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Abstract
In pursuit of graph processing performance, the systems
community has largely abandoned general-purpose dis-
tributed dataflow frameworks in favor of specialized graph
processing systems that provide tailored programming ab-
stractions and accelerate the execution of iterative graph
algorithms. In this paper we argue that many of the advan-
tages of specialized graph processing systems can be re-
covered in a modern general-purpose distributed dataflow
system. We introduce GraphX, an embedded graph pro-
cessing framework built on top of Apache Spark, a widely
used distributed dataflow system. GraphX presents a fa-
miliar composable graph abstraction that is sufficient to
express existing graph APIs, yet can be implemented us-
ing only a few basic dataflow operators (e.g., join, map,
group-by). To achieve performance parity with special-
ized graph systems, GraphX recasts graph-specific op-
timizations as distributed join optimizations and mate-
rialized view maintenance. By leveraging advances in
distributed dataflow frameworks, GraphX brings low-cost
fault tolerance to graph processing. We evaluate GraphX
on real workloads and demonstrate that GraphX achieves
an order of magnitude performance gain over the base
dataflow framework and matches the performance of spe-
cialized graph processing systems while enabling a wider
range of computation.

1 Introduction

The growing scale and importance of graph data
has driven the development of numerous specialized
graph processing systems including Pregel [22], Pow-
erGraph [13], and many others [7, 9, 37]. By exposing
specialized abstractions backed by graph-specific opti-
mizations, these systems can naturally express and ef-
ficiently execute iterative graph algorithms like PageR-
ank [30] and community detection [18] on graphs with
billions of vertices and edges. As a consequence, graph
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Figure 1: GraphX is a thin layer on top of the Spark
general-purpose dataflow framework (lines of code).

processing systems typically outperform general-purpose
distributed dataflow frameworks like Hadoop MapReduce
by orders of magnitude [13, 20].

While the restricted focus of these systems enables a
wide range of system optimizations, it also comes at a cost.
Graphs are only part of the larger analytics process which
often combines graphs with unstructured and tabular data.
Consequently, analytics pipelines (e.g., Figure 11) are
forced to compose multiple systems which increases com-
plexity and leads to unnecessary data movement and du-
plication. Furthermore, in pursuit of performance, graph
processing systems often abandon fault tolerance in fa-
vor of snapshot recovery. Finally, as specialized systems,
graph processing frameworks do not generally enjoy the
broad support of distributed dataflow frameworks.

In contrast, general-purpose distributed dataflow frame-
works (e.g., Map-Reduce [10], Spark [39], Dryad [15]) ex-
pose rich dataflow operators (e.g., map, reduce, group-by,
join), are well suited for analyzing unstructured and tabu-
lar data, and are widely adopted. However, directly imple-
menting iterative graph algorithms using dataflow oper-
ators can be challenging, often requiring multiple stages
of complex joins. Furthermore, the general-purpose join
and aggregation strategies defined in distributed dataflow
frameworks do not leverage the common patterns and
structure in iterative graph algorithms and therefore miss
important optimization opportunities.
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Historically, graph processing systems evolved sepa-
rately from distributed dataflow frameworks for several
reasons. First, the early emphasis on single stage computa-
tion and on-disk processing in distributed dataflow frame-
works (e.g., MapReduce) limited their applicability to
iterative graph algorithms which repeatedly and randomly
access subsets of the graph. Second, early distributed
dataflow frameworks did not expose fine-grained control
over the data partitioning, hindering the application of
graph partitioning techniques. However, new in-memory
distributed dataflow frameworks (e.g., Spark and Naiad)
expose control over data partitioning and in-memory rep-
resentation, addressing some of these limitations.

Given these developments, we believe there is an oppor-
tunity to unify advances in graph processing systems with
advances in dataflow systems enabling a single system
to address the entire analytics pipeline. In this paper we
explore the design of graph processing systems on top of
general purpose distributed dataflow systems. We argue
that by identifying the essential dataflow patterns in graph
computation and recasting optimizations in graph pro-
cessing systems as dataflow optimizations we can recover
the advantages of specialized graph processing systems
within a general-purpose distributed dataflow framework.
To support this argument we introduce GraphX, an effi-
cient graph processing framework embedded within the
Spark [39] distributed dataflow system.

GraphX presents a familiar, expressive graph API (Sec-
tion 3). Using the GraphX API we implement a variant
of the popular Pregel abstraction as well as a range of
common graph operations. Unlike existing graph process-
ing systems, the GraphX API enables the composition of
graphs with unstructured and tabular data and permits the
same physical data to be viewed both as a graph and as
collections without data movement or duplication. For ex-
ample, using GraphX it is easy to join a social graph with
user comments, apply graph algorithms, and expose the
results as either collections or graphs to other procedures
(e.g., visualization or rollup). Consequently, GraphX en-
ables users to adopt the computational pattern (graph or
collection) that is best suited for the current task without
sacrificing performance or flexibility.

We built GraphX as a library on top of Spark (Figure 1)
by encoding graphs as collections and then expressing
the GraphX API on top of standard dataflow operators.
GraphX requires no modifications to Spark, revealing
a general method to embed graph computation within
distributed dataflow frameworks and distill graph compu-
tation to a specific join–map–group-by dataflow pattern.
By reducing graph computation to a specific pattern we
identify the critical path for system optimization.

However, naively encoding graphs as collections and
executing iterative graph computation using general-
purpose dataflow operators can be slow and inefficient.

To achieve performance parity with specialized graph pro-
cessing systems, GraphX introduces a range of optimiza-
tions (Section 4) both in how graphs are encoded as col-
lections as well as the execution of the common dataflow
operators. Flexible vertex-cut partitioning is used to en-
code graphs as horizontally partitioned collections and
match the state of the art in distributed graph partitioning.
GraphX recasts system optimizations developed in the
context of graph processing systems as join optimizations
(e.g., CSR indexing, join elimination, and join-site speci-
fication) and materialized view maintenance (e.g., vertex
mirroring and delta updates) and applies these techniques
to the Spark dataflow operators. By leveraging logical
partitioning and lineage, GraphX achieves low-cost fault
tolerance. Finally, by exploiting immutability GraphX
reuses indices across graph and collection views and over
multiple iterations, reducing memory overhead and im-
proving system performance.

We evaluate GraphX on real-world graphs and compare
against direct implementations of graph algorithms using
the Spark dataflow operators as well as implementations
using specialized graph processing systems. We demon-
strate that GraphX can achieve performance parity with
specialized graph processing systems while preserving
the advantages of a general-purpose dataflow framework.
In summary, the contributions of this paper are:

1. an integrated graph and collections API which is
sufficient to express existing graph abstractions and
enable a much wider range of computation.

