
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Willow: A User-Programmable SSD
Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker, Arup De,

Yanqin Jin, Yang Liu, and Steven Swanson, University of California, San Diego

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/seshadri

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 67

Willow: A User-Programmable SSD

Sudharsan Seshadri Mark Gahagan Sundaram Bhaskaran Trevor Bunker
Arup De Yanqin Jin Yang Liu Steven Swanson

Computer Science & Engineering, UC San Diego

Abstract
We explore the potential of making programmability a
central feature of the SSD interface. Our prototype sys-
tem, called Willow, allows programmers to augment and
extend the semantics of an SSD with application-specific
features without compromising file system protections.
The SSD Apps running on Willow give applications low-
latency, high-bandwidth access to the SSD’s contents
while reducing the load that IO processing places on the
host processor. The programming model for SSD Apps
provides great flexibility, supports the concurrent execu-
tion of multiple SSD Apps in Willow, and supports the
execution of trusted code in Willow.

We demonstrate the effectiveness and flexibility of
Willow by implementing six SSD Apps and measuring
their performance. We find that defining SSD semantics
in software is easy and beneficial, and that Willow makes
it feasible for a wide range of IO-intensive applications
to benefit from a customized SSD interface.

1 Introduction
For decades, computer systems have relied on the same
block-based interface to storage devices: reading and
writing data from and to fixed-sized sectors. It is no ac-
cident that this interface is a perfect fit for hard disks,
nor is it an accident that the interface has changed little
since its creation. As other system components have got-
ten faster and more flexible, their interfaces have evolved
to become more sophisticated and, in many cases, pro-
grammable. However, hard disk performance has re-
mained stubbornly poor, hampering efforts to improve
performance by rethinking the storage interface.

The emergence of fast, non-volatile, solid-state mem-
ories (such as NAND flash and phase-change memo-
ries) has signaled the beginning of the end for painfully
slow storage systems, and this demands a fundamen-
tal rethinking of the interface between storage software
and the storage device. These new memories behave
very differently than disks—flash requires out-of-place
updates while phase change memories (PCMs) provide
byte-addressability—and those differences beg for inter-
faces that go beyond simple block-based access.

The scope of possible new interfaces is enor-

mously broad and includes both general-purpose and
application-specific approaches. Recent work has illus-
trated some of the possibilities and their potential ben-
efits. For instance, an SSD can support complex atomic
operations [10, 32, 35], native caching operations [5, 38],
a large, sparse storage address space [16], delegating
storage allocation decisions to the SSD [47], and offload-
ing file system permission checks to hardware [8]. These
new interfaces allow applications to leverage SSDs’ low
latency, ample internal bandwidth, and on-board compu-
tational resources, and they can lead to huge improve-
ments in performance.

Although these features are useful, the current one-at-
a-time approach to implementing them suffers from sev-
eral limitations. First, adding features is complex and
requires access to SSD internals, so only the SSD manu-
facturer can add them. Second, the code must be trusted,
since it can access or destroy any of the data in the SSD.
Third, to be cost-effective for manufacturers to develop,
market, and maintain, the new features must be useful
to many users and/or across many applications. Select-
ing widely applicable interfaces for complex use cases is
very difficult. For example, editable atomic writes [10]
were designed to support ARIES-style write-ahead log-
ging, but not all databases take that approach.

To overcome these limitations, we propose to make
programmability a central feature of the SSD interface,
so ordinary programmers can safely extend their SSDs’
functionality. The resulting system, called Willow, will
allow application, file system, and operating system
programmers to install customized (and potentially un-
trusted) SSD Apps that can modify and extend the SSD’s
behavior.

Applications will be able to exploit this kind of pro-
grammability in (at least) four different ways.

• Data-dependent logic: Many storage applications
perform data-dependent read and write operations
to manipulate on-disk data structures. Each data-
dependent operation requires a round-trip between
a conventional SSD and the host across the system
bus (i.e., PCIe, SATA, or SAS) and through the op-
erating system, adding latency and increasing host-
side software costs.

68 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Host

Willow SSD

SPU
SPU

SPU

SPU
SPU

SPU

PCIe
Willow Driver

vSPUHRE

(a) (b)

Host

Read()/Write()
Block Driver

PCIe SSD

NVMe Interface

NV Memory

NVM
NVM

NVM

NVM
NVM

NVM

CPU

DMA

NVM

Network
interface

Local
Memory

NVMNVMPCM

(c)

control

CPU CPU CPU

CPU CPU CPU

Bridge

userspace
kernel

userspace
kernel

Figure 1: A conventional SSD vs. Willow. Although both a conventional SSD (a) and Willow (b) contain pro-
grammable components, Willow’s computation resources (c) are visible to the programmer and provide a flexible
programming model.

• Semantic extensions: Storage features like caching
and logging require changes to the semantics of
storage accesses. For instance, a write to a caching
device could include setting a dirty bit for the af-
fected blocks.

• Privileged execution: Executing privileged code in
the SSD will allow it to take over operating and file
system functions. Recent work [8] shows that issu-
ing a request to an SSD via an OS-bypass interface
is faster than a system call, so running some trusted
code in the SSD would improve performance.

• Data intensive computations: Moving data-
intensive computations to the storage system has
many applications, and previous work has explored
this direction in disks [37, 1, 19] and SSDs [17, 6,
43] with promising results.

Willow focuses on the first three of these use cases
and demonstrates that adding generic programmability
to the SSD interface can significantly reduce the cost
and complexity of adding new features. We describe a
prototype implementation of Willow based on emulated
PCM memory that supports a wide range of applications.
Then, we describe the motivation behind the design de-
cisions we made in building the prototype. We report
on our experience implementing a suite of example SSD
Apps. The results show that Willow allows programmers
to quickly add new features to an SSD and that applica-
tions can realize significant gains by offloading function-
ality to Willow.

This paper provides an overview of Willow, its pro-
gramming model, and our prototype in Sections 2 and 3.
Section 4 presents and evaluates six SSD Apps, Section 5
places our work in the context of other approaches to

integrating programmability into storage devices. Sec-
tion 6 describes some of the insights we gained from this
work, and Section 7 concludes.

2 System Design
Willow revisits the interface that the storage device ex-
poses to the rest of the system, and provides the hard-
ware necessary to support that interface efficiently. This
section describes the system from the programmer’s per-
spective, paying particular attention to the programming
model and hardware/software interface. Section 3 de-
scribes the prototype hardware in more detail.

2.1 Willow system components

Figure 1(a) depicts a conventional storage system with
a high-end, PCIe-attached SSD. A host system connects
to the SSD via NVM Express (NVMe) [30] over PCIe,
and the operating system sends commands and receives
responses over that communication channel. The com-
mands are all storage-specific (e.g., read or write a block)
and there is a point-to-point connection between the host
operating system and the storage device. Modern, high-
end SSDs contain several (often many) embedded, pro-
grammable processors, but that programmability is not
visible to the host system or to applications.

Figure 1(b) shows the corresponding picture of the
Willow SSD. Willow’s components resemble those in a
conventional SSD: it contains several storage processor
units (SPUs), each of which includes a microprocessor,
an interface to the inter-SPU interconnect, and access to
an array of non-volatile memory. Each SPU runs a very
small operating system called SPU-OS that manages and
enforces security (see Section 2.6 below).

