usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Physical Disentanglement in a

Container-Based File System

Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/lu

This paper is included in the Proceedings of the
11th USENIX Symposium on
Operating Systems Design and Implementation.
October 6-8, 2014 - Broomfield, CO
978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems
Design and Implementation

is sponsored by USENIX.

Physical Disentanglement in a Container-Based File System

Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Department of Computer Sciences
University of Wisconsin, Madison
{11, yupu, thanhdo, samera, dusseau, remzi } @cs.wisc.edu

Abstract

We introduce IceFS, a novel file system that separates
physical structures of the file system. A new abstrac-
tion, the cube, is provided to enable the grouping of files
and directories inside a physically isolated container. We
show three major benefits of cubes within IceFS: local-
ized reaction to faults, fast recovery, and concurrent file-
system updates. We demonstrate these benefits within
a VMware-based virtualized environment and within the
Hadoop distributed file system. Results show that our
prototype can significantly improve availability and per-
formance, sometimes by an order of magnitude.

1 Introduction

Isolation is central to increased reliability and improved
performance of modern computer systems. For example,
isolation via virtual address space ensures that one pro-
cess cannot easily change the memory state of another,
thus causing it to crash or produce incorrect results [10].

As aresult, researchers and practitioners alike have de-
veloped a host of techniques to provide isolation in var-
ious computer subsystems: Verghese et al. show how
to isolate performance of CPU, memory, and disk band-
width in SGI’s IRIX operating system [58]; Gupta et
al. show how to isolate the CPU across different virtual
machines [26]; Wachs et al. invent techniques to share
storage cache and I/O bandwidth [60]. These are but
three examples; others have designed isolation schemes
for device drivers [15, 54, 61], CPU and memory re-
sources [2,7, 13, 41], and security [25, 30, 31].

One aspect of current system design has remained de-
void of isolation: the physical on-disk structures of file
systems. As a simple example, consider a bitmap, used
in historical systems such as FFS [37] as well as many
modern file systems [19, 35, 56] to track whether inodes
or data blocks are in use or free. When blocks from dif-
ferent files are allocated from the same bitmap, aspects
of their reliability are now entangled,i.e., a failure in that
bitmap block can affect otherwise unrelated files. Sim-
ilar entanglements exist at all levels of current file sys-
tems; for example, Linux Ext3 includes all current up-
date activity into a single global transaction [44], lead-

ing to painful and well-documented performance prob-
lems [4, 5, 8].

The surprising entanglement found in these systems
arises from a central truth: logically-independent file sys-
tem entities are not physically independent. The result is
poor reliability, poor performance, or both.

In this paper, we first demonstrate the root problems
caused by physical entanglement in current file systems.
For example, we show how a single disk-block failure
can lead to global reliability problems, including system-
wide crashes and file system unavailability. We also mea-
sure how a lack of physical disentanglement slows file
system recovery times, which scale poorly with the size
of a disk volume. Finally, we analyze the performance of
unrelated activities and show they are linked via crash-
consistency mechanisms such as journaling.

Our remedy to this problem is realized in a new file
system we call IceFS. IceFS provides users with a new
basic abstraction in which to co-locate logically similar
information; we call these containers cubes. IceFS then
works to ensure that files and directories within cubes
are physically distinct from files and directories in other
cubes; thus data and I/O within each cube is disentangled
from data and I/O outside of it.

To realize disentanglement, IceFS is built upon three
core principles. First, there should be no shared physical
resources across cubes. Structures used within one cube
should be distinct from structures used within another.
Second, there should be no access dependencies. IceFS
separates key file system data structures to ensure that the
data of a cube remains accessible regardless of the status
of other cubes; one key to doing so is a novel directory
indirection technique that ensures cube availability in the
file system hierarchy despite loss or corruption of parent
directories. Third, there should be no bundled transac-
tions. IceFS includes novel transaction splitting machin-
ery to enable concurrent updates to file system state, thus
disentangling write traffic in different cubes.

One of the primary benefits of cube disentanglement
is localization: negative behaviors that normally affect
all file system clients can be localized within a cube. We
demonstrate three key benefits that arise directly from

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 81

such localization. First, we show how cubes enable lo-
calized micro-failures; panics, crashes, and read-only re-
mounts that normally affect the entire system are now
constrained to the faulted cube. Second, we show how
cubes permit localized micro-recovery; instead of an ex-
pensive file-system wide check and repair, the disentan-
glement found at the core of cubes enables IceFS to fully
(and quickly) repair a subset of the file system (and even
do so online), thus minimizing downtime and increasing
availability. Third, we illustrate how transaction splitting
allows the file system to commit transactions from dif-
ferent cubes in parallel, greatly increasing performance
(by a factor of 2x—5x) for some workloads.

Interestingly, the localization that is innate to cubes
also enables a new benefit: specialization [17]. Because
cubes are independent, it is natural for the file system
to tailor the behavior of each. We realize the benefits
of specialization by allowing users to choose different
journaling modes per cube; doing so creates a perfor-
mance/consistency knob that can be set as appropriate
for a particular workload, enabling higher performance.

Finally, we further show the utility of IceFS in two
important modern storage scenarios. In the first, we use
IceFS as a host file system in a virtualized VMware [59]
environment, and show how it enables fine-grained fault
isolation and fast recovery as compared to the state of
the art. In the second, we use IceFS beneath HDFS [49],
and demonstrate that IceFS provides failure isolation be-
tween clients. Overall, these two case studies demon-
strate the effectiveness of IceFS as a building block for
modern virtualized and distributed storage systems.

The rest of this paper is organized as follows. We first
show in Section 2 that the aforementioned problems exist
through experiments. Then we introduce the three princi-
ples for building a disentangled file system in Section 3,
describe our prototype IceFS and its benefits in Section
4, and evaluate IceFS in Section 5. Finally, we discuss
related work in Section 6 and conclude in Section 7.

2 Motivation

Logical entities, such as directories, provided by the file
system are an illusion; the underlying physical entan-
glement in file system data structures and transactional
mechanisms does not provide true isolation. We describe
three problems that this entanglement causes: global fail-
ure, slow recovery, and bundled performance. After dis-
cussing how current approaches fail to address them, we
describe the negative impact on modern systems.

2.1 Entanglement Problems
2.1.1 Global Failure

Ideally, in a robust system, a fault involving one file or
directory should not affect other files or directories, the

Global Failures | Ext3 | Ext4 | Btrfs
Crash 129 341 703
Read-only 64 161 89

Table 1: Global Failures in File Systems. This table shows
the average number of crash and read-only failures in Ext3, Ext4, and
Btrfs source code across 14 versions of Linux (3.0 to 3.13).

Fault Type Ext3 Ext4

Metadata read failure | 70 (66) | 95 (90)
Metadata write failure | 57 (55) | 71 (69)
Metadata corruption | 25 (11) | 62 (28)
Pointer fault | 76 (76) | 123 (85)

Interface fault 8 (1) 63 (8)
Memory allocation | 56 (56) | 69 (68)
Synchronization fault | 17 (14) | 32 (27)

Logic fault 6 (0) 17 (0)
Unexpected states | 42 (40) | 127 (54)

Table 2: Failure Causes in File Systems. This table shows
the number of different failure causes for Ext3 and Ext4 in Linux 3.5,
including those caused by entangled data structures (in parentheses).
Note that a single failure instance may have multiple causes.

remainder of the OS, or other users. However, in current
file systems, a single fault often leads to a global failure.

A common approach for handling faults in current file
systems is to either crash the entire system (e.g., by call-
ing BUG_ON, panic, or assert) or to mark the whole
file system read-only. Crashes and read-only behavior
are not constrained to only the faulty part of the file sys-
tem; instead, a global reaction is enforced for the whole
system. For example, Btrfs crashes the entire OS when
it finds an invariant is violated in its extent tree; Ext3
marks the whole file system as read-only when it de-
tects a corruption in a single inode bitmap. To illus-
trate the prevalence of these coarse reactions, we ana-
lyzed the source code and counted the average number
of such global failure instances in Ext3 with JBD, Ext4
with JBD2, and Btrfs from Linux 3.0 to 3.13. As shown
in Table 1, each file system has hundreds of invocations
to these poor global reactions.

Current file systems trigger global failures to react to
a wide range of system faults. Table 2 shows there are
many root causes: metadata failures and corruptions,
pointer faults, memory allocation faults, and invariant
faults. These types of faults exist in real systems [11,
12,22,33,42,51,52], and they are used for fault injec-
tion experiments in many research projects [20, 45, 46,
53,54, 61]. Responding to these various faults in a non-
global manner is non-trivial; the table shows that a high
percentage (89% in Ext3, 65% in Ext4) of these faults
are caused by entangled data structures (e.g., bitmaps and
transactions).

