usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Salt: Combining ACID and BASE
in a Distributed Database

Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid Yaghmazadeh,
Lorenzo Alvisi, and Prince Mahajan, The University of Texas at Austin

https://www.usenix.org/conference/osdil4/technical-sessions/presentation/xie

This paper is included in the Proceedings of the
11th USENIX Symposium on
Operating Systems Design and Implementation.
October 6-8, 2014 - Broomfield, CO
978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems
Design and Implementation

is sponsored by USENIX.

Salt: Combining ACID and BASE in a Distributed Database

Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang,
Navid Yaghmazadeh, Lorenzo Alvisi, Prince Mahajan

The University of Texas at Austin

Abstract: This paper presents Salt, a distributed
database that allows developers to improve the perfor-
mance and scalability of their ACID applications through
the incremental adoption of the BASE approach. Salt’s
motivation is rooted in the Pareto principle: for many ap-
plications, the transactions that actually test the perfor-
mance limits of ACID are few. To leverage this insight,
Salt introduces BASE transactions, a new abstraction
that encapsulates the workflow of performance-critical
transactions. BASE transactions retain desirable proper-
ties like atomicity and durability, but, through the new
mechanism of Salt Isolation, control which granularity
of isolation they offer to other transactions, depending
on whether they are BASE or ACID. This flexibility al-
lows BASE transactions to reap the performance benefits
of the BASE paradigm without compromising the guar-
antees enjoyed by the remaining ACID transactions. For
example, in our MySQL Cluster-based implementation
of Salt, BASE-ifying just one out of 11 transactions in the
open source ticketing application Fusion Ticket yields a
6.5x increase over the throughput obtained with an ACID
implementation.

1 Introduction

This paper presents Salt, a distributed database that, for
the first time, allows developers to reap the complemen-
tary benefits of both the ACID and BASE paradigms
within a single application. In particular, Salt aims to dis-
pel the false dichotomy between performance and ease of
programming that fuels the ACID vs. BASE argument.

The terms of this debate are well known [28, 30, 37].
In one corner are ACID transactions [7-9, 12—-14,36]:
through their guarantees of Atomicity, Consistency, Iso-
lation, and Durability, they offer an elegant and power-
ful abstraction for structuring applications and reason-
ing about concurrency, while ensuring the consistency of
the database despite failures. Such ease of programming,
however, comes at a significant cost to performance and
availability. For example, if the database is distributed,
enforcing the ACID guarantees typically requires run-
ning a distributed commit protocol [31] for each trans-
action while holding an exclusive lock on all the records
modified during the transaction’s entire execution.

In the other corner is the BASE approach (Basically-
Available, Soft state, Eventually consistent) [28, 32, 37],

recently popularized by several NoSQL systems [1, 15,
20,21,27,34]. Unlike ACID, BASE offers more of a set
of programming guidelines (such as the use of parti-
tion local transactions [32,37]) than a set of rigorously
specified properties and its instantiations take a vari-
ety of application-specific forms. Common among them,
however, is a programming style that avoids distributed
transactions to eliminate the performance and availabil-
ity costs of the associated distributed commit protocol.
Embracing the BASE paradigm, however, exacts its own
heavy price: once one renounces ACID guarantees, it is
up to developers to explictly code in their applications
the logic necessary to ensure consistency in the presence
of concurrency and faults. The complexity of this task
has sparked a recent backlash against the early enthusi-
asm for BASE [22, 38]—as Shute et al. put it “Designing
applications to cope with concurrency anomalies in their
data is very error-prone, time-consuming, and ultimately
not worth the performance gains” [38].

Salt aims to reclaim most of those performance gains
while keeping complexity in check. The approach that
we propose to resolve this tension is rooted in the Pareto
principle [35]. When an application outgrows the per-
formance of an ACID implementation, it is often be-
cause of the needs of only a handful of transactions:
most transactions never test the limits of what ACID
can offer. Numerous applications [2,4, 5, 10, 11] demon-
strate this familiar lopsided pattern: few transactions
are performance-critical, while many others are either
lightweight or infrequent; e.g. administrative transac-
tions. Our experience confirms this pattern. For example,
running the TPC-C benchmark [23] on a MySQL cluster,
we found that, as the load increases, only two transac-
tions take much longer to complete—a symptom of high
contention; other transactions are unaffected. Similarly,
we found that the ACID throughput of Fusion Ticket [6],
a popular open source online ticketing application that
uses MySQL as its backend database, is limited by the
performance of just one transaction out of 11. It is tempt-
ing to increase the concurrency of those transactions by
splitting them into smaller ones. Doing so, however, ex-
poses fundamental limitations of the ACID paradigm.

One of the main attractions of the ACID paradigm is
to pack in a single abstraction (the ACID transaction) the
four properties that give ACID its name. This tight cou-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI"14) 495

pling of all four properties, however, comes at the cost
of little flexibility. In particular, offering atomicity and
isolation at the same granularity is the very reason why
ACID transactions are ill-equipped to manage effectively
the tradeoff between performance and ease of program-
ming. First, splitting an ACID transaction into several
smaller transactions to increase concurrency would of
course result in the loss of the all-or-nothing atomicity
guarantees of the original transaction. But even more dis-
turbing would be the resulting loss in isolation, not only
for the split transaction, but for all transactions in the sys-
tem: any transaction would be able to indiscriminately
access what used to be intermediate database states pro-
tected by the guarantees of isolation, making it much
harder to reason about correctness. Nonetheless, this is,
in essence, the strategy adopted by the BASE approach,
which for good measure also gives up consistency and
durability in the bargain.

Motivated by these insights, our vision for Salt is sim-
ple: to create a database where the ACID and BASE
paradigms can safely coexist within the same applica-
tion. In particular, Salt enables ACID applications that
struggle to meet their growing performance demands to
improve their availability and scalability by incremen-
tally “BASE-ifying” only the few ACID transactions
that are performance-critical, without compromising the
ACID guarantees enjoyed by the remaining transactions.

Of course, naively BASE-ifying selected ACID trans-
actions may void their atomicity guarantees, compromise
isolation by exposing intermediate database states that
were previously unobservable, and violate the consis-
tency invariants expected by the transactions that have
not been BASE-ified. To enable mutually beneficial co-
existence between the ACID and BASE paradigms, Salt
introduces a new abstraction: BASE transactions.

BASE transactions loosen the tight coupling between
atomicity and isolation enforced by the ACID paradigm
to offer a unique combination of features: the perfor-
mance and availability benefits of BASE-style partition-
local transactions together with the ability to express and
enforce atomicity at the granularity called for by the ap-
plication semantics.

Key to this unprecedented combination is Salt Iso-
lation, a new isolation property that regulates the in-
teractions between ACID and BASE transactions. For
performance, Salt Isolation allows concurrently execut-
ing BASE transactions to observe, at well-defined spots,
one another’s internal states, but, for correctness, it com-
pletely prevents ACID transactions from doing the same.

We have built a Salt prototype by modifying an ACID
system, the MySQL Cluster distributed database [9], to
support BASE transactions and Salt Isolation. Our ini-
tial evaluation confirms that BASE transactions and Salt
Isolation together allow Salt to break new ground in bal-

ancing performance and ease of programming.
In summary, we make the following contributions:

e We introduce a new abstraction, BASE transactions,
that loosens the tight coupling between atomicity and
isolation to reap the performance of BASE-style appli-
cations, while at the same time limiting the complexity
typically associated with the BASE paradigm.

e We present a novel isolation property, Salt Isolation,
that controls how ACID and BASE transactions inter-
act. Salt Isolation allows BASE transactions to achieve
high concurrency by observing each other’s internal
states, without affecting the isolation guarantees of
ACID transactions.

e We present an evaluation of the Salt prototype, that
supports the view that combining the ACID and BASE
paradigms can yield high performance with modest
programming effort. For example, our experiments
show that, by BASE-ifying just one out of 11 trans-
actions in the open source ticketing application Fusion
Ticket, Salt’s performance is 6.5x higher than that of
an ACID implementation.

The rest of the paper proceeds as follows. Section 2 sheds
more light on the ACID vs. BASE debate, and the unfor-
tunate tradeoff it imposes on developers, while Section 3
proposes a new alternative, Salt, that sidesteps this trade-
off. Section 4 introduces the notion of BASE transactions
and Section 5 presents the novel notion of Salt Isolation,
which allows ACID and BASE transactions to safely co-
exist within the same application. Section 6 discusses the
implementation of our Salt prototype, Section 7 shows an
example of programming in Salt, and Section 8 presents
the results of our experimental evaluation. Section 9 dis-
cusses related work and Section 10 concludes the paper.