The interface that Willow provides is very different
from the interface of a conventional SSD. On the host
side, the Willow driver creates and manages a set of ob-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 69

SPU-3

DirectIO
SSDApp

Perm.
Table

SPU-OS

SPU-2

DirectIO
SSDApp

Perm.
Table

SPU-OS

SPU-1

DirectIO
SSDApp

Perm.
Table

SPU-OS

SPU-0

Perm. Table

SPU-OS

Application

Willow
Driver

HRE

File
System

GetPerm()

ReadRPC()
WriteRPC()

GrantPermRPC()

RevokePermRPC()

libDirectIO

vSPU alloc.

SSDApp Install

Open()

Close() DirectIO
SSDAppDirectIO

Driver

userspace
kernel

Figure 2: The Anatomy of an SSD App. The boldface elements depict three components of an SSD App: a userspace
library, the SPU code, and an optional kernel driver. In the typical use case, a conventional file system manages the
contents of Willow, and the Willow driver grants access to file extents based on file system permissions.

jects called Host RPC Endpoints (HREs) that allow the
OS and applications to communicate with SPUs. The
HRE is a data structure that the kernel creates and allo-
cates to a process. It provides a unique identifier called
the HRE ID for sending and receiving RPC requests
and lets the process send and receive those requests via
DMA transfers between userspace memory and the Wil-
low SSD. The SPUs and HREs communicate over a flex-
ible network using a simple, flexible RPC-based mecha-
nism. The RPC mechanism is generic and does not pro-
vide any storage-specific functionality. SPUs can send
RPCs to HREs and vice versa.

The final component of Willow is programmable func-
tionality in the form of SSD Apps. Each SSD App con-
sists of three elements: a set of RPC handlers that the
Willow kernel driver installs at each SPU on behalf of
the application, a library that an application uses to ac-
cess the SSD App, and a kernel module, if the SSD App
requires kernel support. Multiple SSD Apps can be ac-
tive at the same time.

Below, we describe the high-level system model, the
programming model, and the security model for both
SPUs and HREs.

2.2 The Willow Usage Model

Willow’s design can support many different usage mod-
els (e.g., a system could use it as a tightly-coupled net-
work of “wimpy” compute nodes with associated stor-
age). Here, however, we focus on using Willow as a con-
ventional storage device that also provides programma-
bility features. This model is particularly useful be-

cause it allows for incremental adoption of Willow’s fea-
tures and ensures that legacy applications can use Willow
without modification.

In this model, Willow runs an SSD App called
Base-IO that provides basic block device functional-
ity (i.e., reading and writing data from and to storage lo-
cations). Base-IO stripes data across the SPUs (and
their associated banks of non-volatile memory) in 8 kB
segments. Base-IO (and all the other SSD Apps we
present in this paper) runs identical code at each SPU.
We have found it useful to organize data and computa-
tion in this way, but Willow does not require it.

A conventional file system manages the space on Wil-
low and sets permissions that govern access to the data it
holds. The file system uses the Base-IO block device
interface to maintain metadata and provide data access to
applications that do not use Willow’s programmability.

To exploit Willow’s programmability, an applica-
tion needs to install and use an additional SSD App.
Figure 2 illustrates this process for an SSD App
called Direct-IO that provides an OS-bypass in-
terface that avoids system call and file system over-
heads for common-case reads and writes (similar to [8]).
The figure shows the software components that com-
prise Direct-IO in bold. To use Direct-IO, the
application uses the Direct-IO’s userspace library,
libDirectIO. The library asks the operating system
to install Direct-IO in Willow and requests an HRE
from the Willow driver to allow it to communicate with
the Willow SSD.
Direct-IO also includes a kernel module that

70 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

libDirectIO invokes when it needs to open a file on
behalf of the application. The Direct-IO kernel mod-
ule asks the Willow driver to grant the application per-
mission to access the file. The driver requests the nec-
essary permission information from the file system and
issues trusted RPCs to SPU-OS to install the permission
for the file extents the application needs to access in the
SPU-OS permission table. Modern file systems already
include the ability to query permissions from inside the
kernel, so no changes to the file system are necessary.
Base-IO and Direct-IO are “standard equip-

ment” on Willow, since they provide functions that are
useful for many other SSD Apps. In particular, other
SSD Apps can leverage Direct-IO’s functionality to
implement arbitrary, untrusted operations on file data.

2.3 Building an SSD App

SSD Apps comprise interacting components running
in multiple locations: in the client application (e.g.,
libDirectIO), in the host-side kernel (e.g., the
Direct-IO kernel module), and in the Willow SSD.
To minimize complexity, code in all three locations uses
a common set of interfaces to implement SSD App func-
tionality. In the host application and the kernel, the
HRE library implements these interfaces, while in Wil-
low, SPU-OS implements them. The interfaces provide
the following capabilities:
1. Send an RPC request: SPUs and HREs can issue

RPC requests to SPUs, and SPUs can issue RPCs
to HREs. RPC delivery is non-reliable (due to lim-
ited buffering at the receiver), and all-or-nothing (i.e.,
the recipient will not receive a partial message). The
sender is notified upon successful (or failed) delivery
of the message. Willow supports both synchronous
and asynchronous RPCs.

2. Receive an RPC request: RPC requests carry an
RPC ID that specifies which SSD App they target and
which handler they should invoke. When an RPC re-
quest arrives at an SPU or HRE, the runtime (i.e., the
HRE library or SPU-OS) invokes the correct handler
for the request.

3. Send an RPC response: RPC responses are short,
fixed-length messages that include a result code and
information about the request it responds to. RPC
response delivery is reliable.

4. Initiate a data transfer: An RPC handler can asyn-
chronously transfer data between the network inter-
face, local memory, and the local non-volatile mem-
ory (for SPUs only).

5. Allocate local memory: SSD Apps can declare
static variables to allocate space in the SPU’s local
data memory, but they cannot allocate SPU memory
dynamically. Code on the host can allocate data stat-
ically or on the heap.

6. General purpose computation: SSD Apps are writ-
ten in C, although the standard libraries are not avail-
able on the SPUs.

In addition to these interfaces, the host-side HRE li-
brary also provides facilities to request HREs from the
Willow driver and install SSD Apps.

This set of interfaces has proved sufficient to imple-
ment a wide range of different applications (see Sec-
tion 4), and we have found them flexible and easy to
use. However, as we gain more experience building
SSD Apps, we expect that opportunities for optimization,
new capabilities, and bug-preventing restrictions on SSD
Apps will become apparent.

2.4 The SPU Architecture

In modern SSDs (and in our prototype), the embedded
processor that runs the SSD’s firmware offers only mod-
est performance and limited local memory capacity com-
pared to the bandwidth that non-volatile memory and the
SSD’s internal interconnect can deliver.

In addition, concerns about power consumption
(which argue for lower clock speeds) and cost (which ar-
gue for simple processors) suggest this situation will per-
sist, especially as memory bandwidths continue to grow.
These constraints shape both the Willow hardware we
propose and the details of the RPC mechanism we pro-
vide.

The SPU has four hardware components we use to im-
plement the SSD App toolkit (Figure 1(c)):
1. SPU processor: The processor provides modest per-

formance (perhaps 100s of MIPS) and kilobytes of
per-SPU instruction and data memory.

2. Local non-volatile memory: The array of non-
volatile memory can read or write data at over
1 GB/s.

3. Network interface: The network provides
gigabytes-per-second of bandwidth to match
the bandwidth of the local non-volatile memory
array and the link bandwidth to the host system.