2. an embedding of vertex-cut partitioned graphs in hor-
izontally partitioned collections and the GraphX API
in a small set of general-purpose dataflow operators.

3. distributed join and materialized view optimizations
that enable general-purpose distributed dataflow
frameworks to execute graph computation at per-
formance parity with specialized graph systems.

4. a large-scale evaluation on real graphs and com-
mon benchmarking algorithms comparing GraphX
against widely used graph processing systems.

2 Background

In this section we review the design trade-offs and limita-
tions of graph processing systems and distributed dataflow
frameworks. At a high level, graph processing systems
define computation at the granularity of vertices and their
neighborhoods and exploit the sparse dependency struc-
ture pre-defined by the graph. In contrast, general-purpose
distributed dataflow frameworks define computation as
dataflow operators at either the granularity of individual
items (e.g., filter, map) or across entire collections (i.e., op-
erations like non-broadcast join that require a shuffle).
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2.1 The Property Graph Data Model

Graph processing systems represent graph structured data
as a property graph [33], which associates user-defined
properties with each vertex and edge. The properties can
include meta-data (e.g., user profiles and time stamps)
and program state (e.g., the PageRank of vertices or in-
ferred affinities). Property graphs derived from natural
phenomena such as social networks and web graphs often
have highly skewed, power-law degree distributions and
orders of magnitude more edges than vertices [18].

In contrast to dataflow systems whose operators
(e.g., join) can span multiple collections, operations in
graph processing systems (e.g., vertex programs) are typi-
cally defined with respect to a single property graph with
a pre-declared, sparse structure. While this restricted fo-
cus facilitates a range of optimizations (Section 2.3), it
also complicates the expression of analytics tasks that
may span multiple graphs and sub-graphs.

2.2 The Graph-Parallel Abstraction

Algorithms ranging from PageRank to latent factor anal-
ysis iteratively transform vertex properties based on the
properties of adjacent vertices and edges. This common
pattern of iterative local transformations forms the ba-
sis of the graph-parallel abstraction. In the graph-parallel
abstraction [13], a user-defined vertex program is instan-
tiated concurrently for each vertex and interacts with adja-
cent vertex programs through messages (e.g., Pregel [22])
or shared state (e.g., PowerGraph [13]). Each vertex pro-
gram can read and modify its vertex property and in some
cases [13, 20] adjacent vertex properties. When all vertex
programs vote to halt the program terminates.

As a concrete example, in Listing 1 we express the
PageRank algorithm as a Pregel vertex program. The
vertex program for the vertex v begins by summing the
messages encoding the weighted PageRank of neighbor-
ing vertices. The PageRank is updated using the resulting
sum and is then broadcast to its neighbors (weighted by
the number of links). Finally, the vertex program assesses
whether it has converged (locally) and votes to halt.

The extent to which vertex programs run concurrently
differs across systems. Most systems (e.g., [7, 13, 22, 34])
adopt the bulk synchronous execution model, in which
all vertex programs run concurrently in a sequence of
super-steps. Some systems (e.g., [13, 20, 37]) also sup-
port an asynchronous execution model that mitigates the
effect of stragglers by running vertex programs as re-
sources become available. However, the gains due to an
asynchronous programming model are often offset by
the additional complexity and so we focus on the bulk-
synchronous model and rely on system level techniques
(e.g., pipelining and speculation) to address stragglers.

def PageRank(v: Id, msgs: List[Double]) {
// Compute the message sum
var msgSum = 0
for (m <- msgs) { msgSum += m }
// Update the PageRank
PR(v) = 0.15 + 0.85 * msgSum
// Broadcast messages with new PR
for (j <- OutNbrs(v)) {

msg = PR(v) / NumLinks(v)
send_msg(to=j, msg)

}
// Check for termination
if (converged(PR(v))) voteToHalt(v)

}

Listing 1: PageRank in Pregel: computes the sum of the
inbound messages, updates the PageRank value for the
vertex, and then sends the new weighted PageRank value
to neighboring vertices. Finally, if the PageRank did not
change the vertex program votes to halt.

While the graph-parallel abstraction is well suited for
iterative graph algorithms that respect the static neigh-
borhood structure of the graph (e.g., PageRank), it is not
well suited to express computation where disconnected
vertices interact or where computation changes the graph
structure. For example, tasks such as graph construction
from raw text or unstructured data, graph coarsening, and
analysis that spans multiple graphs are difficult to express
in the vertex centric programming model.

2.3 Graph System Optimizations

The restrictions imposed by the graph-parallel abstraction
along with the sparse graph structure enable a range of
important system optimizations.

The GAS Decomposition: Gonzalez et al. [13] ob-
served that most vertex programs interact with neigh-
boring vertices by collecting messages in the form of a
generalized commutative associative sum and then broad-
casting new messages in an inherently parallel loop. They
proposed the GAS decomposition which splits vertex pro-
grams into three data-parallel stages: Gather, Apply, and
Scatter. In Listing 2 we decompose the PageRank vertex
program into the Gather, Apply, and Scatter stages.

The GAS decomposition leads to a pull-based model of
message computation: the system asks the vertex program
for value of the message between adjacent vertices rather
than the user sending messages directly from the ver-
tex program. As a consequence, the GAS decomposition
enables vertex-cut partitioning, improved work balance,
serial edge-iteration [34], and reduced data movement.
However, the GAS decomposition also prohibits direct
communication between vertices that are not adjacent in
the graph and therefore hinders the expression of more
general communication patterns.
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def Gather(a: Double, b: Double) = a + b
def Apply(v, msgSum) {

PR(v) = 0.15 + 0.85 * msgSum
if (converged(PR(v))) voteToHalt(v)

}
def Scatter(v, j) = PR(v) / NumLinks(v)

Listing 2: Gather-Apply-Scatter (GAS) PageRank:
The gather phase combines inbound messages. The apply
phase consumes the final message sum and updates the
vertex property. The scatter phase defines the message
computation for each edge.

Graph Partitioning: Graph processing systems apply
a range of graph-partitioning algorithms [16] to minimize
communication and balance computation. Gonzalez et
al. [13] demonstrated that vertex-cut [12] partitioning
performs well on many large natural graphs. Vertex-cut
partitioning evenly assigns edges to machines in a way
that minimizes the number of times each vertex is cut.

Mirror Vertices: Often high-degree vertices will have
multiple neighbors on the same remote machine. Rather
than sending multiple, typically identical, messages
across the network, graph processing systems [13, 20,
24, 32] adopt mirroring techniques in which a single mes-
sage is sent to the mirror and then forwarded to all the
neighbors. Graph processing systems exploit the static
graph structure to reuse the mirror data structures.