82 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

Il Ext3 1007

1000 1
5 800 723
£ 600
E 476
2 400
& 231

200

200GB 400GB 600GB 800GB

File-system Capacity

Figure 1: Scalability of E2fsck on Ext3. T7nis figure shows
the fsck time on Ext3 with different file-system capacity. We create the
initial file-system image on partitions of different capacity (x-axis). We
make 20 directories in the root directory and write the same set of files
to every directory. As the capacity changes, we keep the file system at
50% utilization by varying the amount of data in the file set.

2.1.2 Slow Recovery

After a failure occurs, file systems often rely on an offline
file-system checker to recover [39]. The checker scans
the whole file system to verify the consistency of meta-
data and repair any observed problems. Unfortunately,
current file system checkers are not scalable: with in-
creasing disk capacities and file system sizes, the time to
run the checker is unacceptably long, decreasing avail-
ability. For example, Figure 1 shows that the time to
run a checker [55] on an Ext3 file system grows linearly
with the size of the file system, requiring about 1000 sec-
onds to check an 800GB file system with 50% utilization.
Ext4 has better checking performance due to its layout
optimization [36], but the checking performance is simi-
lar to Ext3 after aging and fragmentation [34].

Despite efforts to make checking faster [14, 34, 43],
check time is still constrained by file system size and disk
bandwidth. The root problem is that current checkers are
pessimistic: even though there is only a small piece of
corrupt metadata, the entire file system is checked. The
main reason is that due to entangled data structures, it is
hard or even impossible to determine which part of the
file system needs checking.

2.1.3 Bundled Performance and Transactions
The previous two problems occur because file systems
fail to isolate metadata structures; additional problems
occur because the file system journal is a shared, global
data structure. For example, Ext3 uses a generic journal-
ing module, JBD, to manage updates to the file system.
To achieve better throughput, instead of creating a sepa-
rate transaction for every file system update, JBD groups
all updates within a short time interval (e.g., 5s) into a
single global transaction; this transaction is then commit-
ted periodically or when an application calls £sync ().
Unfortunately, these bundled transactions cause the
performance of independent processes to be bundled.

180 - H saLite % Varmail
146.7
150 -
°
£ 120
3 90 76.1
Ky
(=2}
3 60
£
F 30 20
7 1.9
N 7
Alone Together

Figure 2: Bundled Performance on Ext3. This figure
shows the performance of running SQLite and Varmail on Ext3 in or-
dered mode. The SQLite workload, configured with write-ahead log-
ging, asynchronously writes 40KB values in sequential key order. The
Varmail workload involves 16 threads, each of which performs a series
of create-append-sync and read-append-sync operations.

Ideally, calling £sync() on a file should flush only the
dirty data belonging to that particular file to disk; unfor-
tunately, in the current implementation, calling £sync ()
causes unrelated data to be flushed as well. Therefore,
the performance of write workloads may suffer when
multiple applications are writing at the same time.

Figure 2 illustrates this problem by running a database
application SQLite [9] and an email server work-
load Varmail [3] on Ext3. SQLite sequentially writes
large key/value pairs asynchronously, while Varmail fre-
quently calls £sync () after small random writes. As we
can see, when these two applications run together, both
applications’ performance degrades significantly com-
pared with running alone, especially for Varmail. The
main reason is that both applications share the same jour-
naling layer and each workload affects the other. The
fsync() calls issued by Varmail must wait for a large
amount of data written by SQLite to be flushed together
in the same transaction. Thus, the single shared journal
causes performance entanglement for independent appli-
cations in the same file system. Note that we use an SSD
to back the file system, so device performance is not a
bottleneck in this experiment.

2.2 Limitations of Current Solutions

One popular approach for providing isolation in file sys-
tems is through the namespace. A namespace defines
a subset of files and directories that are made visible to
an application. Namespace isolation is widely used for
better security in a shared environment to constrain dif-
ferent applications and users. Examples include virtual
machines [16,24], Linux containers [2, 7], chroot, BSD
jail [31], and Solaris Zones [41].

However, these abstractions fail to address the prob-
lems mentioned above. Even though a namespace can
restrict application access to a subset of the file system,
files from different namespaces still share metadata, sys-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 83

tem states, and even transactional machinery. As a result,
a fault in any shared structure can lead to a global fail-
ure; a file-system checker still must scan the whole file
system; updates from different namespaces are bundled
together in a single transaction.

Another widely-used method for providing isolation
is through static disk partitions. Users can create multi-
ple file systems on separate partitions. Partitions are ef-
fective at isolating corrupted data or metadata such that
read-only failure can be limited to one partition, but a
single panic () or BUG_ON () within one file system may
crash the whole OS, affecting all partitions. In addition,
partitions are not flexible in many ways and the num-
ber of partitions is usually limited. Furthermore, stor-
age space may not be effectively utilized and disk per-
formance may decrease due to the lack of a global block
allocation. Finally, it can be challenging to use and man-
age a large number of partitions across different file sys-
tems and applications.

2.3 Usage Scenarios

Entanglement in the local file system can cause signif-
icant problems to higher-level services like virtual ma-
chines and distributed file systems. We now demonstrate
these problems via two important cases: a virtualized
storage environment and a distributed file system.

2.3.1 Virtual Machines

Fault isolation within the local file system is of
paramount importance to server virtualization environ-
ments. In production deployments, to increase machine
utilization, reduce costs, centralize management, and
make migration efficient [23, 48, 57], tens of virtual ma-
chines (VMs) are often consolidated on a single host ma-
chine. The virtual disk image for each VM is usually
stored as a single or a few files within the host file sys-
tem. If a single fault triggered by one of the virtual disks
causes the host file system to become read-only (e.g.,
metadata corruption) or to crash (e.g., assertion failures),
then all the VMs suffer. Furthermore, recovering the file
system using fsck and redeploying all VMs require con-
siderable downtime.

Figure 3 shows how VMware Workstation 9 [59] run-
ning with an Ext3 host file system reacts to a read-only
failure caused by one virtual disk image. When a read-
only fault is triggered in Ext3, all three VMs receive an
error from the host file system and are immediately shut
down. There are 10 VMs in the shared file system; each
VM has a preallocated 20GB virtual disk image. Al-
though only one VM image has a fault, the entire host file
system is scanned by e2fsck, which takes more than eight
minutes. This experiment demonstrates that a single fault
can affect multiple unrelated VMs; isolation across dif-
ferent VMs is not preserved.

2.3.2 Distributed File Systems

Physical entanglement within the local file system also
negatively impacts distributed file systems, especially in
multi-tenant settings. Global failures in local file systems
manifest themselves as machine failures, which are han-
dled by crash recovery mechanisms. Although data is
not lost, fault isolation is still hard to achieve due to long
timeouts for crash detection and the layered architecture.
We demonstrate this challenge in HDFS [49], a popular
distributed file system used by many applications.

Although HDFS provides fault-tolerant machinery
such as replication and failover, it does not provide
fault isolation for applications. Thus, applications (e.g.,
HBase [1, 27]) can only rely on HDFS to prevent data
loss and must provide fault isolation themselves. For
instance, in HBase multi-tenant deployments, HBase
servers can manage tables owned by various clients. To
isolate different clients, each HBase server serves a cer-
tain number of tables [6]. However, this approach does
not provide complete isolation: although HBase servers
are grouped based on tables, their tables are stored in
HDFS nodes, which are not aware of the data they store.
Thus, an HDFS server failure will affect multiple HBase
servers and clients. Although indirection (e.g., HBase
on HDFS) simplifies system management, it makes iso-
lation in distributed systems challenging.

Figure 4 illustrates such a situation: four clients con-
currently read different files stored in HDFS when a ma-
chine crashes; the crashed machine stores data blocks for
all four clients. In this experiment, only the first client is
fortunate enough to not reference this crashed node and
thus finishes early. The other three lose throughput for
60 seconds before failing over to other nodes. Although
data loss does not occur as data is replicated on multiple
nodes in HDFS, this behavior may not be acceptable for
latency-sensitive applications.

3 File System Disentanglement

To avoid the problems described in the previous section,
file systems need to be redesigned to avoid artificial cou-
pling between logical entities and physical realization.
In this section, we discuss a key abstraction that enables
such disentanglement: the file system cube. We then dis-
cuss the key principles underlying a file system that re-
alizes disentanglement: no shared physical resources, no
access dependencies, and no bundled transactions.

3.1 The Cube Abstraction

We propose a new file system abstraction, the cube, that
enables applications to specify which files and directo-
ries are logically related. The file system can safely com-
bine the performance and reliability properties of groups
of files and their metadata that belong to the same cube;
each cube is physically isolated from others and is thus

84 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

VM1 mvm2 VM3

100
80
60

fsck: 496s + bootup: 68s
40

Throughput (IOPS)

20

0

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
Time (Second)

Figure 3: Global Failure for Virtual Machines. 7his
figure shows how a fault in Ext3 affects all three virtual machines
(VMs). Each VM runs a workload that writes 4KB blocks randomly
to a 1GB file and calls £sync () after every 10 writes. We inject a
fault at 50s, run e2fsck after the failure, and reboot all three VMs.

completely independent at the file system level.

