
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

GPUnet: Networking Abstractions
for GPU Programs

Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang,
and Emmett Witchel, The University of Texas at Austin;

Amir Wated and Mark Silberstein, Technion—Israel Institute of Technology

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 201

GPUnet: Networking Abstractions for GPU Programs
Sangman Kim Seonggu Huh Yige Hu

Xinya Zhang Emmett Witchel
The University of Texas at Austin

Amir Wated Mark Silberstein1

Technion – Israel Institute of Technology

Abstract
Despite the popularity of GPUs in high-performance

and scientific computing, and despite increasingly general-
purpose hardware capabilities, the use of GPUs in net-
work servers or distributed systems poses significant
challenges.
GPUnet is a native GPU networking layer that provides
a socket abstraction and high-level networking APIs for
GPU programs. We use GPUnet to streamline the de-
velopment of high-performance, distributed applications
like in-GPU-memory MapReduce and a new class of
low-latency, high-throughput GPU-native network ser-
vices such as a face verification server.

1. Introduction
GPUs have become the platform of choice for many

types of parallel general-purpose applications from ma-
chine learning to molecular dynamics simulations [3].
However, harnessing impressive GPU computing capa-
bilities in complex software systems like network servers
remains challenging: GPUs lack software abstractions to
direct the flow of data within a system, leaving the devel-
oper with only low-level control over I/O. Therefore, cer-
tain classes of applications that could benefit from GPU’s
computational density require unacceptable development
costs to realize their full performance potential.

While GPU hardware architecture has matured to sup-
port general-purpose parallel workloads, the GPU soft-
ware stack has hardly evolved beyond bare-metal inter-
faces (e.g., memory transfer via direct memory access
(DMA)). Without core I/O abstractions like sockets avail-
able to GPU code, GPU programs that access the network
must coordinate low-level details among a CPU, GPU
and a NIC, for example, managing buffers in weakly con-
sistent GPU memory, or optimizing NIC-to-GPU trans-
fers via peer-to-peer DMAs.

This paper introduces GPUnet, a native GPU net-
working layer that provides a socket abstraction and
high-level networking APIs to GPU programs. GPUnet
enables individual threads in one GPU to communicate
with threads in other GPUs or CPUs via standard and fa-
miliar socket interfaces, regardless of whether they are in
the same or different machines. Native GPU networking
cuts the CPU out of GPU-NIC interactions, simplifying
code and increasing performance. It also unifies appli-
cation compute and I/O logic within the GPU program,
providing a simpler programing model. GPUnet uses ad-

1 Corresponding author: mark@ee.technion.ac.il

vanced NIC and GPU hardware capabilities and applies
sophisticated code optimizations that yield high appli-
cation performance equal to or exceeding hand-tuned
traditional implementations.

GPUnet is designed to foster GPU adoption in two
broad classes of high-throughput data center applica-
tions: network servers for back end data processing, e.g.,
media filtering or face recognition, and scale-out dis-
tributed computing systems like MapReduce. While dis-
crete GPUs are broadly used in supercomputing systems,
their deployment in data centers has been limited. We
blame the added design and implementation complexity
of integrating GPUs into complex software systems; con-
sequently, GPUnet’s goal is to facilitate such integration.

Three essential characteristics make developing effi-
cient network abstractions for discrete GPUs challeng-
ing – massive parallelism, slow access to CPU mem-
ory, and low single-thread performance. GPUnet accom-
modates parallelism at the API level by providing coa-
lesced calls invoked by multiple GPU threads at the same
point in data-parallel code. For instance, a GPU program
computing a vector sum may receive input arrays from
the network by calling recv() in thousands of GPU
threads. These calls will be coalesced into a single re-
ceive request to reduce the processing overhead of the
networking stack. GPUnet uses recent hardware support
for network transmission directly into/from GPU mem-
ory to minimize slow accesses from the GPU to system
memory. It provides a reliable stream abstraction with
GPU-managed flow control. Finally, GPUnet minimizes
control-intensive sequential execution on performance-
critical paths by offloading message dispatching to the
NIC via remote direct memory access (RDMA) hardware
support. The GPUnet prototype supports sockets for net-
work communications over InfiniBand RDMA and sup-
ports inter-process communication on a local machine
(often called UNIX-domain sockets).

We build a face verification server using the GPUnet
prototype that matches images and interacts with
memcached directly from GPU code, processing 53K
client requests/second on a single NVIDIA K20Xm
GPU, exceeding the throughput of a 6-core Intel CPU
and a CUDA-based server by 1.5× and 2.3× respec-
tively, while maintaining 3× lower latency than the CPU
and requiring half as much code than other versions. We
also implement a distributed in-GPU-memory MapRe-
duce framework, where GPUs fully control all of the I/O:
they read and write files (via GPUfs [35]), and commu-
nicate over Infiniband with other GPUs. This architec-

202 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ture demonstrates the ability of GPUnet to support com-
plex communication patterns across GPUs, and for word
count and K-means workloads it scales to four GPUs
providing speedups of 2.9–3.5× over one GPU.

This paper begins with the motivation for building
GPUnet (§2), a review of the GPU and network hard-
ware architecture (§3), and high-level design considera-
tions(§4). It then makes the following contributions:
• It presents for the first time a socket abstraction, API,

and semantics suitable for use with general purpose
GPU programs (§5).

• It presents several novel optimizations for enabling
discrete GPUs to control network traffic (§6).

• It develops three substantial GPU-native network ap-
plications: a matrix product server, in-GPU-memory
MapReduce, and a face verification server (§7).

• It evaluates GPUnet primitives and entire applications
including multiple workloads for each of the three
application types (§8).

2. Motivation
GPUs are widely used for accelerating parallel tasks in

high-performance computing, and their architecture has
been evolving to enable efficient execution of complex,
general-purpose workloads. However the use of GPUs
in network servers or distributed systems poses signifi-
cant challenges. The list of 200 popular general-purpose
GPU applications recently published by NVIDIA [3] has
no mention of GPU-accelerated network services. Using
GPUs in software routers and SSL protocols [16, 19, 37],
as well as in distributed applications [12] resulted in sig-
nificant speedups but required heroic development ef-
forts. Recent work shows that GPUs can boost power effi-
ciency and performance for web servers [5], but the GPU
prototype lacked an actual network implementation be-
cause GPU-native networking support does not yet exist.
We believe that enabling GPUs to access network hard-
ware and the networking software stack directly, via fa-
miliar network abstractions like sockets, will hasten GPU
integration in modern network systems.

GPUs currently require application developers to
build complicated CPU-side code to manage access to
the host’s network. If an input to a GPU task is trans-
ferred over the network, for example, the CPU-side code
handles system-level I/O issues, such as how to over-
lap data access with GPU execution and how to opti-
mize the size of memory transfers. The GPU application
programmer has to deal with bare-metal hardware is-
sues like setting up peer-to-peer (P2P) DMA over the
PCIe bus. P2P DMA lets the NIC directly transfer data
to and from high-bandwidth graphics double data rate
(GDDR) GPU local memory. Direct transfers between
the NIC and GPU eliminate redundant PCIe transfers
and data copies to system memory, improving data trans-
fer throughput and reducing latency (§8.1). Enjoying the

benefits of P2P DMA, however, requires intimate knowl-
edge of hardware-specific APIs and characteristics, such
as the underlying PCIe topology.

These issues dramatically complicate the design and
implementation of GPU-accelerated networking applica-
tions, turning their development into a low-level system
programming task. Modern CPU operating systems pro-
vide high-level I/O abstractions like sockets, which elim-
inate or hide this type of programming complexity from
ordinary application developers. GPUnet is intended to
do the same for GPU programmers.

Consider an internal data center network service for
on-demand face-in-a-crowd photo labeling. The algo-
rithm detects faces in the input image, creates face de-
scriptors, fetches the name label for each descriptor from
a remote database, and returns the location and the name
of each face in the image. This task is a perfect candidate
for GPU acceleration because some face recognition al-
gorithms are an order of magnitude faster on GPUs than
on a single CPU core [4] and by connecting multiple
GPUs, server compute density can be increased even
further. Designing such a GPU-based service presents
several system-level challenges.

No GPU network control. A GPU cannot initiate net-
work I/O from within a GPU kernel. Using P2P DMA,
the NIC can place network packets directly in local GPU
memory, but only CPU applications control the NIC and
perform send and receive. In the traditional GPU-as-
coprocessor programming model, a CPU cannot retrieve
partial results from GPU memory while a kernel produc-
ing them is still running. Therefore, a programmer needs
to wait until all GPU threads terminate in order to request
a CPU to invoke network I/O calls. This awkward model
effectively forces I/O to occur only on GPU kernel in-
vocation boundaries. In our face recognition example, a
CPU program would query the database soon after de-
tecting even a single face, in order to pipeline continued
facial processing with database queries. Current GPU
programming models make it difficult to achieve this
kind of pipelining because GPU kernels must complete
before they perform I/O. Thus, all the database queries
will be delayed until after the GPU face detection kernel
terminates, leading to increased response time.

