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Abstract
Providing timely results in the face of rapid growth in
data volumes has become important for analytical frame-
works. For this reason, frameworks increasingly operate
on only a subset of the input data. A key property of
such sampling is that combinatorially many subsets of
the input are present. We present KMN, a system that
leverages these choices to perform data-aware schedul-
ing, i.e., minimize time taken by tasks to read their in-
puts, for a DAG of tasks. KMN not only uses choices to
co-locate tasks with their data but also percolates such
combinatorial choices to downstream tasks in the DAG
by launching a few additional tasks at every upstream
stage. Evaluations using workloads from Facebook and
Conviva on a 100-machine EC2 cluster show that KMN
reduces average job duration by 81% using just 5% ad-
ditional resources.

1 Introduction

Data-intensive computation frameworks drive many
modern services like web search indexing and recom-
mendation systems. Computation frameworks (e.g.,
Hadoop [14], Spark [60], Dryad [38]) translate a job into
a DAG of many small tasks, and execute them efficiently
on compute slots across large clusters. Tasks of input
stages (e.g., map in MapReduce or extract in Dryad) read
their data from distributed storage and pass their out-
puts to the downstream intermediate tasks (e.g., reduce
in MapReduce or full-aggregate in Dryad).

The efficient execution of these predominantly I/O-
intensive tasks is predicated on data-aware scheduling,
i.e., minimizing the time taken by tasks to read their data.
Widely deployed techniques for data-aware scheduling
execute tasks on the same machine as their data (if
the data is on one machine, as for input tasks) [8, 59]
and avoid congested network links (when data is spread
across machines, as for intermediate tasks) [13, 24].
However, despite these techniques, we see that produc-
tion jobs in Facebook’s Hadoop cluster are slower by
87% compared to perfect data-aware scheduling (§2.3).
This is because, in multi-tenant clusters, compute slots
that are ideal for data-aware task execution are often un-
available.
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Figure 1: “Late binding” allows applications to specify
more inputs than tasks and schedulers dynamically choose
task inputs at execution time.

The importance of data-aware scheduling is increasing
with rapid growth in data volumes [31]. To cope with
this data growth and yet provide timely results, there is a
trend of jobs using only a subset of their data. Examples
include sampling-based approximate query processing
systems [5,12] and machine learning algorithms [16,42].
A key property of such jobs is that they can compute
on any of the combinatorially many subsets of the in-
put dataset without compromising application correct-
ness. For example, say a machine learning algorithm
like stochastic gradient descent [16] needs to compute
on a 5% uniform random sample of data. If the data is
spread over 100 blocks then the scheduler can choose any
5 blocks and has

(100
5

)
input choices for this job.

Our goal is to leverage the combinatorial choice of in-
puts for data-aware scheduling. Current schedulers re-
quire the application to select a subset of the data on
which the scheduler runs the job. This prevents the
scheduler from taking advantage of available choices. In
contrast, we argue for “late binding” i.e., choosing the
subset of data dynamically depending on the current state
of the cluster (see Figure 1). This dramatically increases
the number of data local slots for input tasks (e.g., map
tasks), which increases the probability of achieving data
locality even during high cluster utilizations.

Extending the benefits of choice to intermediate stages
(e.g., reduce) is challenging because they consume all
the outputs produced by upstream tasks. Thus, they have
no choice in picking their inputs. When upstream out-
puts are not evenly spread across machines, the over-
subscribed network links, typically cross-rack switch
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links [24], become the bottleneck. We introduce choices
for intermediate stages by launching a small number of
additional tasks in the previous stage. As an example,
consider a job with 400 map tasks and 50 reduce tasks.
By launching 5% extra map tasks (420 tasks), we can
pick the 400 map outputs that best avoid congested links.

Choosing the best upstream outputs used by interme-
diate stages is non-trivial due to complex communica-
tion patterns like many-to-many (for reduce tasks) and
many-to-one (for joins). In fact, selecting the best up-
stream outputs can be shown to be NP-hard. We develop
an efficient round-robin heuristic that attempts to bal-
ance data transfers evenly across cross-rack switch links.
Further, upstream tasks do not all finish simultaneously
due to stragglers [13, 61]. We handle stragglers in up-
stream tasks using a delay-based approach that balances
the gains in balanced network transfers against the time
spent waiting for stragglers. In the above example, for
instance, it may schedule reduce tasks based on the ear-
liest 415 map tasks and ignore the last 5 stragglers.

In summary, we make the following contributions:

• Identify the trend of combinatorial choices in inputs
of jobs and leverage this for data-aware scheduling.

• Extend the benefits of choices to a DAG of stages
by running a few extra tasks in each upstream stage.

• Build KMN, a system for analytics frameworks to
seamlessly benefit from the combinatorial choices.

We have implemented KMN inside Spark [60]. We
evaluate KMN using jobs from a production workload at
Conviva, a video analytics company, and by replaying a
trace from a production Hadoop cluster at Facebook. Our
experiments on an EC2 cluster with 100 machines show
that we can reduce average job duration by 81% (93% of
ideal improvements) compared to Spark’s scheduler. Our
gains are due to KMN achieving 98% memory locality for
input tasks and improving intermediate data transfers by
48%, while using ≤ 5% extra resources.

2 Choices and Data-Awareness

In this section we first discuss application trends that re-
sult in increased choices for scheduling (§2.1). We then
explain data-aware scheduling (§2.2) and quantify its po-
tential benefit in production clusters (§2.3).