The cube abstraction is easy to use, with the following
operations:

Create a cube: A cube can be created on demand. A
default global cube is created when a new file system is
created with the mkfs utility.

Set cube attributes: Applications can specify cus-
tomized attributes for each cube. Supported attributes in-
clude: failure policy (e.g., read-only or crash), recovery
policy (e.g., online or offline checking) and journaling
mode (e.g., high or low consistency requirement).

Add files to a cube: Users can create or move files or
directories into a cube. By default, files and directories
inherit the cube of their parent directory.

Delete files from a cube: Files and directories can be
removed from the cube via unlink, rmdir, and rename.

Remove a cube: An application can delete a cube
completely along with all files within it. The released
disk space can then be used by other cubes.

The cube abstraction has a number of attractive prop-
erties. First, each cube is isolated from other cubes both
logically and physically; at the file system level, each
cube is independent for failure, recovery, and journal-
ing. Second, the use of cubes can be transparent to ap-
plications; once a cube is created, applications can in-
teract with the file system without modification. Third,
cubes are flexible; cubes can be created and destroyed
on demand, similar to working with directories. Fourth,
cubes are elastic in storage space usage; unlike parti-
tions, no storage over-provision or reservation is needed
for a cube. Fifth, cubes can be customized for diverse re-
quirements; for example, an important cube may be set
with high consistency and immediate recovery attributes.
Finally, cubes are lightweight; a cube does not require
extensive memory or disk resources.

Client 1 Client2 [Client3 [Client4

@ 210

om 180

2

5

2

<

%7 90

£ 60 60s timeout for
= 30 crash detection

o

0 10 20 30 40 50 60 70 80 90 100
Time (Second)

Figure 4: Impact of Machine Crashes in HDFS. 7nis
figure shows the negative impact of physical entanglement within local
file systems on HDFS. A kernel panic caused by a local file system
leads to a machine failure, which negatively affects the throughput of
multiple clients.

3.2 Disentangled Data Structures

To support the cube abstraction, key data structures
within modern file systems must be disentangled. We
discuss three principles of disentangled data structures:
no shared physical resources, no access dependencies,
and no shared transactions.

3.2.1 No Shared Physical Resources

For cubes to have independent performance and reliabil-
ity, multiple cubes must not share the same physical re-
sources within the file system (e.g., blocks on disk or
pages in memory). Unfortunately, current file systems
freely co-locate metadata from multiple files and direc-
tories into the same unit of physical storage.

In classic Ext-style file systems, storage space is di-
vided into fixed-size block groups, in which each block
group has its own metadata (i.e., a group descriptor, an
inode bitmap, a block bitmap, and inode tables). Files
and directories are allocated to particular block groups
using heuristics to improve locality and to balance space.
Thus, even though the disk is partitioned into multiple
block groups, any block group and its corresponding
metadata blocks can be shared across any set of files. For
example, in Ext3, Ext4 and Btrfs, a single block is likely
to contain inodes for multiple unrelated files and direc-
tories; if I/O fails for one inode block, then all the files
with inodes in that block will not be accessible. As an-
other example, to save space, Ext3 and Ext4 store many
group descriptors in one disk block, even though these
group descriptors describe unrelated block groups.

This false sharing percolates from on-disk blocks up to
in-memory data structures at runtime. Shared resources
directly lead to global failures, since a single corruption
or I/O failure affects multiple logically-independent files.
Therefore, to isolate cubes, a disentangled file system
must partition its various data structures into smaller in-
dependent ones.

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 85

3.2.2 No Access Dependency

To support independent cubes, a disentangled file sys-
tem must also ensure that one cube does not contain ref-
erences to or need to access other cubes. Current file
systems often contain a number of data structures that
violate this principle. Specifically, linked lists and trees
encode dependencies across entries by design. For exam-
ple, Ext3 and Ext4 maintain an orphan inode list in the
super block to record files to be deleted; Btrfs and XFS
use Btrees extensively for high performance. Unfortu-
nately, one failed entry in a list or tree affects all entries
following or below it.

The most egregious example of access dependencies
in file systems is commonly found in the implementation
of the hierarchical directory structure. In Ext-based sys-
tems, the path for reaching a particular file in the direc-
tory structure is implicitly encoded in the physical layout
of those files and directories on disk. Thus, to read a file,
all directories up to the root must be accessible. If a sin-
gle directory along this path is corrupted or unavailable,
a file will be inaccessible.

3.2.3 No Bundled Transactions
The final data structure and mechanism that must be dis-
entangled to provide isolation to cubes are transactions.
To guarantee the consistency of metadata and data, exist-
ing file systems typically use journaling (e.g., Ext3 and
Ext4) or copy-on-write (e.g., Btrfs and ZFS) with trans-
actions. A transaction contains temporal updates from
many files within a short period of time (e.g., 5s in Ext3
and Ext4). A shared transaction batches multiple updates
and is flushed to disk as a single atomic unit in which ei-
ther all or none of the updates are successful.
Unfortunately, transaction batching artificially tan-
gles together logically independent operations in several
ways. First, if the shared transaction fails, updates to all
of the files in this transaction will fail as well. Second, in
physical journaling file systems (e.g., Ext3), a £sync ()
call on one file will force data from other files in the same
transaction to be flushed as well; this falsely couples per-
formance across independent files and workloads.

4 The Ice File System

We now present IceFS, a file system that provides cubes
as its basic new abstraction. We begin by discussing the
important internal mechanisms of IceFS, including novel
directory independence and transaction splitting mech-
anisms. Disentangling data structures and mechanisms
enables the file system to provide behaviors that are lo-
calized and specialized to each container. We describe
three major benefits of a disentangled file system (local-
ized reactions to failures, localized recovery, and special-
ized journaling performance) and how such benefits are
realized in IceFS.

cube inode number, cube pathname
orphan inode list, cube attributes

goot ieE B

C] cube 0 % cube | . cube 2

Figure 5: Disk Layout of IceFS. This figure shows the disk
layout of IceFS. Each cube has a sub-super block, stored after the
global super block. Each cube also has its own separated block groups.
Si: sub-super block for cube i; bg: a block group.

4.1 IceFS

We implement a prototype of a disentangled file system,
IceFS, as a set of modifications to Ext3, a standard and
mature journaling file system in many Linux distribu-
tions. We disentangle Ext3 as a proof of concept; we
believe our general design can be applied to other file
systems as well.

4.1.1 Realizing the Cube Abstraction

The cube abstraction does not require radical changes to
the existing POSIX interface. In IceFS, a cube is imple-
mented as a special directory; all files and sub-directories
within the cube directory belong to the same cube.

To create a cube, users pass a cube flag when they
call mkdir (). IceFS creates the directory and records
that this directory is a cube. When creating a cube, cus-
tomized cube attributes are also supported, such as a spe-
cific journaling mode for different cubes. To delete a
cube, only rmdir () is needed.

IceFS provides a simple mechanism for filesystem iso-
lation so that users have the freedom to define their own
policies. For example, an NFS server can automatically
create a cube for the home directory of each user, while
a VM server can isolate each virtual machine in its own
cube. An application can use a cube as a data container,
which isolates its own data from other applications.

4.1.2 Physical Resource Isolation

A straightforward approach for supporting cubes is to
leverage the existing concept of a block group in many
existing file systems. To disentangle shared resources
and isolate different cubes, IceFS dictates that a block
group can be assigned to only one cube at any time, as
shown in Figure 5; in this way, all metadata associated
with a block group (e.g., bitmaps and inode tables) be-
longs to only one cube. A block group freed by one
cube can be allocated to any other cube. Compared with
partitions, the allocation unit of cubes is only one block
group, much smaller than the size of a typical multiple
GB partition.

When allocating a new data block or an inode for a
cube, the target block group is chosen to be either an
empty block group or a block group already belonging to
the cube. Enforcing the requirement that a block group

86 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

Figure 6: An Example of Cubes and Directory Indi-
rection. This figure shows how the cubes are organized in a direc-
tory tree, and how the directory indirection for a cube is achieved.

is devoted to a single cube requires changing the file and
directory allocation algorithms such that they are cube-
aware without losing locality.

To identify the cube of a block group, IceFS stores
a cube ID in the group descriptor. To get the cube ID
for a file, IceFS simply leverages the static mapping of
inode numbers to block groups as in the base Ext3 file
system; after mapping the inode of the file to the block
group, IceFS obtains the cube ID from the corresponding
group descriptor. Since all group descriptors are loaded
into memory during the mount process, no extra I/O is
required to determine the cube of a file.

IceFS trades disk and memory space for the indepen-
dence of cubes. To save memory and reduce disk 1/O,
Ext3 typically places multiple contiguous group descrip-
tors into a single disk block. IceFS modifies this policy
so that only group descriptors from the same cube can be
placed in the same block. This approach is similar to the
meta-group of Ext4 for combining several block groups
into a larger block group [35].