Complex multi-stage pipelining. Unlike in CPUs,
where operating systems use threads and device inter-
rupts to overlap data processing and I/O, GPU code tra-
ditionally requires all input to be transferred in full to
local GPU memory before processing starts. To over-
lap data transfers and computations, optimized GPU de-
signs use pipelining: they split inputs and outputs into
smaller chunks, and asynchronously invoke the kernel on
one chunk, while simultaneously transferring the next in-
put chunk to the GPU, and the prior output chunk from
the GPU. While effective for GPU-CPU interaction, the
pipeline grows into a complex multi-stage data flow in-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 203

volving GPU-CPU data transfers, GPU invocations and
processing of network events. In addition to the associ-
ated implementation complexity, achieving high perfor-
mance requires tedious tuning of buffer sizes which de-
pend on a particular generation of hardware.

Complex network buffer management. If P2P DMA
functionality is available, CPU code must set up the
GPU-NIC DMA channel by pre-allocating dedicated
GPU memory buffers and registering them with the NIC.
Unfortunately, these GPU buffers are hard to manage
since the network transfers are controlled by a CPU. For
example, if the image data exceeds the allocated buffer
size, the CPU must allocate and register another GPU
buffer (which is slow and may exhaust NIC or GPU hard-
ware resources), or the buffer must be freed by copying
the old contents to another GPU memory area. GPU code
must be modified to cope with input stored in multiple
buffers. While on a CPU, the networking API hides sys-
tem buffer management details and lets the application
determine the buffer size according to its internal logic
rather than GPU and NIC hardware constraints.

GPUnet aims to address these challenges. It exposes
a single networking abstraction across all system pro-
cessors and allows using it via a standard, familiar API,
thereby simplifying GPU development and facilitating
integration of GPUs into complex software systems.

3. Hardware architecture overview
We provide an overview of the GPU software/hard-

ware model, RDMA networking and peer-to-peer (P2P)
DMA concepts. We use NVIDIA CUDA terminology
because we implement GPUnet on NVIDIA GPUs,
but most other GPUs that support the cross-platform
OpenCL standard [15] share the same concepts.
3.1 GPU software/hardware model

GPUs are parallel processors that expose program-
mers to hierarchically structured hardware parallelism
(for full details see [23]). They comprise several big
cores, Streaming Multiprocessors (SMs), each having
multiple hardware contexts and several Single Instruc-
tion, Multiple Data (SIMD) units. All the SMs access
global GPU memory and share an address space.

The programming model associates a GPU thread
with a single element of a SIMD unit. Threads are
grouped into threadblocks and all the threads in a thread-
block are executed on the same SM. The threads within
a threadblock may communicate and share state via on-
die shared memory and synchronize efficiently. Synchro-
nization across threadblocks is possible but it is much
slower and limited to atomic operations. Therefore, most
GPU workloads comprise multiple loosely-coupled tasks
each running in a single threadblock, and each par-
allelized for tightly-coupled parallel execution by the
threadblock threads. Once a threadblock has been dis-

Figure 1: Receiving network messages into a GPU. Without P2P DMA,
the CPU must use a GPU DMA engine to transfer data from the CPU
bounce buffer.

patched to an SM, it cannot be preempted and occupies
that SM until all of the threadblock’s threads terminate.

The primary focus of this work is on discrete GPUs,
which are peripheral devices connected to the host sys-
tem via a standard PCI Express (PCIe) bus. Discrete
GPUs feature their own physical memory on the device,
with a separate address space that cannot be referenced
directly by CPU programs. Moving the data in and out of
GPU memory efficiently requires DMA.2 CPU prepares
the data in GPU memory, invokes a GPU kernel, and re-
trieves the results after the kernel terminates.
Interaction with I/O devices. P2P DMA refers to the
ability of peripheral devices to exchange data on a bus
without sending data to a CPU or system memory. Mod-
ern discrete GPUs support P2P DMA between GPUs
themselves, and between GPUs and other peripheral de-
vices on a PCIe bus, e.g., NICs. For example, the Mel-
lanox Connect-IB network card (HCA) is capable of
transferring data directly to/from the GPU memory of
NVIDIA K20 GPUs (see Figure 1). P2P DMA improves
the throughput and latency of GPU interaction with other
peripherals because it eliminates an extra copy to/from
bounce buffers in CPU memory, and reduces load on
system memory [27, 28].
RDMA and Infiniband. Remote Direct Memory Access
(RDMA) allows remote peers to read from and write di-
rectly into application buffers over the network. Multiple
RDMA-capable transports exist, such as Internet Wide
Area RDMA Protocol (iWARP), Infiniband and RDMA
over Converged Ethernet (RoCE). As network data trans-
fer rates grow, RDMA-capable technologies have been
increasingly adopted for in-data center networks, en-
abling high throughput and low latency networking,
surpassing legacy Ethernet performance and cost effi-
ciency [8]. For example, the state-of-the-art fourteen data
rate (FDR) Infiniband provides 56Gbps throughput and
sub-microsecond latency, with the 40Gbps quad data rate
(QDR) technology widely deployed since 2009. Infini-
band is broadly used in supercomputing systems and en-
terprise data centers, and analysts anticipate significant
growth in the coming years.

An Infiniband NIC is called a Host Channel Adapter
(HCA) and like other RDMA networking hardware, it

2 NVIDIA CUDA 6.0 provides CPU-GPU software shared memory for
automatic data management, but the data transfer costs remain.

204 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

performs full network packet processing in hardware, en-
ables zero-copy network transmission to/from applica-
tion buffers, and bypasses the OS kernel for network API
calls.

The HCA efficiently dispatches thousands [18] of
network buffers, registered by multiple applications.
In combination with P2P DMA, the HCA may access
buffers in GPU memory. The low-level VERB interface
to RDMA is not easy to use. Instead, system software
uses VERBs to implement higher-level data transfer ab-
stractions. For example, the rsockets [32] library pro-
vides a familiar socket API in user-space for RDMA
transport. Rsockets are a drop-in replacement for sockets
(via LD PRELOAD), providing a simple way to perform
streaming over RDMA.

4. Design considerations
There are many alternative designs for GPU network-

ing; this section discuses important high-level tradeoffs.
4.1 Sockets and alternatives

The GPUnet interface uses sockets because we believe
they offer the best blend of properties, being generic, fa-
miliar, convenient to use, and versatile (e.g., inter-process
communication over UNIX domain sockets). Alterna-
tives like remote direct memory access (RDMA) via a
VERBs API are too difficult to program [39]. Existing
message passing frameworks (e.g., MPI) [2] allow zero-
copy transfers into GPU memory, but they keep all net-
work I/O control on the CPU, and suffer from the con-
ceptual limitations of the GPU-as-slave model that we
address in this work.
4.2 Discrete GPUs

We develop GPUnet for discrete GPUs, even though
hybrid CPU-GPU processors and system-on-chip options
like AMD Kaveri and Qualcomm Snapdragon are gain-
ing market share. We believe discrete and hybrid GPUs
will continue to co-exist for years to come. They embody
different tradeoffs between power consumption, produc-
tion costs and system performance, and thus serve dif-
ferent application domains. The aggressive, throughput-
optimized hardware designs of discrete GPUs rely heav-
ily on a multi-billion transistor budget, tight integration
with specialized high-throughput memory, and increased
thermal design power (TDP). Therefore, discrete GPUs
outperform hybrid GPUs by an order of magnitude in
compute capacity and memory bandwidth, making them
attractive for the data center, and therefore a reasonable
choice for prototyping GPU networking support.
4.3 Network server organization

Figure 2 depicts different organizations for a multi-
threaded network server. In a CPU server (left), a dae-
mon thread accepts connections and transfers the socket
to worker threads. In a traditional GPU-accelerated net-
work server (middle) the worker threads invoke compu-

Figure 2: The architecture of a network server on a CPU, using a GPU
as a co-processor, and with GPUnet (daemon architecture).

tations on a GPU. GPUs are treated as bulk-synchronous
high-performance accelerators, so all of the inputs are
read on the CPU first and transferred to the GPU across
a PCIe bus. This design requires large batches of work
to amortize CPU-GPU communications and invocation
overheads, which otherwise dominate the execution time.
For example, SSLShader [19] needs 1,024 independent
network flows on a GTX580 GPU to surpass the perfor-
mance of 128-bit AES-CBC encryption of a single AES-
NI enabled CPU. Batching complicates the implemen-
tation, and leads to increased response latency, because
GPU code does not communicate with clients directly.

GPUnet makes it possible for GPU servers to handle
multiple independent requests without having to batch
them first (far right in Figure 2), much like multitasking
in multi-core CPUs. We call this the daemon architec-
ture. It is also possible to have a GPUnet server where
each threadblock acts as an independent server, accept-
ing, computing, and responding to requests. We call this
the independent architecture. We measure both in §8.

This organization changes the tradeoffs a designer
must consider for a networked service because it removes
the need to batch work so heavily, thereby greatly simpli-
fying the programming model. We hope this model will
make the computational power of GPUs more easily ac-
cessible to networked services, but it will require the de-
velopment of native GPU programs.
4.4 In-GPU networking performance benefits

A native GPU networking layer can provide sig-
nificant performance benefits for building low-latency
servers on modern GPUs, because it eliminates the over-
heads associated with using GPUs as accelerators.

Figure 3 illustrates the flow of a server request on a
traditional GPU-accelerated server (top), and compares
it to the flow on a server using GPU-native networking
support. In-GPU networking eliminates the overheads of
CPU-GPU data transfer and kernel invocation, which pe-
nalize short requests. For example, computing the matrix
product of two 64x64 matrices on a TESLA K20c GPU
requires about 14µsec of computation. In comparison, we
measure GPU kernel invocation requiring an average of
25µsec and CPU-GPU-CPU data transfers for this size
input average 160µsecs.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 205

Figure 3: The logical stages for a task processed on a GPU-accelerated
CPU server (top) and GPU-native network server(bottom). Highlighted
stages are eliminated by the GPU networking support.