4. Programmable DMA controller: The DMA con-
troller routes data between non-volatile memory, the
network port, and the processor’s local data memory.
It can handle the full bandwidth of the network and
local non-volatile memory.

The DMA controller is central to the design of both
the SPU and the RPC mechanism, since it allows the
modestly powerful processor to handle high-bandwidth
streams of data. We describe the RPC interface in the
following section.

The SPU runs a simple operating system (SPU-OS)
that provides simple multi-threading, works with the
Willow host-side driver to manage SPU memory re-
sources, implements protection mechanisms that allow
multiple SSD Apps to be active at once, and enforces the

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 71

void Read_Handler (RPCHdr_t *request_hdr) { // RPCHdr_t part of the RPC interface
// Parse the incoming RPC
BaseIOCmd_t cmd;
RPCReceiveBytes(&cmd, sizeof(BaseIOCmd_t)); // DMA the IO command header
RPCResp_t response_hdr; // Allocate response
RPCCreateResponse(request_hdr, // populate the response

&response_hdr,
RPC_SUCCESS);

RPCSendResponse(response_hdr); // Send the response

// Send the read data back via a second RPC
CPUID_t dst = request_hdr->src;
RPCStartRequest(dst, // Destination PU

sizeof(IOCmd_t) + cmd.length, // Request body length
READ_COMPLETE_HANDLER); // Read completion RPC ID

RPCAppendRequest(LOCAL_MEMORY_PORT, // Source DMA port
sizeof(BaseIOCmd_t), // IO command header size
&cmd); // IO command header address

RPCAppendRequest(NV_MEMORY_PORT, // Source DMA Port
cmd.length, // Bytes to read
cmd.addr); // Read address

RPCFinishRequest(); // Complete the request
}

Figure 3: READ() implementation for Base-IO. Handling a READ() requires parsing the header on the RPC request
and then sending requested data from non-volatile memory back to host via another RPC.

file system’s protection policy for non-volatile storage.
Section 2.6 describes the protection facilities in more de-
tail.

2.5 The RPC Interface

The RPC mechanism’s design reflects the constraints of
the hardware described above. Given the modest perfor-
mance of the SPU processor and its limited local mem-
ory, buffering entire RPC messages at the SPU processor
is not practical. Instead, the RPC library parses and as-
sembles RPC requests in stages. The code in Figure 3
illustrates how this works for a simplified version of the
READ() RPC from Base-IO.

When an RPC arrives, SPU-OS copies the RPC
header into a local buffer using DMA and passes the
buffer to the appropriate handler (Read Handler).
That handler uses the DMA controller to transfer the
RPC parameters into the SPU processor’s local memory
(RPCReceiveBytes). The header contains generic in-
formation (e.g., the source of the RPC request and its
size), while the parameters include command-specific
values (e.g., the read or write address). The handler uses
one or more DMA requests to process the remainder of
the request. This can include moving part of the request
to the processor’s local memory for examination or per-
forming bulk transfers between the network port and the
non-volatile memory bank (e.g., to implement a write).
In the example, no additional DMA transfers are needed.

The handler sends a fixed-sized response to
the RPC request (RPCCreateResponse and
RPCSendResponse). Willow guarantees the re-

liable delivery of fixed-size responses (acks or nacks)
by guaranteeing space to receive them when the RPC
is sent. If the SSD App needs to send a response that
is longer than 32 bits (e.g., to return the data for a
read), it must issue an RPC to the sender. If there is
insufficient buffer space at the receiver, the inter-SPU
communication network can drop packets. In practice,
however, dropped packets are exceedingly rare.

The process of issuing an RPC to return the data fol-
lows a similar sequence of steps. The SPU gives the
network port the destination and length of the message
(RPCStartRequest). Then it prepares any headers in
local memory and uses the DMA controller to transfer
them to the network interface (RPCAppendRequest).
Further DMA requests can transfer data from non-
volatile memory or processor memory to the network in-
terface to complete the request. In this case, the SSD App
transfers the read data from the non-volatile memory. Fi-
nally, it makes a call to signal the end of the message
(RPCFinishRequest).

2.6 Protection and sharing in Willow

Willow has several features that make it easy for users to
build and deploy useful SSD Apps: Willow supports un-
trusted SSD Apps, protects against malicious SSD Apps
(assuming the host-side kernel is not compromised), al-
lows multiple SSD Apps to be active simultaneously, and
allows one SSD App to leverage functionality that an-
other provides. Together these four features allow a user
to build and use an SSD App without the permission of
a system administrator and to focus on the functionality

72 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

specific to his or her particular application.
Providing these features requires a suite of four pro-

tection mechanisms. First, it must be clear which host-
side process is responsible for the execution of code at
the SPU, so SPU-OS can enforce the correct set of pro-
tection policies. Second, the SPU must allow an SSD
App to access data stored in Willow only if the process
that initiated the current RPC has access rights to that
data. Third, the SPU must restrict an SSD App to ac-
cessing only its own memory and executing only its own
code. Finally, it must allow some control transfers be-
tween SSD Apps so the user can compose SSD Apps.
We address each of these below.

Tracking responsibility: The host system is responsi-
ble for setting protection policy for Willow, and it does
so by associating permissions with operating system pro-
cesses. To correctly enforce the operating system’s poli-
cies, SPU-OS must be able to determine which process is
responsible for the RPC handler that is currently running.

To facilitate this, Willow tracks the originating HRE
for each RPC. An HRE is the originating HRE for any
RPCs it makes and for any RPCs that an SPU makes
as a result of that RPC and any subsequent RPCs. The
PCIe interface hardware in the Willow SSD sets the orig-
inating HRE for the initial RPC, and SPU hardware and
SPU-OS propagate it within the SSD. As a result, the
originating HRE ID is unforgeable and serves as a capa-
bility [23].

To reduce cache coherence traffic, it is useful to give
each thread in a process its own HRE. The Willow driver
allocates HREs so that the high-order bits of the HRE ID
are the same for every HRE belonging to a single pro-
cess.

Non-volatile storage protection: To limit access to
data in the non-volatile memory banks, SPU-OS main-
tains a set of permissions for each process at each SPU.
Every time the SSD App uses the DMA controller to
move data to or from non-volatile memory, SPU-OS
checks that the permissions for the originating HRE (and
therefore the originating process) allow it. The worst-
case permission check latency is 2 µs.

The host-side kernel driver installs extent-based per-
mission entries on behalf of a process by issuing privi-
leged RPCs to SPU-OS. The SPU stores the permissions
for each process as a splay tree to minimize permission
check time. Since the SPU-OS permission table is fixed
size, it may evict permissions if space runs short. If a
request needs an evicted permission entry, a “permis-
sion miss” occurs, and the DMA transfer will fail. In
response, SPU-OS issues an RPC to the kernel. The ker-
nel forwards the request to the SSD App’s kernel mod-
ule (if it has one), and that kernel module is responsible
for resolving the miss. Most of our SSD Apps use the

Direct-IO kernel module to manage permissions, and
it will re-install the permission entry as needed.