2.1 Application Trends

With the rapid increase in the volume of data collected,
it has become prohibitively expensive for data analytics
frameworks to operate on all of the data. To provide

timely results, there is a trend towards trading off accu-
racy for performance. Quick results obtained from just
part of the dataset are often good enough.
(1) Approximate Query Processing: Many analyt-
ics frameworks support approximate query processing
(AQP) using standard SQL syntax (e.g., BlinkDB [5],
Presto [29]). They power many popular applications
like exploratory data analysis [19,54] and interactive de-
bugging [3]. For example, products analysts could use
AQP systems to quickly decide if an advertising cam-
paign needs to be changed based on a sample of click
through rates. AQP systems can bound both the time
taken and the quality of the result by selecting appropri-
ately sized inputs (samples) to met the deadline and error
bound. Sample sizes are typically small relative to the
original data (often, one-twentieth to one-fifth [43]) and
many equivalent samples exist. Thus, sample selection
presents a significant opportunity for smart scheduling.
(2) Machine Learning: The last few years has seen the
deployment of large-scale distributed machine learning
algorithms for commercial applications like spam clas-
sification [40] and machine translation [18]. Recent ad-
vances [17] have introduced stochastic versions of these
algorithms, for example stochastic gradient descent [16]
or stochastic L-BFGS [53], that can use small random
data samples and provide statistically valid results even
for large datasets. These algorithms are iterative and
each iteration processes only a small sample of the data.
Stochastic algorithms are agnostic to the sample selected
in each iteration and support flexible scheduling.
(3) Erasure Coded Storage: Rise in data volumes have
also led to clusters employing efficient storage tech-
niques like erasure codes [50]. Erasure codes provide
fault tolerance by storing k extra parity blocks for every
n data blocks. Using any n data blocks of the (n+ k)
blocks, applications can compute their input. Such stor-
age systems also provide choices for data-aware schedul-
ing.

Note that while the above applications provide an op-
portunity to pick any subset of the input data, our system
can also handle custom sampling functions, which gen-
erate samples based on application requirements.

2.2 Data-Aware Scheduling

Data aware scheduling is important for both the input
as well as intermediate stages of jobs due to their IO-
intensive nature. In the input stage, tasks reads their in-
put from a single machine and the natural goal is locality
i.e. to schedule the task on a machine that stores its input
(§2.2.1). For intermediate stages, tasks have their input
spread across multiple machines. In this case, it is not
possible to co-locate the task with all its inputs. Instead,
the goal in this case is to schedule the task at a machine
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that minimizes the time it takes to transfer all remote in-
puts. As over-subscribed cross-rack links are the main
bottleneck in reads [22], we seek to balance the utiliza-
tion of these links (§2.2.2).

2.2.1 Memory Locality for Input Tasks

Riding on the trend of falling memory prices, clusters
are increasingly caching data in memory [11, 58]. As
memory bandwidths are about 10×−100× greater than
the fastest network bandwidths, data reads from memory
provide dramatic acceleration for the IO-intensive ana-
lytics jobs. However, to reap the benefits of in-memory
caches, tasks have to be scheduled with memory locality,
i.e., on the same machine that contains their input data.
Obtaining memory locality is important for timely com-
pletion of interactive approximate queries [9]. Iterative
machine learning algorithms typically run 100’s of iter-
ations and lack of memory locality results in huge slow-
down per iteration and the overall job.

Achieving memory locality is a challenging problem
in clusters. Since in-memory storage is used only as
a cache, data stored in memory is typically not repli-
cated. Further, the amount of memory in a cluster is
relatively small (often by three orders of magnitude [9])
when compared to stable storage: this difference means
that replicating data in memory is not practical. There-
fore, techniques for improving locality [8] developed for
disk-based replicated storage are insufficient; they rely
on the probability of locality increasing with the number
of replicas. Further, as job completion times are dictated
by the slowest task in the job, improving performance
requires memory locality for all its tasks [11].

These challenges are reflected in production Hadoop
clusters. A Facebook trace from 2010 [8, 21] shows that
less than 60% of tasks achieve locality even with three
replicas. As in-memory data is not replicated, it is harder
for jobs to achieve memory locality for all their tasks.

2.2.2 Balanced Network for Intermediate Tasks

Intermediate stages of a job have communication pat-
terns that result in their tasks reading inputs from many
machines (e.g., all-to-all “shuffle” or many-to-one “join”
stages). For I/O intensive intermediate tasks, the time
to access data across the network dominates the run-
ning time, more so when intermediate outputs are stored
in memory. Despite fast network links [56] and newer
topologies [6, 35], bandwidths between machines con-
nected to the same rack switch are still 2× to 5× higher
than to machines outside the rack switch via the net-
work core. Thus the runtime for an intermediate stage
is dictated by the amount of data transferred across
racks. Prior work has also shown that reducing cross-
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Figure 2: Value of balanced network usage for a job with 4
map tasks and 4 reduce tasks. The left-hand side has unbal-
anced cross-rack links (maximum of 6 transfers, minimum
of 2) while the right-hand side has better balance (maxi-
mum of 4 transfers, minimum of 3).
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Figure 3: CDF of cross-rack skew for the Facebook trace
split by number of map tasks. Reducing cross-rack skew
improves intermediate stage performance.

rack hotspots, i.e., optimizing the bottleneck cross-rack
link [13, 24] can significantly improve performance.

Given the over-subscribed cross-rack links and the
slowest tasks dictating job completion, it is important to
balance traffic on the cross-rack links [15]. Figure 2 il-
lustrates the result of having unbalanced cross-rack links.
The schedule in Figure 2(b) results in a cross-rack skew,
i.e., ratio of the highest to lowest used network links, of
only 4

3 (or 1.33) as opposed to 6
2 (or 3) in Figure 2(a).

To highlight the importance of cross-rack skew, we
used a trace of Hadoop jobs run in a Facebook cluster
from 2010 [21] and computed the cross-rack skew ratio.
Figure 3 shows a CDF of this ratio and is broken down
by the number of map tasks in the job. From the figure
we can see that for jobs with 50− 150 map tasks more
than half of the jobs have a cross-rack skew of over 4×.
For larger jobs we see that the median is 15× and the
90th percentile value is in excess of 30×.

2.3 Potential Benefits

How much do the above-mentioned lack of locality and
imbalanced network usage hurt jobs? We estimate the
potential for data-aware scheduling to speed up jobs us-
ing the same Facebook trace (described in detail in §6).
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Figure 4: Probability of input-stage locality when choosing
any K out of N blocks. The scheduler can choose to execute
a job on any of
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samples.

We mimic job performance with an ideal data-aware
scheduler using a “what-if” simulator. Our simulator is
unconstrained and (i) assigns memory locality for all the
tasks in the input phase (we assume 20× speed up for
memory locality [45] compared to reading data over the
network based on our micro-benchmark) and (ii) places
tasks to perfectly balance cross-rack links. We see that
jobs speed up by 87.6% on average with such ideal data-
aware scheduling.

Given these potential benefits, we have designed
KMN, a scheduling framework that exploits the available
choices to improve performance. At the heart of KMN lie
scheduling techniques to increase locality for input (§3)
stages and balance network usage for intermediate (§4)
stages. In §5, we describe an interface that allows appli-
cations to specify all available choices to the scheduler.