Active Vertices: As graph algorithms proceed, vertex
programs within a graph converge at different rates, lead-
ing to rapidly shrinking working sets (the collection of
active vertex programs). Recent systems [11, 13, 20, 22]
track active vertices and eliminate data movement and
unnecessary computation for vertices that have converged.
In addition, these systems typically maintain efficient
densely packed data-structures (e.g., compressed sparse
row (CSR)) that enable constant-time access to the local
edges adjacent to active vertices.

2.4 Distributed Dataflow Frameworks
We use the term distributed dataflow framework to refer to
cluster compute frameworks like MapReduce and its gen-
eralizations. Although details vary from one framework
to another, they typically satisfy the following properties:

1. a data model consisting of typed collections (i.e., a
generalization of tables to unstructured data).

2. a coarse-grained data-parallel programming model
composed of deterministic operators which trans-
form collections (e.g., map, group-by, and join).

3. a scheduler that breaks each job into a directed
acyclic graph (DAG) of tasks, where each task runs
on a (horizontal) partition of data.

4. a runtime that can tolerate stragglers and partial clus-
ter failures without restarting.

In MapReduce, the programming model exposes only
two dataflow operators: map and reduce (a.k.a., group-by).
Each job can contain at most two layers in its DAG of
tasks. More modern frameworks such as DryadLINQ [15],
Pig [29], and Spark expose additional dataflow operators
such as fold and join, and can execute tasks with multiple
layers of dependencies.

Distributed dataflow frameworks have enjoyed broad
adoption for a wide variety of data processing tasks, in-
cluding ETL, SQL query processing, and iterative ma-
chine learning. They have also been shown to scale to
thousands of nodes operating on petabytes of data.

In this work we restrict our attention to Apache Spark,
upon which we developed GraphX. Spark has several
features that are particularly attractive for GraphX:

1. The Spark storage abstraction called Resilient Dis-
tributed Datasets (RDDs) enables applications to
keep data in memory, which is essential for iterative
graph algorithms.

2. RDDs permit user-defined data partitioning, and
the execution engine can exploit this to co-partition
RDDs and co-schedule tasks to avoid data movement.
This is essential for encoding partitioned graphs.

3. Spark logs the lineage of operations used to build
an RDD, enabling automatic reconstruction of lost
partitions upon failures. Since the lineage graph is
relatively small even for long-running applications,
this approach incurs negligible runtime overhead,
unlike checkpointing, and can be left on without con-
cern for performance. Furthermore, Spark supports
optional in-memory distributed replication to reduce
the amount of recomputation on failure.

4. Spark provides a high-level API in Scala that can be
easily extended. This aided in creating a coherent
API for both collections and graphs.

We believe that many of the ideas in GraphX could
be applied to other contemporary dataflow systems and
in Section 6 we discuss some preliminary work on a
GraphLINQ, a graph framework within Naiad.

3 The GraphX Programming Abstraction

We now revisit graph computation from the perspective
of a general-purpose dataflow framework. We recast the
property graph data model as collections and the graph-
parallel abstraction as a specific pattern of dataflow oper-
ators. In the process we reveal the essential structure of
graph-parallel computation and identify the key operators
required to execute graph algorithms efficiently.
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3.1 Property Graphs as Collections
The property graph, described in Section 2.1, can be logi-
cally represented as a pair of vertex and edge property col-
lections. The vertex collection contains the vertex proper-
ties uniquely keyed by the vertex identifier. In the GraphX
system, vertex identifiers are 64-bit integers which may
be derived externally (e.g., user ids) or by applying a hash
function to the vertex property (e.g., page URL). The
edge collection contains the edge properties keyed by the
source and destination vertex identifiers.

By reducing the property graph to a pair of collections
we make it possible to compose graphs with other col-
lections in a distributed dataflow framework. Operations
like adding additional vertex properties are naturally ex-
pressed as joins against the vertex property collection.
The process of analyzing the results of graph computation
(i.e., the final vertex and edge properties) and comparing
properties across graphs becomes as simple as analyzing
and joining the corresponding collections. Both of these
tasks are routine in the broader scope of graph analytics
but are not well served by the graph parallel abstraction.

New property graphs can be constructed by compos-
ing different vertex and edge property collections. For
example, we can construct logically distinct graphs with
separate vertex properties (e.g., one storing PageRanks
and another storing connected component membership)
while sharing the same edge collection. This may appear
to be a small accomplishment, but the tight integration
of vertices and edges in specialized graph processing
systems often hinders even this basic form of reuse. In ad-
dition, graph-specific index data structures can be shared
across graphs with common vertex and edge collections,
reducing storage overhead and improving performance.

3.2 Graph Computation as Dataflow Ops.
The normalized representation of a property graph as a
pair of vertex and edge property collections allows us
to embed graphs in a distributed dataflow framework. In
this section we describe how dataflow operators can be
composed to express graph computation.

Graph-parallel computation, introduced in Section 2.2,
is the process of computing aggregate properties of the
neighborhood of each vertex (e.g., the sum of the PageR-
anks of neighboring vertices weighted by the edge val-
ues). We can express graph-parallel computation in a dis-
tributed dataflow framework as a sequence of join stages
and group-by stages punctuated by map operations.

In the join stage, vertex and edge properties are joined
to form the triplets view1 consisting of each edge and its
corresponding source and destination vertex properties.

1 The triplet terminology derives from the classic Resource Descrip-
tion Framework (RDF), discussed in Section 6.

CREATE VIEW triplets AS
SELECT s.Id, d.Id, s.P, e.P, d.P
FROM edges AS e
JOIN vertices AS s JOIN vertices AS d
ON e.srcId = s.Id AND e.dstId = d.Id

Listing 3: Constructing Triplets in SQL: The column P
represents the properties in the vertex and edge property
collections.

The triplets view is best illustrated by the SQL statement
in Listing 3, which constructs the triplets view as a three
way join keyed by the source and destination vertex ids.

In the group-by stage, the triplets are grouped by source
or destination vertex to construct the neighborhood of
each vertex and compute aggregates. For example, to
compute the PageRank of a vertex we would execute:

SELECT t.dstId, 0.15+0.85*sum(t.srcP*t.eP)
FROM triplets AS t GROUP BY t.dstId

By iteratively applying the above query to update the
vertex properties until they converge, we can calculate the
PageRank of each vertex.

These two stages capture the GAS decomposition de-
scribed in Section 2.3. The group-by stage gathers mes-
sages destined to the same vertex, an intervening map
operation applies the message sum to update the vertex
property, and the join stage scatters the new vertex prop-
erty to all adjacent vertices.

