
This paper is included in the Proceedings of the 
11th USENIX Symposium on  

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the 
11th USENIX Symposium on Operating Systems 

Design and Implementation  
is sponsored by USENIX.

Jitk: A Trustworthy In-Kernel  
Interpreter Infrastructure

Xi Wang, David Lazar, Nickolai Zeldovich, and Adam Chlipala, MIT CSAIL;  
Zachary  Tatlock, University of Washington

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/wang_xi



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 33

Jitk: A Trustworthy In-Kernel Interpreter Infrastructure

Xi Wang, David Lazar, Nickolai Zeldovich, Adam Chlipala, Zachary Tatlock
MIT CSAIL and University of Washington

Abstract
Modern operating systems run multiple interpreters in the
kernel, which enable user-space applications to add new
functionality or specialize system policies. The correct-
ness of such interpreters is critical to the overall system
security: bugs in interpreters could allow adversaries to
compromise user-space applications and even the kernel.

Jitk is a new infrastructure for building in-kernel in-
terpreters that guarantee functional correctness as they
compile user-space policies down to native instructions
for execution in the kernel. To demonstrate Jitk, we im-
plement two interpreters in the Linux kernel, BPF and
INET-DIAG, which are used for network and system call
filtering and socket monitoring, respectively. To help ap-
plication developers write correct filters, we introduce
a high-level rule language, along with a proof that Jitk
correctly translates high-level rules all the way to native
machine code, and demonstrate that this language can be
integrated into OpenSSH with tens of lines of code. We
built a prototype of Jitk on top of the CompCert verified
compiler and integrated it into the Linux kernel. Ex-
perimental results show that Jitk is practical, fast, and
trustworthy.

1 Introduction
Many operating systems allow user-space applications to
customize and extend the kernel by downloading user-
specified code into the kernel [1, 24]. One well-known
example is the BSD Packet Filter (BPF) architecture [48].
With BPF, applications specify which packets they are
interested in by downloading a filter program into the
kernel that decides whether a packet should be dropped
or forwarded to the application. For portability and safety,
the kernel usually defines a simple, restricted language,
and uses an interpreter to execute code written in that
language (e.g., BPF), rather than directly downloading
and executing machine code. Other notable applications
of in-kernel interpreters include socket monitoring [40],
dynamic tracing [7], power management [32], and system
call filtering [20]. Interpreters are also used outside of
kernels, such as in Bitcoin’s transaction scripting [2].

As an example, consider the Seccomp subsystem [20]
in the Linux kernel, which adopts the BPF language to
specify what system calls a process can make. Seccomp’s
overall architecture is shown in Figure 1. At start-up, an
application such as OpenSSH submits a BPF filter into

BPF interpreter

Policy decision

User

Kernel

ApplicationBPF bytecode

Syscall

1

2

3

Figure 1: The architecture of the Seccomp system [20] in Linux. Appli-
cation developers specify their system call policy as a BPF filter (e.g.,
Figure 2), in bytecode form. At start-up, the user-space application
submits the filter to the kernel. The kernel invokes a BPF interpreter to
evaluate the program against each subsequent system call, and decides
whether to allow or reject it based on the result from the interpreter.

; load syscall number
ld [0]
; deny open() with errno = EACCES
jeq #SYS_open, L1, L2

L1: ret #RET_ERRNO|#EACCES
; allow getpid()

L2: jeq #SYS_getpid, L3, L4
L3: ret #RET_ALLOW

; allow gettimeofday()
L4: jeq #SYS_gettimeofday, L5, L6
L5: ret #RET_ALLOW
L6: ...

; default: kill current process
ret #RET_KILL

Figure 2: The system call filter used in OpenSSH, in the BSD Packet Fil-
ter (BPF) language [48]. It forces the open system call to fail with the er-
rno code EACCES, allows system calls such as getpid and gettimeofday,
and kills the current process if it invokes other system calls. The ld
instruction loads the current system call number into the accumulator
register; jeq n, lt , l f is a conditional jump instruction that branches to lt
if the accumulator register is n, and otherwise branches to l f ; and ret
terminates the filter with a return value.

the kernel. The kernel invokes the BPF interpreter to
run the filter code against every subsequent system call.
Based on the result from the interpreter, the kernel decides
whether to reject or allow a system call, or kill the process
altogether. Figure 2 shows the system call filter used by
OpenSSH, written in the BPF language [48]. Even if an
adversary later compromises the OpenSSH process, she
cannot perform damaging actions, such as modifying files,
as the kernel would fail the corresponding system calls,
which are disallowed by the installed filter. Many other
applications, such as QEMU, Chrome, Firefox, vsftpd,
and Tor, secure themselves in a similar fashion.



34 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

{ default_action = Kill;
rules = [
{ action = Errno EACCES; syscall = SYS_open };
{ action = Allow; syscall = SYS_getpid };
{ action = Allow; syscall = SYS_gettimeofday };
...

] }

Figure 3: OpenSSH’s system call filter from Figure 2, expressed in our
higher-level System Call Policy Language (SCPL).

The security of these systems critically relies on both
the interpreter and user-supplied code. Since the inter-
preter resides in kernel-space and has full privileges, bugs
in the interpreter can enable the adversary to take control
of the entire system [39]. Even if a kernel compromise
does not occur, bugs in the interpreter can cause it to pro-
duce the wrong result. In Seccomp, this means that the
kernel may fail to stop illegal system call invocations, and
thereby allow the security of the user-space application
to be compromised. Finally, if user-space applications
submit incorrect code to start with, such as a BPF filter
that lets unintended system calls slip through, the kernel
would be unable to enforce the correct policy.

Unfortunately, it is challenging to ensure that both the
in-kernel interpreter and the supplied user-specified code
are bug-free. First, the interpreter has a complex interface
to the external world, leaving a wide range of attack vec-
tors to adversaries who can control either user-specified
code (e.g., BPF filters) or input data to the code (e.g., sys-
tem call invocations), or even both. Second, the interpreter
needs to handle many corner cases, such as out-of-bounds
memory accesses, jumps to illegal kernel code, arithmetic
errors, and infinite loops, which have historically caused
problems in many systems (see §3). Third, many in-
kernel interpreters employ just-in-time (JIT) compilation
to convert code into native machine instructions for better
performance [15, 37]; this adds another level of com-
plexity. Fourth, there are few tools that can ensure the
correctness of user-specified code.

This paper presents Jitk, a new in-kernel interpreter
infrastructure that addresses these challenges through for-
mal verification. Jitk implements a JIT that translates
two languages used in the Linux kernel, BPF [48] and
INET-DIAG [40], into native code, including x86, ARM,
and PowerPC, and proves functional correctness of this
translation. Jitk guarantees that the resulting native code
for in-kernel execution preserves the semantics of the BPF
or INET-DIAG code submitted from user space, and that
the native code never performs damaging operations such
as division by zero or out-of-bounds memory access.

To extend the benefits of functional correctness to user-
space applications, Jitk introduces a new high-level speci-
fication language called SCPL (System Call Policy Lan-
guage). Application developers can use SCPL to specify
their desired system call policies using intuitive rules,

such as “allow the gettimeofday system call” or “reject
the open system call with EACCES.” As an example, Fig-
ure 3 shows the SCPL rules that capture the BPF filter
used by OpenSSH shown in Figure 2. The hope is that it is
less likely for developers to make mistakes in SCPL rules
than in manually written BPF filters. Jitk implements a
SCPL-to-BPF compiler and a functional correctness proof
from these high-level policies to native code.

The code and proof of Jitk were developed using
the Coq proof assistant on top of the CompCert frame-
work [42]. We integrated Jitk with the Linux kernel, as a
drop-in replacement of its existing Seccomp subsystem.
Applications like OpenSSH can run on our system with-
out modifications, with the guarantee of the absence of
interpreter bugs described in §3.

Overall, the contributions of this paper are as follows:

• The Jitk infrastructure and approach for building veri-
fied in-kernel JIT interpreters.

• A case study of real-world vulnerabilities found in
BPF interpreters in several operating systems.

• A formalization of correctness and safety goals for
executing user-specified policies in the kernel.

• The Jitk/BPF and Jitk/INET-DIAG verified JITs along
with the formal specifications of both languages.

• The SCPL high-level language for specifying system
call policy rules, along with a proof of correctness for
an SCPL-to-BPF compiler.

• An evaluation of how well Jitk’s formal verification
prevents the vulnerabilities that have been discovered
in bytecode interpreters in real-world kernels.