3 Input Stage

For the input stage (i.e., the map stage in MapReduce
or the extract stage in Dryad) accounting for combinato-
rial choice leads to improved locality and hence reduced
completion time. Here we analyze the improvements in
locality in two scenarios: in §3.1 we look at jobs which
can use any K of the N input blocks; in §3.2 we look at
jobs which use a custom sampling function.

We assume a cluster with s compute slots per ma-
chine. Tasks operate on one input block each and input
blocks are uniformly distributed across the cluster, this is
in line with the block placement policy used by Hadoop.
For ease of analysis we assume machines in the cluster
are uniformly utilized (i.e., there are no hot-spots). In
our evaluation §6) we consider hot-spots due to skewed
input-block and machine popularity.

3.1 Choosing any K out of N blocks
Many modern systems e.g., BlinkDB [5], Presto [29],
AQUA [2] operate by choosing a random subset of
blocks from shuffled input data. These systems rely
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Figure 5: Probability of input-stage locality when using a
sampling function which outputs f disjoint samples. Sam-
pling functions specify additional constraints for samples.

on the observation that block sampling [20] is statisti-
cally equivalent to uniform random sampling (page 243
in [55]) when each block is itself a random sample of the
overall population. Given a sample size K, these systems
can operate on any K input blocks i.e., for an input of size
N the scheduler can choose any one of

(N
K

)
combinations.

In the cluster setup described above, the probability
that a task operating on an input block gets locality is
pt = 1−us where u is the cluster utilization (probability
that all slots in a machine are busy is = us). For such a
cluster the probability for K out of N tasks getting local-
ity is given by the binomial CDF function with the prob-
ability of success = pt , i.e., 1−∑K−1

i=0

(N
i

)
pi

t(1− pt)
N−i.

The dominant factor in this probability is the ratio be-
tween K and N. In Figure 4 we fix the number of slots per
machine to s = 8 and plot the probability of K = 10 and
K = 100 tasks getting locality in a job with varying input
size N and varying cluster utilization. We observe that
the probability of achieving locality is high even when
90% of the cluster is utilized. We also compare this to
a baseline that does not exploit this combinatorial choice
and pre-selects a random K blocks beforehand. For the
baseline the probability that all tasks are local drops dra-
matically even with cluster utilization of 60% or less.

3.2 Custom Sampling Functions
Some systems require additional constraints on the sam-
ples used and use custom sampling functions. These
sampling functions can be used to produce several K-
block samples and the scheduler can pick any sample.
The scheduler is however constrained to use all of the K-
blocks from one sample. We consider a sampling func-
tion that produces f disjoint samples and analyze locality
improvements in this setting.

As noted previous, the probability of a task getting lo-
cality is pt = 1− us. The probability that all K blocks
in a sample get locality is pK

t . Since the f samples are
disjoint (and therefore the probability of achieving lo-
cality is independent) the probability that at least one
among the f samples can achieve locality is p j = 1−
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(1 − pK
t )

f . Figure 5 shows the probability of K = 10
and K = 100 tasks achieving locality with varying uti-
lization and number of samples. We see that the proba-
bility of achieving locality significantly increases with f .
At f = 5 we see that small jobs (10 tasks) can achieve
complete locality even when the cluster is 80% utilized.

We thus find that accounting for combinatorial choices
can greatly improve locality for the input stage. Next we
analyze improvements for intermediate stages.

4 Intermediate Stages

Intermediate stages of jobs commonly involve one-to-
all (broadcast), many-to-one (coalesce) or many-to-many
(shuffle) network transfers [23]. These transfers are
network-bound and hence, often slowed down by con-
gested cross-rack network links. As described in §2.2.2,
data-aware scheduling can improve performance by bet-
ter placement of both upstream and downstream tasks to
balance the usage of cross-rack network links.

While effective heuristics can be used in scheduling
downstream tasks to balance network usage (we deal
with this in §5), they are nonetheless limited by the
locations of the outputs of upstream tasks. Schedul-
ing upstream tasks to balance the locations of their out-
puts across racks is often complicated due to many dy-
namic factors in clusters. First, they are constrained by
data locality (§3) and compromising locality is detrimen-
tal. Second, the utilization of the cross-rack links when
downstream tasks start executing are hard to predict in
multi-tenant clusters. Finally, even the size of upstream
outputs varies across jobs and are not known beforehand.

We overcome these challenges by scheduling a few ad-
ditional upstream tasks. For an upstream stage with K
tasks, we schedule M tasks (M > K). Additional tasks
increase the likelihood that task outputs are distributed
across racks. This allows us to choose the “best” K out
of M upstream tasks, out of

(M
K

)
choices, to minimize

cross-rack network utilization. In the rest of this sec-
tion, we show analytically that a few additional upstream
tasks can significantly reduce the imbalance (§4.1). §4.2
describes a heuristic to pick the best K out of M up-
stream tasks. However, not all M upstream tasks may
finish simultaneously because of stragglers; we modify
our heuristic to account for stragglers in §4.3.

4.1 Additional Upstream Tasks
While running additional tasks can balance network us-
age, it is important to consider how many additional tasks
are required. Too many additional tasks can often lead to
worsening of overall cluster performance.

We analyze this using a simple model of the schedul-
ing of upstream tasks. For simplicity, we assume that
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Figure 6: Cross-rack skew as we vary M/K for uniform and
log-normal distributions. Even 20% extra upstream tasks
greatly reduces network imbalance for later stages.
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Figure 7: CDF of cross-rack skew as we vary M/K for the
Facebook trace.

upstream task outputs are equal in size and network links
are equally utilized. We only model tasks at the level
of racks and evaluate the cross-rack skew (ratio of the
rack with largest and smallest number of upstream tasks)
using both synthetic distributions of upstream task loca-
tions as well as data from our Facebook trace.
Synthetic Distributions: We first consider a scheduler
that places tasks on racks uniformly at random. Fig-
ure 6(a) plots the cross-rack skew in a 100 rack cluster
for varying values of K (i.e., the stage’s desired number
of tasks) and M/K (i.e., the fraction of additional tasks
launched). We can see that even with a scheduler that
places the upstream tasks uniformly, there is significant
skew for large jobs when there are no additional tasks
( M

K = 1). This is explained by the balls and bins prob-
lem [46] where the maximum imbalance is expected to
be O(logn) when distributing n balls.

