
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Extracting More Concurrency
from Distributed Transactions

Shuai Mu, Tsinghua University and New York University; Yang Cui and Yang Zhang,
New York University; Wyatt Lloyd, University of Southern California and Facebook, Inc.;

Jinyang Li, New York University

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/mu

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 479

Extracting More Concurrency from Distributed Transactions

Shuai Mu†‡, Yang Cui‡, Yang Zhang‡, Wyatt Lloyd��, Jinyang Li‡
†Tsinghua University*, ‡New York University, �University of Southern California, �Facebook

Abstract
Distributed storage systems run transactions across ma-
chines to ensure serializability. Traditional protocols for
distributed transactions are based on two-phase locking
(2PL) or optimistic concurrency control (OCC). 2PL se-
rializes transactions as soon as they conflict and OCC
resorts to aborts, leaving many opportunities for concur-
rency on the table. This paper presents ROCOCO, a novel
concurrency control protocol for distributed transactions
that outperforms 2PL and OCC by allowing more con-
currency. ROCOCO executes a transaction as a collec-
tion of atomic pieces, each of which commonly involves
only a single server. Servers first track dependencies be-
tween concurrent transactions without actually executing
them. At commit time, a transaction’s dependency infor-
mation is sent to all servers so they can re-order conflict-
ing pieces and execute them in a serializable order.

We compare ROCOCO to OCC and 2PL using a scaled
TPC-C benchmark. ROCOCO outperforms 2PL and OCC
in workloads with varying degrees of contention. When
the contention is high, ROCOCO’s throughput is 130%
and 347% higher than that of 2PL and OCC.

1 Introduction
Many large-scale Web services, such as Amazon, rely
on a distributed online transaction processing (OLTP)
system as their storage backend. OLTP systems re-
quire concurrency control to guarantee strict serializabil-
ity [12, 13], so that websites running on top of them can
function correctly. Without strong concurrency control,
sites could sell items that are out of stock, deliver items
to customers twice, double-charge a customer for a sale,
or indicate to a customer they did not purchase an item
they actually did.

While concurrency control is a well-studied field, tra-
ditional protocols such as two-phase locking (2PL) [12]
and optimistic concurrency control (OCC) [36] perform
poorly when workloads exhibit a non-trivial amount of

*The full name is Tsinghua National Laboratory for Information
Science and Technology (TNLIST), Department of Computer Science
and Technology, Tsinghua University, Beijing 100084, China

contention [8, 30]. The performance drop is particu-
larly pronounced when running these protocols in a dis-
tributed setting. When there are many conflicting concur-
rent transactions, 2PL and OCC abort and retry many of
them, leading to low throughput and high latency. In our
evaluation in § 5, the throughput of 2PL and OCC drops
to less than 10% of its maximum as contention increases.

Unfortunately, contention is not rare in large-scale
OLTP applications. For example, consider a transaction
where a customer purchases a few items from a shopping
website. Concurrent purchases by different customers
on the same item create conflicts. Moreover, as the sys-
tem scales—i.e., the site becomes more popular and has
more customers, but maintains a relatively stable set of
items—concurrent purchases to the same item are more
likely to happen, leading to a greater contention rate.

In this paper we presents ROCOCO (ReOrdering COn-
flicts for COncurrency), a distributed concurrency con-
trol protocol that extracts more concurrency under con-
tended workload than previous approaches. ROCOCO
achieves safe interleavings without aborting or blocking
transactions using two key techniques: 1) deferred and
reordered execution using dependency tracking [38, 46];
and 2) offline safety checking based on the theory of
transaction chopping [50, 49, 57].

ROCOCO is a two round protocol that executes trans-
actions that have been structured into a collection of
atomic pieces, each typically involving data access on
a single server. A set of coordinators run the protocol on
behalf of clients. The first phase distributes the pieces
to the appropriate servers and establishes a provisional
order of execution on each server. Servers typically de-
fer execution of the pieces until the second round so they
can be reordered if necessary. Servers complete the first
phase by replying to the coordinator with dependency in-
formation that indicates the order of arrival for conflict-
ing pieces of different transactions.

The coordinator aggregates this dependency informa-
tion and distributes it to all involved servers. Servers use
the aggregated dependency information to recognize if
the pieces of concurrent transactions arrived at servers in
a strictly serializable order in the first phase. If so, they
execute pieces in that order in the second phase. If not,
servers reorder the pieces deterministically and then exe-

1

480 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

cute them. In both cases, ROCOCO is able to avoid aborts
and commits all transactions.

Dependencies are usually exchanged only between
servers and coordinators in the two round protocol. But,
when conflicting transactions have overlapping but non-
identical sets of servers, ROCOCO occasionally requires
additional server-to-server communication to ensure a
deterministic order.

Not all transaction pieces can have their execution de-
ferred to the second round, e.g., a piece that reads a value
to determine what data item to access next. Such pieces
must be executed immediately in ROCOCO’s first phase,
which can result in un-serializable interleavings. To en-
sure that a strictly serializable reordering is always pos-
sible during runtime, ROCOCO performs an offline check
on the transaction workload prior to starting the transac-
tions. The offline checker identifies and categorizes po-
tential conflicts. If some pieces of a transaction are found
to have unsafe interleaving that cannot be reordered, RO-
COCO merges those pieces into a single atomic piece.
While a traditional concurrency control protocol is used
to execute a merged piece across servers atomically, the
ROCOCO protocol is used to execute multiple merged
pieces within a transaction.

We implemented ROCOCO and evaluated its perfor-
mance using a scaled TPC-C benchmark [5]. RO-
COCO supports the TPC-C workload without requiring
any merged pieces and avoids ever aborting. ROCOCO
outperforms 2PL and OCC in workloads with varying
degrees of contention. When the contention is high, RO-
COCO’s throughput is 130% and 347% higher than that of
2PL and OCC. As the system scales across TPC-C ware-
house districts and contention increases, the throughput
of ROCOCO continues to grow while the throughput of
OCC drops to almost zero and 2PL does not scale.

2 Overview

ROCOCO targets OLTP workloads in large-scale dis-
tributed database systems, e.g., the backend of e-
commerce sites like Amazon. For scalability, database
tables are sharded row-wise across multiple servers, with
each server holding a subset of certain tables. Thus, a
transaction accessing different table rows typically needs
to contact more than one server and requires a distributed
concurrency control protocol.

For performance, we assume a setup where transac-
tions are executed as stored procedures, as in earlier
work [34, 52, 26, 28, 41, 56, 55]. Specifically, a dis-
tributed transaction consists of a set of stored proce-
dures called pieces. Each piece accesses one or more
data items stored on a single server using user-defined
logic. Thus, each piece can be executed atomically with

transaction new_order_fragment:
#simplified new-order "buys" 1 of itema,itemb
input: itema, itemb
begin

...
p1: # reduce stock level of itema

R(tab="Stock", key=itema) → stock
if (stock > 1):

W(tab="Stock", key=itema) ← stock - 1
...

p2: # reduce stock level of itemb
R(tab="Stock", key=itemb) → stock
if (stock > 1):

W(tab="Stock", key=itemb) ← stock - 1
...

end

Figure 1: A fragment of TPC-C new-order transac-
tion containing two pieces.

respect to other concurrent pieces by employing proper
local concurrency control. We assume stored procedures
are distributed to all servers apriori because they have a
minimal storage costs.

2.1 Traditional Approaches Abort Conflicts

Application programmers prefer the strongest isolation
level, strict serializability [12, 31], to simplify the rea-
soning of correctness in the face of concurrent trans-
actions. To guarantee strict serializability, a distributed
storage system typically runs standard concurrency con-
trol schemes such as two-phase locking (2PL) or opti-
mistic concurrency control (OCC), combined with two-
phase commit (2PC) [19].

2PL and OCC perform poorly for contended work-
load with many conflicting transactions. As an example,
consider a simplified fragment of the TPC-C new-order
transaction which simulates a customer purchasing two
items from a store (Figure 1). The transaction contains
two stored procedure pieces, p1 and p2, each of which
reduces the stock level of a different item. Although
each piece can be executed atomically on its server, dis-
tributed concurrency control is required to prevent non-
serializable interleaving of pieces across servers. For in-
stance, suppose a merchant keeps the same stock level for
item a (e.g., a xbox) and item b (e.g., a xbox controller)
and always sells the two items as bundles. Without dis-
tributed concurrency control, one customer could receive
an item a, but not item b, while another customer could
receive item b but not item a.

