic placement module

in OpenStack placed the two redundant VMs on the same

11

328 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Table 2: Ranking lists of two- and three-way redundancy

deployments based on Jaccard similarities. Cloud1, 2, 3,

and 4 are equipped with Riak, MongoDB, Redis, and

CouchDB, respectively.

Rank Two-Way Redundancy Deployment Jaccard

1 Cloud2 & Cloud4 0.1419

2 Cloud2 & Cloud3 0.1547

3 Cloud1 & Cloud4 0.2081

4 Cloud1 & Cloud3 0.2939

5 Cloud3 & Cloud4 0.3489

6 Cloud1 & Cloud2 0.5059

Rank Three-Way Redundancy Deployment Jaccard

1 Cloud2 & Cloud3 & Cloud4 0.1128

2 Cloud1 & Cloud2 & Cloud4 0.1207

3 Cloud1 & Cloud3 & Cloud4 0.1353

4 Cloud1 & Cloud2 & Cloud3 0.1536

server (a shared hardware source). As a result, the failure

of that server would undermine the redundancy effort.

The fundamental cause is that the OpenStack’s automatic

virtual machine placement policy randomly selects from

the least loaded resources to host a VM.

To make the most effective redundancy deployment,

we consulted INDaaS for an auditing report on the in-

dependence of all potential redundancy deployments.

According to the report, which suggests {Server2 and

Server3}, we re-deployed the two redundant VMs for the

Riak storage service.

6.2.3 Common Software Dependency

The last case study targets a scenario where INDaaS

offers private independence auditing across multiple

cloud providers. In particular, a service provider, Alice,

wants a reliable storage solution leveraging multiple

cloud providers, e.g., iCloud uses Amazon EC2 and Mi-

crosoft Azure for its reliable storage. Suppose Alice has

found four alternative cloud providers: Cloud 1-4, each

of which offers a key-value store. Alice then consults

INDaaS for a redundancy deployment to avoid correlated

failures caused by any shared software dependency [23].

Here, we chose four popular key-value storage sys-

tems, i.e., Riak, MongoDB, Redis, and CouchDB. As

shown in Figure 6c, we assigned each one to a cloud

provider as follows, Cloud1: Riak, Cloud2: MongoDB,

Cloud3: Redis, and Cloud4: CouchDB. Suppose each

cloud provider has used our prototype to automatically

collect the software dependencies of the packages and li-

braries in its storage system. Our PIA protocol privately

computes the Jaccard similarity for each potential redun-

dancy deployment. Table 2 shows the ranking lists of var-

ious two- and three-way redundancy deployments.

Table 3: Configurations of the generated topologies.

Topology A Topology B Topology C

switch ports 16 24 48

core routers 64 144 576

agg switches 128 288 1,152

ToR switches 128 288 1,152

servers 1,024 3,456 27,648

Total # devices 1,344 4,176 30,528

6.3 Performance Evaluation

We evaluate INDaaS’s two major components: SIA and

PIA. The performance evaluation was conducted on a

research cluster of 40 workstations equipped with Intel

Xeon Quad Core HT 3.7 GHz CPU and 16 GB RAM.

6.3.1 SIA: Efficiency v.s. Accuracy

We first explore the efficiency/accuracy trade-off be-

tween SIA’s two algorithms for analyzing a dependency

graph: the minimal RG algorithm and the failure sam-

pling algorithm (see §4.1.2). We generate three topolo-

gies from a small-scale cloud deployment to a large-scale

deployment, based on the three-stage fat tree model [45].

These topologies include the typical components within

a commercial data center: servers, Top-of-Rack (ToR)

switches, aggregation switches, and core routers. Table 3

gives the detail of these generated topologies.

We compare the computational overhead of the accu-

rate but NP-hard minimal RG algorithm to that of the

failure sampling algorithm with various sampling rounds

(103 to 107). Figure 7 shows the result that the failure

sampling algorithm runs much more efficiently than the

minimal RG algorithm while achieving a reasonably high

accuracy. For example, in topology B, the failure sam-

pling algorithm uses 90 minutes to detect 92% of all the

minimal RGs with 106 sampling rounds, in comparison

to 1046 minutes for the minimal RG algorithm.

6.3.2 PIA: System Overheads

To better understand the performance of PIA, we imple-

mented a comparable private independence auditing sys-

tem based on another private set intersection cardinal-

ity protocol, Kissner and Song (KS) [38], and then com-

pared this system with our PIA system.