However, we see that even with 10% to 20% additional
tasks ( M

K = 1.1−1.2) the cross-rack skew is reduced by
≥ 2×. This is because when the number of upstream
tasks, n is > 12, 0.2n > logn. Thus, we can avoid most
of the skew with just a few extra tasks.

We also repeat this study with a log normal distri-
bution (θ = 0,m = 1) of upstream task placement; this
is more skewed compared to the uniform distribution.
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However, even with a log-normal distribution, we again
see that a few extra tasks can be very effective at reduc-
ing skew. This is because the expected value of the most
loaded bin is still linear and using 0.2n additional tasks
is sufficient to avoid most of the skew.
Facebook Distributions: We repeat the above analy-
sis using the number and location of upstream tasks of
a phase in the Facebook trace (used in §2.2.2). Recall
the high cross-rack skew in the Facebook trace. Despite
that, again, a few additional tasks suffices to eliminate a
large fraction of the skews. Figure 7 plots the results for
varying values of M

K for different jobs. A large fraction
of the skew is reduced by running just 10% more tasks.
This is nearly 66% of the reductions we get using M

K = 2.
In summary we see that running a few extra tasks is an

effective strategy to reduce skew, both with synthetic as
well as real-world distributions. We next look at mecha-
nisms that can help us achieve such reduction.

4.2 Selecting Best Upstream Outputs
The problem of selecting the best K outputs from the M
upstream tasks can be stated as follows: We are given
M upstream tasks U = u1...uM , R downstream tasks D =
d1...dR and their corresponding rack locations. Let us
assume that tasks are distributed over racks 1...L and let
U � ⊂U be some set of K upstream outputs. Then for each
rack we can define the uplink cost C2i−1 and downlink
cost C2i using a cost function Ci(U �,D). Our objective
then is to select U � to minimize the most loaded link i.e.

argmin
U �

max
i∈2L

Ci(U �,D)

While this problem is NP-Hard [57], many approxi-
mation heuristics have been developed. We use a heuris-
tic that corresponds to spreading our choice of K outputs
across as many racks as possible.1

Our implementation for this approximation heuristic is
shown in Algorithm 1. We start with the list of upstream
tasks and build a hash map that stores how many tasks
were run on each rack. Next we sort the tasks first by
their index within a rack and then by the number of tasks
in the rack. This sorting criteria ensures that we first see
one task from each rack, thus ensuring we spread our
choices across racks. We use an additional heuristic of
favoring racks with more outputs to help our downstream
task placement techniques (§5.2.2). The main computa-
tion cost in this method is the sorting step and hence this
runs in O(MlogM) time for M tasks.

1This problem is an instance of the facility location problem [26]
where we have a set of clients (downstream tasks), set of potential fa-
cility locations (upstream tasks), a cost function that maps facility lo-
cations to clients (link usage). Our heuristic follows from picking a
facility that is farthest from the existing set of facilities [30].

Algorithm 1 Choosing K upstream outputs out of M
using a round-robin strategy

1: Given: upstreamTasks - list with rack, index within rack
for each task

2: Given: K - number of tasks to pick

3: // Number of upstream tasks in each rack

4: upstreamRacksCount = map()
5:
6: // Initialize

7: for task in upstreamTasks do
8: upstreamRacksCount[task.rack] += 1
9: end for

10:
11: // Sort the tasks in round-robin fashion

12: roundRobin = upstreamTasks.sort(CompareTasks)
13: chosenK = roundRobin[0 : K]
14: return chosenK
15:
16: procedure COMPARETASKS(task1, task2)
17: if task1.idx != task2.idx then
18: // Sort first by index

19: return task1.idx < task2.idx
20: else
21: // Then by number of outputs

22: numRack1 = upstreamRacksCount[task1.rack]
23: numRack2 = upstreamRacksCount[task2.rack]
24: return numRack1 > numRack2
25: end if
26: end procedure

4.3 Handling Upstream Stragglers

While the previous section described a heuristic to pick
the best K out of M upstream outputs, waiting for all
M can be inefficient due to stragglers. Stragglers in
the upstream stage can delay completion of some tasks
which cuts into the gains obtained by balancing the
network links. Stragglers are a common occurrence
in clusters with many clusters reporting significantly
slow tasks despite many prevention and speculation solu-
tions [10, 13, 61]. This presents a trade-off in waiting for
all M tasks and obtaining the benefits of choice in picking
upstream outputs against the wasted time for completion
of all M upstream tasks including stragglers. Our solu-
tion for this problem is to schedule downstream tasks at
some point after K upstream tasks have completed but
not wait for the stragglers in the M tasks. We quantify
this trade-off with analysis and micro-benchmarks.

4.3.1 Stragglers vs. Choice

We study the impact of stragglers in the Facebook trace
when we run 2%, 5% and 10% extra tasks (i.e., M

K =
1.02,1.05,1.1). We compute the difference between the
time taken for the fastest K tasks and the time to com-
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Figure 8: Percentage of time spent waiting for additional
upstream tasks when running 2%, 5% or 10% extra tasks.
Stage completion time can be increased by up 20%− 40%
due to stragglers.
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Figure 9: Percentage of additional time spent in down-
stream data transfer when not using choices from 2%, 5%
or 10% extra tasks. Decrease in choice increases data trans-
fer time by 20%−40%.

plete all M tasks. Figure 8 shows that waiting for the
extra tasks can inflate the completion of the upstream
phase by 20%− 40% (for jobs with > 150 tasks). Also,
the trend of using a large number of small tasks [48]
for interactive jobs will only worsen such inflation. On
the other hand avoiding upstream stragglers by using the
fastest tasks reduces the available choice. Consequently,
the time taken for downstream data transfer increases.
The lack of choices from extra tasks means we cannot
balance network usage. Figure 9 shows that not using
choice from additional tasks can increase data transfer
time by 20% for small jobs (11 to 50 tasks) and up to
40% for large jobs (> 150 tasks). We now devise a sim-
ple approach to balance between the above two factors—
waiting for upstream stragglers versus losing choice for
downstream data transfer.