We first examine the behavior of OCC with two trans-
actions, T1 and T2. Both purchase the same two items, a
and b, that are stored on different servers. Any interleav-
ing of T1 and T2’s pieces during execution causes aborts
when performing OCC validation during 2PC. For exam-
ple, if T2 reads the stock level of a after T1 reads it, but

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 481

S1

S2

T1

T2

ABORTED

item b

item a

FAILED

FAILED

T1→T2

S1

S2

T1

T2

T2→T1

COMMITTED
item b

item a

T1→T2

T2→T1

T1↔T2

T1↔T2

ABORTED

Execute
Commit

(via 2PC)
Start

(delay execution)

COMMITTED

Commit
(reorder & execute)

(a) OCC

S1

S2

T1

T2

ABORTED

item b

item a

FAILED

FAILED

T1→T2

S1

S2

T1

T2

T2→T1

COMMITTED
item b

item a

T1→T2

T2→T1

T1↔T2

T1↔T2

ABORTED

Execute
Commit

(via 2PC)
Start

(execution is deferred)

COMMITTED

Commit
(reorder & execute)

(b) ROCOCO
Figure 2: A possible interleaving of two concurrent new-order transaction fragments. In the left figure (OCC),
both transactions fail to validate and abort. In the right figure (ROCOCO), the interference is captured by
dependencies and the transactions are reordered to a strictly serializable order before execution.

before T1 commits its update to a, then T2 will later fail
to validate and abort. Figure 2a shows another example
where both T1 and T2 are aborted during 2PC because
their corresponding 2PC prepare messages are handled
by servers in different orders.

2PL outperforms OCC under contention but is still far
from satisfactory. 2PL acquires locks for each data ac-
cess, which serializes the execution of transactions as
soon as they perform a conflicting operation. In the new-
order example, as soon as T1 modifies the stock level
of a, T2 is blocked until T1 completes all of its pieces
and commits. In addition to blocking, 2PL also resorts
to aborts to prevent deadlocks [19]. As the amount of
contention increases, so does the probability of having
a deadlock. Furthermore, efficient deadlock prevention
mechanisms such as wound-wait [48] have many false
positives, thereby causing a large number of aborts even
when there is no real deadlock.

2.2 ROCOCO Reorders Conflicts to Commit

Given conditions discussed later, our new concurrency
control protocol, ROCOCO, avoids aborting or blocking
under contention by identifying and then avoiding inter-
ference between transactions. Two transactions interfere
when executing their constituent pieces in their arrival
order at each server would result in a non-serializable
execution. For example, T1 and T2 interfere in Figure 2b
because their pieces arrive in different orders on servers
S1 and S2. If both pieces of T1 arrived before both pieces
of T2 they would not interfere.

ROCOCO tracks potential interference using depen-
dency information between pieces of transactions that
are generated when pieces conflict on a server, i.e., both
access the same data location and at least one of them
writes to it. Servers use dependency information to de-
tect if transactions interfere and deterministically reorder
their pieces so they are executed in the same order on all
involved servers and, thus, no longer interfere.

ROCOCO is able to change the order of execution of
pieces because it uses two rounds of messages to com-
mit them. The first round starts with a transaction coor-
dinator running on behalf of a client disseminating the
pieces of a transaction to the appropriate servers. The
servers do not yet execute the pieces and instead return
dependency information to the coordinator to complete
the first round. The coordinator then combines all the de-
pendency information and distributes it to all the servers
in the second round. The servers then reorder pieces of
the transaction, if necessary, before executing them.

Figure 2b shows an example of ROCOCO in action. S1
observes T1→T2, reflecting the arrival order of the con-
flicting pieces it has received from T1 and T2. Similarly,
S2 observes T2→T1. The coordinator collects T1↔T2 and
sends this dependency information to both servers. The
servers recognize the cycle of interference and determin-
istically order the involved transactions and thus their
constituent pieces before executing them. The ordering
of the two transactions can be any deterministic order,
e.g., the order of their globally unique transactions ids,
which in the example would execute T1 and then T2. With
ROCOCO, T1 and T2 both commit and neither has to abort
or wait for the other.

By reordering interfering transactions instead of abort-
ing them, ROCOCO can achieve significant performance
improvement when there is a non-trivial amount of con-
tention, which is often the case with OLTP workloads.
For example, a complete TPC-C new order transaction
updates a highly contended order-id data field as well as
10 purchased items on average. As the number of con-
current requests rises, the probability of contending on a
purchased item also increases. Moreover, the power-law
distribution often seen in real-world workloads results in
even higher contention on “hot” items.

3

482 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

3 Design

The design of ROCOCO includes an offline checker and
a runtime protocol. The offline checker determines if the
pieces of a collection of transactions can be reordered
correctly at runtime. The runtime protocol tracks the de-
pendencies between pieces and reorders their execution
if necessary for correctness.

In this section, we explain ROCOCO’s offline check
(§ 3.1), runtime protocol (§ 3.2), and sketch its correct-
ness (§ 3.3). We then discuss an important optimization
(§ 3.4) and the fault tolerance mechanism (§ 3.5).

3.1 Checking When Reordering is Viable

Reordering the execution of pieces of interfering transac-
tion is only possible under certain, common, conditions.
This subsection explains the difference between immedi-
ate pieces of a transaction that cannot be reordered and
deferrable pieces that can. Then it explains how RO-
COCO’s offline checker uses transaction profiles includ-
ing immediate/deferrable information to check for the
necessary conditions.

Immediate and deferrable pieces. A piece of a transac-
tion is either immediate or deferrable depending on the
stored procedure it executes. If the output of a piece p
can serve as the input to another piece p′, then p is an
immediate piece because it must be executed before its
parent transaction can move on to its subsequent pieces.
Conversely, a piece is deferrable if its output is not re-
quired by any other piece. A server can postpone the
execution of a deferrable piece until the commit time of
a transaction.

Once executed, immediate pieces cannot be reordered,
which can result in a non-serializable interleaving. As an
example, suppose p1 and p2 in Figure 1 are both im-
mediate instead of deferrable pieces. Then Figure 2’s
message interleaving makes a total ordering of the trans-
actions impossible. In particular, S1 executes piece p1
of T1 before that of T2, fixing T1→T2 in the total order.
However, the execution on S2 fixes T2→T1 in the total
order, a contradiction.

If at least one of the pieces is deferrable, however, a to-
tal order can be achieved. For example, instead suppose
p1 is immediate and p2 is deferrable, then the interleav-
ing can be reordered at S2 so that p2 of T1 is executed
before that of T2, i.e., T1→T2, which is consistent with
the execution at S1 and thus a total order. ROCOCO’s of-
fline checker ensures that there exists such a deferrable
piece for all sets of possibly interfering transactions.

The offline checker. In order to ensure that a serializable
reordering of conflicting pieces is always possible at run-
time, ROCOCO relies on an offline checker that analyzes

the conflict profile of all transactions to be executed. For-
tunately, OLTP workloads typically have a fixed set of
transactions that are known apriori [52], making such an
offline checker practical.

To build ROCOCO’s offline checker, we extend the the-
ory of transaction chopping [50, 57]. For each piece p,
we assume the checker knows whether p is an immediate
or deferrable piece and the database tables and columns
p reads or writes. We do not assume the checker knows
which rows p accesses. In our current implementation,
programmers explicitly write each transaction as a set
of pieces and manually annotate each piece’s type and
database accesses.

The checker works in several steps. First, it constructs
a SC-graph, similar to earlier uses of transaction chop-
ping [50, 57]. Each transaction appears as two instances
in the graph where each piece is a vertex and pieces from
the same transaction instance are connected by S(ibling)-
edges. If two pieces access the same database table and
at least one of the accesses is a write, they are connected
by a C(onflict)-edge. If a cycle in the graph contains both
S- and C-edges, it is a SC-cycle. Each SC-cycle signals a
potential conflict that can lead to non-serializable execu-
tion [50, 57].

Next, the checker tags each vertex as either an
I(mmediate) or D(eferrable) piece. The checker virally
propagates immediacy across C-edge by changing the tag
of any piece with a C-edge to an I piece to also be I until
there are no C-edges between pieces with different I/D
tags. We refer to a C-edge as I-I (or D-D) if both end
points are I (or D) pieces. There are no I-D edges.

Finally, the checker examines if there exists an unre-
orderable SC-cycle where all C-edges are I-I edges. If
there are none, ROCOCO’s basic protocol can safely re-
order all conflicts to ensure serializability at runtime. In-
tuitively, SC-cycles represent potential non-serializable
interleavings [49]. However, if an SC-cycle contains at
least one D-D edge, ROCOCO can reorder the execu-
tion of the D-D edge’s pieces to break the cycle, thereby
ensuring serializability. For an unreorderable SC-cycle
with all I-I C-edges, the checker proposes to merge those
pieces in the cycle belonging to the same transaction into
a larger atomic piece. In the later section § 4.2, we ex-
plain how ROCOCO relies on traditional distributed con-
currency control methods such as 2PL or OCC to execute
merged pieces.