For a private independence auditing system, the cryp-

tographic operations tend to be the major computational

bottleneck. Thus, we evaluate PIA by comparing PIA’s

P-SOP protocol with the comparable system’s KS proto-

col. Specifically, the cryptographic primitives of P-SOP

are hashing, commutative encryption, and permutation.

The KS protocol is mainly built on hashing, homomor-

phic crypto operations, and permutation.

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 329

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256 512

%
 m

in
im

a
l
R

G
s
 d

e
te

c
te

d

Computational time (minutes)

Minimal RG Alg

Failure Sampling Alg (10
3
 rounds)

Failure Sampling Alg (10
4
 rounds)

Failure Sampling Alg (10
5
 rounds)

Failure Sampling Alg (10
6
 rounds)

Failure Sampling Alg (10
7
 rounds)

(a) Topology A: 1,344 devices.

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256 512 1024

%
 m

in
im

a
l
R

G
s
 d

e
te

c
te

d

Computational time (minutes)

Minimal RG Alg

Failure Sampling Alg (10
3
 rounds)

Failure Sampling Alg (10
4
 rounds)

Failure Sampling Alg (10
5
 rounds)

Failure Sampling Alg (10
6
 rounds)

Failure Sampling Alg (10
7
 rounds)

(b) Topology B: 4,176 devices.

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64 128 256 512 2048

%
 m

in
im

a
l
R

G
s
 d

e
te

c
te

d

Computational time (minutes)

Minimal RG Alg

Failure Sampling Alg (10
3
 rounds)

Failure Sampling Alg (10
4
 rounds)

Failure Sampling Alg (10
5
 rounds)

Failure Sampling Alg (10
6
 rounds)

Failure Sampling Alg (10
7
 rounds)

(c) Topology C: 30,528 devices.

Figure 7: Performance evaluation of the minimal RG algorithm and the failure sampling algorithm in SIA.

 0

 50

 100

 150

 200

 1000 10000 100000

T
o

ta
l
tr

a
ff

ic
 s

e
n

t
(M

B
)

Number of elements in each provider’s dataset

P-SOP (2)

P-SOP (3)

P-SOP (4)

KS (2)

KS (3)

KS (4)

(a) Bandwidth overhead.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000
C

o
m

p
u

ta
ti
o

n
a

l
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of elements in each provider’s dataset

P-SOP (2)
P-SOP (3)
P-SOP (4)

KS (2)
KS (3)
KS (4)

(b) Computational overhead.

Figure 8: System overhead evaluation of PIA. P-SOP (k) and KS(k) mean that there are k cloud providers participating

in the P-SOP and KS protocols, respectively. The commutative encryption in P-SOP uses a 1024-bit key, and the

homomorphic encryption in KS also uses a 1024-bit key.

In the evaluation, there are k cloud providers with n

elements in each provider’s local dataset. We set k to

2, 3 and 4, and vary n between 1,000 and 100,000 to

cover a wide range of real-world settings. We measure

and compare P-SOP with KS in terms of their band-

width and computational overheads at each such cloud

provider. Figure 8a and 8b show the bandwidth overhead

and computational overhead, respectively.

With a small number of cloud providers (e.g., k =

2), the bandwidth overhead of KS is comparable to

that of P-SOP. However, with an increasing number

of cloud providers, KS’s bandwidth overhead increases

much faster than P-SOP’s. With respect to the compu-

tational overhead, P-SOP outperforms KS by a few or-

ders of magnitude although both protocols’ computa-

tional overheads increase almost linearly with the num-

ber of elements in each cloud provider’s dataset. Alto-

gether, the evaluation shows that our PIA system can

efficiently handle large cloud providers each with even

hundreds of thousands of system components.

6.3.3 Comparison: SIA Versus PIA

Compared with the SIA where there is a trusted audi-

tor, we would also like to understand how much extra

overhead the PIA approach incurs to preserve the se-

crecy of each participating cloud provider’s data. As-

sume each cloud provider maintains a local dataset con-

taining 10,000 elements. To preserve secrecy for each

cloud provider, an auditing client relies on either the PIA

system or the comparable KS-based system to determine

the most independent redundancy deployment. For a

comparison, we also assume another setting where there

exists a trusted auditor who knows all cloud providers’

datasets. This trusted auditor runs SIA at the component-

set level of detail based on the minimal RG algorithm or

the failure sampling algorithm with 106 rounds.