4.3.2 Delayed Stage Launch

The problem we need to solve can be formulated as: we
have M upstream tasks u1,u2, ...,uM and for each task we
have corresponding rack locations. Our goal is to find the
optimal delay after the first K tasks have finished, such
that the overall time taken is minimized. In other words,
our goal is to find the optimal K� tasks to wait for before
starting the downstream tasks.

We begin with assuming an oracle that can give us the
task finish times for all the tasks. Given such a oracle we

can sort the tasks in an increasing order of finish times
such that Fj ≥ Fi ∀ j > i. Let us define the waiting delay
for tasks K + 1 to M as Di = Fi −Fk ∀i > k. We also
assume that given K� tasks, we can compute the optimal
K tasks to use (§4.2) and the estimated transfer time SK� .

Our problem is to pick K� (K ≤ K� ≤ M) such that the
total time for the data transfer is minimized. That is we
need to pick K� such that Fk +Dk� +Sk� is minimized. In
this equation Fk is known and independent of K�. Of the
other two, Dk� increases as k� goes from K to M, while
Sk� decreases. However as the sum of an increasing and
decreasing function is not necessarily convex 2 it isn’t
easy to minimize the total time taken.

Delay Heuristic: While the brute-force approach
would require us to try all values from K to M, we de-
velop two heuristics that allow us to bound the search
space and quickly find the optimal value of K�.

• Bounding transfer: At the beginning of the search
procedure we find the maximum possible improve-
ment we can get from picking the best set of tasks.
Whenever the delay DK� is greater than the maxi-
mum improvement, we can stop the search as the
succeeding delays will increase the total time.

• Coalescing tasks: We can also coalesce a number
of task finish events to further reduce the search
space. For example we can coalesce task finish
events which occur close together by time i.e., cases
Di+1 −Di < δ . This will mean our result is off by
at most δ from the optimal, but for small values of
δ we can coalesce tasks of a wave that finish close
to each other.

Using these heuristics we can find the optimal number
of tasks to wait for quickly. For example, in the Face-
book trace described before using M/K = 1.1 or 10% ex-
tra tasks, determining the optimal wait time for a job re-
quires looking at less than 4% of all configurations when
we use a coalescing error of 1%. We found coalescing
tasks to be particularly useful as even with a δ of 0.1%
we need to look at around 8% of all possible configura-
tions. Running without any coalescing is infeasible since
it takes ≈ 1000 ms.

Finally, we relax our assumption of an oracle as fol-
lows. While the task finish times are not exactly known
beforehand, we use job sizes to figure out if the same job
has been run before. Based on this we use the job history
to predict the task finish times. This approach should
work well for clusters that have many jobs run periodi-
cally [36]. In case the job history is not available we can
fit the tasks length distribution using the first few task
finish times and use that to get approximate task finish
times for the rest of the tasks [28].

2Take any non-convex function and make its increasing region Fi
and its decreasing region Fd and it can be seen that the sum isn’t convex.
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// SQL Query

SELECT status, SUM(quantity)

FROM items

GROUP BY status

// Spark Query

kv = file.map{ li =>

(li.l linestatus,li.quantity)}
result = kv.reduceByKey{(a,b) =>

a + b}.collect()

// KMN Query

sample = file.blockSample(0.1, sampler=None)

kv = sample.map{ li =>

(li.l linestatus,li.quantity)}
result = kv.reduceByKey{(a,b) =>

a + b}.collect()
Figure 10: An example of a query in SQL, Spark and KMN

5 System Implementation

We have built KMN on top of Spark [60], an open-source
cluster computing framework. Our implementation is
based on Spark version 0.7.3 and KMN consists of 1400
lines of Scala code. In this section we discuss the features
of our implementation and implementation challenges.

5.1 Application Interface

We define a blockSample operator which jobs can use
to specify input constraints (for instance, use K blocks
from file F) to the framework.The blockSample opera-
tor takes two arguments: the ratio K

N and a sampling func-
tion that can be used to impose constraints. The sampling
function can be used to choose user-defined sampling al-
gorithms (e.g., stratified sampling). By default the sam-
pling function picks any K of N blocks.

Consider an example SQL query and its correspond-
ing Spark [60] version shown in Figure 10. To run the
same query in KMN we just need to prefix the query with
the blockSample operator. The sampler argument is a
Scala closure and passing None causes the scheduler to
use the default function which picks any K out of the N
input blocks. This design can be readily adapted to other
systems like Hadoop MapReduce and Dryad.

KMN also provides an interface for jobs to introspect
which samples where used in a computation. This can
be used for error estimation using algorithms like Boot-
strap [4] and also provides support for queries to be re-
peated. We implement this in KMN by storing the K parti-
tions used during computation as a part of a job’s lineage.
Using the lineage also ensures that the same samples are
used if the job is re-executed during fault recovery [60].

5.2 Task Scheduling
We modify Spark’s scheduler in KMN to implement the
techniques described in earlier sections.

5.2.1 Input Stage

Schedulers for frameworks like MapReduce or Spark
typically use a slot-based model where the scheduler is
invoked whenever a slot becomes available in the cluster.
In KMN, to choose any K out of N blocks we modify the
scheduler to run tasks on blocks local to the first K avail-
able slots. To ensure that tasks don’t suffer from resource
starvation while waiting for locality, we use a timeout af-
ter which tasks are scheduled on any available slot. Note
that, choosing the first K slots provides a sample similar
or slightly better in quality compared to existing systems
like Aqua [2] or BlinkDB [5] that reuse samples for short
time periods. To schedule jobs with custom sampling
functions, we similarly modify the scheduler to choose
among the available samples and run the computation on
the sample that has the highest locality.

5.2.2 Intermediate Stage

Existing cluster computing frameworks like Spark and
Hadoop place intermediate stages without accounting for
their dependencies. However smarter placement which
accounts for a tasks’ dependencies can improve perfor-
mance. We implemented two strategies in KMN:

Greedy assignment: The number of cross-rack trans-
fers in the intermediate stage can be reduced by co-
locating map and reduce tasks (more generally any de-
pendent tasks). In the greedy placement strategy we
maximize the number of reduce tasks placed in the rack
with the most map tasks. This strategy works well for
small jobs where network usage can be minimized by
placing all the reduce tasks in the same rack.