The rest of the paper is organized as follows. §2 dis-
cusses previous related work. §3 presents background
information on the kinds of bugs that arise in in-kernel
interpreters such as BPF. §4 provides an overview of
Jitk’s architecture and goals. §5 describes the design and
proof. §6 discusses the limitations of Jitk’s approach. §7
presents our prototype implementations of Jitk as applied
in Seccomp and INET-DIAG in the Linux kernel. §8
evaluates Jitk’s security and performance. §9 concludes.

2 Related work
Pioneering work such as seL4 [38, 54], CompCert [42],
MinVisor [49], VCC [41], and Myreen’s x86 JIT com-
piler [50] showed the promise of formal verification for
building trustworthy, critical software systems, including
OS kernels, compilers, and hypervisors. Jitk demonstrates
how to apply formal techniques to building systems that
download and execute untrusted code in a commodity
kernel. Jitk leverages CompCert’s compiler infrastructure
and machine code semantics; alternatively, Jitk could be
built on the Bedrock library [12, 13].



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 35

0 16 24 32 63

opcode jt jf k

Figure 4: A BPF instruction in bytecode format, with a fixed length of
8 bytes (64 bits). It consists of an opcode, true and false target offsets
for conditional jump instructions, and a general field k.

There is a rich literature of securing and isolating faulty
kernel extension through OS design, such as microker-
nels [18, 23, 31, 55] and exokernels [24, 34]; through the
use of type-safe languages, such as SPIN (Modula-3) [1],
Singularity (C#) [33], and Mirage (OCaml) [45]; through
software-based fault isolation [58], such as BGI [9],
LXFI [46], XFI [25], VINO [53], and SVA [17]; and
through proof-carrying code [52]. These techniques fo-
cus on memory safety and kernel integrity, by isolating
user-specified code from the rest of the kernel, but cannot
guarantee functional correctness of the downloaded code.

Testing tools such as EXE [5], KLEE [6], and the
Trinity syscall fuzzer [36] are useful for finding bugs
in kernel code, and have even been applied to BPF inter-
preters, but they cannot guarantee bug-free code.

§3 extends Chen et al.’s earlier survey [10] with a case
study of a wider range of in-kernel interpreter bugs, and
the rest of the paper presents the design and implementa-
tion of Jitk that guarantees the absence of these bugs.

Our experience with Jitk suggests that it is feasible to
build formally verified JITs in the kernel, on the basis
of CompCert. Using a verified compiler like CompCert
provides stronger assurance guarantees than some of the
alternative proposals, such as integrating the LLVM in-
frastructure into the kernel [11].

3 Case study
Enforcing a policy in Seccomp, such as the one shown in
Figure 2, involves several steps: programmers express the
policy to a user-space application, which submits the pol-
icy to the kernel, which in turn relays it to an interpreter,
which then either purely interprets it or compiles it to ma-
chine code for faster execution. This section summarizes
representative bugs at each of these steps, using BPF as
an example, and discusses the challenges of achieving
correctness in this chain. Note that these bugs are gen-
eral and not BPF-specific; they have appeared in other
interpreters as well [10].

3.1 Background: the BPF virtual machine
BPF is a general-purpose virtual machine, consisting of:

• a 32-bit accumulator A,

• a 32-bit index register X,

• a scratch memory M for temporary storage (e.g., 64
bytes in the Linux kernel),

• an input packet P (the data blob for inspection), and

• an implicit program counter pc.

Opcode Operands Description

ld [k] A← P[k, .., k + 3]
ja #k pc← pc + k
jeq #k, jt, jf pc← pc + (A = k) ? jt : jf
div #k A← A / k
ret #k return k

Figure 5: Examples of BPF instructions. See the original BPF paper
for a complete list [48].

0 32 63

system call number architecture

instruction pointer

1st system call argument
...

6th system call argument

Figure 6: Input to system call filters in the Linux kernel [20], a 64-
byte (512-bit) packet. It consists of the current system call number, the
architecture, the instruction pointer, and up to six system call arguments.

A BPF filter is a sequence of BPF instructions, each of
which has a fixed length of 8 bytes, as shown in Figure 4.
It can read the input packet P, transfer data among the two
registers (A and X) and the scratch memory M, perform
arithmetic operations, and terminate with a 32-bit integer
return value, which instructs the kernel to take further
actions. Figure 5 shows examples of BPF instructions
used in this paper; see the original BPF paper for a more
complete list [48].

The BPF virtual machine has been successfully applied
in different contexts. Its original purpose is to inspect
network packets, with the return value indicating the num-
ber of bytes to accept. Its applications have gone beyond
that [3, 16, 20]. For example, the Seccomp system in the
Linux kernel uses BPF for system call filtering: the kernel
prepares a 64-byte input packet storing the current system
call arguments, as shown in Figure 6, and the return value
indicates whether the kernel should fail this system call.

A well-defined BPF filter must end with a ret instruc-
tion; it can jump only forward; and it cannot perform
illegal operations such as division by zero, out-of-bounds
memory access, or jumping to non-existent instructions.
Bugs can arise if an interpreter fails to reject illegal BPF
filters, as we will show next.

3.2 Kernel-space bugs

The complex logic for executing BPF filters happens in
kernel-space, where bugs can be disastrous for security.
Figure 7 lists common errors that have appeared in ex-
isting BPF interpreters in Linux and BSD kernels, as
detailed next.



36 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Bug description Examples

Kernel: control-flow errors (§3.2.1)
jump target off by one CVE-2014-2889 [39]
jump offset integer overflow NetBSD PR #3366 [19], OpenBSD cvs bpf_filter.c:r1.13

Kernel: arithmetic errors (§3.2.2)
incorrect divison-by-zero check NetBSD PR #43185 [29], OpenBSD cvs bpf_filter.c:r1.21
incorrect reciprocal multiplication Linux git aee636c480 [21]

Kernel: memory errors (§3.2.3)
buffer overflow NetBSD PR #32198 [27], Linux git fe15f3f1, FreeBSD svn 182380
array index integer overflow NetBSD PR #45751 [51], Linux git 55820ee2, FreeBSD svn 41588

Kernel: information leak (§3.2.4)
uninitialized read (scratch memory) NetBSD PR #45142 [30], CVE-2010-4158 (Linux), CVE-2012-3729 (iOS)
uninitialized read (A & X registers) Linux git 83d5b7ef99 [56]

Kernel-user interface bugs (§3.3)
incorrect bytecode encoding/decoding Linux git 8c482cdc [4]

User-space bugs (§3.4)
incorrect translation tcpdump git 489f459b [35], libseccomp git cc063d8d
incorrect optimization tcpdump issue #38 [26], tcpdump issue #42

Figure 7: Representative bugs in BPF interpreters.

/* x86 code: jcc t_offset; jmp f_offset; ...
t_offset should be increased by
(a) 2 bytes (jmp rel8) or
(b) 5 bytes (jmp rel32) */

jcc = /* conditional jump opcode */
if (filter[i].jf) /* BUG: should be 2 : 5 */

t_offset += is_near(f_offset) ? 2 : 6;
EMIT_COND_JMP(jcc, t_offset);
if (filter[i].jf)

EMIT_JMP(f_offset);

Figure 8: Incorrect jump target (off by one) in the BPF x86 JIT of the
Linux kernel (CVE-2014-2889 [39]). The size of a jmp here is either 2
or 5 bytes, not 6.

if (BPF_OP(insn->code) == BPF_JA) {
/* BUG: miss overflow case pc + insn->k < pc */
if (pc + insn->k >= len)

return 0;
}

Figure 9: Insufficient validation of the jump offset k [19]: given a large
k, pc + k will wrap around to a smaller value and bypass the check.

3.2.1 Control-flow errors

JIT interpreters need to correctly translate the control flow
of a BPF filter to machine code, which is both delicate
and intricate; even a tiny typo can open a new door for
kernel exploits. As an example, Figure 8 shows an off-
by-one bug in the x86 JIT in the Linux kernel: for a BPF
conditional jump, the interpreter emits an x86 conditional
jump instruction (for the true case), followed by an uncon-
ditional jmp rel32 (for the false case), which is 5 bytes;
the interpreter mistakes it as 6 bytes, and increases the
offset of the conditional jump instruction by that wrong
value. Consequently, the conditional jump instruction will
go one byte past the target instruction, which can be an
arbitrary payload controlled by an adversary [39].

case BPF_DIV: /* reject A / k where k = 0 */
/* BUG: should be 0x08; 0x18 is a wrong mask */
if ((insn->code & 0x18) == BPF_K && insn->k == 0)

return 0;

Figure 10: Incorrect division-by-zero check [29]. The code uses the
wrong mask 0x18, and thus fails to reject BPF code that performs divi-
sion by zero, which may lead to a kernel crash.