2 A stark choice

The evolution of many successful database applications
follows a common narrative. In the beginning, they typ-
ically rely on an ACID implementation to dramatically
simplify and shorten code development and substantially
improve the application’s robustness. All is well, until
success-disaster strikes: the application becomes wildly
popular. As the performance of their original ACID im-
plementation increasingly proves inadequate, develop-
ers are faced with a Butch Cassidy moment [33]: hold-
ing their current ground is untenable, but jumping off
the cliff to the only alternative—a complete redesign
of their application following the BASE programming
paradigm—is profoundly troubling. Performance may
soar, but so will complexity, as all the subtle issues that
ACID handled automatically, including error handling,
concurrency control, and the logic needed for consis-
tency enforcement, now need to be coded explicitly.

496 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

1 //ACID transfer transaction
2 begin transaction
3 Select bal into @bal from accnts where id = sndr
4 if (@bal >= amt)
5 Update accnts set bal —= amt where id = sndr
6 Update accnts set bal += amt where id = rcvr
7 commit
9 //ACID total—balance transaction
10 begin transaction
11 Select sum(bal) from accnts
12 commit
(a) The ACID approach.
1 //transfer using the BASE approach
2 begin local—transaction
3 Select bal into @bal from accnts where id = sndr
4 if (@bal >= amt)
5 Update accnts set bal —= amt where id = sndr
6 // To enforce atomicity, we use queues to communicate
7 // between partitions
8 Queue message(sndr, rcvr, amt) for partition(accnts, revr)
9 end local—transaction

11 // Background thread to transfer messages to other partitions

12 begin transaction // distributed transaction to transfer queued msgs
13 <transfer messages to rcvr>

14 end transaction

16 // A background thread at each partition processes
17 //the received messages
18 begin local—transaction

19 Dequeue message(sndr, rcvr, amt)

20 Select id into @id from accnts where id = rcvr

21 if (@id # 0) // if revr’s account exists in database

22 Update accnts set bal += amt where id = rcvr

23 else // rollback by sending the amt back to the original sender
24 Queue message(rcvr, sndr, amt) for partition(accnts, sndr)

25 end local—transaction

27 //total—balance using the BASE approach

28 // The following two lines are needed to ensure correctness of
29 //the total—balance ACID transaction

30 <notify all partitions to stop accepting new transfers >

31 <wait for existing transfers to complete >
32 begin transaction
33 Select sum(bal) from accnts

34 end transaction
35 <notify all partitions to resume accepting new transfers >

(b) The BASE approach.

Fig. 1: A simple banking application with two implementa-
tions: (a) ACID and (b) BASE

Figure 1 illustrates the complexity involved in transi-
tioning a simple application from ACID to BASE. The
application consists of only two transactions, transfer
and total-balance, accessing the accnts relation. In
the original ACID implementation, the transfer either
commits or is rolled-back automatically despite failures
or invalid inputs (such as an invalid rcvr id), and it is
easy to add constraints (such as bal > amt) to ensure
consistency invariants. In the BASE implementation, it
is instead up to the application to ensure consistency
and atomicity despite failures that occur between the first
and second transaction. And while the level of isolation
(the property that specifies how and when changes to
the database performed by one transaction become vis-
ible to transactions that are executing concurrently) of-
fered by ACID transactions ensures that total-balance
will compute accurately the sum of balances in accnts,

in BASE the code needs to prevent explicitly (lines 30
and 31 of Figure 1(b)) total-balance from observing
the intermediate state after the sndr account has been
charged but before the rcvr’s has been credited.

It speaks to the severity of the performance limita-
tions of the ACID approach that application developers
are willing to take on such complexity.

The ACID/BASE dichotomy may appear as yet an-
other illustration of the “no free lunch” adage: if
you want performance, you must give something up.
Indeed—but BASE gives virtually everything up: the en-
tire application needs to be rewritten, with no automatic
support for either atomicity, consistency, or durability,
and with isolation limited only to partition-local trans-
actions. Can’t we aim for a more reasonable bill?

3 A grain of Salt

One ray of hope comes, as we noted in the Introduc-
tion, from the familiar Pareto principle: even in appli-
cations that outgrow the performance achievable with
ACID solutions, not all transactions are equally demand-
ing. While a few transactions require high performance,
many others never test the limits of what ACID can of-
fer. This raises an intriguing possibility: could one iden-
tify those few performance-critical transactions (either at
application-design time or through profiling, if an ACID
implementation of the application already exists) and
somehow only need to go through the effort of BASE-
ifying those transactions in order to get most of the per-
formance benefits that come from adopting the BASE
paradigm?

Realizing this vision is not straightforward. For ex-
ample, BASE-ifying only the transfer transaction in
the simple banking application of Figure 1 would al-
low total-balance to observe a state in which sndr has
been charged but rcvr’s has not yet been credited, causing
it to compute incorrectly the bank’s holdings. The cen-
tral issue is that BASE-ifying transactions, even if only
a few, can make suddenly accessible to all transactions
what previously were invisible intermediate database
states. Protecting developers from having to worry about
such intermediate states despite failures and concurrency,
however, is at the core of the ease of programming of-
fered by the transactional programming paradigm. In-
deed, quite naturally, isolation (which regulates which
states can be accessed when transactions execute concur-
rently) and atomicity (which frees from worrying about
intermediate states during failures) are typically offered
at the same granularity—that of the ACID transaction.

We submit that while this tight coupling of atomic-
ity and isolation makes ACID transactions both powerful
and attractively easy to program with, it also limits their
ability to continue to deliver ease of programming when

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 497

performance demands increase. For example, splitting
an ACID transaction into smaller transactions can im-
prove performance, but at the cost of shrinking the orig-
inal transaction’s guarantees in terms of both atomicity
and isolation: the all-or-nothing guarantee of the original
transaction is unenforceable on the set of smaller transac-
tions, and what were previously intermediate states can
suddenly be accessed indiscriminately by all other trans-
actions, making it much harder to reason about the cor-
rectness of one’s application.

The approach that we propose to move beyond to-
day’s stark choices is based on two propositions: first,
that the coupling between atomicity and isolation should
be loosened, so that providing isolation at a fine granu-
larity does not necessarily result in shattering atomicity;
and second, that the choice between either enduring poor
performance or allowing indiscriminate access to inter-
mediate states by all transactions is a false one: instead,
complexity can be tamed by giving developers control
over who is allowed to access these intermediate states,
and when.

To enact these propositions, the Salt distributed
database introduces a new abstraction: BASE transac-
tions. The design of BASE transactions borrows from
nested transactions [41], an abstraction originally intro-
duced to offer, for long-running transactions, atomicity
at a finer granularity than isolation. In particular, while
most nested transaction implementations define isolation
at the granularity of the parent ACID transaction,' they
tune the mechanism for enforcing atomicity so that er-
rors that occur within a nested subtransaction do not re-
quire undoing the entire parent transaction, but only the
affected subtransaction.

Our purpose in introducing BASE transactions is sim-
ilar in spirit to that of traditional nested transactions:
both abstractions aim at gently loosening the coupling
between atomicity and isolation. The issue that BASE
transactions address, however, is the flip side of the one
tackled by nested transactions: this time, the challenge is
to provide isolation at a finer granularity, without either
drastically escalating the complexity of reasoning about
the application, or shattering atomicity.

4 BASE transactions

Syntactically, a BASE transaction is delimited by
the familiar begin BASE transaction and end BASE
transaction statements. Inside, a BASE transaction
contains a sequence of alkaline subtransactions—nested

! Nested top-level transactions are a type of nested transactions that
instead commit or abort independently of their parent transaction. They
are seldom used, however, precisely because they violate the isolation
of the parent transaction, making it hard to reason about consistency
invariants.

transactions that owe their name to the novel way in
which they straddle the ACID/BASE divide.