Figure 9a and 9b show the computational overheads

of these independence calculations for all potential two-

and three-way redundancies, respectively. As expected,

preserving the secrecy of cloud providers’ data does in-

cur extra overhead. Surprisingly, this cost is not as high

as might be expected: we see that the computational

overhead of “PIA based on P-SOP” is less than twice that

of “SIA based on sampling (106 rounds)”. The SIA sam-

pling scheme does implement a more general analysis

than PIA, supporting fault graphs rather than just com-

ponent sets. Unsurprisingly, both “PIA based on KS” and

“SIA based on minimal RG Alg” do not scale well.

13

330 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20

C
o

m
p

u
ta

ti
o

n
a

l
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of cloud providers

PIA based on KS

SIA based on minimal RG Alg

PIA based on P-SOP

SIA based on sampling (10
6
 rounds)

(a) Two-way redundancy.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 5 10 15 20

C
o

m
p

u
ta

ti
o

n
a

l
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of cloud providers

PIA based on KS

SIA based on minimal RG Alg

PIA based on P-SOP

SIA based on sampling (10
6
 rounds)

(b) Three-way redundancy.

Figure 9: Performance comparison between SIA and PIA. Each cloud provider maintains a 10,000-element dataset.

7 Related Work

Providing audits for clouds is a well-known approach to

increase reliability [54]. Practical and systematic cloud

auditing, however, still remains an open problem. To the

best of our knowledge, INDaaS is the first systematic ef-

fort to enable independence audits for cloud services.

Privacy-preserving auditing systems. Following the

auditing concept proposed by Shah et al. [54], many

privacy-preserving auditing systems have been proposed

extending this approach [55, 63–66, 71].

Similar to PIA, iRec [74] and Xiao et al. [69] also

focused on analyzing correlated failures resulting from

the common infrastructure dependencies across multiple

cloud providers. These efforts proposed using the private

set intersection cardinality protocol [21] and the secure

multi-party computation protocol [72] to perform the de-

pendency analysis in a privacy-preserving fashion, re-

spectively. These initial efforts did not scale to handle

realistically large cloud datasets, however,

Diagnosis & accountability systems. Diagnosis sys-

tems, unlike auditing, attempt to discover failures after

they occur. For example, many inference-based diagnosis

systems [5, 15, 31, 37] have been proposed to obtain the

network dependencies of a cloud service when a failure

occurs. Unlike existing diagnosis systems, NetPilot [68]

aimed to mitigate these failures rather than directly lo-

calize their sources.

Accountability systems attempt to place blame after

failures occur, whereas our auditing system attempts to

prevent failures in the first place. Haeberlen [24] pro-

posed using third-party verifiable evidence to determine

whether the cloud customer or the cloud provider should

be held liability when a failure occurs.

Private set operations. Secure multi-party computation

(SMPC) [72] is a general approach to supporting com-

putation on private data including set operations. How-

ever, current circuit-based SMPC protocols are too ex-

pensive and scale poorly to large computations. Arawal

et al. [1] proposed a private set intersection cardinality

protocol based on commutative encryption. This proto-

col was limited to two-party cases, however. Vaidya and

Clifton [58] extended this protocol to support more than

two parties, and optimized its efficiency.

The first private set intersection cardinality protocol

based on homomorphic encryption was proposed by

Freedman et al. [21], which could privately compute the

number of elements common to two datasets. Hohen-

berger et al. proposed enhancements to this protocol pro-

tocol [30]. Later, Kissner and Song proposed multi-party

private set operations based upon homomorphic encryp-

tion and polynomial generation [38].

8 Conclusion

This paper has presented INDaaS, an architecture to au-

dit the independence of future or existing redundant ser-

vice deployments in the cloud. While only a start, our

proof-of-concept prototype and experiments suggest that

INDaaS could be both practical and effective in detecting

and heading off correlated failure risks before they occur.

Acknowledgments

We thank our shepherd, Timothy Roscoe, and the anony-

mous reviewers for their insightful comments. We also

thank Gustavo Alonso, Hongqiang Liu, Jeff Mogul, Ruz-

ica Piskac, Xueyuan Su, Hongda Xiao, and Sebastian

Zander for their valuable feedback on earlier drafts of

this paper. This research was sponsored by the NSF un-

der grants CNS-1017206 and CNS-1149936.