Figure 3 shows a more complete version of the TPC-
C new-order transaction that includes two new pieces in
addition to the stock-level-reduction piece discussed ear-
lier. p1 reads the next order id (next oid), increments
it, and writes it back. p2 modifies the stock level of the
purchased item. There may be many instances of p2,
depending on how many items the customer buys, de-
noted p′2, p′′2, etc. p3 records the order information in the

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 483

transaction simplified_new_order:
input: [itema, itemb, ...], district d
begin

...
p1: #pick the next order id

R(tab="District",col="next_oid",key=d)→ oid
W(tab="District",col="next_oid",key=d)← oid+1

p2: #reduce the stock level of each item
#(one piece for each item)
R(tab="Stock", key=item)→ stock
if (stock > 1):

W(tab="Stock", key=item)← stock-1
...

p3: #add orderline info for each item
#(one piece for each item)
W(tab="OrderLine", key=item+oid) ← ...
...
end

Figure 3: A simplified TPC-C new-order transaction

p1 p2 p2’

p1 p2 p2’

T2

T1

p3

p3

p3’

p3’

Figure 4: SC-graph of the TPC-C new-order sample
transaction. Gray circles represent immediate pieces;
white circles represent deferrable pieces. Solid lines
represent S-edges; dotted lines represent C-edges.
ROCOCO can safely execute this transaction work-
load because all SC-cycles include at least one D-D
edge.

database using the order id output by p1. There may also
be multiple instances of p3, denoted p′3, p′′3, etc. p1 is an
immediate piece because p3 reads from it while p2 and
p3 are deferrable pieces. Figure 4 shows the SC-graph
of a workload that only contains concurrent new-order
transactions that buy two items. ROCOCO can safely ex-
ecute this workload because all SC-cycles in the graph
have a D-D edge.

User-initiated aborts. Previous systems based on trans-
action chopping [50, 57] sequentially execute pieces and
allow user-initiated aborts only in the first piece. RO-
COCO, in contrast, executes pieces in parallel so there is
no natural “first” piece. For simplicity, we disallow all
user-initiated aborts. 1

3.2 Basic Protocol

ROCOCO’s runtime protocol executes a collection of

1 User-initiated aborts are important if the transaction needs to ter-
minate after it has written to the database, which means all writes need
rollback. If the aborts happen before any writes, it can be replaced with
simple termination.

transactions deemed safe for reordering by the offline
checker. Clients delegates the responsibility of coor-
dinating their transactions to separate coordinator pro-
cesses. There can be many coordinators and a typical
deployment co-locates coordinators with servers.

Once a coordinator receives a client’s transaction re-
quest, it processes the transaction in two phases: start and
commit. In the start phase, the coordinator sends pieces
to servers and collects the returned dependency informa-
tion. In the commit phase, the coordinate disseminates
the aggregated dependency information to all participat-
ing servers who reach a deterministic serializable order
to execute conflicting transactions.

Figure 5 shows a typical message flow for ROCOCO.

The start phase. The start phase of a transaction dis-
tributes its pieces, sets a provisional order for them on
servers, executes immediate pieces, and collects depen-
dency information.

The start phase begins when the coordinator sends out
requests for all pieces of a transaction together with their
inputs to the appropriate servers—i.e., the servers that
store the items read or written by those pieces. If a piece
p is immediate, the server will execute p immediately
and return its output so that the coordinator can proceed
to issue other pieces whose inputs are based on p’s out-
put. If p is deferrable, the server buffers it for later ex-
ecution. The coordinator also parallelizes the issuing of
requests when possible, only blocking a request if its in-
puts are not yet available.

In addition to executing immediate pieces and buffer-
ing deferrable ones, each server maintains a dependency
graph, dep. Each vertex in dep represents a transaction
and its known status, which can be any one in the or-
dered set {STARTED, COMMITTING, DECIDED}. In ad-
dition, for each transaction T involving server S, S keeps
a boolean flag T. f inished to indicate whether server S
has finished committing T . Each edge represents the
order of conflicting pieces between two transactions as
observed by the server. For example, if a server re-
ceives p1 that writes to data item x. Then, upon receiv-
ing p2 that also accesses x, the server adds a direct edge
p1.owner→p2.owner to dep, where p.owner denotes p’s
corresponding transaction. Moreover, each edge is la-
beled depending on the types of p1 and p2 as immediate
or deferred. If both pieces are immediate, the edge is la-
beled as i→; if both are deferrable, the edge is d→. There
cannot be an edge between an immediate and deferrable
piece because the offline checker eliminated such scenar-
ios when it virally propagated immediacy over C-edges.

Figure 10 summarizes how a server processes a start
request in pseudocode. The server returns its updated
dep graph and the piece’s execution output if the piece
is immediate to the coordinator. The coordinator sim-

5

484 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Client

Coord.

Server 1

Server 2

Server 3

start commit

finished

request

① the output of p1 contains the input
 of p3

② receive replies to start requests
 of all pieces

③ the servers may exchange dep-
 endencies to reach a determin-
 istic serializable order

④ all pieces have finished executing
 and all outputs are ready

①

②

③

p3

p1

p2

T

reply

stock

next_oid

order

④

Figure 5: A typical ROCOCO message flow.

function Server S::start_req(p):
S.dep[p.owner].status = STARTED
foreach p’ received by S that conflicts with p

if p.immediate == true

add p’.owner
i→ p.owner to S.dep

else
add p’.owner

d→ p.owner to S.dep
if p.immediate == true

output = execute(p)
return (S.dep, output)

Figure 6: How a server processes a start request.

ply aggregates the returned dependency graphs from all
involved servers (not shown in psuedocode).

The commit phase. The commit phase of a transac-
tion distributes dependency information for all pieces,
ensures each server can safely decide if a piece must
be reordered, deterministically reorders pieces on each
server if necessary, executes deferred pieces, and com-
mits a transaction.

The coordinator begins the commit phase once it has
sent out all start requests and collected their responses.
For each participating server, the coordinator sends a
commit request containing the aggregated dep graph.
When aggregating a set of dependency graphs, one takes
the union of vertexes/edges and sets each vertex’s status
to be the highest one in those graphs.

Figure 7 summarizes how a server handles a commit
request in psuedocode. Upon receiving a commit re-
quest for transaction T , server S updates the status of
T to COMMITTING in its dependency graph, if T.status
is lower than COMMITTING. Server S also aggregates
the dependency information in the commit request into
S.dep.

Next, server S ensures it can safely decide if its piece
of T should be reordered by collecting the transitive clo-
sure of T ’s conflicting transactions’ in S.dep. To do this,
it examines S.dep to find all T ′ that are ancestors of T
and waits for the status of those T ′ to become COMMIT-
TING or DECIDED. In the common case when T ′ involves

server S and S will eventually receive the commit request
of T ′ so it simply waits; in the uncommon case when T ′

does not involve S, it issues a status request for T ′ to a
server S′ involved in T ′. S′ replies with its dependency
graph after S′ has received the commit request of T ′. S
aggregates the received graph with its own.

Next, server S calculates the strongly connected com-
ponent (SCC) of T in S.dep, denoted T SCC, which typi-
cally includes only T . 2 The server then sets the status
of all transactions in T SCC to DECIDED. Next, the server
waits for all ancestors of the T SCC to become DECIDED.
Furthermore, for each ancestor T ′ involving server S, S
also waits for T ′. f inished to become true.

Next, to decide the right execution order for T , server
S topologically sorts T SCC according to i→ edges. To en-
sure that different servers reach a single sorting order,
sorting is done deterministically. This topological sort is
possible if and only if there are no cycles in T SCC con-
nected by only i→ edges. ROCOCO’s offline checker en-
sures this will always be the case by eliminating any SC-
cycle whose C-edges all have the I-I type. We elaborate
this argument further in § 3.3.

Finally, server S executes the deferred pieces of each
transaction T in T SCC that involves S in the sorted order.
Upon finishing executing T , server S sets T. f inished to
be true and returns the results to T ’s coordinator.

When a coordinator has collected the responses from
all participating servers, the transaction is considered
committed and the output is returned to the client.