/* A / k → reciprocal_divide(A, R)
precompute R = ((1LL << 32) + (k - 1)) / k */

u32 reciprocal_divide(u32 A, u32 R)
{

return (u32)(((u64)A * R) >> 32);
}

Figure 11: Incorrect reciprocal multiplication optimization [21]. With
this optimization A/1 always produces zero, rather than A. The Linux
kernel later disabled this optimization for BPF.

Figure 9 shows another example from BSD kernels:
the interpreter needs to limit the jump offset k within
the filter code, by checking if pc + k exceeds the total
length; otherwise an adversary can trick the kernel into
executing illegal instructions. However, the interpreter
misses the case where a large jump offset overflows pc+k
and bypasses the check.

3.2.2 Arithmetic errors

One infamous type of arithmetic errors is division by
zero, which can crash the kernel if the interpreter fails
to reject it. Figure 10 shows a bug where the interpreter
tries to avoid that case, but performs the wrong check.
Particularly, for BPF instructions A/k and A/X, one can
observe their encoding difference by masking the opcode
with 0x08; the interpreter uses the wrong mask and fails
to detect the case when k is zero.



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 37

/* BUG: k + sizeof(int32_t) can overflow */
if (k + sizeof(int32_t) > buflen)

return 0;
A = EXTRACT_LONG(&p[k]);

Figure 12: Incorrect bounds check [51], which a large k can bypass
since it overflows k + sizeof(int32_t) to a smaller value. A correct
check is k > buflen || sizeof(int32_t) > buflen - k.

Optimizing arithmetic operations further complicates
the situation. Figure 11 shows a bug in Linux’s BPF JIT,
which tries to optimize a division by a constant into a
multiplication and a shift. This optimization, also used
in the slab memory allocator, works well with input in
that particular context (e.g., cache size as the divisor).
However, this optimization is incorrect in general; for
example, 65536/65537 should produce zero, but with the
optimization the result becomes one. The Linux kernel
has disabled this optimization for BPF [21].

3.2.3 Memory errors
An interpreter has access to two memory regions, the
input packet P and the scratch memory M. It needs to
correctly check the offsets of load and store instructions
for both regions and reject illegal ones, which would
otherwise trick the kernel into reading from or writing to
memory that is out of range. The interpreter can easily
miss such checks for some instructions [27], or more
subtly, perform insufficient checks. Figure 12 shows an
incorrect bounds check for ld [k], where an adversary
can use a large k to overflow and bypass the check, leading
to illegal access beyond the input packet P.

3.2.4 Information leak
Since each BPF filter returns a 32-bit integer to user space,
an interpreter needs to ensure that the return value is
derived only from the input packet. In other words, it
must not leak sensitive information from other processes
nor the kernel. Several interpreters, including those in
iOS (CVE-2012-3729) and Linux (CVE-2010-4158), al-
lowed BPF filters to access uninitialized scratch mem-
ory M [30] or registers A and X [56], which could hold
sensitive values from previous use. The interpreters fixed
this vulnerability either by filling M, A, and X with zeros
before execution, or by rejecting BPF filters that try to
read these values before writing to them.

3.3 Kernel-user interface bugs
The logic at the kernel-user interface is straightforward: a
user-space application encodes a BPF filter in bytecode
format, as shown in Figure 4, and submits it to the kernel;
the kernel decodes the bytecode and reconstructs the filter.
Interestingly, there is still a possibility for programming
mistakes such as copy-paste bugs [44]: for example, the
Linux kernel once confused BPF_W with BPF_B for BPF
bytecode encoding [4].

3.4 User-space bugs
It is tedious and error-prone to directly write BPF filters
like Figure 2; for example, it requires programmers to cor-
rectly specify relative jump offsets. Many programmers
instead express their policies through domain-specific
tools or libraries, which provide a high-level interface
for constructing filters. For example, invoking tcpdump
with “tcp dst port 80” produces a 128-byte network fil-
ter for finding TCP packets sent to port 80. Applications
like QEMU use the libseccomp library [22] to simplify
the task of generating system call filters. These tools
and libraries can submit incorrect filters to the kernel
due to bugs in translating domain-specific policies into
BPF filters [35], or when they try to optimize resulting
filters [26].

3.5 Summary
Running user-specified code in the kernel offers flexibility
and extensibility, at the price of a more vulnerable system.
Achieving correctness and safety in an in-kernel inter-
preter is challenging: programmers can easily miss vali-
dating input for certain corner cases, or generate wrong
code that is hard to notice. Many of these bugs have seri-
ous security impacts, as we have shown in Figure 7. In
the next section, we will describe how to apply formal
verification techniques to building Jitk, which is safe, fast,
and immune to these bugs.

4 Overview
This section provides an overview of Jitk and its goals of
correctly translating high-level, human-comprehensible
policies to low-level native code for safe in-kernel exe-
cution. We describe Jitk in the context of the Seccomp
system in Linux using the Jitk/BPF JIT, though the ap-
proach is general and not limited to BPF.

4.1 The architecture of Jitk/BPF
Figure 13 shows the architecture of Jitk/BPF. In contrast
with the current Seccomp subsystem shown in Figure 1,
there are three important differences.

System Call Policy Language (SCPL). Rather than manu-
ally writing BPF code, application developers can choose
to specify system call policies using a high-level SCPL,
which is more intuitive and helps programmers avoid mis-
takes in their policies. In steps 1 and 2, invoking the SCPL
compiler on a SCPL program produces a corresponding
BPF filter. As an example, Figure 3 shows the SCPL rules
that capture the BPF filter used by OpenSSH shown in
Figure 2, and our SCPL compiler will produce the latter
from the former. Note that these two steps are optional;
applications can still directly submit BPF bytecode to the
kernel.



38 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

SCPL rules

SCPL compiler

BPF JIT

Native code

Policy decision

User

Kernel

ApplicationBPF bytecode

Syscall

1

2

3

4

5

6

Figure 13: System overview of Jitk/BPF. Compared to the Seccomp
subsystem in Linux shown in Figure 1, shaded components are intro-
duced by Jitk. Steps are indicated with circled numbers.

JIT interpreter with a shared backend. In Jitk when the
kernel accepts BPF bytecode from user space, a JIT trans-
lates the BPF filter into native code (steps 3 and 4). This
native code is then executed for each system call to de-
cide whether to allow that system call (steps 5 and 6).
This JIT approach helps avoid the overhead of invoking
the interpreter on each system call invocation. Jitk in-
cludes a compiler backend reused from CompCert, which
is independent of BPF and can be shared among different
interpreters. Our prototype implementation runs part of
the JIT as a trusted user-space process (see §7).

Formal verification. The SCPL compiler and the BPF JIT
are formally proven to be correct, as detailed next.

4.2 Goals
Jitk has two overall goals for enforcing user-specified
policies in the kernel. First, well-behaved applications
should be able to properly execute their filters in the ker-
nel. That is, if an application developer writes down a set
of SCPL rules, those rules should be correctly enforced by
the kernel. We will call this the correctness goal. Second,
it should be impossible for an adversary to misuse Jitk to
“break” the kernel in any way. We will call this the safety
goal. Jitk formalizes these goals in the form of a set of
theorems and lemmas, as we will now discuss.

4.2.1 Correctness
The overall correctness goal required by an application
that uses system call filtering is captured by the following
end-to-end theorem:

Theorem 1 (End-to-end correctness). For any system call
policy p written in SCPL, if Jitk accepts it, the overall
system enforces the semantics of p.

To enforce a system call policy in the kernel, Jitk needs
to translate SCPL rules into BPF instructions, transmit
BPF instructions from user space to the kernel, and trans-
late BPF instructions into native code for execution in the
kernel. To achieve Theorem 1, Jitk proves three lemmas
that reflect this workflow.

First, the SCPL compiler must preserve the semantics
of SCPL rules when generating BPF instructions:

Lemma 2 (SCPL-to-BPF semantic preservation). Given
a system call policy p written in SCPL, if the SCPL com-
piler translates it into a BPF filter f , f preserves the
semantics of p:

∀p : SCPLc(p) = OK f =⇒ p≈ f .