Similarly, we can implement the GAS decomposition
of the Pregel abstraction by iteratively composing the join
and group-by stages with data-parallel map stages. Each
iteration begins by executing the join stage to bind active
vertices with their outbound edges. Using the triplets view,
messages are computed along each triplet in a map stage
and then aggregated at their destination vertex in a group-
by stage. Finally, the messages are received by the vertex
programs in a map stage over the vertices.

The dataflow embedding of the Pregel abstraction
demonstrates that graph-parallel computation can be ex-
pressed in terms of a simple sequence of join and group-by
dataflow operators. Additionally, it stresses the need to
efficiently maintain the triplets view in the join stage and
compute the neighborhood aggregates in the group-by
stage. Consequently, these stages are the focus of per-
formance optimization in graph processing systems. We
describe how to implement them efficiently in Section 4.

3.3 GraphX Operators

The GraphX programming abstraction extends the Spark
dataflow operators by introducing a small set of special-
ized graph operators, summarized in Listing 4.
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class Graph[V, E] {
// Constructor
def Graph(v: Collection[(Id, V)],

e: Collection[(Id, Id, E)])
// Collection views
def vertices: Collection[(Id, V)]
def edges: Collection[(Id, Id, E)]
def triplets: Collection[Triplet]
// Graph-parallel computation
def mrTriplets(f: (Triplet) => M,

sum: (M, M) => M): Collection[(Id, M)]
// Convenience functions
def mapV(f: (Id, V) => V): Graph[V, E]
def mapE(f: (Id, Id, E) => E): Graph[V, E]
def leftJoinV(v: Collection[(Id, V)],

f: (Id, V, V) => V): Graph[V, E]
def leftJoinE(e: Collection[(Id, Id, E)],

f: (Id, Id, E, E) => E): Graph[V, E]
def subgraph(vPred: (Id, V) => Boolean,

ePred: (Triplet) => Boolean)
: Graph[V, E]

def reverse: Graph[V, E]
}

Listing 4: Graph Operators: transform vertex and edge
collections.

The Graph constructor logically binds together a pair
of vertex and edge property collections into a property
graph. It also verifies the integrity constraints: that every
vertex occurs only once and that edges do not link missing
vertices. Conversely, the vertices and edges opera-
tors expose the graph’s vertex and edge property collec-
tions. The triplets operator returns the triplets view
(Listing 3) of the graph as described in Section 3.2. If a
triplets view already exists, the previous triplets are incre-
mentally maintained to avoid a full join (see Section 4.2).

The mrTriplets (Map Reduce Triplets) opera-
tor encodes the essential two-stage process of graph-
parallel computation defined in Section 3.2. Logically, the
mrTriplets operator is the composition of the map
and group-by dataflow operators on the triplets view. The
user-defined map function is applied to each triplet, yield-
ing a value (i.e., a message of type M) which is then ag-
gregated at the destination vertex using the user-defined
binary aggregation function as illustrated in the following:

SELECT t.dstId, reduceF(mapF(t)) AS msgSum
FROM triplets AS t GROUP BY t.dstId

The mrTriplets operator produces a collection con-
taining the sum of the inbound messages keyed by the
destination vertex identifier. For example, in Figure 2 we
use the mrTriplets operator to compute a collection
containing the number of older followers for each user
in a social network. Because the resulting collection con-
tains a subset of the vertices in the graph it can reuse the
same indices as the original vertex collection.

Finally, Listing 4 contains several functions that sim-
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val graph: Graph[User, Double]
def mapUDF(t: Triplet[User, Double]) =

if (t.src.age > t.dst.age) 1 else 0
def reduceUDF(a: Int, b: Int): Int = a + b
val seniors: Collection[(Id, Int)] =

graph.mrTriplets(mapUDF, reduceUDF)

Figure 2: Example use of mrTriplets: Compute the num-
ber of older followers of each vertex.

def Pregel(g: Graph[V, E],
vprog: (Id, V, M) => V,
sendMsg: (Triplet) => M,
gather: (M, M) => M): Collection[V] = {

// Set all vertices as active
g = g.mapV((id, v) => (v, halt=false))
// Loop until convergence
while (g.vertices.exists(v => !v.halt)) {

// Compute the messages
val msgs: Collection[(Id, M)] =

// Restrict to edges with active source
g.subgraph(ePred=(s,d,sP,eP,dP)=>!sP.halt)
// Compute messages
.mrTriplets(sendMsg, gather)

// Receive messages and run vertex program
g = g.leftJoinV(msgs).mapV(vprog)

}
return g.vertices
}

Listing 5: GraphX Enhanced Pregel: An implementa-
tion of the Pregel abstraction using the GraphX API.

ply perform a dataflow operation on the vertex or edge
collections. We define these functions only for caller con-
venience; they are not essential to the abstraction and can
easily be defined using standard dataflow operators. For
example, mapV is defined as follows:

g.mapV(f) ≡ Graph(g.vertices.map(f), g.edges)

In Listing 5 we use the GraphX API to implement a
GAS decomposition of the Pregel abstraction. We begin
by initializing the vertex properties with an additional
field to track active vertices (those that have not voted
to halt). Then, while there are active vertices, messages
are computed using the mrTriplets operator and the
vertex program is applied to the resulting message sums.

By expressing message computation as an edge-
parallel map operation followed by a commutative asso-
ciative aggregation, we leverage the GAS decomposition
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def ConnectedComp(g: Graph[V, E]) = {
g = g.mapV(v => v.id) // Initialize vertices
def vProg(v: Id, m: Id): Id = {

if (v == m) voteToHalt(v)
return min(v, m)

}
def sendMsg(t: Triplet): Id =

if (t.src.cc < t.dst.cc) t.src.cc
else None // No message required

def gatherMsg(a: Id, b: Id): Id = min(a, b)
return Pregel(g, vProg, sendMsg, gatherMsg)

}

Listing 6: Connected Components: For each vertex we
compute the lowest reachable vertex id using Pregel.

to mitigate the cost of high-degree vertices. Furthermore,
by exposing the entire triplet to the message computation
we can simplify algorithms like connected components.
However, in cases where the entire triplet is not needed
(e.g., PageRank which requires only the source property)
we rely on UDF bytecode inspection (see Section 4.3.2)
to automatically drop unused fields from join.

In Listing 6 we use the GraphX variant of Pregel to
implement the connected components algorithm. The con-
nected components algorithm computes the lowest reach-
able vertex id for each vertex. We initialize the vertex
property of each vertex to equal its id using mapV and
then define the three functions required to use the GraphX
Pregel API. The sendMsg function leverages the triplet
view of the edge to only send a message to neighboring
vertices when their component id should change. The
gatherMsg function computes the minimum of the in-
bound message values and the vertex program (vProg)
determines the new component id.