Code and Data Protection: To limit access to the code
and data in the SPU processor’s local memory, the SPU
processor provides segment registers and disallows ac-
cess outside the current segment. Each SSD App has its
own data and instruction segments that define the base
address and length of the instruction and data memory
regions it may access. Accesses outside the SSD App’s
segment raise an exception and cause SPU-OS to notify
the kernel via an RPC, and the kernel, in turn, notifies
the applications that the SSD App is no longer available.
SPU-OS provides a trusted RPC dispatch mechanism for
incoming messages. This mechanism sets the segment
registers according to the SSD App that the RPC targets.

The host-side kernel is in charge of managing and stat-
ically allocating SPU instruction and data memory to the
active SSD Apps. Overlays could extend the effective
instruction and data memory size (and are common in
commercial SSD controller firmware), but we have not
implemented them in our prototype.

Limiting access to RPCs: A combination of hardware
and software restricts access to some RPCs. This allows
safe composition of SSD Apps and allows SSD Apps to
create RPCs that can be issued only from the host-side
kernel.

To support composition, SPU-OS provides a mecha-
nism for changing segments as part of a function call
from one SSD App to another. An SSD App-intercall
table in each SPU controls which SSD Apps are allowed
to invoke one another and which function calls are al-
lowed. A similar mechanism restricts which RPCs one
SSD App can issue to another.

To implement kernel-only RPCs, we use the conven-
tion that a zero in the high-order bit of the HRE ID means
the HRE belongs to the kernel. RPC implementations
can check the ID and return failure when a non-kernel
HRE invokes a protected RPC.

SSD Apps can use this mechanism to bootstrap more
complex protection schemes as needed. For example,
they could require the SSD App’s kernel module to grant
access to userspace HREs via a kernel-only RPC.

3 The Willow Prototype
We have constructed a prototype Willow SSD that imple-
ments all of the functionality described in the previous
section. This section provides details about the design.

The prototype has eight SPUs and a total storage ca-
pacity of 64 GB. It is implemented using a BEE3 FPGA-
based prototyping system [4]. The BEE3 connects to a
host system over a PCIe 1.1x8. The link provides 2 GB/s
of full-duplex bandwidth.

Each of the four FPGAs that make up a BEE3 hosts

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 73

Description Name LOC Devel. Time
(C) (Person-months)

Simple IO operations [7] Base-IO 1500 1
Virtualized SSD interface with OS bypass and permission check-
ing [8]

Direct-IO 1524 1.2

Atomic writes tailored for scalable database systems based
on [10]

Atomic-Write 901 1

Direct-access caching device with hardware support for dirty data
tracking [5]

Caching 728 1

SSD acceleration for MemcacheDB [9] Key-Value 834 1
Offload file appends to the SSD Append 1588 1

Table 1: SSD Apps. Implementing and testing each SSD App required no more than five weeks and less than 1600
lines of code.

two SPUs, each attached to an 8 GB bank of DDR2
DRAM. We use the DRAM combined with a customized
memory controller to emulate phase change memory
with a read latency of 48 ns and a write latency of
150 ns. The memory controller implements start-gap
wear-leveling [36].

The SPU processor is a 125 MHz RISC processor with
a MIPS-like instruction set. It executes nearly one in-
struction per cycle, on average. We use the MIPS version
of gcc to generate executable code for it. For debugging,
it provides a virtual serial port and a rich set of perfor-
mance counters and status registers to the host. The pro-
cessor has 32 kB of local data memory and 32 kB of local
instruction memory.

The kernel driver statically allocates space in the SPU
memory to SSD Apps, which constrains the number and
size of SSD Apps that can run at once. SPU-OS main-
tains a permission table in the local data memory that can
hold 768 entries and occupies 20 kB of data memory.

The ring in Willow uses round-robin, token-based ar-
bitration, so only one SPU may be sending a message at
any time. To send a message, the SPU’s network inter-
face waits for the token to arrive, takes possession of it,
and transmits its data. To receive a message, the inter-
face watches the header of messages on the ring to iden-
tify messages it should remove from the ring. The ring is
128 bits wide and runs at 250 MHz for a total of 3.7 GB/s
of bisection bandwidth.

For communication with the HREs on the host, a
bridge connects the ring to the PCIe link. The bridge
serves as a hardware proxy for the HREs. For each of the
HREs, the bridge maintains an upstream (host-bound)
and downstream (Willow-bound) queue. This queue-
based interface is similar to the scheme that NVMEx-
press [30] uses to issue and complete IO requests. The
bridge in our prototype Willow supports up to 1024
queue pairs, so it can support 1024 HREs on the host.

The bridge also helps enforce security in Willow. Mes-
sages from HREs to SPUs travel over the bridge, and the

bridge sets the originating HRE fields on those messages
depending on which HRE queue they came in on. Since
processes can send messages only via the queues for the
HREs they control, processes cannot send forged RPC
requests.

4 Case Studies

Willow makes it easy for storage system engineers to im-
prove performance by incorporating new capabilities into
a storage device. We have evaluated Willow’s effective-
ness in this regard by implementing six different SSD
Apps and comparing their performance to implementa-
tions that use a conventional storage interface.

The six applications are: basic IO, IO with OS bypass,
atomic-writes, caching, a key-value store, and append-
ing data to a file in the Ext4 filesystem. Table 1 briefly
describes all six apps and provides some statistics about
their implementations. We discuss each in detail below.

4.1 Basic IO

The first SSD App is Base-IO, the SSD App we de-
scribed briefly in Section 2 that provides basic SSD func-
tionality: READ(), WRITE(), and a few utility operations
(e.g., querying the size of the device) that the operating
system requires to recognize Willow as a block device.

A Willow SSD with Base-IO approximates a con-
ventional SSD, since the SSD’s firmware would imple-
ment the same functions that Base-IO provides. We
compare to Base-IO throughout this section to under-
stand the performance impact of Willow’s programma-
bility features.

Figure 4 plots the performance of Base-IO. We col-
lected the data by running XDD [46] on top of XFS.
Base-IO is able to utilize 78% and 73% of the PCIe
bandwidth for read and write, respectively, and can sus-
tain up to 388K read IOPs for small accesses. This level
of PCIe utilization is comparable to what we have seen
in commercial high-end PCIe SSDs.

74 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Read

Request Size (KB)

0.5 2 8 32 128

Ba
nd

w
id

th
 (G

B/
s)

0.0

0.5

1.0

1.5

2.0 Write

Request Size (KB)

0.5 2 8 32 128

Ba
nd

w
id

th
 (G

B/
s)

0.0

0.5

1.0

1.5

2.0

Base−IO
Direct−IO

Figure 4: Bandwidth comparison between Direct-IO and Base-IO. Bypassing the kernel with a virtualized
SSD interface and software permission checks improves the performance by up to 66% for reads, and 8× for writes,
relative to Base-IO.

4.2 Direct-IO

The second SSD App is Direct-IO, the OS-bypass
interface that allows applications to perform READ()
and WRITE() operations without operating system in-
tervention. We described Direct-IO in Section 2.
Direct-IO is similar to the work in [8] and, like that
work, Direct-IO relies on a userspace library to im-
plement a POSIX-compliant interface for applications.

Figure 4 compares the performance of Direct-IO
and Base-IO running under XFS. Direct-IO out-
performs Base-IO by up to 66% for small reads and
8× for small writes by avoiding system call and file sys-
tem overheads. The performance gain for writes is larger
than for reads because writes require one RPC round trip
while reads require two: an RPC from the host to the
SSD to send the request and an RPC from the SSD to the
host to return the data. Direct-IO reduces the cost of
the first RPC, but not the second.