Round-robin assignment: While greedy placement
minimizes the number of transfers from map tasks to re-
duce tasks it results in most of the data being sent to
one or a few racks. Thus the links into these racks are
likely to be congested. This problem can be solved by
distributing tasks across racks while simultaneously min-
imizing the amount of data sent across racks. This can be
achieved by evenly distributing the reducers across racks
with map tasks. This strategy can be shown to be opti-
mal if we know the map task locations and is similar in
nature to the algorithm described in §4.2. We perform a
more detailed comparison of the two approaches in §6

5.3 Support for extra tasks
One consequence of launching extra tasks to improve
performance is that the cluster utilization could be af-
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Figure 11: Comparing baseline and KMN-1.05 with sampling-queries from Conviva. Numbers on the bars represent per-
centage improvement when using KMN-M/K = 1.05.

fected by these extra tasks. To avoid utilization spikes,
in KMN the value for M/K (the percentage of extra tasks
to launch) can only be set by the cluster administrator
and not directly by the application. Further, we imple-
mented support for killing tasks once the scheduler de-
cides that the tasks’ output is not required. Killing tasks
in Spark is challenging as tasks are run in threads and
many tasks share the same process. To avoid expensive
clean up associated with killing threads [1], we modified
tasks in Spark to periodically poll and check a status bit.
This means that tasks sometimes could take a few sec-
onds more before they are terminated, but we found that
this overhead was negligible in practice.

In KMN, using extra tasks is crucial in extending the
flexibility of many choices throughout the DAG. In §3
and §4 we discussed how to use the available choices in
the input and intermediate stages in a DAG. However,
jobs created using frameworks like Spark or DryadLINQ
can extend across many more stages. For example, com-
plex SQL queries may use a map followed a shuffle to do
a group-by operation and follow that up with a join. One
solution to this would be run more tasks than required in
every stage to retain the ability to choose among inputs
in succeeding stages. However we found that in prac-
tice this does not help very much. In frameworks like
Spark which use lazy evaluation, every stage following
than the first stage is treated as an intermediate stage.
As we use a round-robin strategy to schedule intermedi-
ate tasks (§5.2.2), the outputs from the first intermediate
stage are already well spread out across the racks. Thus
there isn’t much skew across racks that affects the per-
formance of following stages. In evaluation runs we saw
no benefits for later stages of long DAGs.

6 Evaluation

We evaluate the benefits of KMN using two approaches:
first we run approximate queries used in production at
Conviva, a video analytics company, and study how KMN
compares to using existing schedulers with pre-selected
samples. Next we analyze how KMN behaves in a shared
cluster, by replaying a workload trace obtained from

Facebook’s production Hadoop cluster.
Metric: In our evaluation we measure percentage im-

provement of job completion time when using KMN. We
define percentage improvement as:

% Improvement =
Baseline Time−KMN Time

Baseline Time
×100

Our evaluation shows that,

• KMN improves real-world sampling-based queries
from Conviva by more than 50% on average across
various sample sizes and machine learning work-
loads by up to 43%.

• When replaying the Facebook trace, on an EC2
cluster, KMN can improve job completion time by
81% on average (92% for small jobs)

• By using 5% – 10% extra tasks we can balance
bottleneck link usage and decrease shuffle times by
61% – 65% even for jobs with high cross-rack skew.

6.1 Setup
Cluster Setup:We run all our experiments using 100
m2.4xlarge machines on Amazon’s EC2 cluster, with
each machine having 8 cores, 68GB of memory and 2
local drives. We configure Spark to use 4 slots and 60
GB per machine. To study memory locality we cache the
input dataset before starting each experiment. We com-
pare KMN with a baseline that operates on a pre-selected
sample of size K and does not employ any of the shuf-
fle improvement techniques described in §4, §5. We also
label the fraction of extra tasks run (i.e., M/K), so KMN-
M/K = 1.0 has K = M and KMN-M/K = 1.05 has 5%
extra tasks. Finally, all experiments were run at least
three times and we plot median values across runs and
use error bars to show minimum and maximum values.
Workload: Our evaluation uses a workload trace from
Facebook’s Hadoop cluster [21]. The traces are from a
mix of interactive and batch jobs and capture over half
a million jobs on a 3500 node cluster. We use a scaled
down version of the trace to fit within our cluster and use
the same inter-arrival times and the task-to-rack mapping

9
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Figure 13: Overall improvement when running Stochastic
Gradient Descent using KMN

as in the trace. Unless specified, we use 10% sampling
when running KMN for all jobs in the trace.

We begin by showing overall gains with KMN (§6.2),
then present benefits for input stages from KMN (§6.3)
and finally show how KMN affects intermediate stages
( §6.4).

6.2 Benefits of KMN

We evaluate the benefits of using KMN on three work-
loads: real-world approximate queries from Conviva, a
machine learning workload running Stochastic Gradient
Descent and a Hadoop workload trace from Facebook.

6.2.1 Conviva Sampling jobs

We first present results from running 4 real-world sam-
pling queries obtained from Conviva, a video analytics
company. The queries were run on access logs obtained
across a 5-day interval. We treat the entire data set as N
blocks and vary the sampling fraction (K/N) to be 1%,
5% and 10%. We run the queries at 50% cluster utiliza-
tion and run each query multiple times.

Figure 11 shows the median time taken for each query
and we compare KMN-M/K = 1.05 to the baseline that
uses pre-selected samples. For query 1 and query 2 we
can see that KMN gives 77%–91% win across 1%, 5%
and 10% samples. Both these queries calculate summary
statistics across a time window and most of the compu-
tation is performed in the map stage. For these queries
KMN ensures that we get memory locality and this re-
sults in significant improvements. For queries 3 and 4,
we see around 70% improvement for 1% samples, and
this reduces to around 25% for 10% sampling. Both
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Job

Aggregate1

Aggregate2

Aggregate3

Time (s)

KMN (First Three Stages)
KMN (First Two Stages)
KMN (First Stage)
KMN-M/K=1.0

Figure 14: Breakdown of aggregation times when using
KMN for different number of stages in SGD

Job Size % Overall % Map Stage % Shuffle
1 to 10 92.8 95.5 84.61

11 to 100 78 94.1 28.63
> 100 60.8 95.4 31.02

Table 1: Improvements over baseline, by job size and stage

these queries compute the number of distinct users that
match a specified criteria. While input locality also im-
proves these queries, for larger samples the reduce tasks
are CPU bound (while they aggregate values).