Combining Graph and Collection Operators: Often
groups of connected vertices are better modeled as a sin-
gle vertex. In these cases, it can be helpful coarsen the
graph by aggregating connected vertices that share a com-
mon characteristic (e.g., web domain) to derive a new
graph (e.g., the domain graph). We use the GraphX ab-
straction to implement graph coarsening in Listing 7.

The coarsening operation takes an edge predicate and
a vertex aggregation function and collapses all edges that
satisfy the predicate, merging their respective vertices.
The edge predicate is used to first construct the subgraph
of edges that are to be collapsed (i.e., modifying the graph
structure). Then the graph-parallel connected components
algorithm is run on the subgraph. Each connected compo-
nent corresponds to a super-vertex in the new coarsened
graph with the component id being the lowest vertex id
in the component. The super-vertices are constructed by
aggregating all the vertices with the same component id
using a data-parallel aggregation operator. Finally, we up-
date the edges to link together super-vertices and generate
the new graph for subsequent graph-parallel computation.

def coarsen(g: Graph[V, E],
pred: (Id,Id,V,E,V) => Boolean,
reduce: (V,V) => V) = {

// Restrict graph to contractable edges
val subG = g.subgraph(v => True, pred)
// Compute connected component id for all V
val cc: Collection[(Id,ccId)] =

ConnectedComp(subG).vertices
// Merge all vertices in same component
val superV: Collection[(ccId,V)] =

g.vertices.leftJoin(cc)
.groupBy(CC_ID, reduce)

// Link remaining edges between components
val invG = g.subgraph(ePred = t => !pred(t))
val remainingE: Collection[(ccId,ccId,E)] =

invG.leftJoin(cc).triplets.map {
e => (e.src.cc, e.dst.cc, e.attr)

}
// Return the final graph
Graph(superV, remainingE)

}

Listing 7: Coarsen: The coarsening operator merges ver-
tices connected by edges that satisfy the edge predicate.

The coarsen operator demonstrates the power of a
unified abstraction by combining both data-parallel and
graph-parallel operators in a single graph-analytics task.

4 The GraphX System

GraphX achieves performance parity with specialized
graph processing systems by recasting the graph-specific
optimizations of Section 2.3 as optimizations on top of
a small set of standard dataflow operators in Spark. In
this section we describe these optimizations in the context
of classic techniques in traditional database systems in-
cluding indexing, incremental view maintenance, and join
optimizations. Along the way, we quantify the effective-
ness of each optimization; readers are referred to Section
5 for details on datasets and experimental setup.

4.1 Distributed Graph Representation

GraphX represents graphs internally as a pair of vertex
and edge collections built on the Spark RDD abstraction.
These collections introduce indexing and graph-specific
partitioning as a layer on top of RDDs. Figure 3 illustrates
the physical representation of the horizontally partitioned
vertex and edge collections and their indices.

The vertex collection is hash-partitioned by the vertex
ids. To support frequent joins across vertex collections,
vertices are stored in a local hash index within each par-
tition (Section 4.2). Additionally, a bitmask stores the
visibility of each vertex, enabling soft deletions to pro-
mote index reuse (Section 4.3.1).



606 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Edges

1 2

1 3

edge partition A

1 4

5 4

edge partition B

1 5
edge partition C

1 6

6 5

clustered indices on 
source vertex

2

3

4

edge
partition A

edge
partition B

6

edge
partition C 1

5

Graph

Vertices

vertex partition A

1

2

3

1

1

1

bitmask

vertex partition B

4

5

6

1

1

0

bitmask

hash indices on 
vertex id

Routing Table

partition A

1C
B 1
A 1,2,3

partition B

A
4,5
5,6C

B

Figure 3: Distributed Graph Representation: The
graph (left) is represented as a vertex and an edge col-
lection (right). The edges are divided into three edge par-
titions by applying a partition function (e.g., 2D Parti-
tioning). The vertices are partitioned by vertex id. Co-
partitioned with the vertices, GraphX maintains a routing
table encoding the edge partitions for each vertex. If ver-
tex 6 and adjacent edges (shown with dotted lines) are
restricted from the graph (e.g., by subgraph), they are
removed from the corresponding collection by updating
the bitmasks thereby enabling index reuse.

The edge collection is horizontally partitioned by a
user-defined partition function. GraphX enables vertex-
cut partitioning, which minimizes communication in nat-
ural graphs such as social networks and web graphs [13].
By default edges are assigned to partitions based on the
partitioning of the input collection (e.g., the original place-
ment on HDFS). However, GraphX provides a range of
built-in partitioning functions, including a 2D hash parti-
tioner with strong upper bounds [8] on the communication
complexity of operators like mrTriplets. This flexi-
bility in edge placement is enabled by the routing table,
described in Section 4.2. For efficient lookup of edges by
their source and target vertices, the edges within a parti-
tion are clustered by source vertex id using a compressed
sparse row (CSR) [35] representation and hash-indexed
by their target id. Section 4.3.1 discusses how these in-
dices accelerate iterative computation.

Index Reuse: GraphX inherits the immutability of
Spark and therefore all graph operators logically create
new collections rather than destructively modifying exist-
ing ones. As a result, derived vertex and edge collections
can often share indices to reduce memory overhead and
accelerate local graph operations. For example, the hash
index on vertices enables fast aggregations, and the result-
ing aggregates share the index with the original vertices.

In addition to reducing memory overhead, shared in-
dices enable faster joins. Vertex collections sharing the
same index (e.g., the vertices and the messages from

mrTriplets) can be joined by a coordinated scan, sim-
ilar to a merge join, without requiring any index lookups.
In our benchmarks, index reuse reduces the per-iteration
runtime of PageRank on the Twitter graph by 59%.

The GraphX operators try to maximize index reuse. Op-
erators that do not modify the graph structure (e.g., mapV)
automatically preserve indices. To reuse indices for oper-
ations that restrict the graph structure (e.g., subgraph),
GraphX relies on bitmasks to construct restricted views.
In cases where index reuse could lead to decreased ef-
ficiency (e.g., when a graph is highly filtered), GraphX
uses the reindex operator to build new indices.

4.2 Implementing the Triplets View

As described in Section 3.2, a key stage in graph compu-
tation is constructing and maintaining the triplets view,
which consists of a three-way join between the source and
destination vertex properties and the edge properties.

Vertex Mirroring: Because the vertex and edge prop-
erty collections are partitioned independently, the join
requires data movement. GraphX performs the three-way
join by shipping the vertex properties across the network
to the edges, thus setting the edge partitions as the join
sites [21]. This approach substantially reduces communi-
cation for two reasons. First, real-world graphs commonly
have orders of magnitude more edges than vertices. Sec-
ond, a single vertex may have many edges in the same
partition, enabling substantial reuse of the vertex property.