4.1.3 Access Independence
To disentangle cubes, no cube can reference another
cube. Thus, IceFS partitions each global list that Ext3
maintains into per-cube lists. Specifically, Ext3 stores the
head of the global orphan inode list in the super block. To
isolate this shared list and the shared super block, IceFS
uses one sub-super block for each cube; these sub-super
blocks are stored on disk after the super block and each
references its own orphan inode list as shown in Fig-
ure 5. IceFS preallocates a fixed number of sub-super
blocks following the super block. The maximum number
of sub-super blocks is configurable at mkfs time. These
sub-super blocks can be replicated within the disk sim-
ilar to the super block to avoid catastrophic damage of
sub-super blocks.

In contrast to a traditional file system, if IceFS detects
a reference from one cube to a block in another cube,
then it knows that reference is incorrect. For example,
no data block should be located in a different cube than
the inode of the file to which it belongs.

To disentangle the file namespace from its physi-
cal representation on disk and to remove the naming

App | App2 App3 | App | App2 App3

VI / P4l
o _

. I A T
on-disk | ll I : on-disk
journal I___'e___1 __ journal

% in-memory tx : | preallocated tx . committed tx
-

(a) Ext3/Ext4 (b) IceFS

Figure 7: Transaction Split Architecture. 7nis figure
shows the different transaction architectures in Ext3/4 and IceFS. In
IceFS, different colors represent different cubes’ transactions.

dependencies across cubes, IceFS uses directory in-
direction, as shown in Figure 6. With directory in-
direction, each cube records its top directory; when
the file system performs a pathname lookup, it first
finds a longest prefix match of the pathname among
the cubes’ top directory paths; if it does, then only
the remaining pathname within the cube is traversed
in the traditional manner. For example, if the user
wishes to access /home/bob/research/paper.tex
and /home/bob/research/ designates the top of a
cube, then IceFS will skip directly to parsing paper.tex
within the cube. As a result, any failure outside of this
cube, or to the home or bob directories, will not affect
accessing paper.tex.

In IceFS, the path lookup process performed by the
VES layer is modified to provide directory indirection for
cubes. The inode number and the pathname of the top di-
rectory of a cube are stored in its sub-super block; when
the file system is mounted, IceFS pins in memory this in-
formation along with the cube’s dentry, inode, and path-
name. Later, when a pathname lookup is performed, VFS
passes the pathname to IceFS so that IceFS can check
whether the pathname is within any cube. If there is no
match, then VFS performs the lookup as usual; other-
wise, VFS uses the matched cube’s dentry as a shortcut
to resolve the remaining part of the pathname.

4.14 Transaction Splitting
To disentangle transactions belonging to different cubes,
we introduce transaction splitting, as shown in Figure 7.
With transaction splitting, each cube has its own run-
ning transaction to buffer writes. Transactions from dif-
ferent cubes are committed to disk in parallel without
any waiting or dependencies across cubes. With this ap-
proach, any failure along the transaction I/O path can be
attributed to the source cube, and the related recovery ac-
tion can be triggered only for the faulty cube, while other
healthy cubes still function normally.

IceFS leverages the existing generic journaling mod-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 87

ule of Ext3, JBD. To provide specialized journaling for
different cubes, each cube has a virtual journal managed
by JBD with a potentially customized journaling mode.
When IceFS starts an atomic operation for a file or di-
rectory, it passes the related cube ID to JBD. Since each
cube has a separate virtual journal, a commit of a running
transaction will only be triggered by its own fsync () or
timeout without any entanglement with other cubes.

Different virtual journals share the physical journal
space on disk. At the beginning of a commit, IceFS will
first reserve journal space for the transaction of the cube;
a separate committing thread will flush the transaction
to the journal. Since transactions from different cubes
write to different places on the journal, IceFS can per-
form multiple commits in parallel. Note that, the original
JBD uses a shared lock to synchronize various structures
in the journaling layer, while IceFS needs only a single
shared lock to allocate transaction space; the rest of the
transaction operations can now be performed indepen-
dently without limiting concurrency.

4.2 Localized Reactions to Failures

As shown in Section 2, current file systems handle seri-
ous errors by crashing the whole system or marking the
entire file system as read-only. Once a disentangled file
system is partitioned into multiple independent cubes,
the failure of one cube can be detected and controlled
with a more precise boundary. Therefore, failure isola-
tion can be achieved by transforming a global failure to
a local per-cube failure.

4.2.1 Fault Detection

Our goal is to provide a new fault-handling primitive,
which can localize global failure behaviors to an isolated
cube. This primitive is largely orthogonal to the issue of
detecting the original faults. We currently leverage exist-
ing detection mechanism within file systems to identify
various faults.

For example, file systems tend to detect metadata cor-
ruption at the I/O boundary by using their own semantics
to verify the correctness of file system structures; file sys-
tems check error conditions when interacting with other
subsystems (e.g., failed disk read/writes or memory allo-
cations); file systems also check assertions and invariants
that might fail due to concurrency problems.

IceFS modifies the existing detection techniques to
make them cube-aware. For example, Ext3 calls
ext3_error () to mark the file system as read-only on an
inode bitmap read I/O fault. IceFS instruments the fault-
handling and crash-triggering functions (e.g., BUG_ON())
to include the ID of the responsible cube; pinpointing the
faulty cube is straightforward as all metadata is isolated.
Thus, IceFS has cube-aware fault detectors.

One can argue that the incentive for detecting prob-
lems in current file systems is relatively low because

many of the existing recovery techniques (e.g., calling
panic()) are highly pessimistic and intrusive, making
the entire system unusable. A disentangled file system
can contain faults within a single cube and thus provides
incentive to add more checks to file systems.

4.2.2 Localized Read-Only

As a recovery technique, IceFS enables a single cube
to be made read-only. In IceFS, only files within a
faulty cube are made read-only, and other cubes remain
available for both reads and writes, improving the over-
all availability of the file system. IceFS performs this
per-cube reaction by adapting the existing mechanisms
within Ext3 for making all files read-only.

To guarantee read-only for all files in Ext3, two steps
are needed. First, the transaction engine is immediately
shut down. Existing running transactions are aborted,
and attempting to create a new transaction or join an ex-
isting transaction results in an error code. Second, the
generic VES super block is marked as read-only; as a
result, future writes are rejected.

To localize read-only failures, a disentangled file sys-
tem can execute two similar steps. First, with the transac-
tion split framework, IceFS individually aborts the trans-
action for a single cube; thus, no more transactions are al-
lowed for the faulty cube. Second, the faulty cube alone
is marked as read-only, instead of the whole file system.
When any operation is performed, IceFS now checks this
per-cube state whenever it would usually check the super
block read-only state. As a result, any write to a read-
only cube receives an error code, as desired.

4.2.3 Localized Crashes

Similarly, IceFS is able to localize a crash for a failed
cube, such that the crash does not impact the entire oper-
ating system or operations of other cubes. Again, IceFS
leverages the existing mechanisms in the Linux kernel
for dealing with crashes caused by panic (), BUG(), and
BUG_ON (). IceFS performs the following steps:

e Fail the crash-triggering thread: When a thread
fires an assertion failure, IceFS identifies the cube
being accessed and marks that cube as crashed. The
failed thread is directed to the failure path, during
which the failed thread will free its allocated re-
sources (e.g., locks and memory). IceFS adds this
error path if it does not exist in the original code.

* Prevent new threads: A crashed cube should re-
ject any new file-system request. IceFS identifies
whether a request is related to a crashed cube as
early as possible and return appropriate error codes
to terminate the related system call. Preventing new
accesses consists of blocking the entry point func-
tions and the directory indirection functions. For
example, the state of a cube is checked at all the
callbacks provided by Ext3, such as super block

88 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

operations (e.g., ext3_write_inode()), directory
operations (e.g., ext3_readdir()), and file oper-
ations (e.g., ext3_sync_file()). One complica-
tion is that many system calls use either a pathname
or a file descriptor as an input; VFS usually trans-
lates the pathname or file descriptor into an inode.
However, directory indirection in IceFS can be used
to quickly prevent a new thread from entering the
crashed cube. When VFS conducts the directory in-
direction, IceFS will see that the pathname belongs
to a crashed cube and VFS will return an appropri-
ate error code to the application.

e Evacuate running threads: Besides the crash-
triggering thread, other threads may be accessing
the same cube when the crash happens. IceFS
waits for these threads to leave the crashed cube,
so they will free their kernel and file-system re-
sources. Since the cube is marked as crashed, these
running threads cannot read or write to the cube and
will exit with error codes. To track the presence
of on-going threads within a cube, IceFS maintains
a simple counter for each cube; the counter is in-
cremented when a system call is entered and decre-
mented when a system call returns, similar to the
system-call gate [38].

* Clean up the cube: Once all the running threads
are evacuated, IceFS cleans up the memory states
of the crashed cube similar to the unmount process.
Specifically, dirty file pages and metadata buffers
belonging to the crashed are dropped without being
flushed to disk; clean states, such as cached dentries
and inodes, are freed.