Here OK means the translation is successful; ≈ denotes
semantic preservation.

Second, a filter must be transmitted correctly from user
space to the kernel. To cross the user-kernel boundary,
the filter is encoded from the in-memory representation
into a byte-level representation as shown in Figure 4,
submitted to the kernel through a system call (e.g., prctl
in Linux [20]), and then decoded back into the in-memory
representation by the kernel’s BPF JIT. The reconstructed
filter in the kernel must be the same as its user-space
counterpart:

Lemma 3 (User-kernel representation equivalence). If a
BPF filter f is encoded into bytes in user space and the
bytes are decoded back to a BPF filter in kernel space, f
is preserved.

∀ f : encode( f ) = OK b =⇒ decode(b) = OK f .

Finally, when the JIT translates BPF instructions into
native code in the kernel, the native code must preserve
the semantics of the BPF instructions:

Lemma 4 (BPF-to-native semantic preservation). Given
a BPF filter f , if the JIT accepts it and generates native
code n, n preserves the semantics of f .

∀ f : jit( f ) = OK n =⇒ f ≈ n.

Jitk achieves this by first translating BPF to Cminor, an
intermediate language in CompCert [42]. Jitk proves the
correctness of the BPF-to-Cminor translation, and reuses
Cminor-to-native from CompCert. See §5.1.2 for details.

Taken together, Lemmas 2 through 4 imply Theorem 1.

4.2.2 Safety
The safety concern is that an arbitrary user-space applica-
tion should not be able to misuse Jitk to monopolize CPU
time or to corrupt the kernel’s memory. Particularly, both



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 39

native code generated by the BPF JIT and the JIT itself
must be safe for in-kernel execution.

Although Theorem 1 (in particular Lemma 4) guaran-
tees the correctness of native code with respect to given
SCPL rules, it provides no guarantees that the generated
native code will not cause an infinite loop or a stack over-
flow. The safety goal is captured by the following two
theorems, which describe the temporal and spatial require-
ments of in-kernel execution, respectively.

Theorem 5 (Termination). Given any BPF filter f , if
the JIT accepts it and generates native code n, then n
terminates.

∀ f : jit( f ) = OK n =⇒ terminate(n).

Theorem 5 says if the JIT accepts an input BPF filter,
the resulting native code must terminate, that is, the native
code must come to a halt within a finite number of steps.
We believe that termination is an appealing property for
safety: it guarantees a bounded CPU time (i.e., no infinite
loops), and no undefined behavior in the native code (e.g.,
no out-of-bounds memory access nor division by zero),
with which the execution will get stuck.

Let S be a predefined parameter of the JIT, which in-
dicates the maximum number of bytes that native code
generated by the JIT can safely allocate and consume
from the kernel stack.

Theorem 6 (Bounded stack usage). Given any BPF fil-
ter f , if the JIT accepts it and generates native code n, n
uses at most S bytes of stack.

∀ f : jit( f ) = OK n =⇒
any run of n uses at most S bytes of stack space.

Theorem 6 says that if the JIT accepts an input BPF
filter, the resulting native code must never overflow the
kernel stack.

The safety of the BPF JIT itself is guaranteed by Coq.
The JIT is written in Coq (see §4.3); all Coq programs are
guaranteed to provide memory safety, and are guaranteed
to terminate, as it is impossible to write infinite loops in
Coq’s Gallina language [14: §7].

4.3 Development flow
To build a trustworthy in-kernel interpreter in Jitk, devel-
opers need to prove that an implementation satisfies the
correctness and safety goals as formalized in §4.2. The
development workflow is shown in Figure 14.

In particular, the JIT, the encoder-decoder from user
space to kernel, and the SCPL compiler are all written in
Coq. For each component, Jitk’s Coq source code consists
of three major parts: the specification, the implementa-
tion, and the proof that the implementation matches the
specification. This source code is used in two ways. First,

specification proof implementation

Coq
proof checker

Coq
code extractor

generated
OCaml source

OCaml
compiler

I/O stub

native
executable

Figure 14: Development flow of Jitk using the Coq proof assistant.
Shaded boxes indicate source code and proof written by developers.

the Coq proof checker verifies that the proof is correct.
Second, Coq transforms the implementation into OCaml.
The generated OCaml code is compiled, together with a
small I/O stub that performs I/O and invokes the generated
code, into a native executable.

5 Design
This section focuses on how the design and proofs help
Jitk achieve its correctness and safety goals.

Figure 15 shows Jitk’s detailed workflow and compo-
nents, including the in-kernel JIT (§5.1), the high-level
SCPL in user space (§5.2), the encoding-decoding across
the two spaces (§5.3), and the integration of Jitk with
Linux (§5.4). For each component, we will describe the
specification, the implementation, and the proof.

5.1 JIT
A correct BPF JIT implementation should satisfy BPF-
to-native semantic preservation (Lemma 4), termina-
tion (Theorem 5), and bounded stack usage (Theorem 6).
To achieve these goals, we will start with the formal se-
mantics of BPF (§5.1.1), and describe the design of the
three key components: the translator (§5.1.2), which is
responsible for transforming a BPF filter into native code,
the checker (§5.1.3), which is responsible for making
sure that all input filters are well-defined before being
sent to the translator, and the validator (§5.1.4), which is
responsible for ensuring bounded stack usage for output
assembly code.

5.1.1 The specification
The specification of BPF consists of the syntax of instruc-
tions, the states, and the semantics, which is a set of state
transitions among the states. The syntax mirrors the de-
scription in §3.1, which is omitted here. During execution,
a BPF filter is in one of the following three states:

• initial state: a pair of current filter f and input packet P,
denoted as (Initialstate f P);



40 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

translator

BPF instructions

SCPL rules

encoder

BPF bytecode

SCPL
compiler

BPF bytecode

BPF
JIT

Cminor instructions

native assembly

native binary code

Lemma 2:
refinement

Lemma 3:
decode is

the inverse
of encode

Lemma 7:
refinement

Lemma 8:
refinement
(borrowed

  from CompCert)

BPF instructions

Theorem 5:
termination

decoder

checker

translator

BPF instructions

CompCert

assembler

native assembly

validator Theorem 6:
bounded stack

Figure 15: A detailed view of Jitk’s SCPL compiler (in user space) and
the BPF JIT (in kernel space).

• running state: a 6-tuple of registers A and X, scratch
memory M, program counter pc, as well as f and P,
denoted as (State A X M pc f P); and
• final state: a return value v, denoted as (Finalstate v).

A well-defined filter starts from the initial state, transi-
tions through a set of running states, and halts in the final
state. The first state transition is:

(Initialstate f P)
→ (State 0 0 (list_repeat N 0) f f P) (5.1)

This says that at start-up, A and X are set to zero, M is
initialized as N zeros, and pc is set to the start of the
filter f .

The core part of the semantics is transitions between
two running states after executing an instruction other

than ret. For example, the BPF instruction “add k” in-
creases the value of register A by k, and the corresponding
transition is:

(State A X M (add k :: pc′) f P)
→ (State (Int.add A k) X M pc′ f P)

Here add k :: pc′ means that the current instruction to
be executed is add k and the next program counter is pc′;
Int.add is a 32-bit integer addition from CompCert. The
specification says that after executing add k, the program
transitions to a state with updated values of A and pc.

A more interesting example is a transition with a pre-
condition. Below is the transition for BPF’s unconditional
jump instruction ja k:

k < length pc′ =⇒
(State A X M (ja k :: pc′) f P)

→ (State A X M (skipn k pc′) f P)

Here length returns the number of instructions remain-
ing and skipn drops a given number of instructions. The
specification says if k is less than the number of instruc-
tions remaining, then ja skips k instructions. Note that
the specification says nothing about a too-large k with
which ja could jump past the end of the filter. Therefore,
such a filter is undefined, which a safe implementation
like Jitk must reject.

The last state transition is to enter the final state with
the return value k after executing ret k:

(State A X M (ret k :: pc′) f P)
→ (Finalstate k)

5.1.2 The translator and semantic preservation
The translator compiles a well-defined BPF filter (which
passed the checker, as we will describe in §5.1.3) into
native code. Our goal is to have an implementation with
its correctness proof, as stated in Lemma 4. The key
challenge of designing the translator is to choose an ap-
propriate target language, which strikes a balance between
the complexity of the implementation and the proof.