References

[1] Rakesh Agrawal, Alexandre V. Evfimievski, and

Ramakrishnan Srikant. Information sharing across

private databases. In ACM SIGMOD, June 2003.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 331

[2] Marcos Kawazoe Aguilera, Jeffrey C. Mogul,

Janet L. Wiener, Patrick Reynolds, and Athicha

Muthitacharoen. Performance debugging for dis-

tributed systems of black boxes. In 19th ACM Sym-

posium on Operating Systems Principles (SOSP),

October 2003.

[3] Amazon S3’s redundant storage. http://aws.

amazon.com/s3/, accessed on Sep 9, 2014.

[4] Amazon Web Services Team. Summary of the

October 22, 2012 AWS service event in the US-

East region. https://aws.amazon.com/

message/680342/, accessed on Sep 9, 2014.

[5] Paramvir Bahl, Ranveer Chandra, Albert G. Green-

berg, Srikanth Kandula, David A. Maltz, and Ming

Zhang. Towards highly reliable enterprise network

services via inference of multi-level dependencies.

In ACM SIGCOMM, August 2007.

[6] Paul Barham, Austin Donnelly, Rebecca Isaacs, and

Richard Mortier. Using Magpie for request extrac-

tion and workload modelling. In 6th USENIX Sym-

posium on Operating Systems Design and Imple-

mentation (OSDI), December 2004.

[7] Cristina Basescu, Christian Cachin, Ittay Eyal,

Robert Haas, Alessandro Sorniotti, Marko Vukolic,

and Ido Zachevsky. Robust data sharing with key-

value stores. In 42nd Annual IEEE/IFIP Interna-

tional Conference on Dependable Systems and Net-

works (DSN), June 2012.

[8] Basho Technologies. Riak. http://basho.

com/riak/, accessed on Sep 9, 2014.

[9] Theophilus Benson, Aditya Akella, and David A.

Maltz. Network traffic characteristics of data cen-

ters in the wild. In Internet Measurement Confer-

ence (IMC), November 2010.

[10] Alysson Neves Bessani, Miguel P. Correia, Bruno

Quaresma, Fernando André, and Paulo Sousa. Dep-

Sky: Dependable and secure storage in a cloud-

of-clouds. In ACM SIGOPS/EuroSys European

Conference on Computer Systems (EuroSys), April

2011.

[11] Carlo Blundo, Emiliano de Cristofaro, and Paolo

Gasti. EsPRESSo: Efficient privacy-preserving

evaluation of sample set similarity. In DPM/SE-

TOP, September 2012.

[12] Nicolas Bonvin, Thanasis G. Papaioannou, and

Karl Aberer. A self-organized, fault-tolerant and

scalable replication scheme for cloud storage. In

ACM Symposium on Cloud Computing (SoCC),

June 2010.

[13] Andrei Z. Broder. On the resemblance and contain-

ment of documents. In Compression and Complex-

ity of Sequences (SEQUENCES), June 1997.

[14] Mike Y. Chen, Anthony Accardi, Emre Kiciman,

David A. Patterson, Armando Fox, and Eric A.

Brewer. Path-based failure and evolution manage-

ment. In 1st USENIX Symposium on Networked

System Design and Implementation (NSDI), March

2004.

[15] Xu Chen, Ming Zhang, Zhuoqing Morley Mao,

and Paramvir Bahl. Automating network appli-

cation dependency discovery: Experiences, limita-

tions, and new solutions. In 8th USENIX Sympo-

sium on Operating Systems Design and Implemen-

tation (OSDI), December 2008.

[16] Jack Clark. Lightning strikes Amazon’s

European cloud. ZDNet, August 2011.

http://www.zdnet.com/lightning-

strikes-amazons-european-cloud-

3040093641/, accessed on Sep 9, 2014.

[17] Debian. Package apt-rdepends: Recursively lists

package dependencies. http://packages.

debian.org/sid/apt-rdepends, accessed

on Sep 9, 2014.

[18] John Dunagan, Nicholas J. A. Harvey, Michael B.

Jones, Dejan Kostic, Marvin Theimer, and Alec

Wolman. FUSE: Lightweight guaranteed dis-

tributed failure notification. In 6th USENIX Sym-

posium on Operating Systems Design and Imple-

mentation (OSDI), December 2004.

[19] Bryan Ford. Icebergs in the clouds: the other risks

of cloud computing. In 4th USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud), June

2012.