4.3 Localized Recovery

As shown in Section 2, current file system checkers do
not scale well to large file systems. With the cube ab-
straction, IceFS can solve this problem by enabling per-
cube checking. Since each cube represents an indepen-
dent fault domain with its own isolated metadata and no
references to other cubes, a cube can be viewed as a basic
checking unit instead of the whole file system.

4.3.1 Offline Checking
In a traditional file-system checker, the file system must
be offline to avoid conflicts with a running workload. For
simplicity, we first describe a per-cube offline checker.
Ext3 uses the utility e2fsck to check the file system in
five phases [39]. IceFS changes e2fsck to make it cube-
aware; we call the resulting checker ice-fsck. The main
idea is that IceFS supports partial checking of a file sys-
tem by examining only faulty cubes. In IceFS, when a
corruption is detected at run time, the error identifying
the faulty cube is recorded in fixed locations on disk.
Thus, when ice-fsck is run, erroneous cubes can be easily
identified, checked, and repaired, while ignoring the rest

of the file system. Of course, ice-fsck can still perform a
full file system check and repair, if desired.

Specifically, ice-fsck identifies faulty cubes and their
corresponding block groups by reading the error codes
recorded in the journal. Before loading the metadata
from a block group, each of the five phases of ice-fsck
first ensures that this block group belongs to a faulty
cube. Because the metadata of a cube is guaranteed to
be self-contained, metadata from other cubes not need to
be checked. For example, because an inode in one cube
cannot point to an indirect block stored in another cube
(or block group), ice-fsck can focus on a subset of the
block groups. Similarly, checking the directory hierar-
chy in ice-fsck is simplified; while e2fsck must verify
that every file can be connected back to the root direc-
tory, ice-fsck only needs to verify that each file in a cube
can be reached from the entry points of the cube.

4.3.2 Online Checking

Offline checking of a file system implies that the data
will be unavailable to important workloads, which is not
acceptable for many applications. A disentangled file
system enables on-line checking of faulty cubes while
other healthy cubes remain available to foreground traf-
fic, which can greatly improve the availability of the
whole service.

Online checking is challenging in existing file systems
because metadata is shared loosely by multiple files; if
a piece of metadata must be repaired, then all the re-
lated files should be frozen or repaired together. Coor-
dinating concurrent updates between the checker and the
file system is non-trivial. However, in a disentangled file
system, the fine-grained isolation of cubes makes online
checking feasible and efficient.

We note that online checking and repair is a power-
ful recovery mechanism compared to simply crashing or
marking a cube read-only. Now, when a fault or corrup-
tion is identified at runtime with existing detection tech-
niques, IceFS can unmount the cube so it is no longer
visible, and then launch ice-fsck on the corrupted cube
while the rest of the file system functions normally. In
our implementation, the on-line ice-fsck is a user-space
program that is woken up by IceFS informed of the ID of
the faulty cubes.

4.4 Specialized Journaling
As described previously, disentangling journal transac-
tions for different cubes enables write operations in dif-
ferent cubes to proceed without impacting others. Disen-
tangling journal transactions (in conjunction with disen-
tangling all other metadata) also enables different cubes
to have different consistency guarantees.

Journaling protects files in case of system crashes, pro-
viding certain consistency guarantees, such as metadata

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 89

or data consistency. Modern journaling file systems sup-
port different modes; for example, Ext3 and Ext4 sup-
port, from lowest to highest consistency: writeback, or-
dered, and data. However, the journaling mode is en-
forced for the entire file system, even though users and
applications may desire differentiated consistency guar-
antees for their data. Transaction splitting enables a spe-
cialized journaling protocol to be provided for each cube.

A disentangled file system is free to choose cus-
tomized consistency modes for each cube, since there are
no dependencies across them; even if the metadata of one
cube is updated inconsistently and a crash occurs, other
cubes will not be affected. IceFS supports five consis-
tency modes, from lowest to highest: no fsync, no jour-
nal, writeback journal, ordered journal and data journal.
In general, there is an incentive to choose modes with
lower consistency to achieve higher performance, and
an incentive to choose modes with higher consistency to
protect data in the presence of system crashes.

For example, a cube that stores important configura-
tion files for the system may use data journaling to en-
sure both data and metadata consistency. Another cube
with temporary files may be configured to use no journal
(i.e., behave similarly to Ext2) to achieve the highest per-
formance, given that applications can recreate the files if
a crash occurs. Going one step further, if users do not
care about the durability of data of a particular applica-
tion, the no fsync mode can be used to ignore £fsync ()
calls from applications. Thus, IceFS gives more control
to both applications and users, allowing them to adopt a
customized consistency mode for their data.

IceFS uses the existing implementations within JBD
to achieve the three journaling modes of writeback, or-
dered, and data. Specifically, when there is an update
for a cube, IceFS uses the specified journaling mode to
handle the update. For no journal, IceFS behaves like a
non-journaled file system, such as Ext2, and does not use
the JBD layer at all. Finally, for no fsync, IceFS ignores
fsync () system calls from applications and directly re-
turns without flushing any related data or metadata.

4.5 Implementation Complexity

We added and modified around 6500 LOC to Ext3/JBD
in Linux 3.5 for the data structures and journaling iso-
lation, 970 LOC to VFS for directory indirection and
crash localization, and 740 LOC to e2fsprogs 1.42.8 for
file system creation and checking. The most challenging
part of the implementation was to isolate various data
structures and transactions for cubes. Once we carefully
isolated each cube (both on disk and in memory), the
localized reactions to failures and recovery was straight-
forward to achieve.

Workload Ext3 IceFS Difference
(MB/s) | (MB/s)

Sequential write 98.9 98.8 0%
Sequential read 107.5 107.8 +0.3%
Random write 2.1 2.1 0%
Random read 0.7 0.7 0%
Fileserver 73.9 69.8 -5.5%
Varmail 22 2.3 +4.5%
Webserver 151.0 1504 -0.4%

Table 3: Micro and Macro Benchmarks on Ext3 and
IceFS. This table compares the throughput of several mi-
cro and macro benchmarks on Ext3 and IceFS. Sequential
write/read are writing/reading a 1GB file in 4KB requests. Ran-
dom write/read are writing/reading 128MB of a IGB file in
4KB requests. Fileserver has 50 threads performing creates,
deletes, appends, whole-file writes, and whole-file reads. Var-
mail emulates a multi-threaded mail server. Webserver is a
multi-threaded read-intensive workload.

5 Evaluation of IceFS

We present evaluation results for IceFS. We first evaluate
the basic performance of IceFS through a series of mi-
cro and macro benchmarks. Then, we show that IceFS
is able to localize many failures that were previously
global. All the experiments are performed on machines
with an Intel(R) Core(TM) i5-2500K CPU (3.30 GHz),
16GB memory, and a 1TB Hitachi Deskstar 7K1000.B
hard drive, unless otherwise specified.

5.1 Opverall Performance

We assess the performance of IceFS with micro and
macro benchmarks. First, we mount both file systems
in the default ordered journaling mode, and run several
micro benchmarks (sequential read/write and random
read/write) and three macro workloads from Filebench
(Fileserver, Varmail, and Webserver). For IceFS, each
workload uses one cube to store its data. Table 3 shows
the throughput of all the benchmarks on Ext3 and IceFS.
From the table, one can see that IceFS performs similarly
to Ext3, indicating that our disentanglement techniques
incur little overhead.

IceFS maintains extra structures for each cube on disk
and in memory. For each cube IceFS creates, one sub-
super block (4KB) is allocated on disk. Similar to the
original super block, sub-super blocks are also cached in
memory. In addition, each cube has its own journaling
structures (278 B) and cached running states (104 B) in
memory. In total, for each cube, its disk overhead is 4
KB and memory overhead is less than 4.5 KB.

5.2 Localize Failures

We show that IceFS converts many global failures into
local, per-cube failures. We inject faults into core file-
system structures where existing checks are capable of
detecting the problem. These faults are selected from

90 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

B Ext3 7 IceFS 1007
1000 -
& 800 723
£ 600
£ 476
X
S 400 -
w 231
200 - 64 91 122

200GB

400GB 600GB
File-system Capacity

800GB

Figure 8: Performance of IceFS Offline Fsck. T7his
figure compares the running time of offline fsck on ext3 and on IceFS
with different file-system size.

Table 2 and they cover all different fault types, includ-
ing memory allocation failures, metadata corruption, I/O
failures, NULL pointers, and unexpected states. To com-
pare the behaviors, the faults are injected in the same
locations for both Ext3 and IceFS. Overall, we injected
nearly 200 faults. With Ext3, in every case, the faults led
to global failures of some kind (such as an OS panic or
crash). IceFS, in contrast, was able to localize the trig-
gered faults in every case.

However, we found that there are also a small number
of failures during the mount process, which are impossi-
ble to isolate. For example, if a memory allocation fail-
ure happens when initializing the super block during the
mount process, then the mount process will exit with an
error code. In such cases, both Ext3 and IceFS will not
be able to handle it because the fault happens before the
file system starts running.