Multicast Join: While broadcast join in which all ver-
tices are sent to each edge partition would ensure joins
occur on edge partitions, it could still be inefficient since
most partitions require only a small subset of the ver-
tices to complete the join. Therefore, GraphX introduces
a multicast join in which each vertex property is sent only
to the edge partitions that contain adjacent edges. For
each vertex GraphX maintains the set of edge partitions
with adjacent edges. This join site information is stored
in a routing table which is co-partitioned with the ver-
tex collection (Figure 3). The routing table is associated
with the edge collection and constructed lazily upon first
instantiation of the triplets view.

The flexibility in partitioning afforded by the multi-
cast join strategy enables more sophisticated application-
specific graph partitioning techniques. For example, by
adopting a per-city partitioning scheme on the Facebook
social network graph Ugander et al. [38] showed a 50.5%
reduction in query time. In Section 5.1 we exploit the
optimized partitioning of our sample datasets to achieve
up to 56% reduction in runtime and 5.8× reduction in
communication compared to a 2D hash partitioning.

Partial Materialization: Vertex replication is per-
formed eagerly when vertex properties change, but the
local joins at the edge partitions are left unmaterialized to
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Figure 4: Impact of incrementally maintaining the
triplets view: For both PageRank and connected compo-
nents, as vertices converge, communication decreases due
to incremental view maintenance. The initial rise in com-
munication is due to message compression (Section 4.4);
many PageRank values are initially the same.

avoid duplication. Instead, mirrored vertex properties are
stored in hash maps on each edge partition and referenced
when constructing triplets.

Incremental View Maintenance: Iterative graph algo-
rithms often modify only a subset of the vertex properties
in each iteration. We therefore apply incremental view
maintenance to the triplets view to avoid unnecessary
movement of unchanged data. After each graph operation,
we track which vertex properties have changed since the
triplets view was last constructed. When the triplets view
is next accessed, only the changed vertices are re-routed
to their edge-partition join sites and the local mirrored
values of the unchanged vertices are reused. This func-
tionality is managed automatically by the graph operators.

Figure 4 illustrates the impact of incremental view
maintenance for both PageRank and connected compo-
nents on the Twitter graph. In the case of PageRank, where
the number of active vertices decreases slowly because
the convergence threshold was set to 0, we see only mod-
erate gains. In contrast, for connected components most
vertices are within a short distance of each other and con-
verge quickly, leading to a substantial reduction in com-
munication from incremental view maintenance. Without
incremental view maintenance, the triplets view would
need to be reconstructed from scratch every iteration, and
communication would remain at its peak throughout the
computation.

4.3 Optimizations to mrTriplets
GraphX incorporates two additional query optimizations
for the mrTriplets operator: filtered index scanning
and automatic join elimination.

4.3.1 Filtered Index Scanning

The first stage of the mrTriplets operator logically in-
volves a scan of the triplets view to apply the user-defined

Figure 5: Sequential scan vs index scan: Connected
components on the Twitter graph benefits greatly from
switching to index scan after the 4th iteration, while
PageRank benefits only slightly because the set of ac-
tive vertices is large even at the 15th iteration.

map function to each triplet. However, as iterative graph
algorithms converge, their working sets tend to shrink,
and the map function skips all but a few triplets. In par-
ticular, the map function only needs to operate on triplets
containing vertices in the active set, which is defined by
an application-specific predicate. Directly scanning all
triplets becomes increasingly wasteful as the active set
shrinks. For example, in the last iteration of connected
components on the Twitter graph, only a few of the ver-
tices are still active. However, to execute mrTriplets
we still must sequentially scan 1.5 billion edges and check
whether their vertices are in the active set.

To address this problem, we introduced an indexed scan
for the triplets view. The application expresses the current
active set by restricting the graph using the subgraph
operator. The vertex predicate is pushed to the edge par-
titions, where it can be used to filter the triplets using
the CSR index on the source vertex id (Section 4.1). We
measure the selectivity of the vertex predicate and switch
from sequential scan to clustered index scan when the
selectivity is less than 0.8.

Figure 5 illustrates the benefit of index scans in PageR-
ank and connected components. As with incremental view
maintenance, index scans lead to a smaller improvement
in runtime for PageRank and a substantial improvement
in runtime for connected components. Interestingly, in
the initial iterations of connected components, when the
majority of the vertices are active, a sequential scan is
slightly faster as it does not require the additional index
lookup. It is for this reason that we dynamically switch
between full and indexed scans based on the fraction of
active vertices.
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4.3.2 Automatic Join Elimination

In some cases, operations on the triplets view may access
only one of the vertex properties or none at all. For ex-
ample, when mrTriplets is used to count the degree
of each vertex, the map UDF does not access any ver-
tex properties. Similarly, when computing messages in
PageRank only the source vertex properties are used.

GraphX uses a JVM bytecode analyzer to inspect user-
defined functions at runtime and determine whether the
source or target vertex properties are referenced. If only
one property is referenced, and if the triplets view has not
already been materialized, GraphX automatically rewrites
the query plan for generating the triplets view from a three-
way join to a two-way join. If none of the vertex properties
are referenced, GraphX eliminates the join entirely. This
modification is possible because the triplets view follows
the lazy semantics of RDDs in Spark. If the user never
accesses the triplets view, it is never materialized. A call to
mrTriplets is therefore able to rewrite the join needed
to generate the relevant part of the triplets view.

Figure 6 demonstrates the impact of this physical ex-
ecution plan rewrite on communication and runtime for
PageRank on the Twitter follower graph. We see that join
elimination cuts the amount of data transferred in half,
leading to a significant reduction in overall runtime. Note
that on the first iteration there is no reduction in com-
munication. This is due to compression algorithms that
take advantage of all messages having exactly the same
initial value. However, compression and decompression
still consume CPU time so we still observe nearly a factor
of two reduction in overall runtime.

4.4 Additional Optimizations

While implementing GraphX, we discovered that a num-
ber of low level engineering details had significant perfor-
mance impact. We sketch some of them here.

Memory-based Shuffle: Spark’s default shuffle imple-
mentation materializes the temporary data to disk. We
modified the shuffle phase to materialize map outputs in
memory and remove this temporary data using a timeout.

Batching and Columnar Structure: In our join code
path, rather than shuffling the vertices one by one, we
batch a block of vertices routed to the same target join
site and convert the block from row-oriented format to
column-oriented format. We then apply the LZF compres-
sion algorithm on these blocks to send them. Batching
has a negligible impact on CPU time while improving the
compression ratio of LZF by 10–40% in our benchmarks.