[20] Daniel Ford, François Labelle, Florentina I.

Popovici, Murray Stokely, Van-Anh Truong, Luiz

Barroso, Carrie Grimes, and Sean Quinlan. Avail-

ability in globally distributed storage systems. In

9th USENIX Symposium on Operating Systems De-

sign and Implementation (OSDI), October 2010.

[21] Michael J. Freedman, Kobbi Nissim, and Benny

Pinkas. Efficient private matching and set intersec-

tion. In EUROCRYPT, May 2004.

[22] Phillipa Gill, Navendu Jain, and Nachiappan Na-

gappan. Understanding network failures in data

centers: Measurement, analysis, and implications.

In ACM SIGCOMM, August 2011.

15

332 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[23] Dan Greer. Heartbleed as metaphor. Lawfare, April

2014. http://www.lawfareblog.com/

2014/04/heartbleed-as-metaphor/, ac-

cessed on Sep 9, 2014.

[24] Andreas Haeberlen. A case for the accountable

cloud. In 3rd ACM SIGOPS International Work-

shop on Large-Scale Distributed Systems and Mid-

dleware (LADIS), October 2009.

[25] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Ro-

drigues, and Peter Druschelnd. Accountable virtual

machines. In 9th USENIX Symposium on Operating

Systems Design and Implementation (OSDI), Octo-

ber 2010.

[26] Andreas Haeberlen, Petr Kouznetsov, and Peter Dr-

uschel. PeerReview: Practical accountability for

distributed systems. In 21st ACM Symposium

on Operating Systems Principles (SOSP), October

2007.

[27] Andreas Haeberlen, Alan Mislove, and Peter Dr-

uschel. Glacier: Highly durable, decentralized stor-

age despite massive correlated failures. In 2nd Sym-

posium on Networked Systems Design and Imple-

mentation (NSDI), May 2005.

[28] Devindra Hardawar. Apple’s iCloud runs on

Microsoft’s Azure and Amazon’s cloud. Ven-

tureBeat News, September 2011. http://

venturebeat.com/2011/09/03/

icloud-azure-amazon/, accessed on

Sep 9, 2014.

[29] Keqiang He, Alexis Fisher, Liang Wang, Aaron

Gember, Aditya Akella, and Thomas Ristenpart.

Next Step, the Cloud: Understanding modern web

service deployment in EC2 and Azure. In Internet

Measurement Conference (IMC), October 2013.

[30] Susan Hohenberger and Stephen A. Weis. Honest-

verifier private disjointness testing without random

oracles. In 6th Workshop on Privacy Enhancing

Technologies, 2006.

[31] Barry Peddycord III, Peng Ning, and Sushil Jajo-

dia. On the accurate identification of network ser-

vice dependencies in distributed systems. In 26th

Large Installation System Administration Confer-

ence (LISA), December 2012.

[32] Paul Jaccard. Étude comparative de la distribu-

tion florale dans une portion des Alpes et du Jura.

Bulletin de la Société Vaudoise des Sciences Na-

turelles, 37(142):547–579, June 1901.

[33] Nikolai Joukov, Vasily Tarasov, Joel Ossher, Bir-

git Pfitzmann, Sergej Chicherin, Marco Pistoiz, and

Takaaki Tateishi. Static discovery and remedia-

tion of code-embedded resource dependencies. In

Integrated Network Management, pages 233–240,

2011.

[34] Flavio Paiva Junqueira, Ranjita Bhagwan, Ale-

jandro Hevia, Keith Marzullo, and Geoffrey M.

Voelker. Surviving Internet catastrophes. In

USENIX Annual Technical Conference, pages 45–

60, April 2005.

[35] Ivan P Kaminow and Thomas L Koch. Optical

Fiber Telecommunications IIIA. Academic Press,

New York, 1997.

[36] Srikanth Kandula, Dina Katabi, and Jean-Philippe

Vasseur. Shrink: A tool for failure diagnosis in IP

networks. In SIGCOMM MineNet Workshop, Au-

gust 2005.

[37] Srikanth Kandula, Ratul Mahajan, Patrick Verkaik,

Sharad Agarwal, Jitendra Padhye, and Paramvir

Bahl. Detailed diagnosis in enterprise networks. In

ACM SIGCOMM, August 2009.

[38] Lea Kissner and Dawn Xiaodong Song. Privacy-

preserving set operations. In 25th Annual Interna-

tional Cryptology Conference (CRYPTO), August

2005.