5.3 Fast Recovery

With localized failure detection, IceFS is able to perform
offline fsck only on the faulted cube. To measure fsck
performance on IceFS, we first create file system images
in the same way as described in Figure 1, except that
we make 20 cubes instead of directories. We then fail
one cube randomly and measure the fsck time. Figure 8
compares the offline fsck time between IceFS and Ext3.
The fsck time of IceFS increases as the capacity of the
cube grows along with the file system size; in all cases,
fsck on IceFS takes much less time than Ext3 because it
only needs to check the consistency of one cube.

5.4 Specialized Journaling

We now demonstrate that a disentangled journal enables
different consistency modes to be used by different appli-
cations on a shared file system. For these experiments,
we use a Samsung 840 EVO SSD (500GB) as the un-
derlying storage device. Figure 9 shows the through-
put of running two applications, SQLite and Varmail, in
Ext3, two separated Ext3 on partitions (Ext3-Part) and

B saLite 7 Varmail

2 -
%0 220.3
. 200 -
Q
s
< 1509 122.7 120.6 1254
o
ey
3 1001 76.1
£

50 -

1.9 92
0- V7]

OROR OROR
Ext3 Ext3-Part

OROR NJOR ORNJ
IceFS

Figure 9: Running Two Applications on IceFS with
Different Journaling Mode. This figure compares the perfor-
mance of simultaneously running SQLite and Varmail on Ext3, parti-
tions and IceFS. In Ext3, both applications run in ordered mode (OR).
In Ext3-Part, two separated Ext3 run in ordered mode (OR) on two par-
titions. In IceFS, two separate cubes with different journaling modes
are used: ordered mode (OR) and no-journal mode (NJ).

IceFS. When running with Ext3 and ordered journaling
(two leftmost bars), both applications achieve low perfor-
mance because they share the same journaling layer and
both workloads affect the other. When the applications
run with IceFS on two different cubes, their performance
increases significantly since £sync () calls to one cube
do not force out dirty data to the other cube. Compared
with Ext3-Part, we can find that IceFS achieves great iso-
lation for cubes at the file system level, similar to running
two different file systems on partitions.

We also demonstrate that different applications can
benefit from different journaling modes; in particular,
if an application can recover from inconsistent data af-
ter a crash, the no-journal mode can be used for much
higher performance while other applications can con-
tinue to safely use ordered mode. As shown in Figure 9,
when either SQLite or Varmail is run on a cube with no
journaling, that application receives significantly better
throughput than it did in ordered mode; at the same time,
the competing application using ordered mode continues
to perform better than with Ext3. We note that the or-
dered competing application may perform slightly worse
than it did when both applications used ordered mode
due to increased contention for resources outside of the
file system (i.e., the I/O queue in the block layer for
the SSD); this demonstrates that isolation must be pro-
vided at all layers of the system for a complete solution.
In summary, specialized journaling modes can provide
great flexibility for applications to make trade-offs be-
tween their performance and consistency requirements.

5.5 Limitations
Although IceFS has many advantages as shown in previ-
ous sections, it may perform worse than Ext3 in certain

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 91

Device Ext3 Ext3-Part IceFS
(MB/s) (MB/s) (MB/s)

SSD 40.8 30.6 354

Disk 2.8 2.6 2.7

Table 4: Limitation of IceFS On Cache Flush. This
table compares the aggregated throughput of four Varmail in-
stances on Ext3 and IceFS. Each Varmail instance runs in a
directory of Ext3, an Ext3 partition (Ext3-Part), or a cube of
IceFS. We run the same experiment on both a SSD and hard
disk.

extreme cases. The main limitation of our implementa-
tion is that IceFS uses a separate journal commit thread
for every cube. The thread issues a device cache flush
command at the end of every transaction commit to make
sure the cached data is persistent on device; this cache
flush is usually expensive [21]. Therefore, if many ac-
tive cubes perform journal commits at the same time, the
performance of IceFS may be worse than Ext3 that only
uses one journal commit thread for all updates. The same
problem exists in separated file systems on partitions.

To show this effect, we choose Varmail as our test-
ing workload. Varmail utilizes multiple threads; each
of these threads repeatedly issues small writes and calls
fsync() after each write. We run multiple instances
of Varmail in different directories, partitions or cubes to
generate a large number of transaction commits, stress-
ing the file system.

Table 4 shows the performance of running four Var-
mail instances on our quad-core machine. When running
on an SSD, IceFS performs worse than Ext3, but a lit-
tle better than Ext3 partitions (Ext3-Part). When running
on a hard drive, all three setups perform similarly. The
reason is that the cache flush time accounts for a large
percentage of the total I/O time on an SSD, while the
seeking time dominates the total I/O time on a hard disk.
Since IceFS and Ext3-Part issue more cache flushes than
Ext3, the performance penalty is amplified on the SSD.

Note that this style of workload is an extreme case for
both IceFS and partitions. However, compared with sep-
arated file systems on partitions, IceFS is still a single
file system that can utilize all the related semantic infor-
mation of cubes for further optimization. For example,
IceFS can pass per-cube hints to the block layer, which
can optimize the cache flush cost and provide other per-
formance isolation for cubes.

5.6 Usage Scenarios

We demonstrate that IceFS improves overall system be-
havior in the two motivational scenarios initially intro-
duced in Section 2.3: virtualized environments and dis-
tributed file systems.

80

VM1 mvm2 VM3
100 lceFS-Offline
fsck: 35s
+
bootup: 67s
)
o
Q
5 99 50 100 150 200 250 300 350 400 450 500 550 600 650 700
o
= .
(ST IceFS-Online
3 fsck: 74s
<
'_

+
bootup: 39s

60
40

20

9 50 100 150 200 250 300 350 400 450 500 550 600 €50 700
Time (Second)

Figure 10: Failure Handling for Virtual Machines.
This figure shows how IceF'S handles failures in a shared file system
which supports multiple virtual machines.

5.6.1 Virtual Machines

To show that IceFS enables virtualized environments to
isolate failures within a particular VM, we configure
each VM to use a separate cube in IceFS. Each cube
stores a 20GB virtual disk image, and the file system
contains 10 such cubes for 10 VMs. Then, we inject a
fault to one VM image that causes the host file system to
be read-only after 50 seconds.

Figure 10 shows that IceFS greatly improves the avail-
ability of the VMs compared to that in Figure 3 using
Ext3. The top graph illustrates IceFS with offline re-
covery. Here, only one cube is read-only and crashes;
the other two VMs are shut down properly so the offline
cube-aware check can be performed. The offline check
of the single faulty cube requires only 35 seconds and
booting the three VMs takes about 67 seconds; thus, after
only 150 seconds, the three virtual machines are running
normally again.

The bottom graph illustrates IceFS with online recov-
ery. In this case, after the fault occurs in VM1 (at roughly
50 seconds) and VM1 crashes, VM2 and VM3 are able
to continue. At this point, the online fsck of IceFS starts
to recover the disk image file of VM1 in the host file
system. Since fsck competes for disk bandwidth with
the two running VMs, checking takes longer (about 74
seconds). Booting the single failed VM requires only
39 seconds, but the disk activity that arises as a result
of booting competes with the I/O requests of VM2 and
VM3, so the throughput of VM2 and VM3 drops for that
short time period. In summary, these two experiments
demonstrate that IceFS can isolate file system failures in
a virtualized environment and significantly reduce sys-
tem recovery time.

92 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

240 Client 1 Client2 [Client3 M Client4

0 5 10 15 20 25 30 35
Time (Second)

Figure 11: Impact of Cube Failures in HDFS. This figure
shows the throughput of 4 different clients when a cube failure happens
at time 10 second. Impact of the failure to the clients’ throughput is
negligible.

O Cube Failure

450 O Machine Failure

400 1 12-minute timeout
350 1 for crash detection
300
250 -
200
150
100 1

50 R

0 T T T T T T T T
0 100 200 300 400 500 600 700 800 900
Time (second)

#Blocks to recover

Figure 12: Data Block Recovery in HDFS. The figure
shows the number of lost blocks to be regenerated over time in two
failure scenarios: cube and whole machine failure. Cube failure results
into less blocks to recover in less time.

5.6.2 Distributed File System

We illustrate the benefits of using IceFS to provide flex-
ible fault isolation in HDFS. Obtaining fault isolation in
HDFS is challenging, especially in multi-tenant settings,
primarily because HDFES servers are not aware of the data
they store, as shown in Section 2.3.2. IceFS provides a
natural solution for this problem. We use separate cubes
to store different applications’ data on HDFS servers.
Each cube isolates the data from one application to an-
other; thus, a cube failure will not affect multiple appli-
cations. In this manner, IceFS provides end-to-end iso-
lation for applications in HDFS. We added 161 lines to
storage node code to make HDFS IceFS-compatible and
aware of application data. We do not change any recov-
ery code of HDFS. Instead, IceFS turns global failures
(e.g., kernel panic) into partial failures (i.e., cube failure)
and leverages HDFS recovery code to handle them. This
facilitates and simplifies our implementation.