When it comes to the granularity of atomicity, as we
will see in more detail below, a BASE transaction pro-
vides the same flexibility of a traditional nested transac-
tion: it can limit the effects of a failure within a single
alkaline subtransaction, while at the same time it can en-
sure that the set of actions performed by all the alkaline
subtransactions it includes is executed atomically. Where
a BASE transaction fundamentally differs from a tradi-
tional nested transaction is in offering Salt Isolation, a
new isolation property that, by supporting multiple gran-
ularities of isolation, makes it possible to control which
internal states of a BASE transaction are externally ac-
cessible, and by whom. Despite this unprecedented flexi-
bility, Salt guarantees that, when BASE and ACID trans-
actions execute concurrently, ACID transactions retain,
with respect to all other transactions (whether BASE, al-
kaline, or ACID), the same isolation guarantees they used
to enjoy in a purely ACID environment. The topic of how
Salt isolation supports ACID transactions across all lev-
els of isolation defined in the ANSI/ISO SQL standard is
actually interesting enough that we will devote the entire
next section to it. To prevent generality from obfuscating
intuition, however, the discussion in the rest of this sec-
tion assumes ACID transactions that provide the popular
read-committed isolation level.

Independent of the isolation provided by ACID trans-
actions, a BASE transaction’s basic unit of isolation are
the alkaline subtransactions it contains. Alkaline sub-
transactions retain the properties of ACID transactions:
in particular, when it comes to isolation, no transaction
(whether ACID, BASE or alkaline) can observe interme-
diate states produced by an uncommitted alkaline sub-
transaction. When it comes to observing the state pro-
duced by a committed alkaline subtransaction, however,
the guarantees differ depending on the potential observer.
e The committed state of an alkaline subtransaction is

observable by other BASE or alkaline subtransac-
tions. By leveraging this finer granularity of isolation,
BASE transactions can achieve levels of performance
and availability that elude ACID transactions. At the
same time, because alkaline subtransactions are iso-
lated from each other, this design limits the new inter-
leavings that programmers need to worry about when
reasoning about the correctness of their programs: the
only internal states of BASE transactions that become
observable are those at the boundaries between its
nested alkaline subtransactions.

e The committed state of an alkaline subtransaction is
not observable by other ACID transactions until the
parent BASE transaction commits. The internal state
of a BASE transaction is then completely opaque to
ACID transactions: to them, a BASE transaction looks

498 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)

USENIX Association

// BASE transaction: transfer

1
2 begin BASE transaction
3 try
4 begin alkaline—subtransaction
5 Select bal into @bal from accnts where id = sndr
6 if (@bal >= amt)
7 Update accnts set bal —= amt where id = sndr
8 end alkaline—subtransaction
9 catch (Exception e) return // do nothing
10 if (@bal < amt) return // constraint violation
11 try
12 begin alkaline—subtransaction
13 Update accnts set bal += amt where id = rcvr
14 end alkaline—subtransaction
15 catch (Exception e) /rollback if rcvr not found or timeout occurs
16 begin alkaline—subtransaction
17 Update accnts set bal += amt where id = sndr
18 end alkaline—subtransaction

19 end BASE transaction

21 //ACID transaction: total—balance (unmodified)
22 begin transaction

23 Select sum(bal) from accnts

24 commit

Fig. 2: A Salt implementation of the simple banking application

just like an ordinary ACID transaction, leaving their
correctness unaffected.

To maximize performance, we expect that alkaline
subtransactions will typically be partition-local transac-
tions, but application developers are free, if necessary to
enforce critical consistency conditions, to create alkaline
subtransactions that touch multiple partitions and require
a distributed commit.

Figure 2 shows how the simple banking application
of Figure 1 might look when programmed in Salt. The
first thing to note is what has not changed from the sim-
ple ACID implementation of Figure 1(a): Salt does not
require any modification to the ACID total-balance
transaction; only the performance-critical transfer op-
eration is expressed as a new BASE transaction. While
the complexity reduction may appear small in this simple
example, our current experience with more realistic ap-
plications (such as Fusion Ticket, discussed in Section 8)
suggests that Salt can achieve significant performance
gains while leaving untouched most ACID transactions.
Figure 2 also shows another feature of alkaline subtrans-
actions: each is associated with an exception, which is
caught by an application-specific handler in case an er-
ror is detected. As we will discuss in more detail shortly,
Salt leverages the exceptions associated with alkaline
subtransactions to guarantee the atomicity of the BASE
transactions that enclose them.

There are two important events in the life of a BASE
transaction: accept and commit. In the spirit of the BASE
paradigm, BASE transactions, as in Lynx [44], are ac-
cepted as soon as their first alkaline subtransaction com-
mits. The atomicity property of BASE transactions en-
sures that, once accepted, a BASE transaction will even-
tually commit, i.e., all of its operations will have success-
fully executed (or bypassed because of some exception)
and their results will be persistently recorded.

To clarify further our vision for the abstraction that
BASE transactions provide, it helps to compare their
guarantees with those provided by ACID transactions
Atomicity Just like ACID transactions, BASE transac-
tions guarantee that either all the operations they contain
will occur, or none will. In particular, atomicity guaran-
tees that all accepted BASE transactions will eventually
commit. Unlike ACID transactions, BASE transactions
can be aborted only if they encounter an error (such as
a constraint violation or a node crash) before the trans-
action is accepted. Errors that occur after the transaction
has been accepted do not trigger an automatic rollback:
instead, they are handled using exceptions. The details
of our Salt’s implementation of atomicity are discussed
in Section 6.

Consistency Chasing higher performance by splitting
ACID transactions can increase exponentially the num-
ber of interleavings that must be considered when try-
ing to enforce integrity constraints. Salt drastically re-
duces this complexity in two ways. First, Salt does not
require all ACID transactions to be dismembered: non-
performance-critical ACID transactions can be left un-
changed. Second, Salt does not allow ACID transactions
to observe states inside BASE transactions, cutting down
significantly the number of possible interleavings.
Isolation Here, BASE and ACID transactions depart, as
BASE transactions provide the novel Salt Isolation prop-
erty, which we discuss in full detail in the next section.
Appealingly, Salt Isolation on the one hand allows BASE
transactions to respect the isolation property offered by
the ACID transactions they may execute concurrently
with, while on the other yields the opportunity for signifi-
cant performance improvements. In particular, under Salt
Isolation a BASE transaction BT appears to an ACID
transaction just like another ACID transaction, but other
BASE transactions can observe the internal states that ex-
ist at the boundaries between adjacent alkaline subtrans-
actions in BT .

Durability BASE transactions provide the same durabil-
ity property of ACID transactions and of many existing
NoSQL systems: Accepted BASE transactions are guar-
anteed to be durable. Hence, developers need not worry
about losing the state of accepted BASE transactions.

5 Salt isolation

Intuitively, our goal for Salt isolation is to allow BASE
transactions to achieve high degrees of concurrency,
while ensuring that ACID transactions enjoy well-
defined isolation guarantees. Before taking on this chal-
lenge in earnest, however, we had to take two important
preliminary steps.

The first, and the easiest, was to pick the concur-
rency control mechanism on which to implement Salt

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 499

Isolation level L S ACID-R | ACID-W | alka-R | alka-W | saline-R | saline-W
read-uncommitted w W ACID-R 4 X v X v X
read-committed W RW ACID-W X X X X X X
repeatable-read R,W R.W alka-R v X v X v v
serializable R.RR,W | R,RR,W alka-W X X X X v v
saline-R v X v v v v
Table 1: Conflicting type sets L and § for each saline-W. X X 7 7 7 7

of the four ANSI isolation levels. R = Read,
RR = Range Read, W = Write.

isolation. Our current design focuses on lock-based im-
plementations rather than, say, optimistic concurrency
control, because locks are typically used in applications
that experience high contention and can therefore more
readily benefit from Salt; also, for simplicity, we do
not currently support multiversion concurrency control
and hence snapshot isolation. However, there is nothing
about Salt isolation that fundamentally prevents us from
applying it to other mechanisms beyond locks.

The second step proved much harder. We had to
crisply characterize what are exactly the isolation guar-
antees that we want our ACID transactions to provide.
This may seem straightforward, given that the ANSI/ISO
SQL standard already defines the relevant four isolation
levels for lock-based concurrency: read-uncommitted,
read-committed, repeatable read, and serializable. Each
level offers stronger isolation than the previous one, pre-
venting an increasingly larger prefix of the following se-
quence of undesirable phenomena: dirty write, dirty read,
non-repeatable read, and phantom [18].

Where the challenge lies, however, is in preventing
this diversity from forcing us to define four distinct no-
tions of Salt isolation, one for each of the four ACID
isolation levels. Ideally, we would like to arrive at a sin-
gle, concise characterization of isolation in ACID sys-
tems that somehow captures all four levels, which we can
then use to specify the guarantees of Salt isolation.