In-GPU networking may eliminate the kernel invoca-
tion entirely, and provides a convenient interface to net-
work buffers in GPU memory. One potential caveat, how-
ever, is that I/O activity on a GPU reduces the GPU’s
computing capacity, because GPU I/O calls do not relin-
quish the GPU’s resources, as discussed in Section 8.

5. GPUnet Design
Figure 4 shows the high level architecture of GPUnet.

GPU programs can access the network via standard
socket abstractions provided by the GPUnet library,
linked into the application’s GPU code. CPU applica-
tions may use standard sockets to connect to remote GPU
sockets. GPUnet stores network buffers in GPU memory,
keeps track of active connections, and manages control
flow for their associated network streams. The GPUnet
library works with the host OS on the CPU via a GPUnet
I/O proxy to coordinate GPU access to the NIC and to
the system’s network port namespace.

Our goals for GPUnet include the following:
1. Simplicity. Enable common network programming

practices and provide a standard socket API and an in-
order reliable stream abstraction to simplify program-
ming and leverage existing programmer expertise.

2. Compatibility with GPU programming. Support
common GPU programming idioms like threadblock-
based task parallelism and using on-chip scratchpad
memory for application buffers.

3. Compatibility with CPU endpoints. A GPUnet net-
work endpoint has identical capabilities as a CPU net-
work endpoint, ensuring compatibility between net-
worked services on CPUs and GPUs.

4. NIC sharing. Enable all GPUs and CPUs in a host to
share the NIC hardware, allowing concurrent use of a
NIC by both CPU and GPU programs.

5. Namespace sharing. Share a single network names-
pace (ports, IP addresses, UNIX domain socket names)
among CPUs and GPUs in the same machine to en-
sure backward compatibility and interoperability of
CPU- and GPU-based networking code.

5.1 GPU networking API
Socket abstraction. GPUnet sockets are similar to CPU
sockets. As in a CPU, a GPU thread may open and use
multiple sockets concurrently. GPU sockets are shared
across all GPU threads, but cannot be migrated to pro-
cesses running on other GPUs or CPUs in the same host.

Figure 4: GPUnet high-level design.

GPUnet supports the main calls in the standard net-
work API, including connect, bind, listen,
accept, send, recv, shutdown, and close and
their non-blocking versions. In the paper and in the actual
implementation we add a “g” prefix to emphasize that
the code executes on a GPU. These calls work mostly as
expected, though we introduce coalesced multithreaded
API calls as we now explain.
Coalesced API calls. A traditional CPU network API is
single-threaded, i.e., each thread can make independent
API calls and receive independent results. GPU threads,
however, behave differently from CPU threads. They are
orders of magnitude slower, and the hardware is opti-
mized to run groups of threads (e.g. 32 in an NVIDIA
warp or 64 in an AMD wavefront) in lock-step, per-
forming poorly if these threads execute divergent control
paths. GPU hardware facilitates collaborative processing
inside a threadblock by providing efficient sharing and
synchronization primitives for the threads in the same
threadblock. GPU programs, therefore, are designed with
this hierarchical parallelism in mind: they exploit coarse-
grain task parallelism across multiple threadblocks, and
process a single task using all the threads in a threadblock
jointly, rather than in each thread separately. Performing
data-parallel API calls in such code is more natural than
the traditional per-thread API used in CPU programs.
Furthermore, networking primitives tend to be control-
flow heavy and often involve large copies between sys-
tem and user buffers (e.g., recv and send), making per-
threadblock calls superior to per-thread granularity.

GPUnet requires applications to invoke its API at
the granularity of a single threadblock. All threads in a
threadblock must invoke the same GPUnet call together
in a coalesced manner: with the same arguments, at the
same point in application code (similar to vectorized I/O
calls [42]). These collaborative calls together comprise
one logical GPUnet operation. This idea was inspired by
a similar design for the GPU file system API [34].

We illustrate coalesced calls in Figure 5. It shows a
simple GPU server which increments each received char-
acter by one and sends the results back. All GPU threads
invoke the same code, but each threadblock executes
it independently from others. The threads in a thread-
block collaboratively invoke the GPUnet functions to re-
ceive/send the data to/from a shared buffer, but perform
computations independently in a data-parallel manner.
The GPUnet functions are logically executed in lockstep.

206 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Figure 5: A GPU network client using GPUnet (TB – threadblock).

5.2 GPU-NIC interaction
Building a high-performance GPU network stack re-

quires offloading non-trivial packet processing to NIC
hardware.

The majority of existing GPU networking projects
(with the notable exception of the GASPP packet pro-
cessing framework [40]) employ the CPU OS network
stack with network buffers in CPU memory, and explicit
application data movement to and from the GPU. Specif-
ically, accelerated network applications, like SSL proto-
col offloading [19], cannot operate on raw packets and
first require transport-level processing by a CPU. How-
ever CPU-GPU memory transfers associated with CPU-
side network processing are detrimental to performance
as we show in the evaluation.

P2P DMA allows network buffers to reside in GPU
memory. However, forwarding all network traffic to a
GPU would render the NIC unusable for processes run-
ning on a CPU and on other GPUs in the system. Further,
since a GPU would receive raw network packets, achiev-
ing the goal of providing a reliable in-order socket ab-
straction would require porting major parts of the CPU
network stack to the GPU – a daunting task, which to
be efficient requires thousands of packets to be batched
in order to hide the overheads of the control-heavy and
memory intensive processing involved [40].

To bypass CPU memory, eliminate packet processing,
and enable NIC sharing across different processors in the
system, we leverage RDMA-capable high-performance
NICs. The NIC performs all low-level packet manage-
ment tasks, assembles application-level messages and
stores them directly in application memory, ready to be
delivered to an application without additional processing.
The NIC can concurrently dispatch messages to multiple
buffers and multiple applications, while placing source
and destination buffers in both CPU and GPU memory.
As a result, multiple CPU and GPU applications can
share the NIC without coordinating their access to the
hardware for every data transfer.

GPUnet uses both a CPU and a GPU to interact with
the NIC. It stores network buffers for GPU applications
in GPU memory, and leaves the buffer memory manage-
ment to the GPU socket layer. The per-connection receive
and send queues are also managed by the GPU. On the

other hand, the CPU controls the NIC via a standard host
driver, keeping the NIC available to all system proces-
sors. In particular, GPUnet uses the standard CPU inter-
face to initialize the GPU network buffers and register the
GPU memory with the NIC’s DMA hardware.
5.3 Socket layer

The GPU socket layer implements a reliable in-order
stream abstraction over low-level network buffers and
reliable RDMA message delivery. We adopt an RDMA
term channel to refer to the RDMA connection. The
CPU processes all channel creation related requests (e.g.,
bind), allowing GPU network applications to share the
OS network name space with CPU applications. Once
the channel has been established, however, the CPU steps
out of the way, allowing the GPU socket to manage the
network buffers as it sees fit.
Mapping streams to channels. GPUnet maps streams
one-to-one onto RDMA channels. A channel is a low-
level RDMA connection that does not have flow control,3
so GPUnet must provide flow control using a ring buffer
described in Section 6.1. By associating each socket with
a channel and its private, fixed-sized send and receive
buffers, there is no sharing between streams and hence
no costly synchronization. Per-stream channels allows
GPUnet to offload message dispatch to the highly scal-
able NIC hardware. The NIC is capable of maintaining
a large number of channels associated with one or more
memory buffers.4

We considered multiplexing several streams over a
single channel, similar to SST [14], which could improve
network buffer utilization and increase PCIe throughput
due to the increased granularity of memory transfers. We
dismissed this design because handling multiple streams
over the same channel would require synchronization of
concurrent accesses to the same network buffer, which is
slow and complicates the implementation.
Naming and address resolution. GPUnet relies on the
CPU standard name resolution mechanisms for RDMA
transports (CMA) which provide IP-based addressing for
RDMA services to initiate the connection.
Wire protocol and congestion control. GPUnet uses re-
liable RDMA transport services provided by the NIC
hardware and therefore relies on the underlying transport
packet management and congestion control.

6. Implementation
We implement GPUnet for NVIDIA GPUs and use

Mellanox Infiniband Host Channel Adaptors (HCA) for
inter-GPU networking [1].

3 While the Infiniband transport layer does have its own flow control, it
is message-oriented and we do not use it for streaming.
4 Millions for Mellanox Connect-IB, according to Mellanox So-
lution Brief http://www.mellanox.com/related-docs/
applications/SB_Connect-IB.pdf

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 207

Figure 6: GPUnet network stack.

GPUnet follows a layered design shown in Figure 6.
The lowest layer exposes a reliable channel abstraction to
upper layers and its implementation depends on the un-
derlying transport. We currently support RDMA, UNIX
domain sockets and TCP/IP. The middle socket layer im-
plements a reliable in-order connection-based stream ab-
straction on top of each channel. It manages flow control
for the network buffers associated with each connection
stream. Finally, the top layer implements the blocking
and non-blocking versions of standard socket API for the
GPU.
6.1 Socket layer

GPUnet’s socket interface is compatible with and
builds upon the open-source rsockets [32] library for
socket-compatible data streams over RDMA for CPUs.
Rsockets is a drop-in replacement for sockets
(via LD PRELOAD) which provides a simple way to use
RDMA over Infiniband. GPUnet extends the library to
use network buffers in GPU memory and integrates it
with the GPU flow control mechanisms.