[39] Ramana Rao Kompella, Jennifer Yates, Albert G.

Greenberg, and Alex C. Snoeren. IP fault localiza-

tion via risk modeling. In 2nd USENIX Symposium

on Networked System Design and Implementation

(NSDI), May 2005.

[40] Sarah Kuranda. The 10 Biggest Cloud Outages of

2013. CRN, January 2014. http://www.crn.

com/slide-shows/cloud/240165024/

the-10-biggest-cloud-outages-of-

2013.htm, accessed on Sep 9, 2014.

[41] Zhenhua Li, Cheng Jin, Tianyin Xu, Christo Wil-

son, Yao Liu, Linsong Cheng, Yunhao Liu, Yafei

Dai, and Zhi-Li Zhang. Towards network-level ef-

ficiency for cloud storage services. In 14th ACM

Internet Measurement Conference (IMC), Novem-

ber 2014.

[42] Zhenhua Li, Christo Wilson, Zhefu Jiang, Yao

Liu, Ben Y. Zhao, Cheng Jin, Zhi-Li Zhang,

and Yafei Dai. Efficient batched synchroniza-

tion in Dropbox-like cloud storage services. In

14th ACM/IFIP/USENIX International Middleware

Conference (Middleware), December 2013.

16

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 333

[43] Vincent Liu, Daniel Halperin, Arvind Krishna-

murthy, and Thomas Anderson. F10: A fault-

tolerant engineered network. In 10th USENIX Sym-

posium on Networked Systems Design and Imple-

mentation (NSDI), April 2013.

[44] Jeffrey C. Mogul. Emergent (mis)behavior vs. com-

plex software systems. In 1st ACM SIGOPS/Eu-

roSys European Conference on Computer Systems

(EuroSys), April 2006.

[45] Radhika Niranjan Mysore, Andreas Pamboris,

Nathan Farrington, Nelson Huang, Pardis Miri,

Sivasankar Radhakrishnan, Vikram Subramanya,

and Amin Vahdat. PortLand: A scalable fault-

tolerant layer 2 data center network fabric. In ACM

SIGCOMM, August 2009.

[46] Arun Natarajan, Peng Ning, Yao Liu, Sushil Jajo-

dia, and Steve E. Hutchinson. NSDMiner: Auto-

mated discovery of network service dependencies.

In IEEE INFOCOM, December 2012.

[47] Suman Nath, Haifeng Yu, Phillip B. Gibbons, and

Srinivasan Seshan. Subtleties in tolerating corre-

lated failures in wide-area storage systems. In 3rd

USENIX/ACM Symposium on Networked Systems

Design and Implementation (NSDI), May 2006.

[48] National Institute of Standards and Technol-

ogy. Common Vulnerability Scoring System

(CVSS). http://nvd.nist.gov/cvss.

cfm, accessed on Sep 9, 2014.

[49] NetworkX. http://networkx.github.

com/, accessed on Sep 9, 2014.

[50] Stephen C. Pohlig and Martin E. Hellman. An

improved algorithm for computing logarithms over

GF(p) and its cryptographic significance (Cor-

resp.). IEEE Transactions on Information Theory,

24(1):106–110, 1978.

[51] Rahul Potharaju and Navendu Jain. When the net-

work crumbles: An empirical study of cloud net-

work failures and their impact on services. In ACM

Symposium on Cloud Computing (SoCC), October

2013.

[52] Chittoor V. Ramamoorthy, Gary S. Ho, and Yih-Wu

Han. Fault tree analysis of computer systems. In

AFIPS National Computer Conference, 1977.

[53] Nuno Santos, Rodrigo Rodrigues, Krishna P Gum-

madi, and Stefan Saroiu. Policy-sealed data: A new

abstraction for building trusted cloud services. In

21st USENIX Security Symposium (USENIX Secu-

rity), August 2012.

[54] Mehul A. Shah, Mary Baker, Jeffrey C. Mogul, and

Ram Swaminathan. Auditing to keep online storage

services honest. In 11th Workshop on Hot Topics in

Operating Systems (HotOS), May 2007.

[55] Mehul A. Shah, Ram Swaminathan, and Mary

Baker. Privacy-preserving audit and extraction

of digital contents. Technical Report HPL-2008-

32R1, HP Laboratories, April 2008.

[56] Adi Shamir, Ron Rivest, and Leonard Adleman.