3.3 Correctness
This subsection presents a proof sketch of correctness. A
more rigorous version of the proof is available in a tech-
nical report [47]. Specifically, we prove that ROCOCO

2 We use the Tarjan algorithm [53] for SCC computation. In the
best case, only those nodes and edges in the SCC need to be visited; In
the worst case, all nodes and edges in the graph need to be visited and
the complexity is O(V+E).

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 485

function Server S::commit_req(T, dep):

S.dep
∪
= dep

S.dep[T].status
∪
= COMMITTING

foreach T’ � T in dep
if T’ does not involve S and

S.dep[T’].status == STARTED
contact S’ involved in T’ and

wait until S.dep[T’].status ≥ COMMITTING
TSCC = find_SCC(T, S.dep)
foreach T’ not in TSCC and T’ � TSCC

wait until S.dep[T’].status == DECIDED
if T’ involves S

wait until T’.finished == true
deterministic_topological_sort(TSCC)
foreach T’ in TSCC # including T

S.dep[T’].status = DECIDED
if T’ involves S and

T’.finished == false
foreach deferred p’ of T’

p’.output = execute(p’)

T’.output
∪
= p’.output

T’.finished = true
return T.output

Figure 7: How a server processes a commit request.

guarantees strict serializability:
Serializability: [12] The committed transactions have

an equivalent serial schedule, such that all conflicting op-
erations in the actual schedule are ordered in the same
way as in the equivalent serial schedule.

Strict-serializability: [12, 31] The above serial sched-
ule preserves the real-time order, i.e., if transactions T1
commits before T2 starts in real time, T1 appears before
T2 in the equivalent serial schedule.

The proof involves arguments on the serialization
graph, which is a directed graph where each vertex rep-
resents a transaction and each edge represents an ordered
conflict. Suppose transactions T1 and T2 have conflicting
accesses (at least one is a write) to the same data item x.
If T1 accesses x before T2 does, the serialization graph
contains a T1→T2. To prove ROCOCO is serializable,
we must show that any serialization graph it generates
is acyclic [13].

First, we show that all relations in the serialization
graph are captured in the dependency information col-
lected by servers.

Lemma 1. For any transactions T1 and T2, if T1→T2 is in
the serialization graph, then T1→T2 must be included in
the commit request of T2.
Proof Sketch. By definition, T1→T2 in the serialization
graph implies that a pair of conflicting pieces, p1 of T1
and p2 of T2, exist and that p1 executes before p2 on
a corresponding server S. Because the offline checker
has eliminated all I-D conflicts, p1 and p2 are either 1)
both immediate pieces, or 2) both deferrable pieces. In
scenario 1), T1→T2 in the serialization graph means p1
executes before p2 in the start phase and server S adds

T1→T2 to S.dep. By the ROCOCO protocol, this depen-
dency will be sent back to the coordinator, aggregated
with other dependencies, and then appear in T2’s commit
requests. In scenario 2), if p1 executes before p2, then T1
has arrived before T2 at some server S′ in the start phase,
resulting in T1→T2 in S′.dep. Again, by the ROCOCO
protocol, this dependency will be included in T2’s com-
mit request.

Next, we argue that ROCOCO never generates a cycle in
the serialization graph, due to a combination of servers
breaking SCCs with deferred execution and the offline
checker eliminating unreorderable SC-cycles.

Proposition 1. The serialization graph is acyclic.
Proof Sketch. For proof by contradiction, we assume
there exists such a cycle (δ) of transactions in the serial-
ization graph. First, we observe that each server involved
in δ has δ in its dependency graph prior to executing
any transaction in δ in the commit phase. The proof for
this observation is in [47] and is based on Lemma 1 and
the specification of ROCOCO that ensures each involved
server transitively capture conflicting transactions in one
SCC. Next, we note that the cycle δ must contain at least
one pair of deferrable pieces. If all the pieces in δ are
immediate, then δ corresponds to a SC-cycle involving
only I-pieces, which would have been detected and elim-
inated by the offline checker. Last, we obtain a contradic-
tion from the specification of ROCOCO that would have
reordered the deferrable pieces to break δ .

Proposition 2. For any transactions T1 and T2, if T2 starts
after T1 has finished, the serialization graph does not con-
tain a path from T2 to T1, T2�T1.
Proof Sketch. To prove by contraction, we assume
T2�T1 exists in the serialization graph. For any Ti→Tj in
the serialization graph, in order for Tj to become COM-
MITTING on any server S, ROCOCO requires S to have
waited for Ti to become COMMITTING. Therefore, given
a path T2→Ti→Tj→..→T1 in the serialization graph, we
can follow the path in reverse and deduce that T2 has a
status of COMMITTING at some server before T1 becomes
COMMITTING. This implies that T2 has begun its commit
phase before T1 has finished at all servers, which contra-
dicts the fact that T2 has not started.

Proposition 1 implies serializability. Proposition 2 ad-
ditionally shows strict-serializability.

3.4 Reducing Dependency Graphs
In the basic protocol, a server’s dependency graph is ver-
bose and grows without bound over time. We now ex-
plain how to more efficiently store and transmit depen-
dency information.

To reduce the number of edges in S.dep, server S only
adds the nearest dependencies of T in the graph upon

7

486 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

receiving T ’s start phase. The nearest dependencies of
T have the longest path of one hop to T . However, in
contrast to previous work that also tracked the nearest
dependencies [42, 43], ROCOCO has two types of edges
and paths. If a path contains at least one i→ edge, it is
called an i-path. If a path consists of only d→ edges, it is
called a d-path. An i-path is a stronger type than d-path.
A path is longest only if there are no other longer paths
with the same or a stronger type.

T1

T2

T3

d

d

d

T1

T2

T3

d

d

i

T1

T2

T3

d

i

d

(a)

T1

T2

T3

d

d

d

T1

T2

T3

d

d

i

T1

T2

T3

d

i

d

(b)

T1

T2

T3

d

d

d

T1

T2

T3

d

d

i

T1

T2

T3

d

i

d

(c)
Figure 8: Nearest dependencies and longest paths are
shown with solid arrows. T1

d→T3 is not a longest path
in the left and middle figures and thus is safely remov-
able. T1

i→T3 is a longest path in the right figure and
cannot be omitted.

For example, suppose that server S has T1
d→T2 in

S.dep. When S receives a deferrable piece of T3 that
conflicts with both T1 and T2, instead of adding {T1

d→T3,

T2
d→T3} to S.dep, S only adds {T2

d→T3}. Skipping

T1
d→T3 is acceptable because the dependency is still

tracked by T1
d→T2 and T2

d→T3 (Figure 8a). As another
example, suppose that S.dep contains {T1

d→T2} and a

new transaction T3 attempts to add {T1
i→T3, T2

d→T3}. In
this case, edge T1

i→T3 cannot be skipped, because the
path T1

d→T2
d→T3 does not capture the stronger ordering

constraint of T1
i→T3 (Figure 8c).

In practice, ROCOCO tracks one-hop dependencies, a
slightly larger superset of nearest dependencies. When
server S receives a new piece p, it finds only the most re-
cent conflicting piece p′ for each of p’s conflicts and adds
T ′→T to dep. Therefore, if the number of items a piece
accesses is constant, then the time and space complexity
of handling a new piece is O(1).

In the basic protocol, server S returns the full graph
S.dep to the coordinator in the start phase. This is unnec-
essary. In particular, the coordinator only needs to learn
of T ’s ancestors that are not yet DECIDED. Therefore,
server S only computes the subgraph of S.dep containing
T ’s ancestors whose status is lower than DECIDED. Also,
in its reply to a status request for T , a server only needs
to include every undecided ancestors of T if T is not yet
decided; if T is already DECIDED, the server replies with
T SCC.

A transaction is considered committed if the coordina-
tor has received commit replies from all involved servers.
It is tempting to simply remove all committed transac-
tions from a server’s dep. However, it is not correct to do
so because the server may receive a status request for its
committed transaction from another server. To garbage
collect, ROCOCO uses an epoch mechanism similar to
previous work [55, 32]. Each server keeps an epoch num-
ber that slowly increases. A transaction is tagged with an
epoch number when it starts at a server. The epoch num-
ber on a server increases only after all transactions in the
last epoch are all committed, and no other server falls be-
hind or has ongoing transactions at one or more epochs
ago. Dependencies from two epochs ago can be safely
discarded.

3.5 Fault Tolerance

To tolerate failure, each server and the coordinator need
to persist its transaction log to disks and preferably also
replicates it across machines using a Paxos-based repli-
cation system [39, 15]. In ROCOCO, the coordinator logs
the transaction request before starting the transaction, in
case it fails during execution. Each server logs each start
request following its arriving order, including its type and
input. It does not need to log its output, because the
output is deterministic once the order of start requests
is fixed.