GPUnet maintains a private socket table in GPU. Each
active socket is associated with a single reliable channel,
and holds the flow control metadata for its receive and
send buffers. The primary task of the socket layer is to
implement the reliable stream abstraction, which requires
flow control management as we describe next.
Flow control. The flow control mechanism allows the
sender to block if the receiver’s network buffer is full.
Therefore, an implementation requires the receiver to
update the sender upon buffer consumption.

Unfortunately, our original design to handle flow con-
trol entirely on the GPU is not yet practical on current
hardware. NVIDIA GPUs cannot yet control an HCA di-
rectly, without additional help from a CPU. They cannot
access the HCA’s “door-bell” registers in order to trigger
a send operation, because accessing the door-bell regis-
ters is done through memory mapped I/O, and GPUs can-
not currently map that memory. Further, the HCA driver
does not yet allow placement of completion queue struc-
tures in GPU memory. The HCA uses completion queues
to deliver completion notifications, e.g., when new data
arrives. Therefore, a CPU is necessary to assist every
GPU send and receive operation.

Using a CPU for handling completion notifications in-
troduces an interesting challenge for the flow control im-
plementation. The flow control counters must be shared
between a CPU and a GPU, since they are updated by

Figure 7: Ring buffer updates for GPU flow control mechanism in
grecv() call.

a CPU as a part of the completion notification handler,
and by a GPU for every gsend/grecv call. To guaran-
tee consistent concurrent updates, these writes have to be
performed atomically, but the updates are performed via
a PCIe bus which does not support atomic operations.
The solution is to treat the updates as two independent
instances of producer-consumer coordination: between a
GPU and an HCA (which produces the received data in
the GPU network buffer), and between a GPU and a re-
mote host (which consumes the sent data from the GPU
network buffer). In both cases, a CPU serves as a medi-
ator for updating the counters in GPU-accessible mem-
ory on behalf of the HCA or remote host. Assuming only
one consumer and producer, each instance of a producer-
consumer coordination can be implemented using a ring-
buffer data structure shared between a CPU and a GPU.

Figure 7 shows the ring buffer processing a receive
call. The GPU receives the data into the local buffer via
direct RDMA memory copy from the remote host (1).
The CPU gets notified by the HCA that the data was
received (2) and updates the ring buffer as a producer
on behalf of the remote host (3). Later, the GPU calls
grecv() (4), reads the data and updates the ring buffer
that the data has been consumed (5). This update triggers
the CPU (6) to send a notification (7) to the remote host
(8).

This design decouples the GPU API calls and the CPU
I/O transfer operations, allowing the CPU to handle GPU
I/O request asynchronously. As a result, the GPU I/O call
returns faster, without waiting for the GPU I/O request to
propagate through the high-latency PCIe bus, and data
transfers and GPU computations are overlapped. This
feature is essential to achieve high performance for bulk
transfers.
6.2 Channel layer

The channel layer mediates the GPU’s access to the
underlying network transport and runs on both CPU and
GPU. On the GPU side it manages the network buffers
in GPU memory, while the CPU side logic ensures that
the buffers are delivered to and from the transport mech-
anism underneath, as we describe shortly.
Memory management. GPUnet allocates a large con-
tiguous region of GPU memory which it uses for network
buffers. To enable RDMA hardware transport, the CPU
code registers the GPU memory into the Infiniband HCA
with the help of CUDA’s GPUDirectRDMA mechanism.
The maximum total amount of HCA registered memory

208 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

is limited to 220MB in NVIDIA TESLA K20c GPUs due
to the Base Address Register (BAR) size constraints of
the current hardware. We allocate the memory statically
during GPUnet initialization because the memory regis-
tration is expensive, and also because we were unable to
register it while the GPU kernel is running. GPUnet uses
this RDMA-registered memory as a memory pool for al-
locating a receive and send buffer for each channel.
Bounce buffers and support for non-RDMA transports.
If P2P DMA functionality is not available, the underly-
ing transport mechanism has no direct access to GPU net-
work buffers. Therefore, network data must be explicitly
staged to and from bounce buffers in CPU memory.

Using bounce buffers has higher latency and requires
larger system buffer than native RDMA, as we measure in
Section 8.1. However, this functionality serves to bridge
current hardware constraints, which often make the use
of RDMA impossible or inefficient. P2P DMA for GPUs
and other peripherals has been made available only since
early 2013, and its hardware and software support is still
immature. For example, on some modern server chipsets
we encountered 15× bandwidth degradation when stor-
ing send buffers in GPU memory, and as a result had to
use bounce buffers. Similarly, P2P DMA is only possible
in a certain PCIe topology, so for our dual socket configu-
ration only one of the three PCIe attached GPUs can per-
form P2P DMA with the Infiniband HCA. Until the soft-
ware and hardware support stabilizes, bounce buffers are
an interim solution that hides the implementation com-
plexity of CPU-GPU-NIC coordination mechanisms.

6.3 Performance optimizations.
Single threadblock I/O. While developing GPUnet ap-
plications we found that it is convenient to dedicate some
threadblocks to performing network operations, while us-
ing others only for computation, like the receiving thread-
block in MapReduce (§7.1), or a daemon threadblock
in the matrix product server (§7). In such a design, the
performance-limiting factor for send operations is the la-
tency of two steps performed in the send() call: mem-
ory copy between the system and user buffers in GPU,
and the update of the flow control ring buffer metadata.

Unfortunately, a single threadblock is allocated only
a small fraction of the total GPU compute and mem-
ory bandwidth resources, e.g. up to 7% of the total GPU
memory bandwidth according to our measurements. Im-
proving the memory throughput of a single threadblock
requires issuing many memory requests per thread in or-
der to enable memory-level parallelism [41]. We resorted
to PTX, NVIDIA GPU low-level assembly, in order to
implement 128-bit/thread vector accesses to global mem-
ory which also bypass the L2 and L1 caches. This by-
passing is required to ensure a consistent buffer state
when RDMA operations access GPU memory. This opti-
mization improves memory copy throughput almost 3×,

from 2.5GB/s to 6.9GB/s for a threadblock with only 256
threads.
Ring buffer updates. Ring buffer updates were slow ini-
tially because the metadata is shared between the CPU
and GPU, and we placed it in “zero-copy” memory,
which physically resides on a CPU. Therefore, reading
this memory from the GPU incurs a significant penalty
of about 1-2µsec. Updating the ring buffer requires mul-
tiple reads, and the latency accumulates to tens of µsec.

We improved the performance of ring buffer updates
by converting reads from remote memory into remote
writes into local memory. For example, the head loca-
tion of a ring buffer, which is updated by a producer,
should reside in the consumer’s memory in order to en-
able the consumer to read the head quickly. To implement
this optimization, however, we must map GPU mem-
ory into the CPU’s address space, which is not sup-
ported by CUDA. We implement our own mapping using
NVIDIA’s GPUDirect from a Linux kernel module. This
optimization reduces the latency of ring buffer updates to
2.5µsec.
6.4 Limitations

GPUnet does not provide a mechanism for socket
migration between a GPU and a CPU, which might be
convenient for load balancing.

More significantly, the prototype relies on the ability
of a GPU to provide the means to guarantee consistent
reads to its memory when it is concurrently accessed by
a running kernel and the NIC RDMA hardware. NVIDIA
GPUs do not currently provide such consistency guaran-
tees. In practice, however, we do not observe consistency
violations in GPUnet. Specifically, to validate our current
implementation, we implement a GPU CRC32C library
and instrument the applications to check the data integrity
of all network messages with 4KB granularity. We detect
no data integrity violations for experiments reported in
the paper (though this experiment surfaced a small bug
in GPUnet itself).

We hope, perhaps encouraged by GPUnet itself, that
GPU vendors will provide such consistency guarantees
in the near future. In fact, the necessary CPU-GPU mem-
ory consistency will be supported in the future releases
of OpenCL 2.0-compliant GPU platforms, thereby sup-
porting our expectation that it will become the standard
guarantee in future systems.

7. Applications
Matrix product server. The matrix product server is im-
plemented entirely on the GPU, using both the daemon
and independent architectures (§4.3). In the daemon ar-
chitecture the daemon threadblock (one or more) accepts
a client connection, reads the input matrices, and en-
queues a multiplication kernel. The multiplication kernel
gets pointers to the input matrices and the socket for writ-
ing the results. The number of threads – a critical param-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 209

eter defining how many GPU computational resources a
kernel should use – is derived from the matrix dimen-
sions as in the standard GPU implementation. When the
execution completes, the threadblock which finalizes the
computation sends the data back to the client and closes
the connection.