Variable Integer Encoding: While GraphX uses 64-bit
vertex ids, in most cases the ids are much smaller than 264.
To exploit this fact, during shuffling, we encode integers

Figure 6: Impact of automatic join elimination on com-
munication and runtime: We ran PageRank for 20 itera-
tions on the Twitter dataset with and without join elimina-
tion and found that join elimination reduces the amount of
communication by almost half and substantially decreases
the total execution time.

using a variable-encoding scheme where for each byte,
we use only the first 7 bits to encode the value, and use
the highest order bit to indicate whether we need another
byte to encode the value. In this case, smaller integers
are encoded with fewer bytes. In the worst case, integers
greater than 256 require 5 bytes to encode. This technique
reduces communication in PageRank by 20%.

5 System Evaluation

In this section we demonstrate that, for iterative graph
algorithms, GraphX is over an order of magnitude faster
than directly using the general-purpose dataflow operators
described in Section 3.2 and is comparable to or faster
than specialized graph processing systems.

We evaluate the performance of GraphX on several
graph-analytics tasks, comparing it with the following:

1. Apache Spark 0.9.1: the base distributed dataflow
system for GraphX. We compare against Spark to
demonstrate the performance gains relative to the
baseline distributed dataflow framework.

2. Apache Giraph 1.1: an open source graph compu-
tation system based on the Pregel abstraction.

3. GraphLab 2.2 (PowerGraph): the open-source
graph computation system based on the GAS de-
composition of vertex programs. Because GraphLab
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is implemented in C++ and all other systems run on
the JVM, given identical optimizations, we would
expect GraphLab to have a slight performance ad-
vantage.

We also compare against GraphLab without shared-
memory parallelism (denoted GraphLab NoSHM).
GraphLab communicates between workers on the same
machine using shared data structures. In contrast, Giraph,
Spark, and GraphX adopt a shared-nothing worker model
incurring extra serialization overhead between workers.
To isolate this overhead, we disabled shared-memory by
forcing GraphLab workers to run in separate processes.

It is worth noting that the shared data structures in
GraphLab increase the complexity of the system. Indeed,
we encountered and fixed a critical bug in one of the
GraphLab shared data structures. The resulting patch in-
troduced an additional lock which led to a small increase
in thread contention. As a consequence, in some cases
(e.g., Figure 7c) disabling shared memory contributed to
a small improvement in performance.

All experiments were conducted on Amazon EC2 using
16 m2.4xlarge worker nodes. Each node has 8 virtual
cores, 68 GB of memory, and two hard disks. The cluster
was running 64-bit Linux 3.2.28. We plot the mean and
standard deviation for multiple trials of each experiment.

5.1 System Comparison

Cross-system benchmarks are often unfair due to the dif-
ficulty in tuning each system equitably. We have endeav-
ored to minimize this effect by working closely with ex-
perts in each of the systems to achieve optimal configura-
tions. We emphasize that we are not claiming GraphX is
fundamentally faster than GraphLab or Giraph; these sys-
tems could in theory implement the same optimizations
as GraphX. Instead, we aim to show that it is possible
to achieve comparable performance to specialized graph
processing systems using a general dataflow engine while
gaining common dataflow features such as fault tolerance.

While we have implemented a wide range of graph
algorithms on top of GraphX, we restrict our perfor-
mance evaluation to PageRank and connected compo-
nents. These two representative graph algorithms are im-
plemented in most graph processing systems, have well-
understood behavior, and are simple enough to serve as
an effective measure of the system’s performance. To en-
sure a fair comparison, our PageRank implementation is
based on Listing 1; it does not exploit delta messages
and therefore benefits less from indexed scans and in-
cremental view maintenance. Conversely, the connected
components implementation only sends messages when a
vertex must change component membership and therefore
does benefit from incremental view maintenance.

Dataset Edges Vertices
twitter-2010 [5, 4] 1,468,365,182 41,652,230
uk-2007-05 [5, 4] 3,738,733,648 105,896,555

Table 1: Graph Datasets. Both graphs have highly
skewed power-law degree distributions.

For each system, we ran both algorithms on the twitter-
2010 and uk-2007-05 graphs (Table 1). For Giraph and
GraphLab we used the included implementations of these
algorithms. For Spark we implemented the algorithms
both using idiomatic dataflow operators (Naive Spark, as
described in Section 3.2) and using an optimized imple-
mentation (Optimized Spark) that eliminates movement
of edge data by pre-partitioning the edges to match the
partitioning adopted by GraphX.

Both GraphLab and Giraph partition the graph accord-
ing to specialized partitioning algorithms. While GraphX
supports arbitrary user defined graph partitioners includ-
ing those used by GraphLab and Giraph, the default parti-
tioning strategy is to construct a vertex-cut that matches
the input edge data layout thereby minimizing edge data
movement when constructing the graph. However, as
point of comparison we also tested GraphX using a ran-
domized vertex-cut (GraphX Rand). We found (see Fig-
ure 7) that for the specific datasets used in our experiments
the input partitioning, which was determined by a special-
ized graph compression format [4], actually resulted in a
more communication-efficient vertex-cut partitioning.

Figures 7a and 7c show the total runtimes for connected
components algorithm. We have excluded Giraph and
Optimized Spark from Figure 7c because they were unable
to scale to the larger web-graph in the allotted memory
of the cluster. While the basic Spark implementation did
not crash, it was forced to re-compute blocks from disk
and exceeded 8000 seconds per iteration. We attribute
the increased memory overhead to the use of edge-cut
partitioning and the need to store bi-directed edges and
messages for the connected components algorithm.

Figures 7b and 7d show the total runtimes for PageRank
for 20 iterations on each system. In Figure 7b, GraphLab
outperforms GraphX largely due to shared-memory par-
allelism; GraphLab without shared memory parallelism
is much closer in performance to GraphX. In 7d, GraphX
outperforms GraphLab because the input partitioning of
uk-2007-05 is highly efficient, resulting in a 5.8x reduc-
tion in communication per iteration.

5.2 GraphX Performance
Scaling: In Figure 8 we evaluate the strong scaling per-
formance of GraphX running PageRank on the Twitter
follower graph. As we move from 8 to 32 machines (a
factor of 4) we see a 3x speedup. However as we move to
64 machines (a factor of 8) we only see a 3.5x speedup.
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(a) Conn. Comp. Twitter (b) PageRank Twitter (c) Conn. Comp. uk-2007-05∗ (d) PageRank uk-2007-05

Figure 7: System Performance Comparison. (c) Spark did not finish within 8000 seconds, Giraph and Spark + Part.
ran out of memory.