If a coordinator fails, after it recovers it will send the
start requests again to all involved servers. For a server
receiving the request, it first examines whether it has re-
ceived this start request before. If so, it returns the same
execution result and dependency graph; If not, it handles
this request normally.

If a server fails, when it recovers it needs to replay all
the start requests before it responds to other requests. In
order to commit these transactions during recovery, the
server asks other servers about the corresponding com-
mit requests. In corner cases, such as all servers crash-
ing, the servers should let the coordinator restart the af-
fected transactions. To accelerate the recovery process,
the server can also log when a transaction commits (i.e.
its finished flag becomes true), but this is off the critical
path of a transaction.

4 Extension

We describe two extensions to the basic design of § 3.
§ 4.1 shows how to optimize read-only transactions.
§ 4.2 explains how ROCOCO copes with merged pieces
that internally rely on traditional distributed concurrency
control.

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 487

function Coordinator C::do_ro_txn(T):
chop the transaction into pieces.
for a piece pi, inputi is its input,
si is its server
foreach pi in T

wait until inputi is ready
outputi = si.ro req(T, pi, inputi)

repeat
save the result of the last round read,
and issue another round.
output’ = output
reset(input)
foreach pi in T
wait until inputi is ready
outputi = si.ro req(T, pi, input’i)

succeed if the two rounds return the same
until output = output’
return output

Figure 9: Coordinator read-only transaction

4.1 Read-Only Transactions
Read-only transactions often make up a significant frac-
tion of OLTP workloads. Moreover, they often contain
many immediate reads that increase the likelihood of SC-
cycles without a D-D edge. To avoid this increase we
provide a separate solution to execute read-only transac-
tions that allows the offline checker to exclude read-only
transactions from the constructed SC-graph.

To process a read-only transaction, the coordinator
sends a round of read requests to each involved server.
When a server receives the request it waits for all con-
flicting transactions to become FINISHED and then it ex-
ecutes the read and returns the result. After the coordi-
nator finishes this round, it issues a second round of re-
quests which are identical to the first round, i.e., they also
wait for all conflicting transactions to become FINISHED.
The transaction is considered successful if both rounds
return the same results. If the results do not match, the
coordinator simply re-starts the transaction.

Waiting for all conflicting transaction to finish is the
key to ensuring the combination of this read-only trans-
action algorithm with the rest of ROCOCO is still strictly
serializable. When one server waits for a transaction to
finish it is forcing that transaction to at least start on all
other involved servers. Then, if a first round read hap-
pened on a different server before that transaction, its
corresponding second round read will at least encounter
the transaction in the start phase. The second round read
will wait for it to finish before executing, which ensures
it will see a different result from the first round and force
another round of reads.

4.2 Merged Pieces
In § 3, we assume that the offline checker finds only re-
orderable SC-cycles so that each piece only involves one

function Server S::ro_req(T, p, input):
foreach T’ in S.dep and T’ involves S

and T’ conflicts with piece p
wait until T’.finished is true

output = execute(p)
return output

Figure 10: Server read-only transaction

server at runtime. When the offline checker discovers un-
reorderable SC-cycles, it combines the pieces in the cycle
that belong to the same transaction into a single merged
piece. In contrast with the simple pieces discussed above
that execute on a single server, a merged piece can be dis-
tributed across multiple servers. ROCOCO relies on tra-
ditional distributed concurrency control to execute each
merged piece atomically across servers.

Fortunately, merged pieces are simple to integrate into
the overall design of ROCOCO. A merged piece contains
only immediate simple pieces, otherwise, it would not
have contributed to an unreorderable SC-cycle. This al-
lows the coordinator to use an OCC-based protocol to ex-
ecute the sub-pieces of a merged piece in the start phase.
Each server returns its dependency information in the
normal way.

For example, suppose piece p2 in Figure 4 is an imme-
diate piece. As a result, p1 and p2 and their counterparts
in the other new-order instance lead to an unreorderable
SC-cycle. To eliminate this unreorderable SC-cycle, RO-
COCO must execute p1 and p2 as a single merged piece.
In the start phase, the coordinator executes p1 and p2 us-
ing a three-phase OCC+2PC (execute-prepare-commit).
If OCC+2PC aborts the coordinator retries until it suc-
ceeds. In the commit phase of OCC+2PC, each server
will then add appropriate edges and vertexes to its dep
graph, and reply with all undecided ancestor transactions
in dep, as in the normal start phase of ROCOCO.

In our experience, simple workloads such as RUBiS[3]
and Retwis[2] do not require merged pieces. TPC-C is
much more complex. However, with the support of read-
only transactions, there are no unreorderable SC-cycles
in TPC-C and therefore no merged pieces.

5 Evaluation
Our evaluation explores two key questions:

1. How does the throughput and latency of ROCOCO
compare to that of traditional approaches under
varying levels of contention?

2. Can ROCOCO scale out with OLTP workloads?

This section will show that ROCOCO has higher
throughput and lower latency than OCC and 2PL under
all levels of contention and that as contention increases

9

488 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ROCOCO’s advantage increases. It will also show that
ROCOCO scales near linearly in a complex workload,
where contention rate grows as the system scales.

5.1 Implementation

We implemented a distributed in-memory key-value
store with transactional support using ROCOCO. Our
prototype contains over 20 000 lines of C++ code, of
which 10 000 are for concurrency control. It uses a cus-
tom RPC library implemented by one of the authors for
communication [4]. It adopts the simple threading model
of H-Store [52] that uses a single worker thread on each
server (core) to sequentially process the server’s transac-
tion pieces. The worker thread performs all blocking op-
erations asynchronously. Currently, stored procedure—
i.e., a piece of a transaction—is written as a C++ function
that is loaded into the server binary at launch time.

2PL and OCC implementation. Our prototype also
implements 2PL+2PC or OCC+2PC. Both protocols in-
clude an execute phase in which the coordinator instructs
each involved server to execute a transaction piece and
then a commit phase based on 2PC.

For 2PL, servers acquire locks during the execute
phase. Subsequently, in the 2PC prepare phase, the co-
ordinator instructs each involved server to durably log
its buffered writes and lock acquisitions. In 2PC’s com-
mit phase, servers release locks and make writes visi-
ble. We use the wound-wait strategy [48], also used in
Spanner[19], to avoid deadlocks.

For OCC, servers return the versions of data items read
to the coordinator during the execute phase. In 2PC’s
prepare phase, each involved server acquires write locks,
acquires read locks to validate the freshness of reads, and
durably logs its writes and vote decisions. In 2PC’s com-
mit phase, servers release locks and make writes visible.

5.2 Experimental Setup

Unless otherwise mentioned, all experiments are con-
ducted on the Kodiak testbed [1]. Each machine has a
single-core 2.6GHz AMD Opteron 252 CPU with 8GB
RAM and Gigabit Ethernet. Most experiments are bot-
tlenecked on the server CPU. We have achieved much
higher throughput when running on a local testbed with
faster CPUs.

In all experiments, clients and servers run on differ-
ent machines. Each client machine runs 1-30 single-
threaded client processes while each server machine runs
a single server process. Each data point in the graphs rep-
resents the median of at least five trials. Each trial is run
for over 60s with the first and last quarter of each trial
elided to avoid start up and cool down artifacts.

Figure 11: Throughput of baseline operations in-
volving 3 servers. The transaction workload for
OCC/2PL/ROCOCO has no contention.

Logging is turned off for all experiments because the
Kodiak testbed does not include SSDs. We explore the
overhead of logging to SSDs in our local testbed in Sec-
tion 5.7. Logging always amplifies the throughput ad-
vantage of ROCOCO over 2PL and OCC. Logging some-
times increases the latency of ROCOCO over 2PL and
OCC, but this is at most a few ms.

5.3 Micro-Benchmarks

To understand the base performance of our implementa-
tion, we ran a series of micro-benchmarks in a workload
with no contention. The experiment uses three servers
and its workload is a simple transaction that updates
three counters, one on each server.

Figure 11 shows the throughput for a few baseline op-
erations, from left to right, a null RPC to one of the
servers (1 RPC), an RPC performing a database up-
date at one of the servers (1 RPC+DB), three parallel
RPCs each doing a database update at a different server
(3 RPC+DB), and the simple transaction performing 3
database updates using OCC, 2PL, or ROCOCO.