Figure 11 shows the benefits of IceFS-enabled
application-level fault isolation. Here, four clients con-
currently access different files stored in HDFS when a

cube that stores data for Client 2 fails and becomes inac-
cessible. Other clients are completely isolated from the
cube failure. Furthermore, the failure negligibly impacts
the throughput of the client as it does not manifest as ma-
chine failure. Instead, it results in a soft error to HDFS,
which then immediately isolates the faulty cube and re-
turns an error code the client. The client then quickly
fails over to other healthy copies. The overall throughput
is stable for the entire workload, as opposed to 60-second
period of losing throughput as in the case of whole ma-
chine failure described in Section 2.3.2.

In addition to end-to-end isolation, IceFS provides
scalable recovery as shown in Figure 12. In particular,
IceFS helps reduce network traffic required to regener-
ate lost blocks, a major bandwidth consumption factor
in large clusters [47]. When a cube fails, IceFS again re-
turns an error code to the host server, which then immedi-
ately triggers a block scan to find out data blocks that are
under-replicated and regenerates them. The number of
blocks to recover is proportional to the cube size. With-
out IceFS, a kernel panic in local file system manifests as
whole machine failure, causing a 12-minute timeout for
crash detection and making the number of blocks lost and
to be regenerated during recovery much larger. In sum-
mary, IceFS helps improve not only flexibility in fault
isolation but also efficiency in failure recovery.

6 Related Work

IceFS has derived inspiration from a number of projects
for improving file system recovery and repair, and for
tolerating system crashes.

Many existing systems have improved the reliability of
file systems with better recovery techniques. Fast check-
ing of the Solaris UFS [43] has been proposed by only
checking the working-set portion of the file system when
failure happens. Changing the I/O pattern of the file sys-
tem checker to reduce random requests has been sug-
gested [14, 34]. A background fsck in BSD [38] checks
a file system snapshot to avoid conflicts with the fore-
ground workload. WAFL [29] employs Wafliron [40],
an online file system checker, to perform online check-
ing on a volume but the volume being checked cannot
be accessed by users. Our recovery idea is based on the
cube abstraction which provides isolated failure, recov-
ery and journaling. Under this model, we only check the
faulty part of the file system without scanning the whole
file system. The above techniques can be utilized in one
cube to further speedup the recovery process.

Several repair-driven file systems also exist.
Chunkfs [28] does a partial check of Ext2 by parti-
tioning the file system into multiple chunks; however,
files and directory can still span multiple chunks, reduc-
ing the independence of chunks. Windows ReFS [50]
can automatically recover corrupted data from mirrored

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 93

storage devices when it detects checksum mismatch.
Our earlier work [32] proposes a high-level design
to isolate file system structures for fault and recovery
isolation. Here, we extend that work by addressing both
reliability and performance issues with a real prototype
and demonstrations for various applications.

Many ideas for tolerating system crashes have been
introduced at different levels. Microrebooting [18] par-
titions a large application into rebootable and stateless
components; to recover a failed component, the data state
of each component is persistent in a separate store out-
side of the application. Nooks [54] isolates failures of
device drivers from the rest of the kernel with separated
address spaces for each target driver. Membrane [53]
handles file system crashes transparently by tracking re-
source usage and the requests at runtime; after a crash,
the file system is restarted by releasing the in-use re-
sources and replaying the failed requests. The Rio file
cache [20] protects the memory state of the file system
across a system crash, and conducts a warm reboot to re-
cover lost updates. Inspired by these ideas, IceFS local-
izes a file system crash by microisolating the file system
structures and microrebooting a cube with a simple and
light-weight design. Address space isolation technique
could be used in cubes for better memory fault isolation.

7 Conclusion

Despite isolation of many components in existing sys-
tems, the file system still lacks physical isolation. We
have designed and implemented IceFS, a file system that
achieves physical disentanglement through a new ab-
straction called cubes. IceFS uses cubes to group logi-
cally related files and directories, and ensures that data
and metadata in each cube are isolated. There are no
shared physical resources, no access dependencies, and
no bundled transactions among cubes.

Through experiments, we demonstrate that IceFS is
able to localize failures that were previously global, and
recover quickly using localized online or offline fsck.
IceFS can also provide specialized journaling to meet di-
verse application requirements for performance and con-
sistency. Furthermore, we conduct two cases studies
where IceFS is used to host multiple virtual machines
and is deployed as the local file system for HDFS data
nodes. IceFS achieves fault isolation and fast recovery in
both scenarios, proving its usefulness in modern storage
environments.

Acknowledgments

We thank the anonymous reviewers and Nick Feamster
(our shepherd) for their tremendous feedback. We thank
the members of the ADSL research group for their sug-
gestions and comments on this work at various stages.

We thank Yinan Li for the hardware support, and Ao Ma
for discussing fsck in detail.

This material was supported by funding from NSF
grants CCF-1016924, CNS-1421033, CNS-1319405,
and CNS-1218405 as well as generous donations from
Amazon, Cisco, EMC, Facebook, Fusion-io, Google,
Huawei, IBM, Los Alamos National Laboratory, Mdot-
Labs, Microsoft, NetApp, Samsung, Sony, Symantec,
and VMware. Lanyue Lu is supported by the VMWare
Graduate Fellowship. Samer Al-Kiswany is supported
by the NSERC Postdoctoral Fellowship. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and may not re-
flect the views of NSF or other institutions.

References

[1] Apache HBase. https://hbase.apache.org/.

[2] Docker: The Linux Container Engine. https://www.
docker.io.

[3] Filebench.
filebench.

[4] Firefox 3 Uses fsync Excessively. https://bugzilla.
mozilla.org/show_bug.cgi?id=421482.

[5] Fsyncers and Curveballs. http://shaver.off.net/
diary/2008/05/25/fsyncers-and-curveballs/.

[6] HBase User Mailing List. http://hbase.apache.
org/mail-lists.html.

[7] Linux Containers. https://linuxcontainers.org/.

[8] Solving the Ext3 Latency Problem. http://lwn.net/
Articles/328363/.
[9] SQLite. https://sqlite.org.

[10] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-
Dusseau. Operating Systems: Three Easy Pieces. Arpaci-
Dusseau Books, 0.8 edition, 2014.

[11] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An Analysis of
Latent Sector Errors in Disk Drives. In Proceedings of
the 2007 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems (SIGMETRICS
’07), San Diego, California, June 2007.

[12] Lakshmi N. Bairavasundaram, Garth R. Goodson, Bianca
Schroeder, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. An Analysis of Data Corruption in the
Storage Stack. In Proceedings of the 6th USENIX Sympo-
sium on File and Storage Technologies (FAST 08), pages
223-238, San Jose, California, February 2008.

[13] Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Re-
source containers: a new facility for resource manage-
ment in server systems. In Proceedings of the 3rd Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’99), New Orleans, Louisiana, February 1999.

[14] EricJ. Bina and Perry A. Emrath. A Faster fsck for BSD
Unix. In Proceedings of the USENIX Winter Technical
Conference (USENIX Winter ’89), San Diego, California,
January 1989.

[15] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating
Malicious Device Drivers in Linux. In Proceedings of
the USENIX Annual Technical Conference (USENIX ’10),
Boston, Massachusetts, June 2010.

[16] Edouard Bugnion, Scott Devine, and Mendel Rosenblum.
Disco: Running Commodity Operating Systems on Scal-
able Multiprocessors. In Proceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP ’97),
pages 143—156, Saint-Malo, France, October 1997.

http://sourceforge.net/projects/

94 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Calton Pu and Tito Autrey and Andrew Black and Charles
Consel and Crispin Cowan and Jon Inouye and Lakshmi
Kethana and Jonathan Walpole and Ke Zhang. Optimistic
Incremental Specialization: Streamlining a Commercial
Operating System. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP 95),
Copper Mountain Resort, Colorado, December 1995.

George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg
Friedman, and Armando Fox. Microreboot — A Technique
for Cheap Recovery. In Proceedings of the 6th Sympo-
sium on Operating Systems Design and Implementation
(OSDI °04), pages 31-44, San Francisco, California, De-
cember 2004.

Remy Card, Theodore Ts’o, and Stephen Tweedie. De-
sign and Implementation of the Second Extended Filesys-
tem. In First Dutch International Symposium on Linux,
Amsterdam, Netherlands, December 1994.

Peter M. Chen, Wee Teck Ng, Subhachandra Chandra,
Christopher Aycock, Gurushankar Rajamani, and David
Lowell. The rio file cache: Surviving operating sys-
tem crashes. In Proceedings of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS VII), Cam-
bridge, Massachusetts, October 1996.

Vijay Chidambaram, Thanumalayan Sankaranarayana
Pillai, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Optimistic Crash Consistency. In Proceedings
of the 24th ACM Symposium on Operating Systems Prin-
ciples (SOSP ’13), Nemacolin Woodlands Resort, Farm-
ington, Pennsylvania, October 2013.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An Empirical Study of Operating
System Errors. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP ’01), pages
73-88, Banff, Canada, October 2001.