In the independent architecture each threadblock re-
ceives the input, runs the computations, and sends the re-
sults back.
Implementation details. The daemon server cannot in-
voke the multiplication kernel using dynamic parallelism
(which is the ability to execute a GPU kernel from
within an executing kernel, present since NVIDIA Kepler
GPUs). Current dynamic parallelism support in NVIDIA
GPUs lacks a parent-child concurrency guarantee, and
in practice the parent threadblock blocks to ensure the
child starts its execution. Our daemon threadblock must
remain active to accept new connections and handle in-
coming data, so we do not use NVIDIA’s dynamic paral-
lelism and instead invoke new GPU kernels via CPU by
a custom mechanism. See Section 8.2 for performance
measurements.
7.1 MapReduce design

We design an in-GPU-memory distributed MapRe-
duce framework that keeps intermediate results of map
operation in GPU memory, while input and output are
read from disk using GPUfs [34]. We call the system
GimMR for GPU in memory Map Reduce. GimMR is
a native GPU application without CPU code. The num-
ber of GPUs in our system is small, so all of them are
used to execute both mappers and reducers. Shuffling
(i.e., the exchange of intermediate data produced by map-
pers between different hosts) is done by mappers, and re-
ducers only start once all mappers and data transfer has
completed. Our mappers push data, while in traditional
MapReduce, the reducers pull [13]. Each GPU runs mul-
tiple mappers and reducers, each of which are executed
by multiple GPU threads.

At the start of the Map phase a mapper reads its part of
the input via GPUfs. The input is split across all thread-
blocks, so they can execute in parallel. A GPU may run
tens of mappers, each with hundreds of threads. Map-
pers generate intermediate <key,value> pairs that they
assign to buckets using consistent hashing or a prede-
fined key range. Buckets contain pointers to data chunks.
A mapper accumulates intermediate keys and data into
local chunks. When a chunk size exceeds a threshold,
the mapper sends the chunk to the GPU which will run
the reducer for the keys in that bucket, thereby overlap-
ping mapper execution with the shuffle phase, similar to
ThemisMR [29].

Each Map function is invoked in one threadblock
and is executed by all the threadblock threads. On each
GPU, there are many mapper threadblocks and consumer
threadblocks, with the consumer threadblocks receiving

buckets from remote GPUs. Each consumer threadblock
is assigned a fixed number of connections from a remote
GPU. The receivers get data by making non-blocking
calls to grecv() on the mappers’ sockets in round-
robin order (using poll() on the GPU is left as future
work).

The network connections are set up at the beginning
of the Map phase, between each pair of consumer thread-
block and remote threadblock. For example, a GPU node
in a GimMR system with five GPUs, each with 12 map-
per and 12 consumer threadblocks, will have a total of 48
incoming connections, one per mapper from every other
GPU. And each of its 12 consumers will handle 4 in-
coming connections. Local mappers update local buckets
without sending them through the network.

GPU mappers coordinate with a CPU-side centralized
mapper master, accessed over the network. The master
assigns jobs, balancing load across the mappers. The
master tells each mapper the offset and size of the data
it should read from its input file.

Similar to the Map, each Reduce function is also in-
voked in one threadblock. Each reducer identifies the set
of buckets it must process, (optionally) performs parallel
sort of all the key-value pairs in each bucket separately,
and finally invokes the user-provided Reduce function.
As a result, the GPU exploits the standard coarse-grain
data parallelism of independent input keys, but also en-
ables the finer-grained parallelism of a function process-
ing values from the same key, e.g., by parallel sorting or
reduction. Enabling each reducer to sort the key/values
independently of other reducers is important to avoid a
GPU-wide synchronization phase at the end of sorting.

GimMR takes advantage of the dynamic communi-
cation capabilities of GPUnet for ease and efficiency in
implementation. Without GPUnet, enabling overlapped
communications and computations would require signif-
icant development effort involving fine-tuned pipelining
among CPU sends, CPU-GPU data transfers, and GPU
kernel invocations.
GimMR workloads. We implement word count and K-
means. In word count, the mapper parses free-form input
text and generates <word, 1> pairs, which are reduced
by summing up their values. CUDA does not provide text
processing functions, so we implement our own parser.
We pre-sample the input text and determine the range of
keys being reduced by each reducer.

The mappers in K-means calculate the distance of
each point to the cluster centroids, and then re-cluster the
point to its nearest centroid. Intermediate data is pairs of
<centroid number, point>. The reducer sums the coordi-
nates of all points in a centroid. K-means is an iterative
algorithm, and our framework supports iterative MapRe-
duce. A CPU process receives the results of the reducers,
and calculates the new centroids for the next round.We
preprocess the input file to piecewise transpose the input

210 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

points, thereby coalescing memory accesses for threads
in a threadblock.
7.2 Face verification

A client sends a photo of a face, along with a text
label identifying the face, to a verification service. The
server responds positively if the label matches the photo
(i.e., the server has the same face in its database with
the proffered label), and negatively otherwise. The server
uses a well-known local binary patterns (LBP) algorithm
for face verification [6]. LBP represents images by a his-
togram of their visual features. The server stores all LBP
histograms in a memcached database. In our testbed, we
have three machines, one for clients, one for the verifica-
tion server and one for the memcached database.

We believe our organization is a reasonable choice, as
opposed to alternatives such as having the client perform
the LBP and send a histogram to the server. Face veri-
fication algorithms are constantly evolving, and placing
them on the server makes upgrading the algorithm possi-
ble. Also, sending actual pictures to the server provides a
useful human-checkable log of activity.
Client. The client uses multiple threads, each running on
its own CPU, and maintaining multiple persistent non-
blocking connections with the server. Clients use rsockets
for network communications with the server. For each
connection, the client performs the following steps and
repeats them forever:
1. Read a (random) 136x136 grayscale image from a

(cached) file.
2. Choose a (random) face label.
3. Send verification request to server.
4. Receive response from server – 0 (mismatch) or 1

(match).
Server. We implement three versions of the server: a
CPU version, a CUDA version, and a GPUnet version.
Each server performs the following steps repeatedly (in
different ways).
1. Receive request from client.
2. Fetch LBP histogram for client-provided name from

the remote memcached database.
3. Calculate LBP histogram of the image in the request.
4. Calculate Euclidean distance between the histograms.
5. Report a match if the distance is below a threshold.
6. Send integer response.

The CPU server consists of multiple independent
threads, one per CPU core. Each thread manages multi-
ple, persistent, non-blocking connections with the client.

The CUDA server is the same as the CPU server, but
the face verification algorithm executes on the GPU by
launching a kernel. (see Figure 2, middle picture).

The GPUnet server is a native GPU-only application
using GPUnet for network operations. It uses the in-
dependent architecture (§4.3), and consists of multiple
threadblocks running forever, with each acting as an in-
dependent server. Each threadblock manages persistent

N
od

e Chipset
Intel CPU Intel GPU

NVIDIA D
M

A

Software

A
B Z87 E3-1220V3

Haswell K20c N RHEL 6.5, gcc 4.4.7,
GPU driver 331.38

C C602 E5-2620
Sandy Bridge C2075 Y RHEL 6.3, gcc 4.4.6,

GPU driver 319.37

D 5520 2× L5630
Westmere

2×
C2075 Y RHEL 6.3, gcc 4.4.6,

GPU driver 319.37
Table 1: Hardware and software configuration. The DMA column
indicates the presence of a DMA performance asymmetry (§6.2).

connections with the client and memcached server. This
design is appropriate since the processing time per image
is low and there is enough parallelism per request.
Implementation details. We use a standard benchmark-
ing face recognition dataset5, resized to 136x136 and re-
formatted as raw grayscale images. We implement a GPU
memcached client library. memcached uses Infiniband
RDMA transport provided by the rsockets library. We
modified a single line of memcached to work with rsock-
ets by disabling the use of accept4, which is not sup-
ported by rsockets.

8. Evaluation
Hardware. We run our experiments on a cluster with
four nodes (Table 1) connected by a QDR 40Gbps In-
finiband interconnect, using Mellanox HCA cards with
MT4099 and MT26428 chipsets.

All machines use CUDA 5.5. ECC on GPUs, hyper-
threading, SpeedStep, and Turbo mode of all the ma-
chines are disabled for reproducible performance. Nodes
A and B feature a newer chipset with a PLX 8747 PCIe
switch which enables full bandwidth P2P DMA between
the HCA and the GPU. Nodes C and D provide full band-
width for DMA writes from HCA to GPU (grecv()),
but perform poorly with only 10% of the bandwidth for
DMA reads from GPU (gsend()). We are not the first to
observe such asymmetry [28].

GPUnet delegates connection establishment and tear-
down to a CPU. Our benchmarks exclude connection es-
tablishment from the performance measurement to mea-
sure the steady-state behavior of persistent connections.
Using persistent connections is a common optimization
technique for data center applications [11].
8.1 Microbenchmarks

We run microbenchmarks with two complementary
goals: to understand the performance consequences of
GPUnet design decisions, and to separate the essential
bottlenecks from the ephemeral issues due to current
hardware. We run them between nodes A and B with 256
threads per threadblock. All results are the average of 10
iterations, with the standard deviation within 1.1% of the
mean.

5 http://www.itl.nist.gov/iad/humanid/feret/
feret_master.htm

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 211

C-C C-G
RDMA

C-G
BB

G-G
RDMA

G-G
BB

RTT 64 byte(µsec) 2.86 26.9 60.3 50.0 117
Bandwidth (GB/s) 3.44 3.44 3.48 3.38 3.46

Table 2: Single stream latency (round trip time) and bandwidth for
GPUnet, CPU uses rsockets. C–CPU, G-GPU, BB–bounce buffer.