One approach is to directly produce low-level code
such as x86 instructions from BPF, just like the existing
JIT implementations in Linux and BSD kernels. The main
downside of this approach, which we initially adopted, is
that the big semantic gap between BPF and x86 makes
it difficult to reason about the correspondence and prove
properties about the target code. For example, consider
translating BPF’s unconditional jump ja k into x86’s
jmp n, where k and n are jump offsets in the corresponding
languages. It is tricky to compute n (see §3.2.1); mean-
while, it is difficult to prove why n is the correct value
that corresponds to k.

Jitk’s translator targets Cminor, one of CompCert’s
intermediate languages [42]. Cminor can be considered



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 41

as an architecture-independent, simple C variant: it has
only primitive types such as n-bit integers, and no pointer
or struct types. The main advantage of targeting Cminor
is that it retains high-level constructs, which simplifies
the proof. For example, Cminor has labels and variables,
with which one does not have to reason about low-level
details such as jump offsets or the stack pointer.

To prove correctness of the translator, we prove that it
satisfies the following property:

Lemma 7 (BPF-to-Cminor semantic preservation). If the
JIT translator generates Cminor code c from a BPF filter f ,
c preserves the semantics of f .

∀ f : jittranslator( f ) = OK c =⇒ f ≈ c.

The main technique for proving Lemma 7 is by simu-
lation [43], as used throughout CompCert. Specifically,
it suffices to show that each state transition in the BPF
specification shown in §5.1.1 corresponds to some state
transitions in the Cminor specification during translation.
We omit the details.

A second advantage of targeting Cminor is that Jitk can
reuse CompCert to transform Cminor code into native
assembly. CompCert currently has support for x86, ARM,
and PowerPC, for which it comes with its own semantic
preservation theorem:

Lemma 8 (Cminor-to-native semantic preservation). If
CompCert generates native code n from a Cminor pro-
gram c, n preserves the semantics of c.

∀c : compcert(c) = OK n =⇒ c≈ n.

Together, Lemmas 7 and 8 imply our correctness goal,
Lemma 4.

Finally, in order to transform the assembly code into
native binary code, Jitk invokes a traditional assembler;
CompCert does not include a provably correct assembler.

5.1.3 The checker and termination
Recall that Lemma 4 guarantees BPF-to-native semantic
preservation: if an input filter terminates, the resulting
native code produced by the translator also terminates.
Therefore, to achieve the termination goal as stated in
Theorem 5, it suffices to implement a checker that rejects
all undefined input and ensures that any surviving filter
terminates.

For BPF, this amounts to the following requirements:
that all jump targets are forward (i.e., no loops), that all
jump targets are in-bounds (i.e., not pointing past the
end of the program), that all memory accesses are in-
bounds (i.e., not reading or writing past the end of the
input packet and the scratch memory), and that the input
ends in a ret instruction. The combination of these rules
ensures that every program that passes the checker will be

well-defined, and will terminate with some return value
according to BPF semantics.

We prove that the implementation of the checker satis-
fies the following property:

Lemma 9 (BPF termination). If the JIT checker accepts
a BPF filter f , then f terminates.

∀ f : jitchecker( f ) = OK f =⇒ terminate( f ).

Combining this with Lemma 4 gives our safety goal of
termination, Theorem 5. Note that it is impossible to miss
any undefined cases in the implementation of the checker,
otherwise the proof of Lemma 9 would not succeed.

5.1.4 The validator and bounded stack usage
CompCert does not provide facilities for reasoning about
stack bounds across transformations. In order to prove
Theorem 6, one option is to extend CompCert with pro-
posed support for tracking stack bounds [8], which would
allow Jitk to prove a theorem about it.

Jitk adopts a simpler approach using the validator. As
for BPF, there is only one function with a fixed number of
variables and a fixed-size object (scratch memory) on the
stack. The validator inspects the size in the stack frame
allocation instruction at function entry in the resulting
assembly code, and fails the JIT if the size is larger than a
predefined S . It is then easy to prove Theorem 6, as any
generated assembly code that passes the validator uses at
most S bytes from the stack space.

5.2 SCPL
The design of our SCPL is inspired by the libseccomp
API [22]; the key difference is that the SCPL compiler
is provably correct. As shown in Figure 3, developers
specify rules for matching different system calls (and
optionally system call arguments), along with actions
to take when those rules match (e.g., allow the system
call, or reject it with a particular errno value). There
is also a default action, if none of the rules match. The
formal specification of SCPL is similar to BPF described
in §5.1.1: the syntax, the states, and the state transitions.
The proof of SCPL-to-BPF correctness is also similar to
BPF-to-Cminor. We omit the details here.

5.3 Encoding and decoding
To ensure that BPF programs are faithfully encoded and
decoded when transmitted across the user-kernel space
boundary, Jitk implements an encoder and decoder, which
transforms an in-memory representation of a BPF pro-
gram into BPF bytecode, and back into an in-memory
representation.

One option for proving the correctness of the BPF en-
coder and decoder would be to define semantics for BPF
bytecode, as defined by byte-level sequences, and to prove
equivalence between the in-memory representation (under



42 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

the semantics of in-memory BPF programs) and the byte-
level representation (under the semantics of byte-level
encodings). However, this approach is quite cumbersome,
owing to the complexity of defining the semantics of BPF
programs at the low level of byte encodings.

Instead, Jitk takes a pragmatic alternative: it proves
that the decoder is the inverse of the encoder (Lemma 3).
When used in combination with SCPL, this guarantees
that SCPL-generated BPF bytecode will necessarily be de-
coded correctly by the Jitk/BPF JIT in the kernel. It does
not guarantee that the encoder and decoder implemented
by Jitk are compatible with any other encoding (e.g., the
encoding produced by libseccomp). In practice, we be-
lieve this is not a significant problem, because the speci-
fication of the correct encoding and decoding would be
of similar complexity to our current Coq encoder/decoder
implementation, and our theorem (Lemma 3) provides
a strong sanity check on the internal consistency of our
encoder and decoder.

5.4 Linux kernel integration
The Linux kernel interacts with Jitk in two ways. The first
is when an application submits a BPF filter to Seccomp
through the prctl system call [20]: we modified the ker-
nel to invoke Jitk’s BPF JIT. The JIT translates the filter
into native code; if the translation fails, indicating that the
BPF filter code was not well-formed, the prctl system
call returns an error.

The second is when an application makes a subsequent
system call: we modified the kernel to check if there is al-
ready a JIT-compiled filter associated with the process; if
so, the kernel treats the filter as a function pointer, invok-
ing it with a single argument (the structure containing the
system call number and arguments, shown in Figure 6).1

The return value determines the resulting action for this
system call, much as with the existing Seccomp design.

6 Discussion
There are some mistakes that Jitk’s theorems cannot pre-
vent. First, if the specifications of BPF and SCPL are
buggy, then Jitk’s JIT implementations can have bugs.

Another example is an overly strict checker, such as
NetBSD #37663 [28], which rejected any BPF program
that used the multiply instruction. Such an implementa-
tion does not violate either correctness or safety goals,
since all of our theorems are conditional on our system
accepting a given program. It would be possible to prove
an additional theorem that required Jitk/BPF to accept
certain programs; one good candidate would be a require-
ment that Jitk/BPF accept all BPF programs generated by
the SCPL compiler.

1 Linux kernel 3.16 or later does not require this modification any-
more, as it has been changed to work in the same way.

Jitk’s theorems also cannot prevent the use of Jitk’s
JIT for JIT spraying [47], which can make it easier to
exploit memory corruption vulnerabilities in the rest of
the Linux kernel. Given a formal set of requirements for a
JIT to mitigate the effects of JIT spraying (e.g., ensuring
that a constant in the input bytecode does not appear in
the output code), it may be possible to prove that Jitk
correctly implements such mitigation techniques.

Jitk’s encoder/decoder can have self-consistent mis-
takes, in that the encoder and decoder are consistent with
each other (satisfying Lemma 3), but do not match the en-
coding used by others for the same bytecode. We believe
it is unlikely for the reasons discussed in §5.3.

Finally, Jitk assumes several additional parts are correct
without a formal proof. First, the Coq proof checker is as-
sumed to be correct. While bugs have been found in Coq,
we believe Coq provides a strong degree of assurance
that Jitk is trustworthy. The Coq extraction system and
the OCaml compiler and runtime are also assumed to be
correct. We believe this is reasonable because Coq itself
is written in OCaml. That said, bugs in Coq’s extraction
system have been found in the past [57, 59].

Jitk’s OCaml I/O stub has no proof of correctness. It is
about 70 lines of code, and performs simple operations:
taking input from stdin, passing it into the Coq-extracted
code, and printing the results to stdout.