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm
Hansen, Eric Jul, Christian Limpach, Ian Pratt, and An-
drew Warfield. Live migration of virtual machines. In
Proceedings of the 2nd Symposium on Networked Systems
Design and Implementation (NSDI °05), Boston, Mas-
sachusetts, May 2005.

Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris,
Alex Ho, Ian Pratt, Andrew Warfield, Paul Barham, and
Rolf Neugebauer. Xen and the Art of Virtualization. In
Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP ’03), Bolton Landing, New
York, October 2003.

Ian Goldberg, David Wagner, Randi Thomas, and Eric A.
Brewer. A Secure Environment for Untrusted Helper Ap-
plications. In Proceedings of the 6th USENIX Security
Symposium (Sec '96), San Jose, California, 1996.

Diwaker Gupta, Ludmila Cherkasova, Rob Gardner,
and Amin Vahdat. Enforcing Performance Isolation
Across Virtual Machines in Xen. In Proceedings of the

ACM/IFIP/USENIX 7th International Middleware Con-
ference (Middleware’2006), Melbourne, Australia, Nov

2006.

Tyler Harter, Dhruba Borthakur, Siying Dong, Ami-
tanand Aiyer, Liyin Tang, Andrea C. Arpaci-Dusseau,
and Remzi H. Arpaci-Dusseau. Analysis of HDFS Under
HBase: A Facebook Messages Case Study. In Proceed-
ings of the 12th USENIX Symposium on File and Storage
Technologies (FAST ’14), Santa Clara, California, Febru-
ary 2014.

Val Henson, Arjan van de Ven, Amit Gud, and Zach
Brown. Chunkfs: Using divide-and-conquer to improve
file system reliability and repair. In IEEE 2nd Workshop
on Hot Topics in System Dependability (HotDep ’06),
Seattle, Washington, November 2006.

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

Dave Hitz, James Lau, and Michael Malcolm. File Sys-
tem Design for an NFS File Server Appliance. In Pro-
ceedings of the USENIX Winter Technical Conference
(USENIX Winter *94), San Francisco, California, January
1994.

Shvetank Jain, Fareha Shafique, Vladan Djeric, and
Ashvin Goel. Application-Level Isolation and Recovery
with Solitude. In Proceedings of the EuroSys Conference
(EuroSys '08), Glasgow, Scotland UK, March 2008.

Poul-Henning Kamp and Robert N. M. Watson. Jails:
Confining the omnipotent root. In Second Interna-
tional System Administration and Networking Conference
(SANE 00), May 2000.

Lanyue Lu, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Fault Isolation And Quick Recovery in
Isolation File Systems. In 5th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage ’13), San
Jose, CA, June 2013.

Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Shan Lu. A Study of Linux File
System Evolution. In Proceedings of the 11th USENIX
Symposium on File and Storage Technologies (FAST ’13),
San Jose, California, February 2013.

Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. ffsck: The Fast File System
Checker. In Proceedings of the 11th USENIX Symposium
on File and Storage Technologies (FAST ’13), San Jose,
California, February 2013.

Avantika Mathur, Mingming Cao, Suparna Bhattacharya,
Alex Tomas Andreas Dilge and, and Laurent Vivier. The
New Ext4 filesystem: Current Status and Future Plans.
In Ottawa Linux Symposium (OLS *07), Ottawa, Canada,
July 2007.

Avantika Mathur, Mingming Cao, Suparna Bhattacharya,
Andreas Dilger, Alex Tomas, Laurent Vivier, and Bull
S.A.S. The New Ext4 Filesystem: Current Status and
Future Plans. In Ottawa Linux Symposium (OLS *07), Ot-
tawa, Canada, July 2007.

Marshall K. McKusick, William N. Joy, Sam J. Leffler,
and Robert S. Fabry. A Fast File System for UNIX. ACM
Transactions on Computer Systems, 2(3):181-197, Au-
gust 1984.

Marshall Kirk McKusick. Running ’fsck’ in the Back-
ground. In Proceedings of BSDCon 2002 (BSDCon ’02),
San Fransisco, California, February 2002.

Marshall Kirk McKusick, Willian N. Joy, Samuel J. Lef-
fler, and Robert S. Fabry. Fsck - The UNIX File System
Check Program. Unix System Manager’s Manual - 4.3
BSD Virtual VAX-11 Version, April 1986.

NetApp. Overview of WAFL_check. http://uadmin.
nl/init/?7p=900, Sep.2011.

Oracle Inc. Consolidating Applications with Or-
acle Solaris Containers. http://www.oracle.
com/technetwork/server-storage/solaris/
documentation/consolidating-apps-163572.
pdf, Jul 2011.

Nicolas Palix, Gael Thomas, Suman Saha, Christophe
Calves, Julia Lawall, and Gilles Muller. Faults in Linux:
Ten Years Later. In Proceedings of the 15th International
Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XV), New-
port Beach, California, March 2011.

J. Kent Peacock, Ashvin Kamaraju, and Sanjay Agrawal.
Fast Consistency Checking for the Solaris File System. In
Proceedings of the USENIX Annual Technical Conference
(USENIX ’98), pages 77-89, New Orleans, Louisiana,
June 1998.

Vijayan Prabhakaran, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Analysis and Evolution of

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 95

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

Journaling File Systems. In Proceedings of the USENIX
Annual Technical Conference (USENIX ’05), pages 105—
120, Anaheim, California, April 2005.

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,
Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Sys-
tems. In Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP ’05), pages 206-220,
Brighton, United Kingdom, October 2005.

Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and
Yuanyuan Zhou. Rx: Treating Bugs As Allergies. In
Proceedings of the 20th ACM Symposium on Operating
Systems Principles (SOSP °05), Brighton, United King-
dom, October 2005.

K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong
Kuang, Dhruba Borthakur, and Kannan Ramchandran. A
solution to the network challenges of data recovery in
erasure-coded distributed storage systems: A study on the
facebook warehouse cluster. In 5th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage ’13),
San Jose, CA, June 2013.

Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff,
Jim Chow, Monica S. Lam, and Mendel Rosenblum. Op-
timizing the Migration of Virtual Computers. In Proceed-
ings of the 5th Symposium on Operating Systems Design
and Implementation (OSDI ’02), Boston, Massachusetts,
December 2002.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop Distributed File System. In
Proceedings of the 26th IEEE Symposium on Mass Stor-
age Systems and Technologies (MSST °10), Incline Vil-
lage, Nevada, May 2010.

Steven Sinofsky. Building the Next Generation File
System for Windows: ReFS. http://blogs.msdn.
com/b/b8/archive/2012/01/16/building-the-
next-generation-file-system-for-windows-
refs.aspx, Jan. 2012.

Mark Sullivan and Ram Chillarege. Software defects and
their impact on system availability-a study of field failures
in operating systems. In Proceedings of the 21st Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-
21), pages 2-9, Montreal, Canada, June 1991.

Mark Sullivan and Ram Chillarege. A Comparison of
Software Defects in Database Management Systems and
Operating Systems. In Proceedings of the 22st Interna-
tional Symposium on Fault-Tolerant Computing (FTCS-
22), pages 475-484, Boston, USA, July 1992.

Swaminathan Sundararaman, Sriram Subramanian, Ab-
hishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Michael M. Swift. Membrane: Op-
erating System Support for Restartable File Systems. In
Proceedings of the 8th USENIX Symposium on File and
Storage Technologies (FAST ’10), San Jose, California,
February 2010.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the Reliability of Commodity Operating Sys-
tems. In Proceedings of the 19th ACM Symposium on Op-
erating Systems Principles (SOSP ’03), Bolton Landing,
New York, October 2003.

Theodore Ts’o. http://e2fsprogs.sourceforge.
net, June 2001.

Stephen C. Tweedie. Journaling the Linux ext2fs File
System. In The Fourth Annual Linux Expo, Durham,
North Carolina, May 1998.

Satyam B. Vaghani. Virtual Machine File System. ACM
SIGOPS Operating Systems Review, 44(4):57-70, Dec
2010.

Ben Verghese, Anoop Gupta, and Mendel Rosenblum.
Performance Isolation: Sharing and Isolation in Shared-

[59]

[60]

[61]

Memory Multiprocessors. In Proceedings of the Sth In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
VIII), San Jose, California, October 1998.

VMware Inc. VMware Workstation. http://wuw.
vmware.com/products/workstation, Apr 2014.
Matthew Wachs, Michael Abd-El-Malek, Eno Thereska,
and Gregory R. Ganger. Argon: Performance Insulation
for Shared Storage Servers. In Proceedings of the 5th
USENIX Symposium on File and Storage Technologies
(FAST °07), San Jose, California, February 2007.

Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya
Bagrak, Rob Ennals, Matthew Harren, George Necula,

and Eric Brewer. SafeDrive: Safe and Recoverable Ex-
tensions Using Language-Based Techniques. In Proceed-

ings of the 7th Symposium on Operating Systems De-
sign and Implementation (OSDI ’06), Seattle, Washing-
ton, November 2006.

96 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