Steps Latency
(µsec)

T1 GPU ring buffer 1.4
T2 GPU copies buffer 15.7
T3 GPU requests to CPU 3.8
T4 CPU reads GPU request 2.5
T5 CPU RDMA write time to completion 22.2
Total one-way latency 45.6

Table 3: Latency breakdown for a GPU gsend() request with a 64KB
message with peer-to-peer RDMA.

Single stream performance. We run a simple single-
threadblock GPU echo server and client using a single
GPUnet socket. We implement the CPU version of the
benchmark using the unmodified rsockets library. Ta-
ble 2 shows the round trip time (RTT) for 64 byte mes-
sages and bandwidth for 64KB messages and 256KB
(512KB for bounce buffer) system buffers. The GPU
reaches about 98% of the peak performance of CPU-
based rsockets. Bounce buffers (entries marked BB in
the table) increase latency two-fold versus RDMA trans-
fers, but its throughput is close to RDMA thanks to twice
larger system buffers for better latency hiding.

The latency of GPU transfers is significantly higher
than the baseline CPU-to-CPU latency. To understand the
reasons, Table 3 provides the breakdown for the latency
of individual steps of gsend() sending 64KB.

We measured T1, T2, T3 on the GPU by instrumenting
the GPU code using clock64(), the GPU intrinsic that
reads the hardware cycle counter. T5 is effectively the la-
tency of the send() call performed from the CPU, but
transferring data between memories of two GPUs. For
this data size, the overhead of GPU-related processing is
about 50%. The user-to-system buffer copy, T2, is the pri-
mary bottleneck. Accessing CPU-GPU shared data struc-
tures (T1, T3) and the latency of the update propagation
through the PCIe bus (T4) account for 20% of the total
latency, but these are constant factors.

We believe that T2 and T4 will improve in future hard-
ware generations. Specifically, T4 can be reduced by en-
abling a GPU to access the HCA doorbell registers di-
rectly, without CPU mediation. We believe that T2 can be
optimized by exposing the already existing GPU DMA
engine for performing internal GPU DMAs, similar to
the Intel I/OAT DMA engine. Alternatively, a zero-copy
API may help eliminate T2 in software.
Duplex performance. The CPU rsocket library achieves
6.65 GB/s of the aggregate duplex bandwidth for two
concurrent data streams in opposite directions – twice the
bandwidth of a single stream. With GPUnet, we found
that gsend and grecv interfere when invoked concur-
rently on two sockets, but the reasons for this interference

is still unclear. Specifically, when using a CPU end-point,
the throughput of grecv and gsend is 3.31 GB/s and
2.63 GB/s respectively. As a result, in a GPU-GPU ex-
periment with two opposite streams, the one-directional
bandwidth is constrained by the gsend performance on
both sides, hence the aggregate bandwidth is 5.26 GB/s.
Multistream bandwidth. We measured the aggregate
bandwidth of sending over multiple sockets from one
GPU. We run 26 threadblocks (2 threadblocks per GPU
SM core) each having multiple non-blocking sockets.
Each send is 32KB. We test up to 416 active connec-
tions – the maximum number of sockets that GPUnet
may concurrently maintain given 256KB send buffers,
which provide the highest single-stream performance.
As we explained in § 6, the maximum number of sockets
is constrained by the total amount of RDMA-registered
memory available for network buffers, which is currently
limited to 220MB.

We run the experiment between two GPUs. Starting
from 2 connections, GPUnet achieves a throughput of
3.4GB/s, and gradually falls to 3.2GB/s at 416 connec-
tions, primarily due to the increased load on the CPU-
side proxy having to handle more requests. Using bounce
buffers shows slightly better throughput, 3.5GB/s with
two connections, and 3.3GB/s with 208 connections.
8.2 Matrix product server

We implement three versions of the matrix product
server to examine the performance of different GPU
server organizations.

The CUDA server runs the I/O logic on the CPU and
offloads matrix product computations to the GPU using
standard CUDA. It executes a single CPU thread and
invokes one GPU kernel per request (matrixMul), the
matrix product kernel distributed with the NVIDIA SDK.

The daemon server uses GPUnet and follows the dae-
mon architecture (§4.3). The GPU resources are par-
titioned between daemon threadblocks and computing
threadblocks. The number of daemon threadblocks is an
important server configuration parameter as we discuss
below. Both the CUDA server and the daemon server in-
voke the matrix product kernel via the CPU, however the
latter receives/sends data directly to/from GPU memory.

The independent server also employs GPUnet, but
the GPU is not statically partitioned between daemon
and compute threadblocks. Instead, all the threadblocks
handle I/O and perform computations, and no additional
GPU kernels are launched.

The CUDA, daemon and independent server versions
are 894, 391 and 220 LOC for their core functionality.
Resource allocation in the daemon server. The perfor-
mance of the daemon server is particularly sensitive to
the way GPU resources are partitioned between I/O and
compute tasks performed by the server. The GPU non-
preemptive scheduling model implies that GPU resources
allocated to I/O tasks cannot execute computations even

212 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Workload
Configuration Light Medium Heavy
Light 92% 81% 74%
Medium 44% 99% 88%
Heavy 12% 44% 100%

Table 4: The cost of misconfiguration: the throughput in a given config-
uration relative to the maximum throughput using the best configuration
for that workload.

while I/O tasks are idle waiting for the input data. There-
fore, if the server is configured to run too many daemon
threadblocks, the compute kernels will get fewer GPU
resources and computations will execute slowly. On the
other hand, too few daemon threadblocks may fail to feed
the execution units with data fast enough, thereby de-
creasing the server throughput 6. In our current imple-
mentation the number of daemon threadblocks is config-
ured at server invocation time and does not change during
execution.

The best server configuration depends on the work-
load. Intuitively, the more computation that is performed
per byte of I/O, the fewer GPU resources should be allo-
cated for I/O threadblocks and, consequently, more re-
sources allocated for computation. The optimal server
configuration depends on the compute-to-I/O ratio of its
tasks.

Balancing the allocation of threadblocks between
computation and I/O is a high-stakes game. Table 4
shows how we separate three matrix multiplication work-
loads by their compute-to-I/O ratio: light (64x64 and
128x128), medium (256x256) and heavy (512x512 and
1024x1024).

We exhaustively search the configuration space for
each workload (with varying number of clients) to find
the configuration of compute and I/O threadblocks that
maximizes throughput. Then we run all workloads on all
configurations and measure the penalty for using the best
configuration for each class of workload. Splitting work-
loads into three classes allows us to find configurations
that perform very well for all instances of that class (the
diagonal is all above 90% of optimal). However, dedi-
cating too many or too few threadblocks to I/O can be
terrible for performance, with the worst misconfiguration
reducing throughput to 12% of optimal. Future work in-
cludes a generic method of finding the best server config-
uration and dynamically adjusting it to suit the workload.

Performance comparison of different server designs.
We compare the throughput of different server designs
while changing the number of concurrent clients. We use
the 256 × 256 matrices for input, and configure the dae-
mon server to have the number of daemon threadblocks

6 In practice, the number of threads per a daemon threadblock also
affects the server performance, but we omit these technical details for
simplicity.

Figure 8: Throughput comparison for different matrix product servers.

Server Light Medium Heavy
design workload workload workload
Daemon (GFLOPS) 11 137 201
Independent (GFLOPS) 37 (3.4×) 151 (1.1×) 207 (1.01×)

Table 5: The throughput of GPUnet-based matrix product servers under
different workload types.

which maximizes its throughput for this workload. The
results are shown in Figure 8.

Both GPUnet-based implementations consistently out-
perform the traditional CUDA server across all the work-
loads and are competitive with each other.

As expected, the performance of the independent de-
sign is sensitive to the number of clients. Our imple-
mentation assigns one connection per threadblock, so the
number of clients equals the number of server thread-
blocks. Configurations where the number of clients are
divisible by the number of GPU SMs (13 in our case)
have the best performance. Other cases suffer from load
imbalance. The performance of the independent design
is particularly low for one client because the server runs
with a single threadblock using a single SM, leading to
severe underutilization of GPU resources.

The performance of the independent design is 8× to
20× higher than a single-threaded CPU-only server that
uses the highly-optimized BLAS library (not shown in
the figure).

Table 5 shows the throughput of the GPUnet servers
serving different workload types. We fixed the number of
active connections to 26 to allow the independent server
to reach its full performance potential.

The independent server achieves higher throughput
for all of the workload types, but its advantages are most
profound for light tasks (with low compute-to-I/O ratios).
The independent server does not incur the overhead of
GPU kernel invocations, which dominate the execution
time for shorter tasks in the daemon server. This perfor-
mance advantage makes the independent design particu-
larly suitable for our face verification server which also
runs tasks with low compute-to-I/O ratio as we describe
below (§ 8.4).
8.3 Map reduce

We evaluate the standard word count and K-means
tasks on our GimMR MapReduce. Table 6 compares the
performance of the single-GPU GimMR with the single-
node Hadoop and Phoenix++ [38] on a 8-core CPU. We

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 213

Workload 8-core
Phoenix++

1-Node
Hadoop

1-GPU
GimMR

K-means 12.2 sec 71.0 sec 5.6 sec
Wordcount 6.23 sec 211.0 sec 29.6 sec

Table 6: Single-node GimMR vs. other MapReduce systems.

use RAM disk and IP over IB when evaluating K-Means
on Hadoop. For both wordcount and kmeans on Hadoop,
we run 8 map jobs and 16 reduce jobs per node.
Word count. The word count serves as a feasibility proof
for distributed GPU-only MapReduce, but the workload
characteristics make it inefficient on GPUs.