The rest of the kernel code, including the wrapper that
invokes the Jitk JIT and that invokes the filter code pro-
duced by the JIT, is assumed to be correct. Particularly,
Jitk assumes that the kernel does not trample on the JIT
itself, that the kernel correctly interprets the results from
the JIT and the filter, and that the kernel synthesizes an
correct input packet to the filter, namely, a single pointer
argument pointing to a valid memory region whose size
matches the structure shown in Figure 6.

Jitk also assumes that the kernel invokes the JIT-
compiled code with an appropriate calling convention.
For example, on x86 the JIT-compiled code assumes that
the input argument is passed on the stack, as CompCert’s
x86 backend uses the cdecl calling convention; however,
the Linux kernel uses fastcall by default (e.g., with gcc’s
-mregparm=3), which passes the input argument in the EAX
register. We bridged the gap using a function wrapper.

Finally, Jitk assumes that CompCert generates correct
assembly code for the filter, which is a single-argument
function. One technical complication is that CompCert’s
semantics are defined only for complete programs that
take no arguments. This precludes even well-formed C
programs with a main function that takes two arguments,
argc and argv, for which theoretically CompCert pro-
vides no guarantees. We believe this is not a likely source
of bugs in practice.



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 43

Component Lines of code

Specifications (SCPL, BPF) 420 lines of Coq
Implementation (SCPL, BPF) 520 lines of Coq
Proof (SCPL, BPF) 2,300 lines of Coq
Extraction to OCaml 50 lines of Coq
I/O stub 70 lines of OCaml
Linux kernel changes 150 lines of C

Total 3,510 lines of code

Figure 16: Lines of code for our Jitk/BPF prototype.

7 Implementation
We have implemented a fully functional prototype of Jitk
for Linux’s BPF-based Seccomp system. The breakdown
of our Jitk/BPF prototype (excluding the components
borrowed from CompCert) in terms of lines of code is
shown in Figure 16.

As mentioned in §4.3, the BPF JIT is written in Coq.
We extracted the Coq implementation into OCaml code,
and linked it into an executable, together with the I/O stub
and the OCaml runtime. In order to run this executable
for translating BPF bytecode into native binary code, we
chose to put it in user space and modified the kernel to
perform an upcall, using Linux’s call_usermodehelper
interface. Putting the executable with the OCaml runtime
into the kernel would be doable, as demonstrated by the
Mirage unikernel [45], but would unnecessarily compli-
cate our implementation. Trusting a user-mode process
running as root to produce native binary code for running
in the kernel seems reasonable, given that root processes
can also load arbitrary kernel modules.

Jitk supports generating x86, ARM, and PowerPC code,
as CompCert provides the corresponding backends. Jitk
does not support architectures that CompCert lacks, such
as x86-64.

Like CompCert, Jitk relies on a conventional (not
proven correct) assembler to convert textual assembly
code into a native binary. Jitk uses the GNU assembler as
for this purpose, and disables assembler-level optimiza-
tions (using the -n option) out of precaution.

8 Evaluation
In our evaluation, we aim to answer five questions:

• How much effort does it take to build Jitk? (§8.1)

• Does formal verification prevent the kinds of bugs that
arise in practice? (§8.2)

• Does Jitk’s JIT produce efficient filter code? (§8.3)

• How much effort is required to use SCPL? (§8.4)

• What is the end-to-end performance of Jitk? (§8.5)

8.1 Verification effort
The total effort to build Jitk for Seccomp was shown in
Figure 16. Much of the effort went into constructing
proofs. The 2,300 lines of Coq proof code consist of 650
lines of general helpers (the crush tactic from CPDT [14]
and miscellaneous lemmas about linked lists and arith-
metic), 950 lines of refinement proof (that the BPF JIT
preserves semantics), 350 lines of termination proof (that
programs that pass the checker are well-defined), 150
lines of encoding proof (that decoding is the inverse of
encoding), and 250 lines of proof for the SCPL compiler.

To determine if this approach can be applied to another
bytecode language, we implemented a JIT for the INET-
DIAG interpreter from the Linux kernel. INET-DIAG
has a simpler bytecode language, and the code and proof
sizes were correspondingly smaller, totaling 1,590 lines of
code. Overall, we believe this indicates Jitk is a practical
approach for building trustworthy in-kernel interpreters.

8.2 Bug case study
To evaluate whether Jitk’s formal verification does a good
job of preventing bugs that arise in practice, we perform
an analysis of the bugs that have been found in interpreters
so far (Figure 7), and manually determine whether such
a bug could have been present in an implementation that
provably satisfies Jitk’s theorems. Our results show that
Jitk is effective at preventing these bugs.

Control-flow errors. The control flow errors described
in §3.2.1, such as misaligned jump targets and overflow
in computing the jump offset, cannot occur in Jitk, since
Lemma 4 guarantees that all jumps in native code preserve
the semantics. It is also impossible to “run off the end”
of generated native code, since Theorem 5 guarantees
that every BPF program that passes the checker must
terminate. We found and fixed several off-by-one jump
errors in our implementation while proving Lemma 7.

Arithmetic errors. If the JIT forgets to check for division
by zero, the proof of Lemma 7 cannot succeed: in Cminor,
division by zero is undefined, and it would be impossible
to prove that the generated Cminor code refines the se-
mantics of the BPF program. Similarly, if the JIT has an
incorrect optimization, such as reciprocal_divide, the
proof of Lemma 7 cannot proceed, either. We initially
forgot to check for division by zero, and had to address it
in order to complete the proof.

Memory errors. If the memory index in a BPF instruc-
tion is in-bounds, the generated Cminor instruction must
access the same memory index; otherwise the proof of
Lemma 7 cannot proceed. This eliminates incorrect mem-
ory indices. On the other hand, if the memory index in a
BPF instruction is out-of-bounds, the BPF program is un-
defined, and the termination proof ensures that the checker



44 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

BPF
x86 ARM PowerPC

FreeBSD Jitk Linux Jitk Linux Jitk

OpenSSH 312 466 274 (58.8%) 384 396 (103.1%) 452 340 (75.2%)
vsftpd 576 1, 177 443 (37.6%) 616 624 (101.3%) 736 548 (74.5%)
Native Client 664 928 626 (67.5%) 828 844 (101.9%) 984 688 (69.9%)
QEMU 1, 680 2, 364 2, 037 (86.2%) 2, 048 2, 156 (105.3%) 2, 780 1, 840 (66.2%)
Firefox 1, 720 2, 314 1, 636 (70.7%) 2, 164 2, 196 (101.5%) 2, 564 1, 748 (68.2%)
Chrome 2, 144 4, 640 2, 122 (45.7%) 2, 380 2, 348 (98.7%) 3, 260 2, 308 (70.8%)
Tor 3, 032 6, 841 2, 691 (39.3%) 3, 400 4, 048 (119.1%) 4, 308 3, 304 (76.7%)

Figure 17: Comparison of sizes of native code generated by the BPF JIT of Jitk, the Linux kernel, and the FreeBSD kernel, measured in bytes. “BPF”
lists the size of BPF filters, also in bytes.

must reject all such programs. Thus, out-of-bounds mem-
ory accesses are avoided.

Information leak. The initial state transition (5.1) speci-
fies that the initial state of a BPF program contain zeroes
in all registers and scratch memory locations. The proof
of Lemma 4 guarantees that no generated native code can
produce results inconsistent with zeroed initial memory.
Note that the lemma leaves open the option of not ini-
tializing these memory locations, as long as they are not
actually read by the BPF program. In fact, the CompCert
compiler’s optimization passes will eliminate initializa-
tion of unused memory locations in a provably correct
way.

Encoding and decoding bugs. Lemma 3 guarantees that
the decoder is the inverse of the encoder. This lemma’s
proof cannot go through if one of the encoder or decoder
has a bug, as was the case in a recent Linux issue [4].

Bugs in BPF generation tools. If developers write SCPL
rules and invoke the SCPL compiler to generate BPF fil-
ters, Lemma 2 guarantees the absence of incorrect filters,
unlike with tcpdump or libseccomp.

8.3 Code quality
To understand the quality of native code generated by
Jitk, we collect BPF filters used by popular applications
shipped in Ubuntu 14.04. To extract these filters, we use
LD_PRELOAD to intercept the prctl system call, used to
submit system call filters to the kernel. We then compare
the sizes of resulting native code produced by Jitk/BPF
and by two widely used in-kernel BPF JITs, Linux and
FreeBSD, as shown in Figure 17 (though Linux does not
use the BPF JIT for Seccomp).