Figure 5 breaks down the read latency for 4 kB ac-
cesses on three different configurations. All of them
share the same hardware (DMA and NVM access) and
host-side (command issue, memory copy and software)
latencies, but Direct-IO saves almost 35% of access
latency by avoiding the operating system. The final
bar (based on projections) shows that running the SPU at
1 GHz would almost eliminate the impact of SPU soft-
ware overheads on overall latency, although it would in-
crease power consumption. Such a processor would be
easy to implement in a custom silicon version of Willow.

4.3 Atomic Writes

Many storage applications (e.g., file systems and
databases) use write-ahead logging (WAL) to enforce
strict consistency guarantees on persistent data struc-
tures. WAL schemes range from relatively simple jour-
naling mechanisms for file system metadata to the com-
plex ARIES scheme for implementing scalable transac-
tions in databases [27]. Recently, researchers and in-

Base−IO
Direct−IO

Direct−IO_1GHz

Ti
m

e
(u

s)

0

2

4

6

8

10

12

14

16

18

20
HostIssueCMD
HWDMACMD

HWDMAData
HostMemcpy
HostSW
NVMLatency
SPUApp
PermCheck
OS(FS+SysCall)

Figure 5: Read Latency Breakdown. The bars give the
component latencies for Base-IO with a file system,
for Direct-IO on the current SPU processor, and for
Direct-IO on a hypothetical version of Willow with a
1 GHz processor.

dustry have developed several SSDs with built-in sup-
port for multi-part atomic writes [32, 35], including a
scheme called MARS [10] that aims to replace ARIES
in databases.

MARS relies on a WAL primitive called editable
atomic writes (EAW). EAW provides the application
with detailed control over where logging information re-
sides inside the SSD and allows it to edit log records prior
to committing the atomic operations.

We have implemented EAWs as an SSD App
called Atomic-Writes. Atomic-Writes imple-
ments four RPCs—LOGWRITE(), COMMIT(), LOG-
WRITECOMMIT(), and ABORT()—summarized in Ta-
ble 2. Atomic-Writesmakes use of the Direct-IO
functionality as well.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 75

RPC Description
LOGWRITE() Start a new atomic opera-

tion and/or add a write to
an existing atomic opera-
tion.

COMMIT() Commit an atomic opera-
tion.

LOGWRITECOMMIT() Create and commit an
atomic operation com-
prised of single write.

ABORT() Abort an atomic operation.

Table 2: RPCs for Atomic-Writes. The
Atomic-Write SSD App allows applications to com-
bine multiple writes into a single atomic operation and
commit or abort them.

The implementations of LOGWRITE() and COMMIT()
illustrate the flexible programmability of Willow’s RPC
interface. Each SPU maintains the redo-log as a complex
persistent data structure for each active transaction. An
array of log metadata entries resides in a reserved area
of non-volatile memory with each entry pointing to a log
record, the data to be written, and the location where it
should be written. LOGWRITE() appends an entry to this
array and initializes it to add the new entry to the log.

COMMIT() uses a two-phase commit protocol among
the SPUs to achieve atomicity. The host library tracks
which SPUs are participating in the transaction and se-
lects one of them as the coordinator. In Phase 1, the co-
ordinator broadcasts a “prepare” request to all the SPUs
participating in this transaction (including itself). Each
participant decides whether to commit or abort and re-
ports back to the coordinator. In Phase 2, if any partic-
ipant decides to abort, the coordinator instructs all par-
ticipants to abort. Otherwise the coordinator broadcasts
a “commit” request so that each participant plays its lo-
cal portion of the log and notifies the coordinator when it
finishes.

We have modified the Shore-MT [40] storage manager
to use MARS and EAW to implement transaction pro-
cessing. We also fine-tuned EAWs to match how Shore-
MT manages transactions, something that would not be
possible in the “black box,” one-size-fits-all implemen-
tation of EAWs that a non-programmable SSD might in-
clude. Figure 6 shows the performance difference be-
tween MARS and ARIES for TPC-B [44]. MARS scales
better than ARIES when increasing thread count and out-
performs ARIES by up to 1.5×. These gains are ulti-
mately due to the rich semantics that Atomic-Writes
provides.

4.4 Caching

SSDs are more expensive and less dense than disks. A
cost-effective option for integrating them into storage

threads

1 2 4 8 16

ki
lo

tra
ns

ac
tio

ns
 p

er
 s

ec
on

d

0

5

10

15

20

25

ARIES−BaseIO
ARIES−DirectIO
MARS

Figure 6: TPC-B Throughput. MARS using
Atomic-Writes yields up to 1.5× throughput gain
compared to ARIES using Base-IO and Direct-IO.

systems is to utilize high performance SSDs as caches
for larger conventional backing stores. Traditional SSD
caching systems such as FlashCache [41] and bcache [3]
implement cache look-up and management operations as
a software component in the operating system. Several
groups [5, 38] have proposed adding caching-specific in-
terfaces to SSDs in order to improve the performance of
the storage system.

We have implemented an SSD App called Caching
that turns Willow into a caching SSD. Caching tracks
which data in the cache are dirty, provides support for
recovery after failures, and tracks statistics about which
data is “hot” to guide replacement policies. It services
cache hits directly from user space using Direct-IO’s
OS-bypass interface. For misses, Caching invokes
a kernel-based cache manager. Its design is based on
Bankshot [5].
Caching transforms Willow into a specialized

caching SSD rather than providing application-specific
features on top of normal cache access. Instead of
using the file system’s extent-based protection policy,
Caching uses a specialized permission mechanism
based on large, fixed-size cache chunks (or groups of
blocks) that make more efficient use of the SPU’s lim-
ited local memory. Caching’s kernel module uses a
privileged kernel-only RPC to install the specialized per-
mission entries and to manage the cache’s contents.

To measure Caching’s performance we use the Flex-
ible IO Tester (Fio) [14]. We configure Fio to generate
Zipf-distributed [2] accesses such that 90% of accesses
are to 10% of the data. We vary the file size from 1 GB
to 128 GB. We use a 1 GB cache and report average la-
tency after the cache is warm. The backing store is a hard
disk.

Figure 7 shows the average read and write latency for
4 kB accesses to FlashCache and Caching. Because
it is a kernel module, FlashCache uses the Base-IO
rather than Direct-IO. Caching’s fully associative

76 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

File Size (GB)

1 4 16 64

La
te

nc
y

(u
s)

0

1000

2000

File Size (GB)

1 4 16 64
0

400

800

1200
FlashCache
Caching

(a) Read Latency (b) Write Latency
Figure 7: Latency vs. working set size. Caching offers improved average latency for 4 kB reads (a) and writes (b)
compared to FlashCache. As the file sizes grow beyond the cache size of 1 GB, latency approaches that of the backing
disk.

Get
Put

WL−Update

WL−Read

Th
ro

ug
hp

ut
 (i

n
M

illi
on

 o
ps

/s
)

0

0.2

0.4

0.6

0.8

1
BDB−BaseIO
BDB−DirectIO
Key−Value

Figure 8: MemcacheDB performance. Key-Value
improves performance of GET() and PUT() operations by
8% and 2× respectively, compared to Berkeley DB run-
ning on Direct-IO. It improves performance by the
same operation by 2× and 4.8× respectively compared
to Berkeley DB running on Base-IO.

allocation policy allows for more efficient use of cache
space, and its ability to allow direct user space access re-
duces software overheads. Caching reduces the miss
rate by 6%-23% and improves the cache hit latency for
write by 61.8% and read by 36.3%. Combined, these im-
prove read latency by between 1.7 and 2.8× and writes
by up to 1.8×.