6.2.2 Machine learning workload

Next, we look at performance benefits for a machine
learning workload that uses sampling. For our analysis,
we use Stochastic Gradient Descent (SGD). SGD is an it-
erative method that scales to large datasets and is widely
used in applications such as machine translation and im-
age classification. We run SGD on a dataset contain-
ing 2 million data items, where each each item contains
4000 features. The complete dataset is around 64GB in
size and each of our iterations operates on a 1% sample
1% of the data. Thus the random sampling step reduces
the cost of gradient computation by 100× but maintains
rapid learning rates [52]. We run 10 iterations in each
setting to measure the total time taken for SGD.

Each iteration consists of a DAG comprised of a map
stage where the gradient is computed on sampled data
items and the gradient is then aggregated from all points.
The aggregation step can be efficiently performed by us-
ing an aggregation tree as shown in Figure 12. We imple-
ment the aggregation tree using a set of shuffle stages and
use KMN to run extra tasks at each of these aggregation
stages.

The overall benefits from using KMN are shown in
Figure 13. We see that KMN-M/K = 1.1 improves per-
formance by 43% as compared to the baseline. These
improvements come from a combination of improving
memory locality for the first stage and by improving
shuffle performance for the aggregation stages. We fur-
ther break down the improvements by studying the ef-
fects of KMN at every stage in Figure 14.
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Figure 15: Overall improvement from KMN compared to
baseline. Numbers on the bar represent percentage im-
provement using KMN-M/K = 1.05.
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Figure 16: Improvement due to memory locality for the
Map Stage for the Facebook trace. Numbers on the bar rep-
resent percentage improvement using KMN-M/K = 1.05.

When running extra tasks for only the first stage (gra-
dient stage), we see improvements of around 26% for the
first aggregation (Aggregate 1); see KMN (First Stage).
Without extra tasks the next two aggregation stages (Ag-
gregate 2 and Aggregate 3) behave similar to KMN-
M/K = 1.0. When extra tasks are spawned for later
stages too, benefits propagate and we see 50% improve-
ment in the second aggregation (Aggregate-2) while us-
ing KMN for the first two stages. However, propagating
choice across stages does impose some overheads. Thus
even though we see that KMN (First Three Stages) im-
proves the performance of the last aggregation stage (Ag-
gregate 3), running extra tasks slows down the overall job
completion time (Job). This is because the final aggrega-
tion steps usually have fewer tasks with smaller amounts
of data, which makes running extra tasks not worth the
overhead. We plan to investigate techniques to estimate
this trade-off and automatically determine which stages
to use KMN for in the future.

6.2.3 Facebook workload

We next quantify the overall improvements across the
trace from using KMN. To do this, we use a baseline
configuration that mimics task locality from the origi-
nal trace while using pre-selected samples. We compare
this to KMN-M/K = 1.05 that uses 5% extra tasks and a
round-robin reducer placement strategy (§5.2.2). The re-
sults showing average job completion time broken down
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Figure 17: Job completion time and locality as we increase
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Figure 18: Boxplot showing utilization distribution for dif-
ferent values of average utilization.

by job size is shown in Figure 15 and relative improve-
ments are shown in Table 1. As seen in the figure, using
KMN leads to around 92% improvement for small jobs
with < 10 tasks and more than 60% improvement for all
other jobs. Across all jobs KMN-M/K = 1.05 improves
performance by 81%, which is 93% of the potential win
(§2.3).

To quantify where we get improvements from, we
break down the time taken by different stages of a job.
Improvements for the input stage or the map stage are
shown in Figure 16. We can see that using KMN we
are able to get memory locality for almost all the jobs
and this results in around 94% improvement in the time
taken for the map stage. This is consistent with the pre-
dictions from our model in §3 and shows that pushing
down sampling to the run-time can give tremendous ben-
efits. The improvements in the shuffle stage are shown in
Figure 19. For small jobs with < 10 tasks we get around
85% improvement and these are primarily because we
co-locate the mappers and reducers for small jobs and
thus avoid network transfer overheads. For large jobs
with > 100 tasks we see around 30% improvement due
to reduction in cross-rack skew.

6.3 Input Stage Locality

Next, we attempt to measure how the locality obtained
by KMN changes with cluster utilization. As we vary the
cluster utilization, we measure the average job comple-
tion time and fraction of jobs where all tasks get locality.
The results shown in Figure 17 show that for up to 30%
average utilization, KMN ensures that more than 80% of
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Job Size M/K = 1.0 M/K =1.05 M/K =1.1
1 to 10 85.04 84.61 83.76

11 to 100 27.5 28.63 28.18
> 100 14.44 31.02 36.35

Table 2: Shuffle time improvements over baseline while
varying M/K
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Figure 19: Shuffle improvements when running extra
tasks.

jobs get perfect locality. We also observed significant
variance in the utilization during the trace replay and the
distribution of utilization values is shown as a boxplot in
Figure 18. From this figure we can see that while average
utilization is 30% we observe utilization spikes of up to
90%. Because of such utilization spikes, we see periods
of time where all jobs do not get locality.

Finally, at 50% average utilization (utilization spikes
> 90%) only around 45% of jobs get locality. This is
lower than predictions from our model in §3. There are
two reasons for this difference: First, our experimental
cluster has only 400 slots and as we do 10% sampling
(K/N = 0.1), the setup doesn’t have enough choices for
jobs with > 40 map tasks. Further the utilization spikes
also are not taken into account by the model and jobs
which arrive during a spike do not get locality.

6.4 Intermediate Stage Scheduling

In this section we evaluate scheduling decisions by KMN
for intermediate stages. First we look at the benefits from
running additional map tasks and then evaluate the delay
heuristic used for straggler mitigation. Finally we also
measure KMN’s sensitivity to reducer placement strate-
gies.