For ARM and PowerPC, we compare Jitk with Linux’s
BPF JIT (FreeBSD’s does not support the two architec-
tures). For x86, we compare Jitk with FreeBSD’s BPF
JIT (Linux’s does not support x86). Also, the current
Linux JIT (both ARM and PowerPC) failed on one spe-
cial BPF instruction used by Seccomp; we patched it for
this comparison. The results show that in addition to
the correctness and safety guarantees, the quality of the

native code produced by Jitk is comparable to that from
existing in-kernel JITs. Particularly, Jitk generates sub-
stantially smaller code than existing in-kernel JITs on x86
and PowerPC. After inspecting the resulting assembly
code, we believe the reason is that Jitk is built on top
of CompCert, which performs more comprehensive and
effective optimizations (e.g., common-code elimination).

8.4 SCPL
To evaluate the usability of SCPL, we translated the Sec-
comp policy used by OpenSSH from raw BPF operations
specified by the developer into an SCPL policy. The re-
sulting SCPL policy was 40 lines of code, parts of which
were shown in Figure 3. Integrating the SCPL policy
into OpenSSH required changing an additional 20 lines of
OpenSSH source code, to load the BPF filter produced by
the SCPL compiler, instead of using the manually written
BPF filter. Overall, we believe this suggests that SCPL is
easy to use in real applications.

8.5 Performance
To evaluate the performance of Seccomp with Jitk, we
measured the performance of OpenSSH running on an
i386 Linux system. We measured two OpenSSH configu-
rations: one with the hand-written BPF filter, and one with
the SCPL-generated filter (as described above). We also
considered two kernel configurations: one using the stock
Linux kernel, with its unverified BPF interpreter, and one
using our modified Linux kernel that uses Jitk’s BPF JIT.
Since the Seccomp policy in OpenSSH applies to the pro-
cess that performs user authentication, we measured the
time it takes to log in via SSH and then immediately dis-
connect, from the same machine (i.e., measuring the time
for ssh localhost exit), using RSA key authentication.

Figure 18 shows the results on a single-core 2.8 GHz
Intel Xeon CPU with 3 GB DRAM running a 32-bit Linux
3.15-rc1 kernel. As can be seen, SCPL-generated filters
perform just as well as the hand-written BPF filter in
OpenSSH. Jitk’s BPF JIT introduces about 20 msec of
additional latency; this is due to the overhead of invoking
a new process for the OCaml runtime and the assembler.
We measured the time taken just to install the OpenSSH



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 45

Stock OpenSSH SCPL-generated
BPF filter BPF filter

Stock Linux 124 msec 124 msec
Jitk BPF JIT 144 msec 144 msec

Figure 18: Time taken to login and disconnect from an OpenSSH server
in different configurations; using SCPL gives the same performance as
hand-written BPF filters.

BPF filter as a Seccomp policy in Linux, using the prctl
system call; the time with the stock Linux kernel was
1 msec, and the time with Jitk’s BPF JIT was 21 msec; the
time to just run the BPF JIT’s OCaml binary on that BPF
filter is 14 msec. We believe this can be reduced further
by using a persistent user-space helper process instead of
spawning a new process for every BPF filter.

One benefit of Jitk’s BPF JIT over a traditional inter-
preter is that once the BPF filter has been translated into
native code, subsequent system calls can execute with
lower overhead. To measure this, we used the BPF filter
from OpenSSH, and measured the time to both install the
BPF filter, and to perform 1,000,000 gettimeofday sys-
tem calls (we moved gettimeofday to be the last system
call allowed by the BPF filter). With the stock Linux BPF
interpreter, this took 771 msec; with Jitk’s BPF JIT, this
took 691 msec; without any filter, this took 460 msec.

9 Conclusion
Jitk is a new approach for building in-kernel JIT inter-
preters that guarantee functional correctness using for-
mal verification techniques. Jitk guarantees correctness
through high-level policy rules in user-space applica-
tions, to lower-level BPF, across the user-kernel space
boundary, and to native code in-kernel. It also guar-
antees termination and bounded stack usage for native
code executed in-kernel. An analysis of known inter-
preter vulnerabilities demonstrates that Jitk prevents all
classes of security vulnerabilities discovered in existing
kernel interpreters. An experimental evaluation shows
that Jitk’s SCPL rules are easy to integrate into exist-
ing applications, and that Jitk achieves good end-to-end
performance. We believe that this is a promising direc-
tion since it achieves flexibility, safety, and good perfor-
mance. All of Jitk’s source code is publicly available at
http://css.csail.mit.edu/jitk/.

Acknowledgments
We thank the anonymous reviewers and our shepherd,
Gernot Heiser, for their feedback. This research was
partially supported by the DARPA Clean-slate design
of Resilient, Adaptive, Secure Hosts (CRASH) program
under contract #N66001-10-2-4089, and by NSF award
CNS-1053143.

References

[1] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. Fiuczynski, D. Becker, S. Eggers, and C. Cham-
bers. Extensibility, safety and performance in the
SPIN operating system. In Proceedings of the
15th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 267–284, Copper Mountain,
CO, Dec. 1995.

[2] Bitcoin. Script, 2014. https://en.bitcoin.it/
wiki/Script.

[3] D. Borkmann. net: sched: cls_bpf: add BPF-based
classifier, Oct. 2013. http://patchwork.ozlabs.
org/patch/286589/.

[4] D. Borkmann. net: filter: seccomp: fix wrong decod-
ing of BPF_S_ANC_SECCOMP_LD_W, Apr. 2014. http:
//patchwork.ozlabs.org/patch/339039/.

[5] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill,
and D. R. Engler. EXE: Automatically generating
inputs of death. In Proceedings of the 13th ACM
Conference on Computer and Communications Se-
curity (CCS), pages 322–335, Alexandria, VA, Oct.–
Nov. 2006.

[6] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In Proceedings
of the 8th Symposium on Operating Systems Design
and Implementation (OSDI), pages 209–224, San
Diego, CA, Dec. 2008.

[7] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
Proceedings of the 2004 USENIX Annual Technical
Conference, pages 15–28, Boston, MA, June–July
2004.

[8] Q. Carbonneaux, J. Hoffmann, T. Ramananandro,
and Z. Shao. End-to-end verification of stack-space
bounds for C programs. In Proceedings of the 2014
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (PLDI), pages
270–281, Edinburgh, UK, June 2014.

[9] M. Castro, M. Costa, J. P. Martin, M. Peinado,
P. Akritidis, A. Donnelly, P. Barham, and R. Black.
Fast byte-granularity software fault isolation. In Pro-
ceedings of the 22nd ACM Symposium on Operating
Systems Principles (SOSP), pages 45–58, Big Sky,
MT, Oct. 2009.

[10] H. Chen, C. Cutler, T. Kim, Y. Mao, X. Wang,
N. Zeldovich, and M. F. Kaashoek. Security bugs
in embedded interpreters. In Proceedings of the 4th
Asia-Pacific Workshop on Systems, Singapore, July
2013.

[11] D. Chisnall. LLVM in the FreeBSD toolchain. In
Proceedings of AsiaBSDCon, pages 13–20, Tokyo,



46 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Japan, Mar. 2014.
[12] A. Chlipala. Mostly-automated verification of low-

level programs in computational separation logic. In
Proceedings of the 2011 ACM SIGPLAN Conference
on Programming Language Design and Implemen-
tation (PLDI), pages 234–245, San Jose, CA, June
2011.

[13] A. Chlipala. The Bedrock structured programming
system: Combining generative metaprogramming
and Hoare logic in an extensible program veri-
fier. In Proceedings of the 18th ACM SIGPLAN
International Conference on Functional Program-
ming (ICFP), pages 391–402, Boston, MA, Sept.
2013.

[14] A. Chlipala. Certified Programming with Dependent
Types. MIT Press, Nov. 2013.

[15] J. Corbet. A JIT for packet filters, Apr. 2011. https:
//lwn.net/Articles/437981/.

[16] J. Corbet. BPF tracing filters, Dec. 2013. https:
//lwn.net/Articles/575531/.

[17] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve.
Secure Virtual Architecture: A safe execution en-
vironment for commodity operating systems. In
Proceedings of the 21st ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 351–366,
Stevenson, WA, Oct. 2007.