The key observation that ultimately allowed us to do
so is that all four isolation levels can be reduced to a sim-
ple requirement: if two operations in different transac-
tions? conflict, then the temporal dependency that exists
between the earlier and the later of these operations must
extend to the entire fransaction to which the earlier op-
eration belongs. Formally:

Isolation. Let Q be the set of operation types {read,
range-read, write} and let L and S be subsets of Q. Fur-
ther, let o; in txn; and 07 in txny, be two operations, re-
spectively of type Ty € L and T, € S, that access the same
object in a conflicting (i.e. non read-read) manner. If o;
completes before o, starts, then txn; must decide before
0 starts.

With this single and concise formulation, each of the

2Here the term fransactions refers to both ACID and BASE trans-
actions, as well as alkaline subtransactions.

Table 2: Conflict table for ACID, alkaline, and saline locks.

ACID isolation levels can be expressed by simply instan-
tiating appropriately £ and S. For example, £ = {write}
and § = {read,write} yields read-committed isolation.
Table 1 shows the conflicting sets of operation types for
all four ANSI isolation levels. For a given L and S,
we will henceforth say that two transactions are isolated
from each other when Isolation holds between them.
Having expressed the isolation guarantees of ACID
transactions, we are ready to tackle the core technical
challenge ahead of us: defining an isolation property for
BASE transactions that allows them to harmoniously co-
exist with ACID transactions. At the outset, their mu-
tual affinity may appear dubious: to deliver higher per-
formance, BASE transactions need to expose intermedi-
ate uncommitted states to other transactions, potentially
harming Isolation. Indeed, the key to Salt isolation lies
in controlling which, among BASE, ACID, and alkaline
subtransactions, should be exposed to what.

5.1 The many grains of Salt isolation

Our formulation of Salt isolation leverages the concise-
ness of the Isolation property to express its guarantees in
a way that applies to all four levels of ACID isolation.

Salt Isolation. The Isolation property holds as long as
(a) at least one of txn; and txny is an ACID transaction
or (b) both txn; and txn, are alkaline subtransactions.

Informally, Salt isolation enforces the following con-
straint gradation:
e ACID transactions are isolated from all other transac-
tions.

e Alkaline subtransactions are isolated from other ACID
and alkaline subtransactions.

e BASE transactions expose their intermediate states
(i.e. states produced at the boundaries of their alkaline
subtransactions) to every other BASE transaction.

Hence, despite its succinctness, Salt isolation must
handle quite a diverse set of requirements. To accomplish
this, it uses a single mechanism—Iocks—but equips each
type of transaction with its own type of lock: ACID and
alkaline locks, which share the name of their respective
transactions, and saline locks, which are used by BASE
transactions.

ACID locks work as in traditional ACID systems. There
are ACID locks for both read and write operations; reads

500 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

ACID w(x) w(y) commit BASE; w(x) w(y) commit
Lock On X e— Tock o= ~AAAAAA
Lok ony
BASE W(X) all-aline, ‘,w\lr.,lmr‘;
LOCk ON X vererrennannnn e — BAS E2 W(x) cormmit
alkaline; Lock on x

BASE w(x) w(y) commit

Lock on x ———nA~n~~
Lockony

— ACID lock
alkaline lock

A~ saline lock

N N—
alkaline, alkalines

ACID w(x)

Lock on x

waiting to
acquire lock

commit

(a) BASE waits until ACID commits. (b) BASE; waits only for alkaline; ... (c) ...but ACID must wait all of BASE out.

Fig. 3: Examples of concurrent executions of ACID and BASE transactions in Salt.

conflict with writes, while writes conflict with both reads
and writes (see the dark-shaded area of Table 2). The du-
ration for which an ACID lock is held depends on the op-
eration type and the chosen isolation level. Operations in
L require long-term locks, which are acquired at the start
of the operation and are maintained until the end of the
transaction. Operations in § \ £ require short-term locks,
which are only held for the duration of the operation.

Alkaline locks keep alkaline subtransactions isolated
from other ACID and alkaline subtransactions. As a re-
sult, as Table 2 (light-and-dark shaded subtable) shows,
only read-read accesses are considered non-conflicting
for any combination of ACID and alkaline locks. Similar
to ACID locks, alkaline locks can be either long-term or
short-term, depending on the operation type; long-term
alkaline locks, however, are only held until the end of
the current alkaline subtransaction, and not for the entire
duration of the parent BASE transaction: their purpose
is solely to isolate the alkaline subtransaction containing
the operation that acquired the lock.

Saline locks owe their name to their delicate charge: iso-
lating ACID transactions from BASE transactions, while
at the same time allowing for increased concurrency by
exposing intermediate states of BASE transactions to
other BASE transactions. To that end, (see Table 2) saline
locks conflict with ACID locks for non read-read ac-
cesses, but never conflict with either alkaline or saline
locks. Once again, there are long-term and short-term
saline locks: short-term saline locks are released after the
operation completes, while long-term locks are held un-
til the end of the current BASE transaction. In practice,
since alkaline locks supersede saline locks, we acquire
only an alkaline lock at the start of the operation and,
if the lock is longterm, “downgrade” it at the end of the
alkaline subtransaction to a saline lock, to be held until
after the end of the BASE transaction.

Figure 3 shows three simple examples that illus-
trate how ACID and BASE transactions interact. In Fig-
ure 3(a), an ACID transaction holds an ACID lock on
x, which causes the BASE transaction to wait until the
ACID transaction has committed, before it can acquire
the lock on x. In Figure 3(b), instead, transaction BASE,
need only wait until the end of alkaline;, before acquir-
ing the lock on x. Finally, Figure 3(c) illustrates the use
of saline locks. When alkaline; commits, it downgrades

its lock on x to a saline lock that is kept until the end of
the parent BASE transaction, ensuring that the ACID and
BASE transactions remain isolated.

Indirect dirty reads In an ACID system the Isolation
property holds among any two transactions, making it
quite natural to consider only direct interactions between
pairs of transactions when defining the undesirable phe-
nomena prevented by the four ANSI isolation levels. In
a system that uses Salt isolation, however, the Isolation
property covers only some pairs of transactions: pairs of
BASE transactions are exempt. Losing Isolation’s uni-
versal coverage has the insidious effect of introducing
indirect instances of those undesirable phenomena.

The example in Figure 4 illustrates what can go wrong
if Salt Isolation is enforced naively. For concreteness, as-
sume that ACID transactions require a read-committed
isolation level. Since Isolation is not enforced between
BASE)| and BASE,, w(y) may reflect the value of x that
was written by BASE;. Although Isolation is enforced
between ACID; and BASE,, ACID; ends up reading x’s
uncommitted value, which violates that transaction’s iso-
lation guarantees.

The culprit for such violations is easy to find: dirty
reads can indirectly relate two transactions (BASE| and
ACID in Figure 4) without generating a direct conflict
between them. Fortunately, none of the other three phe-
nomena that ACID isolation levels try to avoid can do
the same: for such phenomena to create an indirect rela-
tion between two transactions, the transactions at the two
ends of the chain must be in direct conflict.

Our task is then simple: we must prevent indirect dirty
reads.® Salt avoids them by restricting the order in which
saline locks are released, in the following two ways:

Read-after-write across transactions A BASE trans-
action B, that reads a value x, which has been writ-
ten by another BASE transaction B,,, cannot release
its saline lock on x until B,, has released its own
saline lock on x.

Write-after-read within a transaction An operation
o,, that writes a value x cannot release its saline

30f course, indirect dirty reads are allowed if ACID transactions re-
quire the read-uncommitted isolation level, which does not try to pre-
vent dirty-reads.