Each server is able to handle ~75k null RPCs per
second and is bottlenecked on CPU. The 1 RPC+DB
throughput is slightly lower and is also bottlenecked on
CPU, suggesting that the cost of a database access is rel-
atively small compared to the cost of RPC. OCC and 2PL
have similar throughput, roughly 1/3 of 3 RPC+DB, be-
cause they both require three rounds of RPCs to commit.
ROCOCO requires two rounds of RPCs but incurs higher
CPU cost to process dependency information, resulting
in similar throughput to 2PL/OCC.

5.4 Scaled TPC-C Workload Overview

We evaluate ROCOCO’s performance under contention
using a scaled out version of the popular TPC-C [5]
benchmark. This subsection explains how we scaled out
TPC-C and how this differs from prior work.

Partition Strategy. Prior work partitioned the TPC-
C database by warehouse [20, 54, 33, 55], with each

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 489

w1 w2 w10000 …

…

w1

d1-d10 d11-d20
…

…

d990-d1000

w2

d1-d10 d11-d20
…

…

d990-d1000

…

…

w100

d1-d10 d11-d20
…

…

d990-d1000

Figure 12: TPC-C sharding and scaling strategy. The left figure is the conventional strategy of scaling by
increasing the number of warehouses. The right figure is our strategy of scaling inside a warehouse. w stands
for warehouse, d stands for district.

server holding all data (including stock level and cus-
tomer orders) related to a warehouse. This partition-by-
warehouse strategy has two downsides. First, because
only a single server handles each warehouse’s data and
requests, there is no performance scaling within a ware-
house. This is acceptable in stock TPC-C that dictates
a relatively low customer-to-warehouse ratio of 30K:1.
However, in practice, a warehouse might need to handle
a much larger population of users. For example, Amazon
has >300 million customers served by ~100 warehouses.
In these scenarios, the throughput of a single warehouse
must scale beyond a single machine. Second, partition-
by-warehouse does not stress the performance of dis-
tributed transactions, because only a minority (<15%)
of all transactions involve more than one server.

To allow scaling within a warehouse, we partition the
database by item or by district, of which there are many
within a warehouse. Tables storing district related infor-
mation are sharded according to warehouse id and
district id (Figure 12). The stock level table is
sharded by warehouse id and item id. We remove
the w ytd field that keeps track of the total value of pur-
chases within a warehouse. To obtain the same informa-
tion, we use a read-only transaction that reads the d ytd
value for each district and sums them up. This strategy
avoids w ytd from becoming a bottleneck for all new-
orders within a warehouse. The original TPC-C bench-
mark uses a ratio of 30K:10:1 between customer, district
and warehouse. We change it to 3M:1K:1 so that our
ratio of customer-to-district remains the same as in the
original TPC-C.

5~15 5~15 5~15 5~15

5~15 5~15 5~15 5~15

New Order

Delivery Payment

Figure 13: SC-graph for the TPC-C benchmark

Transaction pieces and the SC-graph. The TPC-
C benchmark consists of five transactions: new order,
payment, delivery, order status, and stock level. Or-
der status, and stock level are read-only transactions.
Figure 13 shows the SC-graph for the remaining three
transactions. The new order transaction contains five
kinds of pieces, four of which occur 5 to 15 times, de-
pending on how many items the transaction touches.

Table 1 shows the percentage of each transaction type
in a random trial with ROCOCO, which matches the spec-
ified mix for TPC-C, and the average number of pieces
included in each transaction.

new-order payment order-status delivery stock-level

type rw rw ro rw ro
ratio 44.97% 43.00% 4.03% 4.00% 4.00%

pieces 40.97 4 3 40 210.93

Table 1: TPC-C commit transaction mix ratio in
a ROCOCO trial. rw stands for general read-write
transactions and ro stands for read-only.

5.5 Contention

We ran the scaled TPC-C benchmark to explore how
2PL, OCC, and ROCOCO perform under varying levels
of contention. Figure 14 shows the results of this ex-
periment. Figure 14a shows the throughput; Figure 14b
shows the median, 90th percentile, and 99th percentile
latency; and Figure 14c shows the commit rate.

Experimental Parameters. We ran the contention ex-
periment with 8 servers that each served 10 districts. All
80 districts belong to 1 warehouse. We vary the clients
per server from 1 to 100 with each client issuing a mix-
ture of TPC-C transactions according to the specification
in a closed loop. When the number of clients is higher,
there are more requests per server and thus higher con-
tention.

The contention level is also affected by the number of
districts per server. If a core serves too few districts—
e.g., 1 district per server—OCC and 2PL are unable to
saturate the server’s CPU under low contention. This is
because a core needs at least four clients to saturate its

11

490 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

(a) Throughput (b) Latency (c) Commit rates

Figure 14: New-order transaction characteristics in TPC-C mixed workload benchmark, with 8 servers.
In the latency graph, the line shows the 90th percentile, and bars show the median and 99th percentile.

CPU, but four clients on a single district causes many
conflicts. If a core serves too many districts—e.g., 100
districts per server—a large number of clients are needed
to generate even moderate levels of contention. In or-
der to explore varying levels of contention, we configure
each core to serve 10 districts.

Minimal Contention. When the number of concurrent
requests per server is fewer than 10, there is almost no
contention in the system. OCC reaches its maximum
throughput, 5916 new-orders/s, with ~7 clients per server
(Figure 14a) when each server’s CPU is saturated. 2PL
performs similarly, but has a lower maximum through-
put, 4781 new-orders/s, because of the overhead of main-
taining the read/write lock queues. ROCOCO has the
highest maximum throughput, 6197 new-orders/s, be-
cause of computational savings from its one fewer round
of RPCs, which outweighs the computational cost of the
graph computations it performs.

Low Contention. When the number of concurrent re-
quests increases from 10 to 20 per server, the contention
level increases from minimal to low. OCC is very sen-
sitive to this increase in contention with a large perfor-
mance drop to only half of its peak throughput. This
drop in throughput comes from repeated aborts and re-
tries in OCC as evidenced by the drop in its commit rate
to ~60%. 2PL is less sensitive to the increase in con-
tention because it always allows the oldest transaction to
commit, which guarantees progress and limits the num-
ber of retries for a transaction. This is also observable
from the commit rate, which drops by only ~10%. The
median latency of 2PL and OCC both increase to about
20ms, due to the abort/retry. The performance of RO-
COCO is relatively unaffected because it does not abort
on read-write transactions. The median latency of RO-
COCO increase to 10ms, due primarily to more transac-
tion requests waiting in the message queue.

Moderate Contention. When the number of concur-
rent requests increases from 20 to 40 per server, the
contention increases from low to moderate. OCC con-

tinues to be very sensitive to this continued increase in
contention. With 40 concurrent requests per server, the
throughput of OCC is 1774 new-orders/s, one third of
its peak, and its 99th percentile latency is over 67ms.
The performance of 2PL also starts to drop quickly un-
der moderate contention. Its throughput drops to 2950
new-orders/s, half of its peak, and its 99th percentile la-
tency increases to 38ms. ROCOCO is also affected by the
increase to moderate contention, though it is less sensi-
tive than OCC and 2PL because it avoids aborting and
retrying transactions. Its throughput drops by 24%, and
its 99th percentile latency increases to 12ms.

High Contention. When the number of concurrent re-
quests increases to over 40 per server, the benchmark re-
flects a high-level of contention. In the worst case, the
throughput of OCC drops to a few hundred, due to large
amounts of aborts and retries, with its commit rate drop-
ping to 16%. 2PL has better performance than OCC, es-
pecially as measured by latency, because its wound-wait
strategy ensures progress. But, 2PL’s throughput and
commit rate decrease significantly because of the large
number of aborts. ROCOCO demonstrates the best per-
formance with high contention. Its throughput drops to
only 2584 new-orders/s, which is 130% higher than 2PL
and 347% higher than OCC. More importantly, because
ROCOCO avoids aborting and retrying, its latency is only
10%-40% of that of OCC and 2PL.

5.6 Scalability

We evaluate the scalability of ROCOCO in two different
ways. The first is conventional TPC-C scaling by in-
creasing the number of warehouses with a fixed number
of districts per warehouse. In this case all protocols scale
linearly (not shown) because each added warehouse is al-
most entirely independent of the existing warehouses and
the contention rate—i.e., how frequently different trans-
actions interact—remains constant.

The second, and more representative, experiment is
scaling inside a warehouse from 10 districts on 1 server

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 491

(a) 10 clients per server. (b) 20 clients per server. (c) 40 clients per server.