4.5 Key-Value Store

Key-value stores have proved a very useful tool in imple-
menting a wide range of applications, from smart phone
apps to large scale cloud services. Persistent key-value
stores such as BerkeleyDB [31], Cassandra [21], and
MongoDB [34] rely on complex in-storage data struc-
tures (e.g., BTrees or hash tables) to store their data.
Traversing those data structures using conventional IO

operations results in multiple dependent accesses that
consume host CPU cycles and require multiple crossings
of the system interconnect (i.e., PCIe). Offloading those
dependent accesses to the SSD eliminates much of that
latency.

We implement support for key-value operations in an
SSD App called Key-Value. It provides three RPC
functions: PUT() to insert or update a key-value pair,
GET() to retrieve the value corresponding to a key, and
DELETE() to remove a key-value pair. Key-Value
stores pairs in a hash table using open chaining to avoid
collisions.
Key-Value computes the hash of the key on the host

and uses the hash value to distribute hash buckets across
the SPUs in Willow. For calls to GET() and DELETE(), it
passes the hash value and the key (so the SPU can detect
matches). For PUT(), it includes the value in addition
to the key. All three RPC calls operate on an array of
buckets, each containing a linked list of key-value pairs
with matching hashes. The SPU code traverses the linked
list with a sequence of short DMA requests.

We used MemcacheDB [9] to evaluate Key-Value.
MemcacheDB [9] combines memcached [26], the popu-
lar distributed key-value store, with BerkeleyDB [31], to
build a persistent key-value store. MemcacheDB has a
client-server architecture, and for this experiment we run
it on a single computer that acts both as client (using a
16 thread configuration) and server.

We compare three configurations of MemcacheDB.
The first two configurations use BerkeleyDB [31] run-
ning on top of Base-IO and Direct-IO separately to
store the key-value pairs. The third replaces BerkeleyDB
with a Key-Value-based implementation.

We evaluate the performance of GET() and PUT() op-
erations and then measure the overall performance for
both update-heavy (50% PUT() / 50% GET()) and read-
heavy (5% PUT() / 95% GET()) workloads. Both work-
loads use random 16-byte keys and 1024-byte values.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 77

Application

Coordinator
SPU

Writer
SPU

Writer
SPU

Ap
pe
nd
()

R
es
po
ns
e

Write()

Wri
te()

AppendDone()

AppendDone()

Figure 9: RPCs to implement APPEND(). The coor-
dinator SPU delegates writing the appended data to the
SPUs that host the affected memory banks. Those SPUs
notify the host on completion.

Threads

1 2 4 8 16

Ba
nd

w
id

th
 (K

O
ps

/s
ec

)

20

60

100

Append
Base−IO

Figure 10: File append in Willow. Append provides
better performance than relying on the operating system
to append data to a file.

Figure 8 shows the performance comparison between
different MemcacheDB implementations. For GET()
and PUT() operations Key-Value outperforms the
Direct-IO configuration by 8.2% and 100% respec-
tively, and improves over the Base-IO configuration by
2× and 4.8×. Results for the update- and read-heavy
workloads show a similar trend, with Key-Value im-
proving performance by between 17% and 70% over the
Direct-IO configuration and between 2.5× and 4×
over the Base-IO configuration.

4.6 File system offload

File systems present several opportunities for offloading
functionality to Willow to improve performance. We
have created an SSD App called Append that exploits
one of these opportunities, allowing Direct-IO to ap-
pend data to a file (and update the appropriate metadata)
from userspace.
Direct-IO reduces overheads for most read and

write operations by allowing them to bypass the operat-
ing system, but it cannot do the same for append opera-
tions, since appends require updates to file system meta-
data. We can extend the OS bypass interface to include
appends by building a trusted SSD App that can coor-
dinate with the file system to maintain the correct file
length.
Append builds upon Direct-IO (and

libDirectIO) and works with a modified ver-
sion of the Ext4 file system to manage file lengths. The
first time an application tries to append to a file, it asks
the file system to delegate control of the file’s length to
Append. In response, the file system uses a trusted RPC
to tell Append where the last extent in the file resides.
The file system also sets a flag in the inode to indicate

that Append has ownership of the file’s logical length.
Since the file system allocates space in 4 kB blocks and
may pre-allocate space for the file, the physical length of
the file is often much longer than the logical length. The
physical length remains under the file system’s control.

After that, the application can send APPEND() RPCs
directly to Willow. Figure 9 illustrates the sequence of
RPCs involved. The APPEND() RPCs include the file’s
inode number and the data to append. The application
sends the RPC to the SPU whose ID is the inode number
modulo the number of SPUs in Willow.

When the SPU receives an APPEND() RPC, it checks
to see whether the application has permissions to append
to the file and whether appended data will fit in the phys-
ical length of the file. If the permission exists and the
data will fit, Append issues a special WRITE() to the
SPUs that manage the memory that is the target of the
append (there may be more than one depending on the
size and alignment of the update). While the writes are
underway, APPEND() logs the updated length to persis-
tent storage (for crash recovery), and sends a response to
the application.

This response does not signal the completion of the
APPEND(). Instead, it contains the number of WRITE()s
that the coordinating SPU issued and the starting address
of the append operation. The WRITE()s for the append
notify the host-side application (rather than the coordi-
nating SPU) when they are complete via an APPEND-
DONE() RPC. When the application has received all of
the APPENDDONE() RPCs, it knows the APPEND() is
complete. If any of the writes fail, the application needs
to re-issue the write using Direct-IO.

If the append data will not fit in the physical length of

78 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

the file, Append sends an “insufficient space” response
to the host-side application. The host-side application
then invokes the file system to allocate physical space
for the file and notify the SPU.

If the file system needs to access the file’s length, it
retrieves it from the SSD and updates its in-memory data
structures.

Figure 10 compares the performance of file appends
using Append and using Base-IO. For Base-IO we
open the file with O DSYNC, which provides the same
durability guarantees as Append. The appends are
1 kB. We modify Ext4 to pre-allocate 64 MB of phys-
ical extents. Append improves append latency by 2.5×
and bandwidth by between 4× and 5.7× with multiple
threads.

5 Related Work
Many projects (and some commercial products) have in-
tegrated compute capabilities into storage devices, but
most of them focus on offloading bulk computation to
an active hard drive or (more recently) an SSD.

In the 1970s and 1980s, many advocates of specialized
database machines pressed for custom hardware, includ-
ing processor-per-track or processor-per-head hard disks
to achieve processing at storage device. None of these
approaches turned out to be successful due to high de-
sign complexity and manufacturing cost.

Several systems, including CASSM [42], RAP [33],
and RARES [24] provided a processor for each disk
track. However, the extra logic required to enable pro-
cessing ability on each track limited storage density,
drove up costs and prevented processor-per-track from
finding wide use.

Processor-per-head techniques followed, with the goal
of reducing costs by associating processing logic with
each read/write head of a moving head hard disk.
The Ohio State Data Base Computer (DBC)[18] and
SURE [22] each took this approach. These systems
demonstrated good performance for simple search tasks,
but could not handle more complex computation such as
joins or aggregation.