6.4.1 Effect of varying M/K

We evaluate the effect of running extra map tasks (i.e
M/K > 1.0) and measure how that influences the time
taken for shuffle operations. For this experiment we wait
until all the map tasks have finished and then calculate
the best reducer placement and choose the best K map
outputs as per techniques described in §4.2. The average
time for the shuffle stage for different job sizes is shown

Cross-rack skew M/K=1.0 M/K =1.05 M/K =1.1
≤ 4 24.45 29.22 30.81

4 to 8 15.26 27.60 33.92
≥ 8 48.31 61.82 65.82

Table 3: Shuffle improvements with respect to baseline as
cross-rack skew increases.
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Figure 20: Difference in shuffle performance as cross-rack
skew increases

in Figure 19 and the improvements with respect to the
baseline are shown in Table 2. From the figure, we see
that for small jobs with less than 10 tasks there is almost
no improvement from running extra tasks as they usually
do not suffer from cross-rack skew. However for large
jobs with more than 100 tasks, we now get up to 36%
improvement in shuffle time over the baseline.

Further, we can also analyze how the benefits are sen-
sitive to the cross-rack skew. We plot the average shuffle
time split by cross-rack skew in Figure 20. Correspond-
ingly we list the improvements over the baseline in Ta-
ble 3. We can see that for jobs which have low cross-
rack skew, we get up to 33% improvement when using
KMN-M/K = 1.1. Further, for jobs which have cross-
rack skew > 8, we get up to 65% improvement in shuffle
times and a 17% improvement over M/K = 1.

6.4.2 Delayed stage launch

We next study the impact of stragglers and the effect
of using the delayed stage launch heuristic from §4.3.
We run the Facebook workload at 30% cluster utilization
with KMN-M/K = 1.1 and compare our heuristic to two
baseline strategies. In one case we wait for the first K
map tasks to finish before starting the shuffle while in the
other case we wait for all M tasks for finish. The perfor-
mance break down for each stage is shown in Figure 21.
From the figure we see that for small jobs (< 10 tasks)
which don’t suffer from cross-rack skew, KMN performs
similar to picking the first K map outputs. This is because
in this case stragglers dominate the shuffle wins possible
from using extra tasks. For larger tasks we see that our
heuristic can dynamically adjust the stage delay to ensure
we avoid stragglers while getting the benefits of balanced
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Figure 22: (a) CDF of % time that the job was delayed (b)
CDF of % of extra map tasks used.

shuffle operations. For example for jobs with > 10 tasks
KMN adds 5%− 14% delay after first K tasks complete
and still gets most of the shuffle benefits. Overall, this
results in an improvement of up to 35%.

For more fine-grained analysis we also ran an event-
driven simulation that uses task completion times from
the same Facebook trace. The CDF of extra map tasks
used is shown in Figure 22(b), where we see that around
80% of the jobs wait for 5% or more map tasks. We
also measured the time relative to when the first K map
tasks finished and to normalize the delay across jobs we
compute the relative wait time. Figure 22(a) shows the
CDF of relative wait times and we see that the delay is
less than 25% for 62% of the jobs. The simulation results
again show that our relative delay is not very long and
that job completion time can be improved when we use
extra tasks available within a short delay.

6.4.3 Sensitivity to reducer placement

To evaluate the importance of reduce placement strategy,
we compare the time taken for the shuffle stage for the
round-robin strategy described in §5.2.2 against a greedy
assignment strategy that attempts to pack reducers into
as few machines as possible. Note that the baseline used
in our earlier experiments used a random reducer assign-
ment policy and §6.2.3 compares the round-robin strat-
egy to random assignment. Figure 23 shows the results
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Figure 23: Difference between using greedy assignment of
reducers versus using a round-robin scheme to place reduc-
ers among racks with upstream tasks.

from this experiment with the results broken down by
job size. From the results we can see that for jobs with
> 10 tasks using a round-robin placement can improve
performance by 10%-30%. However for very small jobs,
running tasks on more machines increases the variance
and the greedy assignment in fact performs 8% better.

7 Related Work

Cluster schedulers: Cluster scheduling has been an
area of active research and recent work has proposed
techniques to enforce fairness [32, 39], satisfy job con-
straints [33] and improve locality [39, 59]. In KMN, we
focus on applications that have input choices and pro-
pose techniques to exploit the available flexibility while
scheduling tasks. Straggler mitigation solutions launch
extra copies of tasks to mitigate the impact of slow run-
ning tasks [10, 12, 61]. While KMN shares the simi-
larity of executing extra copies, our goals are different.
Further, straggler mitigation solutions are limited by the
number of replicas of the input data, and can leverage
our observation of combinatorial choices towards more
effective speculation. Prior efforts in improving shuf-
fle performance [7, 24] have looked at either provision-
ing the network better or scheduling flows to improve
performance. On the other hand, in KMN we use addi-
tional tasks and better placement techniques to balance
data transfers across racks. Finally, recent work [49] has
also looked at using the power of many choices to reduce
scheduling latency. In KMN we exploit the power choices
to improve network balance using just a few additional
tasks.
Approximate Query Processing Systems: Approxi-
mate query processing (AQP) systems such as Aqua [2],
STREAM [47], and BlinkDB [5] use pre-computed sam-
ples to answer queries. These works are complimentary
to our work, and we expect that projects like BlinkDB
can use KMN to improve performance, while maintain-
ing, or in some cases even improving response qual-
ity. Prior work in databases has also proposed Online
Aggregation [37] (OLA) methods that can be used to
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present approximate aggregation results while the input
data is processed in a streaming fashion. Recent exten-
sions [25, 51] have also looked at supporting OLA-style
computations in MapReduce. In contrast, KMN can be
used for scheduling sampling applications which do not
process the entire dataset and process a fixed and small
sample of data.
Machine learning frameworks: Recently, a large body
of work has focused on building cluster computing
frameworks that support machine learning tasks. Ex-
amples include GraphLab [34, 44], Spark [60], DistBe-
lief [27], and MLBase [41]. Of these, GraphLab and
Spark add support for abstractions commonly used in
machine learning. Neither of these frameworks provide
any explicit system support for sampling. For instance,
while Spark provides a sampling operator, this operation
is carried out entirely in application logic, and the Spark
scheduler is oblivious to the use of sampling.

8 Conclusion

The rapid growth of data stored in clusters, increasing
demand for interactive analysis, and machine learning
workloads have made it inevitable that applications will
operate on subsets of data. It is therefore imperative that
schedulers for cluster computing frameworks exploit the
available choices to improve performance. As a first step
towards this goal we have presented KMN, a system that
improves data-aware scheduling for jobs with combina-
torial choices. Using our prototype implementation, we
have shown that KMN can improve performance by in-
creasing locality and balancing intermediate data trans-
fers.
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