Figure 15: Scaling across districts

to 1000 districts on 100 servers. Scaling the number
of districts increases the contention rate, which we be-
lieve is meaningful because as a system scale it is more
likely that transactions will interact. For instance, in an
e-commerce site, as the site becomes more popular it is
likely to gain many more new customers than new items.
In addition, a small set of items tend to be very popular
and becomes more and more likely than have different
customer try to concurrently purchase them, which is a
source of contention in TPC-C new order transactions.

Our experiments use three levels of contention; low
contention with 10 clients per server, shown in Fig-
ure 15a; moderate contention with 20 clients per server,
shown in Figure 15b; and high contention with 40 clients
per server, shown in Figure 15c.

ROCOCO scales near linearly when contention is low,
with its throughput increasing from 7519 new-orders/s
with 10 servers, to 13971 with 20 server, 25671 with 40
servers, and 47787 with 80 servers. The throughput of
OCC and 2PL are far lower. OCC peaks at 9611 new-
orders/s with 20 servers and 2PL peaks at 17521 with
60 servers. OCC and 2PL do not scale well because the
increasing contention rate leads to more aborts.

ROCOCO also scales near linearly when contention
is moderate, with its throughput increasing from 6921
new-orders/s with 10 servers, to 12736 with 20 server,
23117 with 40 servers, and 39853 with 80 servers. The
higher levels of contention quickly lead to high abort rate
for OCC and 2PL, which peak at 3816 and 10005 new-
orders/s respectively.

When contention is high with 40 clients per server,
ROCOCO still scales well, though this scaling is no
longer near linear. The scaling is not linear because at
this high level of contention ROCOCO propagates and
processes much larger dependency graphs.

5.7 Logging to SSDs

This subsection explores the effect of synchronous log-
ging in 2PL, OCC, and ROCOCO. This experiment
is conducted in our local cluster that is equipped with
SSDs, all other experiments were performed on the Ko-

diak cluster. To ensure that the log is safely persisted we
turned off caching in the operating system and disks. We
call fsync and wait for its return before we consider
the log to be successfully written. We use a batch time of
~1ms before each fsync, which increases throughput
significantly at the cost of slightly higher latency.

Table 2 shows the performance with 8 servers and 20
concurrent clients per server. 2PL and ROCOCO both
have about 20% throughput drop and a latency increase
of 2-3ms. The performance of OCC is more severely im-
pacted as the batched logging resulting in requests hold-
ing their locks for longer in the prepare phase, which in-
creases the likelihood of aborts. This effect is evident in
the decreased commit rate for OCC.

Throughput Commit Latency(ms)
(new-orders/s) Rate (%) 50% 90% 99%

OCC
no log 4109 63.82 8.49 11.35 13.60
logging 2748 54.28 12.17 18.35 22.79

2PL
no log 4944 88.52 8.63 10.20 11.29
logging 4038 88.76 10.89 13.01 14.48

ROCOCO
no log 6464 100 6.52 7.12 7.33
logging 5382 100 8.78 9.62 9.94

Table 2: Effect of logging in our local cluster

6 Related Work
General transactions with 2PL and OCC. Many
seminal distributed databases such as Gamma [22],
Bubba [16], and R* [45] use forms of 2PL. Spanner [19]
is Google’s linearizable global-scale database that uses
2PL for read-write transactions and a separate timestamp
based protocol from read-only transactions. Replicated
Commit optimizes the across site latency in Spanner’s
commit protocol [44].

OCC is also used in several recent systems, such as
H-Store [33] and VoltDB [6]. MDCC [35] uses OCC
for geo-replicated storage. Percolator uses OCC to pro-

13

492 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

vide snapshot isolation [14]. Adya et al. [7] use loosely
synchronized clocks and timestamps in the validation of
OCC.

Observations have been made that OCC and 2PL be-
have well with no contention, but the performance will
drop quickly as contention increases [8, 30]. This is also
what we have observed in our evaluation.

Concurrency control with limited transactions. A
recent trend is to improve performance by supporting
limited types of distributed transactions. For example,
MegaStore [10] only provides serializable transactions
within a data partition. Other systems, such as Gra-
nola [20], Calvin [54] and Sinfonia [9] propose concur-
rency control protocols for transactions with known read-
/write keys.

Sinfonia’s protocol is based on OCC and 2PC. Gra-
nola achieves a deterministic serial order of conflicting
transactions by exchanging timestamp between servers
while Calvin achieves this by using a separate sequenc-
ing layer that assigns all transactions to a deterministic
locking order to ensure isolation at each participating
server. None of these systems supports key-dependent
transactions: the read/write sets must be known apriori.
In contrast, ROCOCO does support such transactions with
immediate pieces.

Dependency and interference. Our work is moti-
vated by recent efforts on consensus protocols such as
Generalized-Paxos [38] and EPaxos [46], which uses de-
pendency to reorder interfering commands in state ma-
chine replication (SMR). Paxos addresses consistent data
replication and is used as a black-box module to provide
replication in databases. However, consensus protocols
bear some resemblance to distributed transaction proto-
cols because reaching consensus is similar to committing
a write-only transactions between several replicas of the
same item [29].

COPS/Eiger [42, 43] track dependency between oper-
ations to provide causal+ consistency in geo-replicated
key-value stores. Dependencies are also used to provide
read-only/write-only transaction support. Warp [24] is a
transaction layer on top of HyperDex [23] and its proto-
col also performs dependency tracking.

A major difference between ROCOCO and the above
dependency-tracking systems is that ROCOCO can avoid
aborts for transactions that require intermediate results
between pieces. ROCOCO pushes this boundary using
offline checking to eliminate possible unreorderable in-
terleavings and by tracking finer grained dependencies to
break dependency cycles in a serializable way.

Transaction decomposition and offline checking.
The database community has explored various aspects
of decomposing a transaction into smaller pieces for im-
proved performance. [27, 11, 17, 25] Shasha et al. [50,

49] propose the theory of transaction chopping which
uses SC-cycles to analyze possible conflicts that may
lead to non-serializable execution. Lynx [57] uses trans-
action chopping and chain execution to achieve seri-
alizability and low latency simultaneously in a geo-
distributed system. It uses commutative operations and
origin ordering to ensure SC-cycles in web applications
are safe. Compared to Lynx, ROCOCO distinguishes re-
orderable SC-cycles from unreorderable ones, executes
pieces in parallel, and supports the strict form of serial-
izability.

Geo-distributed systems with weaker semantics.
Geo-distributed systems face a tradeoff between strong
semantics and low latency. Systems such as Dy-
namo [21] and Cassandra [37] embrace latency and of-
fer eventual consistency without transactional support.
PNUTS [18] offers per-record timeline consistency. Wal-
ter provides parallel snapshot isolation [51] and Gemini
provides Red/Blue consistency [40]. ROCOCO supports
transactions with the strongest semantics (i.e. strict se-
rializability) and thus will incur cross-datacenter latency
when running in a geo-distributed setting.

7 Conclusion
This paper presented ROCOCO, a novel concurrency con-
trol protocol for distributed transactions. With the help
of offline checking, ROCOCO reorders pieces of interfer-
ing transactions into a strict-serializable order and avoids
aborts. In a scaled TPC-C benchmark ROCOCO outper-
formed conventional protocols and showed stable perfor-
mance with increasing contention.

Acknowledgement
This work is supported in part by the National Science
Foundation under award CNS-1218117. We also thank
Garth Gibson and the PRObE team for the testbed (NSF
awards CNS-1042537 and CNS-1042543).

Shuai Mu’s work is also supported by the China Schol-
arship Council.

References
[1] Kodiak testbeds. http://portal.nmc-probe.org/.
[2] Retwis. http://retwis.antirez.com/.
[3] RUBiS. http://rubis.ow2.org/.
[4] Simple RPC in C++.

https://github.com/santazhang/simple-rpc.
[5] TPC-C Benchmark. http://www.tpc.org/tpcc/.
[6] VoltDB. http://www.voltdb.com/.

14

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 493

[7] A. Adya, R. Gruber, B. Liskov, and U. Maheshwari. Ef-
ficient optimistic concurrency control using loosely syn-
chronized clocks. In Proceedings of the 1995 ACM SIG-
MOD International Conference on Management of Data,
SIGMOD ’95, pages 23–34, New York, NY, USA, 1995.
ACM.

[8] R. Agrawal, M. J. Carey, and M. Livny. Concurrency
control performance modeling: alternatives and implica-
tions. ACM Transactions on Database Systems (TODS),
12(4):609–654, 1987.

[9] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and
C. Karamanolis. Sinfonia: a new paradigm for building
scalable distributed systems. In ACM SIGOPS Operating
Systems Review, volume 41, pages 159–174. ACM, 2007.