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14)

501

BASE] W(X) «++ (other operations) « « commit P)/\S)l | V\/(.X) e (other operations) . commit
Lock on x P AAANNANNNNNNNANNNNNNANN L ock on x AN ANAANANAA
alkaline ACID lock | alkaline

BASE; r(x) w(y) commit alkaline lock BASL, r(x) w(y) commut

Lock on x —_— saline lock Lo on x AR AN

Lock ony - wailing (o Lock ony ———————AAAAAAAAN

alkahne ac quir(!’\txk o alltline

ACID; r(y) commit ACID, r(y) commil

Lock ony e locs ony —_—

Fig. 4: ACID indirectly reads the uncommitted value of x.

lock on x until all previous read operations within
the same BASE transaction have released their
saline locks on their respective objects.*

The combination of these two restrictions ensures
that, as long as a write remains uncommitted (i.e. its
saline lock has not been released) subsequent read opera-
tions that observe that written value and subsequent write
operations that are affected by that written value will not
release their own saline locks. This, in turn, guarantees
that an ACID transaction cannot observe an uncommitted
write, since saline locks are designed to be mutually ex-
clusive with ACID locks. Figure 5 illustrates how enforc-
ing these two rules prevents the indirect dirty read of Fig-
ure 4. Observe that transaction BASE, cannot release its
saline lock on x until BASE; commits (read-after-write
across transactions) and BASE, cannot release its saline
lock on y before releasing its saline lock on x (write-after-
read within a transaction).

We can now prove [43] the following Theorem for any
system composed of ACID and BASE transactions that
enforces Salt Isolation.

Theorem 1. [Correctness]| Given isolation level A, all
ACID transactions are protected (both directly and,
where applicable, indirectly) from all the undesirable
phenomena prevented by A.

Clarifying serializability The strongest ANSI lock-
based isolation level, locking-serializable [18], not only
prevents the four undesirable phenomena we mentioned
earlier, but, in ACID-only systems, also implies the fa-
miliar definition of serializability, which requires the out-
come of a serializable transaction schedule to be equal to
the outcome of a serial execution of those transactions.

This implication, however, holds only if all transac-
tions are isolated from all other transactions [18]; this is
not desirable in a Salt database, since it would require
isolating BASE transactions from each other, impeding
Salt’s performance goals.

Nonetheless, a Salt database remains true to the
essence of the locking-serializable isolation level: it con-

4 A write can indirectly depend on any previous read within the same
transaction, through the use of transaction-local variables.

Fig. 5: How Salt prevents indirect dirty reads.

tinues to protect its ACID transactions from all four un-
desirable phenomena, with respect to both BASE trans-
actions and other ACID transactions. In other words,
even though the presence of BASE transactions prevents
the familiar notion of serializability to “emerge” from
universal pairwise locking-serializability, ACID transac-
tions enjoy in Salt the same kind of “perfect isolation”
they enjoy in a traditional ACID system.

6 Implementation

We implemented a Salt prototype by modifying MySQL
Cluster [9], a popular distributed database, to support
BASE transactions and enforce Salt Isolation. MySQL
Cluster follows a standard approach among distributed
databases: the database is split into a number of parti-
tions and each partition uses a master-slave protocol to
maintain consistency among its replicas, which are or-
ganized in a chain. To provide fairness, MySQL Cluster
places operations that try to acquire locks on objects in a
per-object queue in lock-acquisition order; Salt leverages
this mechanism to further ensure that BASE transactions
cannot cause ACID transactions to starve.

We modified the locking module of MySQL Cluster
to add support for alkaline and saline locks. These modi-
fications include support for (a) managing lock conflicts
(see Table 2), (b) controlling when each type of lock
should be acquired and released, as well as (c) a queu-
ing mechanism that enforces the order in which saline
locks are released, to avoid indirect dirty reads. Our cur-
rent prototype uses the read-committed isolation level, as
it is the only isolation level supported by MySQL Clus-
ter. The rest of this section discusses the implementation
choices we made with regard to availability, durability
and consistency, as well as an important optimization we
implemented in our prototype.

6.1 Early commit for availability

To reduce latency and improve availability, Salt supports
early commit [44] for BASE transactions: a client that
issues a BASE transaction is notified that the transac-
tion has committed when its first alkaline subtransaction
commits. To ensure both atomicity and durability despite

502 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

failures, Salt logs the logic for the entire BASE transac-
tion before its first transaction commits. If a failure oc-
curs before the BASE transaction has finished executing,
the system uses the log to ensure that the entire BASE
transaction will be executed eventually.

6.2 Failure recovery

Logging the transaction logic before the first alkaline
subtransaction commits has the additional benefit of
avoiding the need for managing cascading rollbacks of
other committed transactions in the case of failures.
Since the committed state of an alkaline subtransac-
tion is exposed to other BASE transactions, rolling back
an uncommitted BASE transaction would also require
rolling back any BASE transaction that may have ob-
served rolled back state. Instead, early logging allows
Salt to roll uncommitted transactions forward.

The recovery protocol has two phases: redo and roll
forward. In the first phase, Salt replays its redo log,
which is populated, as in ACID systems, by logging
asynchronously to disk every operation after it com-
pletes. Salt’s redo log differs from an ACID redo log in
two ways. First, Salt logs both read and write operations,
so that transactions with write operations that depend on
previous reads can be rolled forward. Second, Salt re-
plays also operations that belong to partially executed
BASE transactions, unlike ACID systems that only re-
play operations of committed transactions. During this
phase, Salt maintains a context hash table with all the re-
played operations and returned values (if any), to ensure
that they are not re-executed during the second phase.

During the second phase of recovery, Salt rolls for-
ward any partially executed BASE transactions. Using
the logged transaction logic, Salt regenerates the trans-
action’s query plan and reissues the corresponding op-
erations. Of course, some of those operations may have
already been performed during the first phase: the con-
text hash table allows Salt to avoid re-executing any of
these operations and nonetheless have access to the re-
turn values of any read operation among them.

6.3 Transitive dependencies

As we discussed in Section 5.1, Salt needs to moni-
tor transitive dependencies that can cause indirect dirty
reads. To minimize bookkeeping, our prototype does not
explicitly track such dependencies. Instead it only tracks
direct dependencies among transactions and uses this in-
formation to infer the order in which locks should be re-
leased.

As we mentioned earlier, MySQL Cluster maintains
a per-object queue of the operations that try to acquire
locks on an object. Salt adds for each saline lock a pointer
to the most recent non-ACID lock on the queue. Before
releasing a saline lock, Salt simply checks whether the

1 begin BASE transaction
2 Check whether all items exist. Exit otherwise.
3 Select w_tax into @w_rax from warehouse where w_id =: w_id;
4 begin alkaline—subtransaction
5 Select d_rax into @d_tax, next_order_id into @o_id from
district where w_id = : w_id and d_id = : d_id;
6 Update district set next_order_id = o_id + 1 where w_id =
:w_id AND d_id = : d_id,
7 end alkaline—subtransaction
8 Select discount into @discount, last_name into @name, credit
into @credit where w_id = : w_id and d_id = : d_id and
cid=:c.d
9 Insert into orders values (: w_id, : d_id, @o_id, ...);
10 Insert into new_orders values (: w_id, : d_id, o_id);
11 For each ordered item, insert an order line, update stock level, and

calculate order total
2 end BASE transaction

Fig. 6: A Salt implementation of the new-order transaction in
TPC-C. The lines introduced in Salt are shaded.

pointer points to a held lock—an O(1) operation.

6.4 Local transactions

Converting an ACID transaction into a BASE transaction
can have significant impact on performance, beyond the
increased concurrency achieved by enforcing isolation at
a finer granularity. In practice, we find that although most
of the performance gains in Salt come from fine-grain
isolation, a significant fraction is due to a practical reason
that compounds those gains: alkaline subtransactions in
Salt tend to be small, often containing a single operation.

Salt’s local-transaction optimization, inspired by sim-
ilar optimizations used in BASE storage systems, lever-
ages this observation to significantly decrease the du-
ration that locks are being held in Salt. When an al-
kaline subtransaction consists of a single operation,
each partition replica can locally decide to commit
the transaction—and release the corresponding locks—
immediately after the operation completes. While in
principle a similar optimization could be applied also
to single-operation ACID transactions, in practice ACID
transactions typically consist of many operations that af-
fect multiple database partitions. Reaching a decision,
which is a precondition for lock release, typically takes
much longer in such transactions: locks must be kept
while each transaction operation is propagated along
the entire chain of replicas of each of the partitions
touched by the transaction and during the ensuing two-
phase commit protocol among the partitions. The sav-
ings from this optimization can be substantial: single-
operation transactions release their locks about one-to-
two orders of magnitude faster than non-optimized trans-
actions.’ Interestingly, these benefits can extend beyond
single operation transactions—it is easy to extend the
local-transaction optimization to cover also transactions
where all operations touch the same object.

SThis optimization applies only to ACID and alkaline locks. To
enforce isolation between ACID and BASE transactions, saline locks
must still be kept until the end of the BASE transaction.