The benchmark counts words in a 600MB corpus
of English-language Wikipedia in XML format. A sin-
gle GPU GimMR outperforms the single-node 8-core
Hadoop by a factor of 7.1×, but is 4.7× slower than
Phoenix++ [38] running on 8 CPU cores. GimMR word
count spends a lot of time sorting strings, which is expen-
sive on GPUs because comparing variable length strings
create divergent, irregular computations. In the future
we will adopt the optimization done by ThemisMR [29]
which uses the hash of the strings as the intermediate
keys, in order to sort quickly.
Scalability. When invoked on the same input on four
network-connected GPUs, GimMR performance increases
by 2.9×. The scalability is affected by three factors: (1)
the amount of computation is too low to fully hide the
intermediate data transfer overheads, (2) reducers experi-
ence imbalance due to the input data skew, (3) Only two
machines enable GPU-NIC RDMA, the other two use
bounce buffers.
K-means. We chose K-means to evaluate GimMR under
a computationally-intensive workload. We compute 500
clusters on a randomly generated 500MB input with 64K
vectors each with hundreds of floating point elements.

Table 6 compares the performance of GimMR with
single-node Hadoop and Phoenix++ using 200 dimen-
sion vectors. GimMR on a single GPU outperforms
Phoenix++ on 8 CPU cores by up to 2.2×, and Hadoop
by 12.7×.
Scalability. When invoked on the same input on four
network-connected GPUs, GimMR performance increases
by 2.9×. With 100 dimension vectors, the 4-GPU GimMR
achieves up to 3.5× speedup over a single GPU.
8.4 Face verification

We evaluate the face verification server on a different
cluster with three nodes, each with Mellanox Connect-
IB HCA, 2× Intel E5-2620 6-core CPU, and connected
via a Mellanox Switch-X bridge. The server executes on
NVIDIA K20Xm GPUs. The application’s client, server
and memcached server run on their own dedicated ma-
chines. We verified that both the CPU and GPU algo-
rithm implementations produce the same results, and also
manually inspected the output using the standard FERET

Figure 9: Face verification latency CDF for different servers.

dataset and hand-modified images. All the reported re-
sults have variance below 0.1% of their mean.
Lower latency, higher throughput. Figure 9 shows the
CDF of the request latency for different server imple-
mentations and some of their combinations. The legend
for each server specifies the effective server throughput
observed during the latency measurements. GPUnet and
CUDA are invoked with 28 threadblocks, 1024 threads
per threadblock, which we found to provide the best
tradeoff between latency and throughput. Other config-
urations result in higher throughput but sacrifice latency,
or slightly lower latency but much lower throughput.

The GPUnet server has the lowest average response
time of 524±41µsec per request while handling 53 KRe-
quests/sec, which is about 3× faster per request, and 50%
more requests than the CPU server running on a single 6-
core CPU. The native CUDA version and GPUnet with
bounce buffers suffer from 2× and 3× higher response
time, and 2.3× and 3× lower throughput respectively.
They both perform extra memory copies, and the CUDA
server is further penalized for invoking a kernel per re-
quest. Dynamic kernel invocation accounts for the greater
variability in the response time of the CUDA server. The
combination of CPU and GPUnet achieves the highest
throughput, and improves the server response time for all
requests, not only for those served on a GPU.
Maximum throughput and multi-GPU scalability. The
throughput-optimized configuration for the GPUnet server
differs from its latency-optimized version, with 4× more
threadblocks, each with 4× fewer threads (112 thread-
blocks, each with 256 threads). While the total number
of threads remains the same, this configuration serves
4× more concurrent requests. With 4× fewer threads
processing each request, the processing time grows only
by about 3×. Therefore this configuration achieves about
30% higher throughput as shown in Table 7, which is
within 3% of the performance of two 2×6-core CPUs.

Adding another GPU to the system almost doubles
the server throughput. Achieving linear scalability, how-
ever, requires adding a second Infiniband card. The PCIe
topology on the server allows only one of the two GPUs
to use P2P DMA with the same HCA, and the second
GPU has to fall back to using bounce buffers, which has
inferior performance in this case. To work around the

214 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Server
type C

PU

2×
C

PU

C
U

D
A

G
PU

ne
t

B
B

G
PU

ne
t

2×
G

PU
ne

t

2×
G

PU
ne

t
+

C
PU

Thpt
(Req/s) 35K 69K 23K 17K 67K 136K 188K

Table 7: Face verification throughput for different servers.

problem, we added a second HCA to enable P2P DMA
for the second GPU.

Finally, invoking both the CPU and GPUnet servers
together results in the highest throughput. Because each
GPU in GPUnet requires one CPU core to run, the CPU
server gets two fewer cores than the standalone CPU
version, and the final throughput is lower than the sum
of the individual throughputs. The total server throughput
is about 172% higher than the throughput of a 6x2-core
CPU-only server.

The GPUnet-based server I/O rate with a single GPU
reaches nearly 1.1GB/s. I/O activity accounts for about
40% of the server runtime. GPUnet enables high perfor-
mance with a relatively modest development complex-
ity compared to other servers. The CUDA server has 596
LOC, CPU - 506, and GPUnet– only 245 lines of code.

9. Related work
GPUnet is the first system to provide native network-

ing abstractions for GPUs. This work emerges from a
broader trend to integrate GPUs more cleanly with op-
erating system services, as exemplified by recent work
on a file system layer for GPUs (GPUfs) [34] and virtual
memory management (RSVM [20]).
OS services for GPU applications. GPU applications
operate outside of the resource management scope of the
operating system, often to the detriment of system per-
formance. PTask [30] proposes a data flow programming
model for GPUs that enables the OS to provide fairness
and performance isolation. TimeGraph [22] allows a de-
vice driver to schedule GPU processors to support real-
time workloads.
OSes for heterogeneous architecture. Barrelfish [9]
proposes multikernels for heterogeneous systems based
on memory decoupled message passing. K2 [25] shows
the effectiveness of tailoring a mature OS to the details of
a heterogeneous architecture. GPUnet demonstrates how
to bring system services into a heterogeneous system.
GPUs for network acceleration. There have been sev-
eral projects targeting acceleration of network applica-
tions on GPUs. For example, PacketShader [16] and
Snap [37] use GPUs to accelerate packet routing at wire
speed, while SSLShader [19] offloads SSL computations.
Numerous high-performance computing applications
(e.g., Deep Neural Network learning [12]) use GPUs to
achieve high per-node performance in distributed appli-
cations. These works use GPUs as co-processors, and do
not provide networking support for GPUs. GASPP [40]

accelerates stateful packet processing on GPUs, but it is
not suitable for building client/server applications.
Peer-to-peer DMA. P2P DMA is an emerging technol-
ogy, and published results comport with the performance
problems GPUnet has on all but the very latest hardware.
Potluri et. al. [27, 28] use P2P DMA for NVIDIA GPUs
and Intel MICs in an MPI library, and report much less
bandwidth with P2P DMA than communication through
CPU. Kato et. al [21] and APEnet+ [7] also propose low-
latency networking systems with GPUDirect RDMA, but
report hardware limitations to their achieved bandwidth.
Trivedi et al. [39] point out the limitation of RDMA with
its complicated interaction with various hardware com-
ponents and the effect of architectural limits on RDMA.
Network stack on accelerators. Intel Xeon Phi is a co-
processor akin to a GPU, but featuring x86 compatible
cores and running embedded Linux. Xeon Phi enables
direct access to the HCA from the co-processor and runs
a complete network stack [45]. GPUnet provides a simi-
lar functionality for GPUs, and naturally shares some de-
sign concepts, like the CPU-side proxy service. However,
GPUs and Xeon Phi have fundamental differences, e.g.
fine-grain data parallel programming model, and the lack
of hardware support for operating system, which warrant
different approaches to key design components such as
the coalesced API and the CPU-GPU coordination.
Scalability on heterogeneous architecture. Dandelion [31]
is a language and system support for data-parallel ap-
plications on heterogeneous architectures. It provides a
familiar language interface to programmers, insulating
them from the heterogeneity.

GPMR [36] is a distributed MapReduce system for
GPUs, which uses MPI over Infiniband for networking.
However, it uses both CPUs and GPUs depending on the
characteristics of the steps of the MapReduce.
Network server design. Scalable network server design
has been heavily researched as processor and networking
architecture advance [10, 17, 24, 33, 43, 44], but most of
this work is specific to CPUs.

Rhythm [5] is one of the few GPU-based server ar-
chitectures that use GPUs to run PHP web services. It
promises throughput and energy efficiency that can ex-
ceed CPU-based servers, but its current prototype lacks
the in-GPU networking that GPUnet provides.
Low-latency networking. More networked applications
are demanding low-latency networking. RAMCloud [26]
notes the high latency of conventional Ethernet as a major
source of latency for a RAM-based server, and discusses
RDMA as an alternative that is difficult to use directly.

10. Acknowledgments
Mark Silberstein was supported by the Israel Science

Foundation (grant No. 1138/14) and the Israeli Ministry
of Science. We also gratefully acknowledge funding from
NSF grants CNS-1017785 and CCF-1333594.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 215

References
[1] GPUnet project web page. https://sites.

google.com/site/silbersteinmark/GPUnet.
[2] MVAPICH2: High performance MPI over InfiniBand,

iWARP and RoCE. http://mvapich.cse.ohio-
state.edu.