[10] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing Scalable, Highly Available Storage
for Interactive Services. In CIDR, volume 11, pages 223–
234, 2011.

[11] A. J. Bernstein, D. S. Gerstl, and P. M. Lewis. Concur-
rency control for step-decomposed transactions. Informa-
tion Systems, 24(8):673–698, 1999.

[12] P. A. Bernstein and N. Goodman. Concurrency control in
distributed database systems. ACM Computing Surveys
(CSUR), 13(2):185–221, 1981.

[13] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency control and recovery in database systems, volume
370. Addison-wesley New York, 1987.

[14] P. Bhatotia, A. Wieder, İ. E. Akkuş, R. Rodrigues, and
U. A. Acar. Large-scale incremental data processing with
change propagation. In Proceedings of the 3rd USENIX
conference on Hot topics in cloud computing, pages 18–
18. USENIX Association, 2011.

[15] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters,
and P. Li. Paxos replicated state machines as the ba-
sis of a high-performance data store. In Proceedings of
the 8th USENIX conference on Networked systems design
and implementation, pages 11–11. USENIX Association,
2011.

[16] H. Boral, W. Alexander, L. Clay, G. Copeland, S. Dan-
forth, M. Franklin, B. Hart, M. Smith, and P. Valduriez.
Prototyping Bubba, a highly parallel database system.
Knowledge and Data Engineering, IEEE Transactions
on, 2(1):4–24, 1990.

[17] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz.
Overview of multidatabase transaction management. The
VLDB Journal, 1(2):181–239, 1992.

[18] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silber-
stein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver,
and R. Yerneni. PNUTS: Yahoo!’s hosted data serv-
ing platform. Proceedings of the VLDB Endowment,
1(2):1277–1288, 2008.

[19] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, et al. Spanner: Googles globally dis-
tributed database. ACM Transactions on Computer Sys-
tems (TOCS), 31(3):8, 2013.

[20] J. Cowling and B. Liskov. Granola: low-overhead dis-
tributed transaction coordination. In Proceedings of the
2012 USENIX conference on Annual Technical Confer-
ence, pages 21–21. USENIX Association, 2012.

[21] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly
available key-value store. In Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 205–220, New York, NY, USA,
2007. ACM.

[22] D. J. DeWitt, S. Ghandeharizadeh, D. A. Schneider,
A. Bricker, H.-I. Hsiao, and R. Rasmussen. The Gamma
database machine project. Knowledge and Data Engi-
neering, IEEE Transactions on, 2(1):44–62, 1990.

[23] R. Escriva, B. Wong, and E. G. Sirer. Hyperdex: A dis-
tributed, searchable key-value store. In Proceedings of
the ACM SIGCOMM 2012 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communication, SIGCOMM ’12, pages 25–36, New
York, NY, USA, 2012. ACM.

[24] R. Escriva, B. Wong, and E. G. Sirer. Warp: Lightweight
Multi-Key Transactions for Key-Value Stores. Technical
report, 2014.

[25] H. Garcia-Molina. Using semantic knowledge for trans-
action processing in a distributed database. ACM Trans-
actions on Database Systems (TODS), 8(2):186–213,
1983.

[26] H. Garcia-Molina, R. J. Lipton, and J. Valdes. A mas-
sive memory machine. Computers, IEEE Transactions
on, 100(5):391–399, 1984.

[27] H. Garcia-Molina and K. Salem. Sagas. In Proceed-
ings of the 1987 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’87, pages 249–259,
New York, NY, USA, 1987. ACM.

[28] H. Garcia-Molina and K. Salem. Main memory database
systems: An overview. Knowledge and Data Engineer-
ing, IEEE Transactions on, 4(6):509–516, 1992.

[29] J. Gray and L. Lamport. Consensus on transaction com-
mit. ACM Transactions on Database Systems (TODS),
31(1):133–160, 2006.

[30] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stone-
braker. OLTP through the looking glass, and what we
found there. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages
981–992. ACM, 2008.

[31] M. P. Herlihy and J. M. Wing. Linearizability: A correct-
ness condition for concurrent objects. ACM Transactions
on Programming Languages and Systems (TOPLAS),
12(3):463–492, 1990.

[32] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: wait-free coordination for internet-scale sys-
tems. In Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, volume 8, pages
11–11, 2010.

[33] E. P. Jones, D. J. Abadi, and S. Madden. Low over-

15

494 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

head concurrency control for partitioned main memory
databases. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages
603–614. ACM, 2010.

[34] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin,
S. Zdonik, E. P. Jones, S. Madden, M. Stonebraker,
Y. Zhang, et al. H-store: a high-performance, distributed
main memory transaction processing system. Proceed-
ings of the VLDB Endowment, 1(2):1496–1499, 2008.

[35] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and
A. Fekete. MDCC: Multi-data center consistency. In Pro-
ceedings of the 8th ACM European Conference on Com-
puter Systems, pages 113–126. ACM, 2013.

[36] H.-T. Kung and J. T. Robinson. On optimistic methods
for concurrency control. ACM Transactions on Database
Systems (TODS), 6(2):213–226, 1981.

[37] A. Lakshman and P. Malik. Cassandra: a decentralized
structured storage system. ACM SIGOPS Operating Sys-
tems Review, 44(2):35–40, 2010.

[38] L. Lamport. Generalized consensus and paxos.
[39] L. Lamport. Paxos made simple. ACM Sigact News,

32(4):18–25, 2001.
[40] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and

R. Rodrigues. Making geo-replicated systems fast as pos-
sible, consistent when necessary. In Proceedings USENIX
Symposium on Operating System Design and Implemen-
tation (OSDI), 2012.

[41] K. Li and J. F. Naughton. Multiprocessor main mem-
ory transaction processing. In Proceedings of the first in-
ternational symposium on Databases in parallel and dis-
tributed systems, pages 177–187. IEEE Computer Society
Press, 2000.

[42] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Don’t settle for eventual: scalable causal consis-
tency for wide-area storage with COPS. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems
Principles, pages 401–416. ACM, 2011.

[43] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Stronger semantics for low-latency geo-replicated
storage. In Symposium on Networked Systems Design and
Implementation, 2013.

[44] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases
using replicated commit. Proceedings of the VLDB En-
dowment, 6(9):661–672, 2013.

[45] C. Mohan, B. Lindsay, and R. Obermarck. Transaction
management in the R* distributed database management
system. ACM Transactions on Database Systems (TODS),
11(4):378–396, 1986.

[46] I. Moraru, D. G. Andersen, and M. Kaminsky. There is
more consensus in Egalitarian parliaments. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 358–372. ACM, 2013.

[47] S. Mu, Y. Cui, Y. Zhang, W. Lloyd, and J. Li. Extracting
More Concurrency from Distribted Transactions. Tech-
nical Report TR2014-970, New York University, Courant

Institute of Mathematical Sciences, 2014.
[48] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis II.

System level concurrency control for distributed database
systems. ACM Transactions on Database Systems
(TODS), 3(2):178–198, 1978.

[49] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Trans-
action chopping: Algorithms and performance stud-
ies. ACM Transactions on Database Systems (TODS),
20(3):325–363, 1995.

[50] D. Shasha, E. Simon, and P. Valduriez. Simple rational
guidance for chopping up transactions. In ACM SIGMOD
Record, volume 21, pages 298–307. ACM, 1992.

[51] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transac-
tional storage for geo-replicated systems. In Proceedings
of the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, pages 385–400. ACM, 2011.

[52] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopou-
los, N. Hachem, and P. Helland. The end of an architec-
tural era:(it’s time for a complete rewrite). In Proceedings
of the 33rd international conference on Very large data
bases, pages 1150–1160. VLDB Endowment, 2007.

[53] R. Tarjan. Depth-first search and linear graph algorithms.
SIAM journal on computing, 1(2):146–160, 1972.

[54] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: fast distributed transactions
for partitioned database systems. In Proceedings of the
2012 ACM SIGMOD International Conference on Man-
agement of Data, pages 1–12. ACM, 2012.

[55] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden.
Speedy transactions in multicore in-memory databases.
In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 18–32,
New York, NY, USA, 2013. ACM.

[56] A. Whitney, D. Shasha, and S. Apter. High volume trans-
action processing without concurrency control, two phase
commit, sql or C++. In Seventh International Work-
shop on High Performance Transaction Systems, Asilo-
mar, 1997.

[57] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguil-
era, and J. Li. Transaction chains: achieving serializabil-
ity with low latency in geo-distributed storage systems.
In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles, pages 276–291. ACM,
2013.

16