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 503

TPC-C
2000 T

1500 ACID Salt

Latency (ms)
=
o
o
o
:
.

w
(=3
o

X
0 2000 4000 6000 8000
Throughput (transactions/sec)

10000 12000

Fig. 7: Performance of ACID and Salt for TPC-C.

7 Case Study: BASE-ifying new-order

We started this project to create a distributed database
where performance and ease of programming could go
hand-in-hand. How close does Salt come to that vision?
We will address this question quantitatively in the next
section, but some qualitative insight can be gained by
looking at an actual example of Salt programming.

Figure 6 shows, in pseudocode, the BASE-ified ver-
sion of new-order, one of the most heavily run transac-
tions in the TPC-C benchmark (more about TPC-C in the
next section). We chose new-order because, although its
logic is simple, it includes all the features that give Salt
its edge.

The first thing to note is that BASE-ifying this trans-
action in Salt required only minimal code modifications
(the highlighted lines 2, 4, and 7). The reason, of course,
is Salt isolation: the intermediate states of new-order
are isolated from all ACID transactions, freeing the pro-
grammer from having to reason about all possible inter-
leavings. For example, TPC-C also contains the deliver
transaction, which assumes the following invariant: if an
order is placed (lines 9-10), then all order lines must be
appropriately filled (line 11). Salt does not require any
change to deliver, relying on Salt isolation to ensure that
deliver will never see an intermediate state of new-order
in which lines 9-10 are executed but line 11 is not.

At the same time, using a finer granularity of isola-
tion between BASE transactions greatly increases con-
currency. Consider lines 5-6, for example. They need to
be isolated from other instances of new-order to guar-
antee that order ids are unique, but this need for isola-
tion does not extend to the following operations of the
transaction. In an ACID system, however, there can be
no such distinction; once the operations in lines 5-6 ac-
quire a lock, they cannot release it until the end of the
transaction, preventing lines 8-11 from benefiting from
concurrent execution.

Fusion Ticket
250 ; : :

200 B

150 ACID Salt 1
100 R

Latency (ms)

50 B

-

0 Lot | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000
Throughput (transactions/sec)

Fig. 8: Performance of ACID and Salt for Fusion Ticket.

8 Evaluation

To gain a quantitative understanding of the benefits of
Salt with respect to both ease of programming and per-
formance, we applied the ideas of Salt to two applica-
tions: the TPC-C benchmark [23] and Fusion Ticket [6].
TPC-C is a popular database benchmark that models on-
line transaction processing. It consists of five types of
transactions: new-order and payment (each responsible
for 43.5% of the total number of transactions in TPC-C),
as well as stock-level, order-status, and delivery (each
accounting for 4.35% of the total).
Fusion Ticket is an open source ticketing solution used
by more than 80 companies and organizations [3]. It is
written in PHP and uses MySQL as its backend database.
Unlike TPC-C, which focuses mostly on performance
and includes only a representative set of transactions,
a real application like Fusion Ticket includes several
transactions—from frequently used ones such as create-
order and payment, to infrequent administrative trans-
actions such as publishing and deleting-event—that are
critical for providing the required functionality of a fully
fledged online ticketing application and, therefore, offers
a more accurate view of the programming effort required
to BASE-ify entire applications in practice.

Our evaluation tries to answer three questions:

e What is the performance gain of Salt compared to the
traditional ACID approach?

e How much programming effort is required to achieve
performance comparable to that of a pure BASE im-
plementation?

e How is Salt’s performance affected by various work-
load characteristics, such as contention ratio?

We use TPC-C and Fusion Ticket to address the first two
questions. To address the third one, we run a microbench-
mark and tune the appropriate workload parameters.

Experimental setup In our experiments, we configure
Fusion Ticket with a single event, two categories of tick-

504 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

TPC-C
14000 |- 1
12000 |- 1
10000 |- 1
8000 - 1
6000 - 1

4000 H f
- 1

2000 -
0 (ACID) 1 2 3 4 5
Number of BASE-ified Transactions

Throughput (transactions/sec)

Fig. 9: Incremental BASE-ification of TPC-C.

ets, and 10,000 seats in each category. Our experiments
emulate a number of clients that book tickets through the
Fusion Ticket application. Our workload consists of the
11 transactions that implement the business logic nec-
essary to book a ticket, including a single administra-
tive transaction, delete-order. We do not execute addi-
tional administrative transactions, because they are many
orders of magnitude less frequent than customer trans-
actions and have no significant effect on performance.
Note, however, that executing more administrative trans-
actions would have incurred no additional programming
effort, since Salt allows unmodified ACID transactions to
safely execute side-by-side the few performance-critical
transactions that need to be BASE-ified. In contrast, in
a pure BASE system, one would have to BASE-ify all
transactions, administrative ones included: the additional
performance benefits would be minimal, but the pro-
gramming effort required to guarantee correctness would
grow exponentially.

In our TPC-C and Fusion Ticket experiments, data is
split across ten partitions and each partition is three-way
replicated. Due to resource limitations, our microbench-
mark experiments use only two partitions. In addition
to the server-side machines, our experiments include
enough clients to saturate the system.

All of our experiments are carried out in an Emulab
cluster [16, 42] with 62 Dell PowerEdge R710 machines.
Each machine is equipped with a 64-bit quad-core Xeon
E5530 processor, 12GB of memory, two 7200 RPM local
disks, and a Gigabit Ethernet port.

8.1 Performance of Salt

Our first set of experiments aims at comparing the perfor-
mance gain of Salt to that of a traditional ACID imple-
mentation to test our hypothesis that BASE-ifying only a
few transactions can yield significant performance gains.

Our methodology for identifying which transactions
should be BASE-ified is based on a simple observation:
since Salt targets performance bottlenecks caused by
contention, transactions that are good targets for BASE-
ification are large and highly-contented. To identify suit-

Fusion Ticket
10000 ; : :

8000 1
6000 1
4000 1

2000 B

i

0 (ACID) 1 2 3 RAW OPS
Number of BASE-ified Transactions

Throughput (transactions/sec)

Fig. 10: Incremental BASE-ification of Fusion Ticket.

able candidates, we simply increase the system load and
observe which transactions experience a disproportion-
ate increase in latency.

Following this methodology, for the TPC-C bench-
mark we BASE-ified two transactions: new-order and
payment. As shown in Figure 7, the ACID implemen-
tation of TPC-C achieves a peak throughput of 1464
transactions/sec. By BASE-ifying these two transactions,
our Salt implementation achieves a throughput of 9721
transactions/sec—6.6x higher than the ACID throughput.

For the Fusion Ticket benchmark, we only BASE-ify
one transaction, create-order. This transaction is the key
to the performance of Fusion Ticket, because distinct in-
stances of create-order heavily contend with each other.
As Figure 8 shows, the ACID implementation of Fu-
sion Ticket achieves a throughput of 1088 transaction-
s/sec, while Salt achieves a throughput of 7090 transac-
tions/sec, 6.5x higher than the ACID throughput. By just
BASE-ifying create-order, Salt can significantly reduce
how long locks are held, greatly increasing concurrency.

In both the TPC-C and Fusion Ticket experiments
Salt’s latency under low load is higher than that of ACID.
The reason for this disparity lies in how requests are
made durable. The original MySQL Cluster implemen-
tation returns to the client before the request is logged
to disk, providing no durability guarantees. Salt, instead,
requires that all BASE transactions be durable before re-
turning to the client, increasing latency. This increase is
exacerbated by the fact that we are using MySQL Clus-
ter’s logging mechanism, which—having been designed
for asynchronous logging—is not optimized for low la-
tency. Of course, this phenomenon only manifests when
the system is under low load; as the load increases, Salt’s
performance benefits quickly materialize: Salt outper-
forms ACID despite providing durability guarantees.

8.2 Programming effort vs Throughput

While Salt’s performance over ACID is encouraging, it
is only one piece of the puzzle. We would like to further
understand how much programming effort is required to
achieve performance comparable to that of a pure BASE

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 505

100000

o
[
e i —
L X,
C
i
G 10000 ¢ X 3
g ' .
c A
£ Salt w/o optimization
‘é 1000 £ / x |
S ACID ..
3 T
=
[100 I I L
0 0.0001 0.001 0.01 0.1

Contention Ratio (1/#Rows)

Fig. 11: Effect of contention ratio on throughput.

implementation—i.e. where all transactions are BASE-
ified. To that end, we BASE-ified as many transactions as
possible in both the TPC-C and Fusion Ticket codebases,
and we measured the performance they achieve as we
increase the number of BASE-ified transactions.