[3] Popular GPU-accelerated applications. http://www.
nvidia.com/object/gpu-applications.
html.

[4] Efficient Object Detection on GPUs using MB-LBP fea-
tures and Random Forests. GPU Technology Conference,
2013. http://on-demand.gputechconf.
com/gtc/2013/presentations/S3297-
Efficient-Object-Detection-GPU-\MB-
LBP-Forest.pdf.

[5] S. R. Agrawal, V. Pistol, J. Pang, J. Tran, D. Tarjan, and
A. R. Lebeck. Rhythm: Harnessing data parallel hardware
for server workloads. In Proceedings of the ACM Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2014.

[6] T. Ahonen, A. Hadid, and M. Pietikainen. Face descrip-
tion with local binary patterns: Application to face recog-
nition. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(12):2037–2041, 2006.

[7] R. Ammendola, A. Biagioni, O. Frezza, F. L. Cicero,
A. Lonardo, P. Paolucci, D. Rossetti, F. Simula, L. Toso-
ratto, and P. Vicini. APEnet+: a 3D Torus network op-
timized for GPU-based HPC Systems. In Journal of
Physics: Conference Series, volume 396. IOP Publishing,
2012.

[8] T. G. T. analysts. InfiniBand data center march, 2012.
https://cw.infinibandta.org/document/
dl/7269.

[9] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and A. Sing-
hania. The multikernel: a new OS architecture for scal-
able multicore systems. In Proceedings of the ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP), pages 29–44. ACM, 2009.

[10] N. Z. Beckmann, C. Gruenwald III, C. R. Johnson, H. Kas-
ture, F. Sironi, A. Agarwal, M. F. Kaashoek, and N. Zel-
dovich. PIKA: A network service for multikernel operat-
ing systems. Technical Report MIT-CSAIL-TR-2014-002,
MIT, January 2014.

[11] T. Benson, A. Akella, and D. A. Maltz. Network traffic
characteristics of data centers in the wild. In Proceed-
ings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, pages 267–280. ACM, 2010.

[12] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and
N. Andrew. Deep learning with COTS HPC systems.
In Proceedings of the 30th International Conference on
Machine Learning (ICML-13), pages 1337–1345, 2013.

[13] J. Dean and S. Ghemawat. MapReduce: simplified data
processing on large clusters. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2004.

[14] B. Ford. Structured streams: A new transport abstraction.
In Proceedings of the ACM SIGCOMM Conference on Ap-
plications, Technologies, Architectures, and Protocols for
Computer Communications, pages 361–372, New York,
NY, USA, 2007. ACM.

[15] K. Group. OpenCL - the open standard for parallel pro-
gramming of heterogeneous systems. http://www.
khronos.org/opencl.

[16] S. Han, K. Jang, K. Park, and S. Moon. PacketShader:
a GPU-accelerated software router. SIGCOMM Comput.
Commun. Rev., 40:195–206, August 2010.

[17] S. Han, S. Marshall, B.-G. Chun, and S. Ratnasamy.
MegaPipe: A new programming interface for scalable net-
work I/O. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI),
2012.

[18] InfiniBand Trade Association. InfiniBand Architecture
Specification, Volume 1 - General Specification, Release
1.2.1, 2007.

[19] K. Jang, S. Han, S. Han, S. Moon, and K. Park.
SSLShader: cheap SSL acceleration with commodity pro-
cessors. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI),
Berkeley, CA, USA, 2011. USENIX Association.

[20] F. Ji, H. Lin, and X. Ma. RSVM: a region-based software
virtual memory for GPU. In Proceedings of 22nd Interna-
tional Confreence on Parallel Architectures and Compila-
tion Techniques (PACT), pages 269–278. IEEE, 2013.

[21] S. Kato, J. Aumiller, and S. Brandt. Zero-copy I/O pro-
cessing for low-latency GPU computing. In Proceedings
of the ACM/IEEE 4th International Conference on Cyber-
Physical Systems, ICCPS ’13, pages 170–178, New York,
NY, USA, 2013. ACM.

[22] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa.
Timegraph: GPU scheduling for real-time multi-tasking
environments. In Proceedings of the USENIX An-
nual Technical Conference, Berkeley, CA, USA, 2011.
USENIX Association.

[23] D. B. Kirk and W. H. Wen-mei. Programming massively
parallel processors: a hands-on approach. Morgan Kauf-
mann, 2010.

[24] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can
make sense. In Proceedings of the USENIX Annual Tech-
nical Conference, Berkeley, CA, USA, 2007. USENIX
Association.

[25] F. X. Lin, Z. Wang, and L. Zhong. K2: A mobile operat-
ing system for heterogeneous coherence domains. In Pro-
ceedings of the ACM International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems (ASPLOS). ACM, 2014.

[26] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis,
J. Leverich, D. Mazières, S. Mitra, A. Narayanan,
G. Parulkar, M. Rosenblum, et al. The case for RAM-
Clouds: scalable high-performance storage entirely in
DRAM. ACM Operating Systems Review, 43(4):92–105,
2010.

216 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

[27] S. Potluri, D. Bureddy, K. Hamidouche, A. Venkatesh,
K. Kandalla, H. Subramoni, and D. K. Panda. MVAPICH-
PRISM: A proxy-based communication framework using
infiniband and SCIF for Intel MIC clusters. In Proceed-
ings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC), New
York, NY, USA, 2013. ACM.

[28] S. Potluri, K. Hamidouche, A. Venkatesh, D. Bureddy,
and D. K. Panda. Efficient inter-node MPI communica-
tion using GPUDirect RDMA for InfiniBand Clusters with
NVIDIA GPUs. In Parallel Processing (ICPP), 2013 42nd
International Conference on, pages 80–89. IEEE, 2013.

[29] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam,
G. Porter, and A. Vahdat. Themis: An I/O Efficient
MapReduce. In Proceedings of the ACM Symposium on
Cloud Computing, 2012.

[30] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and
E. Witchel. PTask: operating system abstractions to man-
age GPUs as compute devices. In Proceedings of the
ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), pages 233–248, 2011.

[31] C. J. Rossbach, Y. Yu, J. Currey, J.-P. Martin, and D. Fet-
terly. Dandelion: A compiler and runtime for heteroge-
neous systems. In Proceedings of the ACM SIGOPS Sym-
posium on Operating Systems Principles (SOSP), pages
49–68, New York, NY, USA, 2013. ACM.

[32] Sean Hefty. Rsockets. OpenFabrics International
Workshop, 2012. https://www.openfabrics.
org/index.php/resources/document-
downloads/public-documents/doc_
download/495-rsockets.html.

[33] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda.
Isostack: Highly efficient network processing on dedicated
cores. In Proceedings of the USENIX Annual Technical
Conference, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

[34] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs:
integrating file systems with GPUs. In Proceedings of the
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (AS-
PLOS). ACM, 2013.

[35] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs:
integrating file systems with GPUs. ACM Transactions on
Computer Systems (TOCS), 2014.

[36] J. A. Stuart and J. D. Owens. Multi-GPU MapReduce on
GPU clusters. In Parallel & Distributed Processing Sym-
posium (IPDPS), 2011 IEEE International, pages 1068–
1079. IEEE, 2011.

[37] W. Sun and R. Ricci. Fast and Flexible: Parallel packet
processing with GPUs and Click. In Proceedings of the
Ninth ACM/IEEE Symposium on Architectures for Net-
working and Communications Systems, pages 25–36, Pis-
cataway, NJ, USA, 2013. IEEE Press.

[38] J. Talbot, R. M. Yoo, and C. Kozyrakis. Phoenix++: mod-
ular mapreduce for shared-memory systems. In Proceed-
ings of the second international workshop on MapReduce
and its applications, pages 9–16. ACM, 2011.

[39] A. Trivedi, B. Metzler, P. Stuedi, and T. R. Gross. On
limitations of network acceleration. In Proceedings of the
Ninth ACM Conference on Emerging Networking Experi-
ments and Technologies (CoNEXT), pages 121–126, New
York, NY, USA, 2013. ACM.

[40] G. Vasiliadis, L. Koromilas, M. Polychronakis, and
S. Ioannidis. Gaspp: A gpu-accelerated stateful packet
processing framework. In 2014 USENIX Annual Technical
Conference (USENIX ATC 14), pages 321–332, Philadel-
phia, PA, June 2014. USENIX Association.

[41] Vasily Volkov. Better performance at lower occupancy.
GPU Technology Conference, 2010. http://www.cs.
berkeley.edu/˜volkov/volkov10-GTC.pdf.

[42] V. Vasudevan, M. Kaminsky, and D. G. Andersen. Using
vector interfaces to deliver millions of IOPS from a net-
worked key-value storage server. In Proceedings of the
ACM Symposium on Cloud Computing, New York, NY,
USA, 2012. ACM.

[43] R. Von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: scalable threads for internet ser-
vices. In ACM Operating Systems Review, volume 37,
pages 268–281. ACM, 2003.

[44] M. Welsh, D. Culler, and E. Brewer. SEDA: an architec-
ture for well-conditioned, scalable internet services. In
ACM Operating Systems Review, volume 35, pages 230–
243. ACM, 2001.

[45] B. Woodruf. OFS software for the Intel Xeon Phi. Open-
Fabrics Alliance International Developer Workshop, 2013.