[18] F. M. David, E. M. Chan, J. C. Carlyle, and R. H.
Campbell. CuriOS: Improving reliability through
operating system structure. In Proceedings of the
8th Symposium on Operating Systems Design and
Implementation (OSDI), pages 59–72, San Diego,
CA, Dec. 2008.

[19] der Mouse. NetBSD PR #3366: bpf doesn’t
check its filter enough, Mar. 1997. http://gnats.
netbsd.org/3366.

[20] W. Drewry. SECure COMPuting with filters, Jan.
2012. http://lwn.net/Articles/498231/.

[21] E. Dumazet. bpf: do not use reciprocal divide, Jan.
2014. http://patchwork.ozlabs.org/patch/
311163/.

[22] J. Edge. A library for seccomp filters, Apr. 2012.
http://lwn.net/Articles/494252/.

[23] K. Elphinstone and G. Heiser. From L3 to seL4:
What have we learnt in 20 years of L4 microkernels?
In Proceedings of the 24th ACM Symposium on Op-
erating Systems Principles (SOSP), pages 133–150,
Farmington, PA, Nov. 2013.

[24] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole.
Exokernel: An operating system architecture for
application-level resource management. In Proceed-
ings of the 15th ACM Symposium on Operating Sys-
tems Principles (SOSP), pages 251–266, Copper
Mountain, CO, Dec. 1995.

[25] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and
G. C. Necula. XFI: Software guards for system
address spaces. In Proceedings of the 7th Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), pages 75–88, Seattle, WA, Nov. 2006.

[26] G. Harris. Issue #38: Another optimization
bug, Dec. 2003. https://github.com/the-
tcpdump-group/libpcap/issues/38.

[27] G. Harris. NetBSD PR #32198: bpf_validate()
needs to do more checks, Nov. 2005. http://
gnats.netbsd.org/32198.

[28] G. Harris. NetBSD PR #37663: bpf_validate re-
jects valid programs that use the multiply instruction,
Jan. 2008. http://gnats.netbsd.org/37663.

[29] G. Harris. NetBSD PR #43185: bpf_validate()
uses BPF_RVAL()when it should use BPF_SRC(), Apr.
2010. http://gnats.netbsd.org/43185.

[30] G. Harris. NetBSD PR #45412: bpf_filter() can
leak kernel stack contents, July 2011. http://
gnats.netbsd.org/45412.

[31] J. N. Herder, H. Bos, B. Gras, P. Homburg, and
A. Tanenbaum. Fault isolation for device drivers. In
Proceedings of the 2009 IEEE Dependable Systems
and Networks Conference, pages 33–42, Lisbon,
Portugal, June–July 2009.

[32] Hewlett-Packard, Intel, Microsoft, Phoenix, and
Toshiba. Advanced configuration and power inter-
face specification, Dec. 2011. http://www.acpi.
info/DOWNLOADS/ACPIspec50.pdf.

[33] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken,
P. Barham, M. Fahndrich, C. Hawblitzel, O. Hod-
son, S. Levi, N. Murphy, B. Steensgaard, D. Tarditi,
T. Wobber, and B. Zill. An overview of the Singu-
larity project. Technical Report MSR-TR-2005-135,
Microsoft, Redmond, WA, Oct. 2005.

[34] M. F. Kaashoek, D. R. Engler, G. R. Ganger,
H. M. Briceño, R. Hunt, D. Mazières, T. Pinckney,
R. Grimm, J. Jannotti, and K. Mackenzie. Applica-
tion performance and flexibility on exokernel sys-
tems. In Proceedings of the 16th ACM Symposium
on Operating Systems Principles (SOSP), pages 52–
65, Saint-Malo, France, Oct. 1997.

[35] B. Keats. TCPDUMP 3.9.4 under Fedora
Core 5 seems to generate the wrong BPF
for DLT_PRISM_HEADER, Aug. 2006. http://
seclists.org/tcpdump/2006/q3/37.

[36] M. Kerrisk. LCA: The Trinity fuzz tester, Feb. 2013.
https://lwn.net/Articles/536173/.

[37] J.-u. Kim. Add experimental BPF Just-In-
Time compiler for amd64 and i386, Dec.
2005. http://docs.freebsd.org/cgi/mid.
cgi?200512060258.jB62wCnk084452.



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 47

[38] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
M. Norrish, R. Kolanski, T. Sewell, H. Tuch, and
S. Winwood. seL4: Formal verification of an OS
kernel. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), pages 207–
220, Big Sky, MT, Oct. 2009.

[39] M. Koetter. Linux 3.0 bpf jit x86_64 exploit,
Dec. 2011. http://carnivore.it/2011/12/
27/linux_3.0_bpf_jit_x86_64_exploit.

[40] A. Kuznetosv. SS utility: Quick intro, Sept. 2001.
http://www.cyberciti.biz/files/ss.html.

[41] D. Leinenbach and T. Santen. Verifying the Mi-
crosoft Hyper-V hypervisor with VCC. In Proceed-
ings of 16th International Symposium on Formal
Methods, pages 806–809, Eindhoven, the Nether-
lands, Nov. 2009.

[42] X. Leroy. Formal verification of a realistic compiler.
Communications of the ACM, 52(7):107–115, July
2009.

[43] X. Leroy. A formally verified compiler back-end.
Journal of Automated Reasoning, 43(4):363–446,
Dec. 2009.

[44] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner:
A tool for finding copy-paste and related bugs in
operating system code. In Proceedings of the 6th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 289–302, San Francisco,
CA, Dec. 2004.

[45] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,
B. Singh, T. Gazagnaire, S. Smith, S. Hand, and
J. Crowcroft. Unikernels: Library operating systems
for the cloud. In Proceedings of the 18th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), pages 461–472, Houston, TX, Mar. 2013.

[46] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich,
and M. F. Kaashoek. Software fault isolation with
API integrity and multi-principal modules. In Pro-
ceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), pages 115–128, Cascais,
Portugal, Oct. 2011.

[47] K. McAllister. Attacking hardened Linux
systems with kernel JIT spraying, Nov. 2012.
http://mainisusuallyafunction.blogspot.
com/2012/11/attacking-hardened-linux-
systems-with.html.

[48] S. McCanne and V. Jacobson. The BSD packet filter:
A new architecture for user-level packet capture. In
Proceedings of the Winter 1993 USENIX Technical
Conference, pages 259–270, San Diego, CA, Jan.
1993.

[49] M. McCoyd, R. Krug, D. Goel, M. Dahlin, and
W. Young. Building a hypervisor on a formally veri-
fied protection layer. In Proceedings of the Hawaii
International Conference on System Sciences, pages
5069–5078, Maui, HI, Jan. 2013.

[50] M. O. Myreen. Verified just-in-time compiler on
x86. In Proceedings of the 37th ACM Symposium
on Principles of Programming Languages (POPL),
pages 107–118, Madrid, Spain, Jan. 2011.

[51] A. Nasonov. NetBSD PR #45751: No overflow
check in BPF_LD|BPF_ABS, Dec. 2011. http://
gnats.netbsd.org/45751.

[52] G. C. Necula and P. Lee. Safe kernel extensions with-
out run-time checking. In Proceedings of the 2nd
Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 229–243, Seattle, WA,
Oct. 1996.

[53] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
Dealing with disaster: Surviving misbehaved ker-
nel extensions. In Proceedings of the 2nd Sympo-
sium on Operating Systems Design and Implemen-
tation (OSDI), pages 213–227, Seattle, WA, Oct.
1996.

[54] T. Sewell, M. Myreen, and G. Klein. Translation
validation for a verified OS kernel. In Proceedings
of the 2013 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI),
pages 471–482, Seattle, WA, June 2013.

[55] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS:
a fast capability system. In Proceedings of the
17th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 170–185, Kiawah Island, SC,
Dec. 1999.

[56] A. Starovoitov. net: filter: initialize A and X reg-
isters, Apr. 2014. http://patchwork.ozlabs.
org/patch/341693/.

[57] F. Tuong. Bug 2570 - in extraction optimiza-
tion, a eta-reduction leads to a not generalizable
’_a, July 2011. https://coq.inria.fr/bugs/
show_bug.cgi?id=2570.

[58] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham. Efficient software-based fault isolation. In
Proceedings of the 14th ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 203–216,
Asheville, NC, Dec. 1993.

[59] R. Zumkeller. Bug 843 - extraction breaks mod-
ule typing, Aug. 2004. https://coq.inria.fr/
bugs/show_bug.cgi?id=843.