Figure 9 shows the result of incrementally BASE-
ifying TPC-C. Even with only two BASE-ified transac-
tions, Salt achieves 80% of the maximum throughput of
a pure BASE implementation; BASE-ifying three trans-
actions actually reaches that throughput. In other words,
there is no reason to BASE-ify the remaining two trans-
actions. In practice, this simplifies a developer’s task sig-
nificantly, since the number of state interleavings to be
considered increases exponentially with each additional
transactions that need to be BASE-ified. Further, real ap-
plications are likely to have proportionally fewer perfor-
mance-critical transactions than TPC-C, which, being a
performance benchmark, is by design packed with them.

To put this expectation to the test, we further ex-
perimented with incrementally BASE-ifying the Fu-
sion Ticket application. Figure 10 shows the results
of those experiments. BASE-fying one transaction was
quite manageable: it took about 15 man-hours—without
prior familiarity with the code—and required changing
55 lines of code, out of a total of 180,000. BASE-ifying
this first transaction yields a benefit of 6.5x over ACID,
while BASE-ifying the next one or two transactions with
the highest contention does not produce any additional
performance benefit.

What if we BASE-ify more transactions? This is
where the aforementioned exponential increase in state
interleavings caught up with us: BASE-ifying a fourth or
fifth transaction appeared already quite hard, and seven
more transactions were waiting behind them in the Fu-
sion Ticket codebase! To avoid this complexity and still
test our hypothesis, we adopted a different approach: we
broke down all 11 transactions into raw operations. The
resulting system does not provide, of course, any correct-
ness guarantees, but at least, by enabling the maximum
degree of concurrency, it lets us measure the maximum
throughput achievable by Fusion Ticket. The result of

g Salt

9 10000 ® i]

ks) e R e e EEET

§ A] Salt w/o optimization
S

5 A

2 1000 | acp ey

3

<

(=)

3

2

£

= 100 I I I I I I I I

0 1 2 3 4 5 6 7 8 9
Operations after contention

Fig. 12: Effect of contention position on throughput.

g ,
& 100000 i
2} 5
S Salt
g W
c S PR i et T
© 10000 ¢ e Salt w/o optimization ™~~~ -1
s "X
5
Q
< TR
N
© 1000 - ACID T
c
= . \ \ \
0 20 40 60 80 100

Write Ratio (%)

Fig. 13: Effect of read-write ratio on throughput.

this experiment is labeled RAW OPS in Figure 10. We
find it promising that, even by BASE-ifying only one
transaction, Salt is within 10% of the upper bound of
what is achievable with a BASE approach.

8.3 Contention

To help us understand how contention affects the perfor-
mance of Salt, we designed three microbenchmarks to
compare Salt, with and without the local-transaction op-
timization, to an ACID implementation.

In the first microbenchmark, each transaction up-
dates five rows, randomly chosen from a collection of
N rows. By tuning N, we can control the amount of
contention in our workload. Our Salt implementation
uses BASE transactions that consist of five alkaline
subtransactions—one for each update.

Figure 11 shows the result of this experiment. When
there is no contention, the throughput of Salt is some-
what lower than that of ACID, because of the additional
bookkeeping overhead of Salt (e.g., logging the logic of
the entire BASE transaction). As expected, however, the
throughput of ACID transactions quickly decreases as
the contention ratio increases, since contending transac-
tions cannot execute in parallel. The non-optimized ver-
sion of Salt suffers from this degradation, too, albeit to a
lesser degree; its throughput is up to an order of magni-
tude higher than that of ACID when the contention ratio
is high. The reason for this increase is that BASE transac-
tions contend on alkaline locks, which are only held for
the duration of the current alkaline subtransactions and

506 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

are thus released faster than ACID locks. The optimized
version of Salt achieves further performance improve-
ment by releasing locks immediately after the operation
completes, without having to wait for the operation to
propagate to all replicas or wait for a distributed commit
protocol to complete. This leads to a significant reduc-
tion in contention; so much so, that the contention ratio
appears to have negligible impact on the performance of
Salt.

The goal of the second microbenchmark is to help
us understand the effect of the relative position of con-
tending operations within a transaction on the system
throughput. This factor can impact performance signif-
icantly, as it affects how long the corresponding locks
must be held. In this experiment, each transaction up-
dates ten rows, but only one of those updates contends
with other transactions by writing to one row, randomly
chosen from a collection of ten shared rows. We tune the
number of operations that follow the contending opera-
tion within the transaction, and measure the effect on the
system throughput.

As Figure 12 shows, ACID throughput steadily de-
creases as the operations that follow the contending op-
eration increase, because ACID holds an exclusive lock
until the transaction ends. The throughput of Salt, how-
ever, is not affected by the position of contending op-
erations because BASE transactions hold the exclusive
locks—alkaline locks—only until the end of the current
alkaline subtransaction. Once again, the local-transaction
optimization further reduces the contention time for Salt
by releasing locks as soon as the operation completes.

The third microbenchmark helps us understand the
performance of Salt under various read-write ratios.
The read-write ratio affects the system throughput in
two ways: (i) increasing writes creates more contention
among transactions; and (ii) increasing reads increases
the overhead introduced by Salt over traditional ACID
systems, since Salt must log read operations, as discussed
in Section 6. In this experiment each transaction either
reads five rows or writes five rows, randomly chosen
from a collection of 100 rows. We tune the percentage
of read-only transactions and measure the effect on the
system throughput.

As Figure 13 shows, the throughput of ACID de-
creases quickly as the fraction of writes increases. This
is expected: write-heavy workloads incur a lot of con-
tention, and when transactions hold exclusive locks for
long periods of time, concurrency is drastically reduced.
The performance of Salt, instead, is only mildly affected
by such contention, as its exclusive locks are held for
much shorter intervals. It is worth noting that, despite
Salt’s overhead of logging read operations, Salt outper-
forms ACID even when 95% of the transactions are read-
only transactions.

In summary, our evaluation suggests that, by holding
locks for shorter times, Salt can reduce contention and
offer significant performance improvements over a tradi-
tional ACID approach, without compromising the isola-
tion guarantees of ACID transactions.

9 Related Work

ACID Traditional databases rely on ACID’s strong
guarantees to greatly simplify the development of appli-
cations [7-9, 12-14, 22, 36]. As we noted, however, these
guarantees come with severe performance limitations,
because of both the coarse granularity of lock acquisi-
tions and the need for performing a two-phase commit
(2PC) protocol at commit time.

Several approaches have been proposed to improve
the performance of distributed ACID transactions by
eliminating 2PC whenever possible. H-Store [39], Gra-
nola [24], and F1 [38] make the observation that 2PC
can be avoided for transactions with certain proper-
ties (e.g. partition-local transactions). Sagas [29] and
Lynx [44] remark that certain large transactions can be
broken down into smaller ones without affecting appli-
cation semantics. Lynx uses static analysis to identify
eligible transactions automatically. Our experience with
TPC-C and Fusion Ticket, however, suggests that perfor-
mance critical transactions are typically complex, mak-
ing them unlikely to be eligible for such optimizations.
Calvin [40] avoids using 2PC by predefining the order in
which transactions should execute at each partition. To
determine this order, however, one must be able to pre-
dict which partitions a transaction will access before the
transaction is executed, which is very difficult for com-
plex transactions. Additionally, using a predefined order
prevents the entire system from making progress when
any partition becomes unavailable.

BASE To achieve higher performance and availabil-
ity, many recent systems have adopted the BASE ap-
proach [1, 15,20, 21,27, 34]. These systems offer a lim-
ited form of transactions that only access a single item.
To mitigate somewhat the complexity of program-
ming in BASE, several solutions have been proposed
to provide stronger semantics. ElasTraS [25], Megas-
tore [17], G-Store [26], and Microsoft’s Cloud SQL
Server [19] provide ACID guarantees within a single par-
tition or key group. G-Store and ElasTraS further allow
dynamic modification of such key groups. These sys-
tems, however, offer no atomicity or isolation guarantees
across partitions. Megastore further provides the option
of using ACID transactions, but in an all-or-nothing man-
ner: either all transactions are ACID or none of them are.