Mental poker. Technical Report LCS/TM-125,

Massachusetts Institute of Technology, February

1979.

[57] T. Sørensen. A Method of Establishing Groups of

Equal Amplitude in Plant Sociology Based on Sim-

ilarity of Species Content and Its Application to

Analyses of the Vegetation on Danish Commons. I

kommission hos E. Munksgaard, 1948.

[58] Jaideep Vaidya and Chris Clifton. Secure set in-

tersection cardinality with application to associa-

tion rule mining. Journal of Computer Security,

(4):593–622, 2005.

[59] Leslie G. Valiant. The Complexity of Enumeration

and Reliability Problems. SIAM Journal of Com-

puting, 8(3):410–421, 1979.

[60] William E. Vesely, Francine F. Goldberg, Nor-

man H. Roberts, and David F. Haasl. Fault Tree

Handbook. U.S. Nuclear Regulatory Commission,

January 1981.

[61] Lyonel Vincent. Hardware Lister (lshw).

http://ezix.org/project/wiki/

HardwareLiSter, accessed on Sep 9, 2014.

[62] Kevin Walsh and Emin Gün Sirer. Experience with

an object reputation system for Peer-to-Peer file-

sharing. In 3rd USENIX Symposium on Networked

Systems Design and Implementation (NSDI), May

2006.

[63] Cong Wang, Sherman S. M. Chow, Qian Wang, Kui

Ren, and Wenjing Lou. Privacy-preserving public

auditing for secure cloud storage. IEEE Transac-

tions on Computers, 62(2):362–375, 2013.

[64] Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. To-

ward publicly auditable secure cloud data storage

services. IEEE Network, 24(4):19–24, 2010.

[65] Cong Wang, Qian Wang, Kui Ren, and Wenjing

Lou. Privacy-preserving public auditing for data

storage security in cloud computing. In IEEE IN-

FOCOM, March 2010.

17

334 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[66] Qian Wang, Cong Wang, Kui Ren, Wenjing Lou,

and Jin Li. Enabling public auditability and data

dynamics for storage security in cloud computing.

IEEE Transactions on Parallel and Distributed Sys-

tems, 22(5):847–859, 2011.

[67] Wei Wei and Bart Selman. A new approach to

model counting. In 8th Internal Conference on The-

ory and Applications of Satisfiability Testing (SAT),

June 2005.

[68] Xin Wu, Daniel Turner, Chao-Chih Chen, David A.

Maltz, Xiaowei Yang, Lihua Yuan, and Ming

Zhang. NetPilot: Automating datacenter network

failure mitigation. In ACM SIGCOMM, August

2012.

[69] Hongda Xiao, Bryan Ford, and Joan Feigenbaum.

Structural cloud audits that protect private informa-

tion. In ACM Cloud Computing Security Workshop

(CCSW), November 2013.

[70] Wei Xu, Ling Huang, Armando Fox, David Patter-

son, and Michael I. Jordan. Detecting large-scale

system problems by mining console logs. In 22nd

ACM Symposium on Operating Systems Principles

(SOSP), October 2009.

[71] Kan Yang and Xiaohua Jia. Data storage auditing

service in cloud computing: Challenges, methods

and opportunities. World Wide Web, 15(4):409–

428, 2012.

[72] Andrew Chi-Chih Yao. Protocols for secure com-

putations (Extended abstract). In 23rd Annual

Symposium on Foundations of Computer Science

(FOCS), November 1982.

[73] Sebastian Zander, Lachlan L. H. Andrew, and

Grenville Armitage. Scalable private set intersec-

tion cardinality for capture-recapture with multiple

private datasets. In Centre for Advanced Internet

Architectures, Technical Report 130930A, 2013.

[74] Ennan Zhai, Ruichuan Chen, David Isaac Wolin-

sky, and Bryan Ford. An untold story of redundant

clouds: Making your service deployment truly reli-

able. In 9th Workshop on Hot Topics in Dependable

Systems (HotDep), November 2013.

[75] Ennan Zhai, David Isaac Wolinsky, Hongda Xiao,

Hongqiang Liu, Xueyuan Su, and Bryan Ford.

Auditing the structural reliability of the clouds.

Technical Report YALEU/DCS/TR-1479, De-

partment of Computer Science, Yale University,

2014. Available at http://cpsc.yale.edu/

sites/default/files/files/tr1479.

pdf, accessed on Sep 9, 2014.

18