Two different projects, each named Active Disks, con-
tinued the trend toward fewer processors, providing just
one CPU per disk. The first [37] focused on multime-
dia, database, and other scan-based operations, and their
analysis mainly addressed performance considerations.
The second [1] provided a more complete system ar-
chitecture but supported only stream-based computations
called disklets.

Several systems [39, 11] targeted (or have been ap-
plied to) databases with programmable in-storage pro-
cessing resources and some integrated FPGAs [28,
29]. IDisk [19] focused on decision support databases
and considered several different software organizations,

ranging from running a full-fledged database on each
disk to just executing data-intensive kernels (e.g., scans
and joins). Willow resembles the more general-purpose
programming models for IDisks.

Recently researchers have extended these ideas to
SSDs [13, 20], and several groups have proposed of-
floading bulk computation to SSDs. The work in [17]
implements Map-Reduce [12]-style computations in an
SSD, and two groups [6, 43] have proposed offloading
data analysis for HPC applications to the SSD’s proces-
sor. Samsung is shipping an SSD with a key-value inter-
face.

Projects that place general computation power into
other hardware components, such as programmable
NICs, have also been proposed [15, 45, 25]. These de-
vices allow for application-specific code to be placed
within the NIC in order to offload network-related com-
putation. This in turn reduces the load of the host OS and
CPU in a similar manner to Willow.

Most of these projects focus on bulk computation, and
we see that as a reasonable use case for Willow as well,
although it would require a faster processor. However,
Willow goes beyond bulk processing to include modi-
fying the semantics of the device and allowing program-
mers to implement complex, control-intensive operations
in the SSD itself. Some programmable NICs have taken
this approach. Many projects [10, 32, 35, 5, 38, 16, 47, 8,
9] have shown that moving these operations to the SSD is
valuable, and making the SSD programmable will open
up many new opportunities for performance improve-
ment for both application and operating system code.

6 Discussion
Willow’s goal is to expose programmability as a first-
class feature of the SSD interface and to make it easier
to add new, application-specific functionality to a stor-
age device. Our six example SSD Apps demonstrate
that Willow is flexible enough to implement a wide range
of SSD Apps, and our experience programming Willow
demonstrates that building, debugging, and refining SSD
Apps is relatively easy.
Atomic-Writes serves as a useful case study in

this regard. During its development we noticed that our
Willow-aware version of ShoreMT was issuing transac-
tions that comprised several small updates in quick suc-
cession. The overhead for sending these LOGWRITE()
RPCs was hurting performance. To reduce this overhead,
we implemented a new RPC, VECTORLOGWRITE(),
that sent multiple IO requests to Willow in a single RPC.
Adding this new operation to match ShoreMT’s needs
took only a couple of days.

Several aspects of Willow’s design proved especially
helpful. Providing a uniform, generic, and simple pro-
gramming interface for both HREs and SPUs made Wil-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 79

low easier to use and implement. The RPC mechanism
is generic and familiar enough to let us implement most
applications in an intuitive way. The simplicity meant
that SPU-OS could be both compact and efficient, crit-
ical advantages in the Willow SSD’s performance- and
memory-constrained environment.

SSD Apps’ composability was also useful. First,
reusing code allowed Willow to make more efficient use
of the the available instruction memory. Second, it made
developing SSD Apps easier. For instance, most of our
SSD App relied on Direct-IO to manage basic file
access and permissions. Even better, doing so frees the
developer from needing to write a custom kernel module
and convincing the system administrator to install it.

Willow has the flexibility to implement a wide range of
SSD Apps, and the architecture of the Willow SSD pro-
vides scalable capacity and supports a great deal of par-
allelism. However, some trade-offs made in the design
present challenges for SSD App developers. We discuss
several of these below.

First, striping memory across SPUs provides scalable
memory bandwidth, but it also makes it more difficult to
implement RPCs that need to make changes across multi-
ple memory banks. The Append would have been much
simpler if the coordinating SPU had been able to directly
access all the file’s data.

Second, the instruction memory available at each SPU
limits the complexity of SSD Apps, the number of SSD
Apps that can execute simultaneously, and the number
of permission entries that can reside in the Willow SSD
at once. While moving to a custom silicon-based (rather
than FPGA-based) controller would help, these resource
restrictions would likely remain stringent.

Third, the bandwidth of Willow SSD’s ring-based in-
terconnect is much lower than the aggregate bandwidth
of the memory banks at the SPUs. This is not a prob-
lem for applications that make large transfers mostly be-
tween the host and the SSD, since the ring bandwidth is
higher than the PCIe link bandwidth. However, it would
limit the performance of applications that require large,
simultaneous transfers between SPUs.

7 Conclusion

Solid state storage technologies offer dramatic increases
in flexibility compared to conventional disk-based stor-
age, and the interface that we use to communicate with
storage needs to be equally flexible. Willow offers pro-
grammers the ability to implement customized SSD fea-
tures to support particular applications. The program-
ming interface is simple and general enough to enable a
wide range of SSD Apps that can improve performance
on a wide range of applications.

Acknowledgements
We would like to thank the reviewers, and especially Ed
Nightingale, our shepherd, for their helpful suggestions.
We also owe a debt of gratitude to Isabella Furth for her
excellent copyediting skills. This work was supported in
part by C-FAR, one of the six SRC STARnet Centers,
sponsored by MARCO and DARPA. It was also sup-
ported in part by NSF award 1219125.

References
[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: Pro-

gramming model, algorithms and evaluation. In Proceed-
ings of the Eighth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, ASPLOS VIII, pages 81–91, New York, NY,
USA, 1998. ACM.

[2] L. A. Adamic and B. A. Huberman. Zipf’s law and the
Internet. Glottometrics, 3:143–150, 2002.

[3] Bcache. http://bcache.evilpiepirate.org/.
[4] http://www.beecube.com/platform.html.
[5] M. S. Bhaskaran, J. Xu, and S. Swanson. BankShot:

Caching slow storage in fast non-volatile memory. In
First Workshop on Interactions of NVM/Flash with Op-
erating Systems and Workloads, INFLOW ’13, 2013.

[6] S. Boboila, Y. Kim, S. Vazhkudai, P. Desnoyers, and
G. Shipman. Active flash: Out-of-core data analytics on
flash storage. In Mass Storage Systems and Technolo-
gies (MSST), 2012 IEEE 28th Symposium on, pages 1–12,
2012.

[7] A. M. Caulfield, A. De, J. Coburn, T. I. Mollov, R. K.
Gupta, and S. Swanson. Moneta: A high-performance
storage array architecture for next-generation, non-
volatile memories. In Proceedings of the 2010 43rd An-
nual IEEE/ACM International Symposium on Microar-
chitecture, MICRO ’43, pages 385–395, Washington,
DC, USA, 2010. IEEE Computer Society.

[8] A. M. Caulfield, T. I. Mollov, L. Eisner, A. De, J. Coburn,
and S. Swanson. Providing safe, user space access to
fast, solid state disks. In Proceedings of the 17th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems, New York, NY,
USA, March 2012. ACM.

[9] S. Chu. Memcachedb. http://memcachedb.org/.
[10] J. Coburn, T. Bunker, M. Shwarz, R. K. Gupta, and

S. Swanson. From ARIES to MARS: Transaction support
for next-generation solid-state drives. In Proceedings of
the 24th International Symposium on Operating Systems
Principles (SOSP), 2013.