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 507

10 Conclusion

The ACID/BASE dualism has to date forced develop-
ers to choose between ease of programming and perfor-
mance. Salt shows that this choice is a false one. Using
the new abstraction of BASE transactions and a mech-
anism to properly isolate them from their ACID coun-
terparts, Salt enables for the first time a tenable middle
ground between the ACID and BASE paradigms; a mid-
dle ground where performance can be incrementally at-
tained by gradually increasing the programming effort
required. Our experience applying Salt to real applica-
tions matches the time-tested intuition of Pareto’s law: a
modest effort is usually enough to yield a significant per-
formance benefit, offering a drama-free path to growth
for companies whose business depends on transactional
applications.

Acknowledgements

Many thanks to our shepherd Willy Zwaenepoel and to
the anonymous reviewers for their insightful comments.
Lidong Zhou, Mike Dahlin, and Keith Marzullo provided
invaluable feedback on early drafts of this paper, which
would not have happened without the patience and sup-
port of the Utah Emulab team throughout our experimen-
tal evaluation. This material is based in part upon work
supported by a Google Faculty Research Award and by
the National Science Foundation under Grant Number
CNS-1409555. Any opinions, findings, and conclusions
or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of
the National Science Foundation.

References

[1] Apache HBase. http://hbase.apache.org/.

[2] AuctionMark. http://hstore.cs.brown.edu/projects/
auctionmark/.

[3] Current users of Fusion Ticket. http://www.fusionticket.
com/hosting/our-customers.

[4] Dolibarr. http://www.dolibarr.org/.

[5] E-venement. http://www.e-venement.org/.

[6] Fusion Ticket. http://www.fusionticket.org.

[71 MemSQL. http://www.memsqgl.com/.

[8] Microsoft SQL Server. http://www.microsoft.com/
sqlserver/.
[9] MySQL Cluster. http://www.mysqgl.com/products/

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

of the Conference on Innovative Data system Research (CIDR),
pages 223-234, 2011.

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth
O’Neil, and Patrick O’Neil. A Critique of ANSI SQL Isolation
Levels. In Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’95, pages 1-10,
New York, NY, USA, 1995. ACM.

Philip A Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay
Kalhan, Gopal Kakivaya, David B Lomet, Ramesh Manne, Lev
Novik, and Tomas Talius. Adapting Microsoft SQL Server for
Cloud Computing. In Data Engineering (ICDE), 2011 IEEE 27th
International Conference on, pages 1255-1263. IEEE, 2011.
Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew
Fikes, and Robert E. Gruber. Bigtable: a distributed storage sys-
tem for structured data. In Proceedings of the 7th USENIX Sym-
posium on Operating Systems Design and Implementation - Vol-
ume 7, OSDI *06, Berkeley, CA, USA, 2006. USENIX Associa-
tion.

Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein, Philip Bohannon, Hans-Arno Jacobsen, Nick Puz,
Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. Proceedings of the VLDB Endowment,
1(2):1277-1288, 2008.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey
Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh,
Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd,
Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak,
Christopher Taylor, Ruth Wang, and Dale Woodford. Span-
ner: Google’s Globally-distributed Database. In Proceedings of
the 10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’ 12, pages 251-264, Berkeley, CA, USA,
2012. USENIX Association.

Transaction Processing Performance Council. TPC benchmark
C, Standard Specification Version 5.11, 2010.

James Cowling and Barbara Liskov. Granola: Low-Overhead
Distributed Transaction Coordination. In Proceedings of the 2012
USENIX Annual Technical Conference, Boston, MA, USA, June
2012. USENIX.

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS:
an elastic transactional data store in the cloud. In Proceedings
of the 2009 conference on Hot topics in cloud computing, Hot-
Cloud’09, Berkeley, CA, USA, 2009. USENIX Association.
Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: a
scalable data store for transactional multi key access in the cloud.
In Proceedings of the 1st ACM symposium on Cloud computing,
pages 163-174. ACM, 2010.

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-
nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dy-
namo: amazon’s highly available key-value store. In Proceed-
ings of twenty-first ACM SIGOPS symposium on Operating sys-
tems principles, SOSP 07, pages 205-220, New York, NY, USA,
2007. ACM.

Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A.
Brewer, and Paul Gauthier. Cluster-based scalable network ser-

clu;ter /. ‘ vices. In Proceedings of the sixteenth ACM symposium on Oper-
[10] Ofbiz. http://ofbiz.apache.org/. ating systems principles, SOSP *97, pages 78-91, New York, NY,
[11] Openbravo. http://www.openbravo.com/. USA, 1997. ACM.
[12] Oracle Database. http://www.oracle.com/database/. [29] Hector Garcia-Molina and Kenneth Salem. Sagas. In Proceed-
[13] Postgres SQL. http://www.postgresql.org/. ings of the ACM SIGMOD International Conference on Manage-
[14] SAP Hana. http://www.saphana.com/. ment of Data, 1987.
[15] SimpleDB. http://aws.amazon.con/simpledb/. [30] Seth Gilbert and Nancy Ann Lynch. Perspectives on the CAP
[16] Utah Emulab. http: //www.emulab.net/. Theorem. Institute of Electrical and Electronics Engineers, 2012.
[17] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey [31] James N Gray. Notes on data base operating systems. Springer,
Khorlin, James Larson, Jean-Michel Leon, Yawei Li, Alexander 1978.
Lloyd, and Vadim Yushprakh. Megastore: Providing Scalable, [32] Pat Helland. Life beyond Distributed Transactions: an Apostate’s
Highly Available Storage for Interactive Services. In Proceedings
508 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) USENIX Association

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Opinion. In Third Biennial Conference on Innovative Data Sys-
tems Research, pages 132-141, 2007.

George Roy Hill and William Goldman. Butch Cassidy and the
Sundance Kid. Clip at https://www.youtube.com/watch?v=
1IbSt Ib9xXw, October 1969.

Avinash Lakshman and Prashant Malik. Cassandra: a decentral-
ized structured storage system. ACM SIGOPS Operating Systems
Review, 44:35-40, April 2010.

Michael McLure. Vilfredo Pareto, 1906 Manuale di Economia
Politica, Edizione Critica, Aldo Montesano, Alberto Zanni and
Luigino Bruni (eds). Journal of the History of Economic Thought,
30(01):137-140, 2008.

Michael A Olson, Keith Bostic, and Margo I Seltzer. Berkeley
DB. In USENIX Annual Technical Conference, FREENIX Track,
pages 183-191, 1999.

Dan Pritchett. BASE: An Acid Alternative. Queue, 6:48-55, May
2008.

Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric
Rollins, Bart Samwel, Radek Vingralek, Chad Whipkey, Xin
Chen, Beat Jegerlehner, Kyle Littleeld, and Phoenix Tong. F1
- The Fault-Tolerant Distributed RDBMS Supporting Google’s
Ad Business. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data, pages 777-778.
ACM, 2012.

Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros
Harizopoulos, Nabil Hachem, and Pat Helland. The end of an ar-
chitectural era: (it’s time for a complete rewrite). In Proceedings
of the 33rd international conference on Very large data bases,
VLDB ’07, pages 1150-1160. VLDB Endowment, 2007.
Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun
Ren, Philip Shao, and Daniel J. Abadi. Calvin: fast distributed
transactions for partitioned database systems. In Proceedings of
the 2012 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD 12, pages 1-12, New York, NY, USA,
2012. ACM.

Gerhard Weikum and Gottfried Vossen. Transactional Informa-
tion Systems: Theory, Algorithms, and the Practice of Concur-
rency Control and Recovery. Morgan Kaufmann, 2002.

Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi
Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhi-
jeet Joglekar. An Integrated Experimental Environment for Dis-
tributed Systems and Networks. In Proceedings of the Fifth Sym-
posium on Operating Systems Design and Implementation, pages
255-270, Boston, MA, December 2002. USENIX Association.
Chao Xie, Chunzhi Su, Manos Kapritsos, Yang Wang, Navid
Yaghmazadeh, Lorenzo Alvisi, and Prince Mahajan. Salt: Com-
bining ACID and BASE in a Distributed Database (extended ver-
sion). Technical Report TR-14-10, Department of Computer Sci-
ence, The University of Texas at Austin, September 2014.

Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K
Aguilera, and Jinyang Li. Transaction chains: achieving serializ-
ability with low latency in geo-distributed storage systems. In
Proceedings of the Twenty-Fourth ACM Symposium on Operat-
ing Systems Principles, pages 276-291. ACM, 2013.

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI '14)

509