[11] G. P. Copeland, Jr., G. J. Lipovski, and S. Y. Su. The ar-
chitecture of CASSM: A cellular system for non-numeric
processing. In Proceedings of the First Annual Sympo-
sium on Computer Architecture, ISCA ’73, pages 121–
128, New York, NY, USA, 1973. ACM.

[12] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI ’04: Proceedings of
the 6th Conference on Symposium on Operating Systems
Design and Implementation, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.

[13] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J.
DeWitt. Query processing on smart SSDs: Opportunities
and challenges. In Proceedings of the 2013 ACM SIG-

80 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

MOD International Conference on Management of Data,
SIGMOD ’13, pages 1221–1230, New York, NY, USA,
2013. ACM.

[14] Flexible I/O Tester. http://freecode.com/projects/fio.
[15] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N.

Bershad. Spine: A safe programmable and integrated
network environment. In Proceedings of the 8th ACM
SIGOPS European Workshop on Support for Composing
Distributed Applications, EW 8, pages 7–12, New York,
NY, USA, 1998. ACM.

[16] W. K. Josephson, L. A. Bongo, K. Li, and D. Flynn. DFS:
A file system for virtualized flash storage. Trans. Storage,
6(3):14:1–14:25, Sept. 2010.

[17] Y. Kang, Y. Kee, E. Miller, and C. Park. Enabling cost-
effective data processing with smart SSD. In Mass Stor-
age Systems and Technologies (MSST), 2013 IEEE 29th
Symposium on, pages 1–12, 2013.

[18] K. Kannan. The design of a mass memory for a database
computer. In Proceedings of the 5th Annual Symposium
on Computer Architecture, ISCA ’78, pages 44–51, New
York, NY, USA, 1978. ACM.

[19] K. Keeton, D. A. Patterson, and J. M. Hellerstein. A case
for intelligent disks (IDISKs). SIGMOD Rec., 27(3):42–
52, Sept. 1998.

[20] S. Kim, H. Oh, C. Park, S. Cho, and S.-W. Lee. Fast,
energy efficient scan inside flash memory SSDs. In Pro-
ceedings of ADMS 2011, 2011.

[21] A. Lakshman and P. Malik. Cassandra: A decentral-
ized structured storage system. SIGOPS Oper. Syst. Rev.,
44(2):35–40, Apr. 2010.

[22] H.-O. Leilich, G. Stiege, and H. C. Zeidler. A search
processor for data base management systems. In Pro-
ceedings of the Fourth International Conference on Very
Large Data Bases - Volume 4, VLDB ’78, pages 280–287.
VLDB Endowment, 1978.

[23] H. M. Levy. Capability-Based Computer Systems.
Butterworth-Heinemann, Newton, MA, USA, 1984.

[24] C. S. Lin, D. C. P. Smith, and J. M. Smith. The design of
a rotating associative memory for relational database ap-
plications. ACM Trans. Database Syst., 1(1):53–65, Mar.
1976.

[25] A. Maccabe, W. Zhu, J. Otto, and R. Riesen. Experience
in offloading protocol processing to a programmable NIC.
In Cluster Computing, 2002. Proceedings. 2002 IEEE In-
ternational Conference on, pages 67–74, 2002.

[26] http://memcached.org/.
[27] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and

P. Schwarz. ARIES: A transaction recovery method sup-
porting fine-granularity locking and partial rollbacks us-
ing write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, 1992.

[28] R. Mueller and J. Teubner. FPGA: What’s in it for a
database? In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of Data, SIG-
MOD ’09, pages 999–1004, New York, NY, USA, 2009.
ACM.

[29] R. Mueller, J. Teubner, and G. Alonso. Data process-
ing on FPGAs. Proc. VLDB Endow., 2(1):910–921, Aug.
2009.

[30] NVMHCI Work Group. NVM Express.
http://nvmexpress.org.

[31] M. A. Olson, K. Bostic, and M. Seltzer. Berkeley DB.

[32] X. Ouyang, D. Nellans, R. Wipfel, D. Flynn, and D. K.
Panda. Beyond block I/O: Rethinking traditional storage
primitives. In Proceedings of the 2011 IEEE 17th Inter-
national Symposium on High Performance Computer Ar-
chitecture, HPCA ’11, pages 301–311, Washington, DC,
USA, 2011. IEEE Computer Society.

[33] E. A. Ozkarahan, S. A. Schuster, and K. C. Sevcik. Per-
formance evaluation of a relational associative processor.
ACM Trans. Database Syst., 2(2):175–195, June 1977.

[34] E. Plugge, T. Hawkins, and P. Membrey. The Definitive
Guide to MongoDB: The NoSQL Database for Cloud and
Desktop Computing. Apress, Berkeley, CA, USA, 1st edi-
tion, 2010.

[35] V. Prabhakaran, T. L. Rodeheffer, and L. Zhou. Transac-
tional flash. In Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation,
OSDI’08, pages 147–160, Berkeley, CA, USA, 2008.
USENIX Association.

[36] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and secu-
rity of PCM-based main memory with start-gap wear lev-
eling. In MICRO 42: Proceedings of the 42nd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 14–23, New York, NY, USA, 2009. ACM.

[37] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle.
Active disks for large-scale data processing. Computer,
34(6):68–74, June 2001.

[38] M. Saxena, M. M. Swift, and Y. Zhang. FlashTier: A
lightweight, consistent and durable storage cache. In Pro-
ceedings of the 7th ACM European Conference on Com-
puter Systems, EuroSys ’12, pages 267–280, New York,
NY, USA, 2012. ACM.

[39] S. Schuster, H. B. Nguyen, E. Ozkarahan, and K. Smith.
RAP: An associative processor for databases and its appli-
cations. Computers, IEEE Transactions on, C-28(6):446–
458, 1979.

[40] Shore-MT. http://research.cs.wisc.edu/shore-mt/.
[41] M. Srinivasan. FlashCache: A Write Back Block Cache

for Linux. https://github.com/facebook/flashcache.
[42] S. Y. W. Su and G. J. Lipovski. CASSM: A cellular sys-

tem for very large data bases. In Proceedings of the 1st In-
ternational Conference on Very Large Data Bases, VLDB
’75, pages 456–472, New York, NY, USA, 1975. ACM.

[43] D. Tiwari, S. S. Vazhkudai, Y. Kim, X. Ma, S. Boboila,
and P. J. Desnoyers. Reducing data movement costs
using energy efficient, active computation on SSD. In
Proceedings of the 2012 USENIX conference on Power-
Aware Computing and Systems, HotPower ’12, pages 4–
4, Berkeley, CA, USA, 2012. USENIX Association.

[44] TPC-B. http://www.tpc.org/tpcb/.
[45] P. Willmann, H. Kim, S. Rixner, and V. Pai. An effi-

cient programmable 10 gigabit ethernet network interface
card. In High-Performance Computer Architecture, 2005.
HPCA-11. 11th International Symposium on, pages 96–
107, Feb 2005.

[46] XDD version 6.5. http://www.ioperformance.com/.
[47] Y. Zhang, L. P. Arulraj, A. C. Arpaci-Dusseau, and R. H.

Arpaci-Dusseau. De-indirection for flash-based SSDs
with nameless writes. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies, FAST ’12,
pages 1–1, Berkeley, CA, USA, 2012. USENIX Associa-
tion.