Figure 8: Strong scaling for PageR-
ank on Twitter (10 Iterations)

Figure 9: Effect of partitioning on
communication

Figure 10: Fault tolerance for
PageRank on uk-2007-05

While this is hardly linear scaling, it is actually slightly
better than the 3.2x speedup reported by GraphLab [13].
The poor scaling performance of PageRank has been at-
tributed by [13] to high communication overhead relative
to computation for the PageRank algorithm.

It may seem surprising that GraphX scales slightly
better than GraphLab given that Spark does not exploit
shared memory parallelism and therefore forces the graph
to be partitioned across processors rather than machines.
However, Figure 9 shows the communication of GraphX
as a function of the number of partitions. Going from 16
to 128 partitions (a factor of 8) yields only an approxi-
mately 2-fold increase in communication. Returning to
the analysis of vertex-cut partitioning conducted by [13],
we find that the vertex-cut partitioning adopted by GraphX
mitigates the 8-fold increase in communication.

Fault tolerance: Existing graph systems only support
checkpoint-based fault tolerance, which most users leave
disabled due to the performance overhead. GraphX is
built on Spark, which provides lineage-based fault toler-
ance with negligible overhead as well as optional dataset
replication (Section 2.4). We benchmarked these fault tol-

erance options for PageRank on uk-2007-05 by killing a
worker in iteration 11 of 20, allowing Spark to recover by
using the remaining copies of the lost partitions or recom-
puting them, and measuring how long the job took in total.
For comparison, we also measured the end-to-end time
for running until failure and then restarting from scratch
on the remaining nodes using a driver script, as would be
necessary in existing graph systems. Figure 10 shows that
in case of failure, both replication and recomputation are
faster than restarting the job from scratch, and moreover
they are performed transparently by the dataflow engine.

6 Related Work

In Section 2 we described the general characteristics
shared across many of the earlier graph processing sys-
tems. However, there are some exceptions to many of
these characteristics that are worth noting.

While most of the work on large-scale distributed graph
processing has focused on static graphs, several systems
have focused on various forms of stream processing. One
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of the earlier examples is Kineograph [9], a distributed
graph processing system that constructs incremental snap-
shots of the graph for offline static graph analysis. In the
multicore setting, GraphChi [17] and later X-Stream [34]
introduced support for the addition of edges between ex-
isting vertices and between computation stages. Although
conceptually GraphX could support the incremental in-
troduction of edges (and potentially vertices), the exist-
ing data-structures would require additional optimization.
Instead, GraphX focuses on efficiently supporting the re-
moval of edges and vertices: essential functionality for
offline sub-graph analysis.

Most of the optimizations and programming models of
earlier graph processing systems focus on a single graph
setting. While some of these systems [19, 13, 34] are ca-
pable of operating on multiple graphs independently, they
do not expose an API or present optimizations for opera-
tions spanning graphs (or tables). One notable exception
is CombBLAS [7] which treats graphs (and data more
generally) as matrices and supports generalized binary
algebraic operators. In contrast GraphX preserves the na-
tive semantics of graphs and tables and provides a simple
API to combine data across these representations.

The triplets view in GraphX is related to the clas-
sic Resource Description Framework [23] (RDF) data
model which encodes graph structured data as subject-
predicate-object triplets (e.g., NYC-isA-city). Numerous
systems [1, 6, 28] have been proposed for storing and
executing SPARQL [31] subgraph queries against RDF
triplets. Like GraphX, these systems rely heavily on in-
dexing and clustering for performance. Unlike GraphX,
these systems are not distributed or do not address it-
erative graph algorithms. Nonetheless, we believe that
the optimizations techniques developed for GraphX may
benefit the design of distributed graph query processing.

There have been several recent efforts at exploring
graph algorithms within dataflow systems. Najork et
al. [27], compares implementations of a range of graph
algorithms on the DryadLINQ [15] and SQL Server
dataflow systems. However, the resulting implementa-
tions are fairly complex and specialized, and little is dis-
cussed about graph-specific optimizations. Both Ewen
et al. [11] and Murray et al. [26] proposed dataflow sys-
tems geared towards incremental iterative computation
and demonstrated performance gains for specialized im-
plementations of graph algorithms. While this work high-
lights the importance of incremental updates in graph
computation, neither proposed a general method to ex-
press graph algorithms or graph specific optimizations
beyond incremental dataflows. Nonetheless, we believe
that the GraphX system could be ported to run on-top of
these dataflow frameworks and would potentially benefit
from advances like timely dataflows [26].

At the time of publication, the Microsoft Naiad

team had announced initial work on a system called
GraphLINQ [25], a graph processing framework on-top
of Naiad which shares many similarities to GraphX. Like
GraphX, GraphLINQ aims to provides rich graph func-
tionality within a general-purpose dataflow framework.
In particular GraphLINQ presents a GraphReduce op-
erator that is semantically similar to the mrTriplets
operator in GraphX except that it operates on streams of
vertices and edges. The emphasis on stream processing ex-
poses opportunities for classic optimizations in the stream
processing literature as well as recent developments like
the Naiad timely dataflows [26]. We believe this further
supports the advantages of embedding graph processing
within more general-purpose data processing systems.

Others have explored join optimizations in distributed
dataflow frameworks. Blanas et al. [3] show that broad-
cast joins and semi-joins compare favorably with the stan-
dard MapReduce style shuffle joins when joining a large
table (e.g., edges) with a smaller table (e.g., vertices).
Closely related is the work by Afrati et al. [2] which ex-
plores optimizations for multi-way joins in a MapReduce
framework. They consider joining a large relation with
multiple smaller relations and provide a partitioning and
replication strategy similar to classic 2D partitioning [8].
However, in contrast to our work, they do not construct a
routing table forcing the system to broadcast the smaller
relations (e.g., the vertices) to all partitions of the larger
relation (e.g., the edges) that could have matching tuples.
Furthermore, they force a particular hash partitioning on
the larger relation precluding the opportunity for user
defined graph partitioning algorithms (e.g., [16, 38, 36]).

7 Discussion

The work on GraphX addressed several key themes in
data management systems and system design:

Physical Data Independence: GraphX allows the
same physical data to be viewed as collections and as
graphs without data movement or duplication. As a con-
sequence the user is free to adopt the best view for the
immediate task. We demonstrated that operations on col-
lections and graphs can be efficiently implemented using
the same physical representation and underlying opera-
tors. Our experiments show that this common substrate
can match the performance of specialized graph systems.

Graph Computation as Joins and Group-By: The
design of the GraphX system reveals the strong con-
nection between distributed graph computation and dis-
tributed join optimizations. When viewed through the
lens of dataflow operators, graph computation reduces
to join and group-by operators. These two operators cor-
respond to the Scatter and Gather stages of the GAS ab-
straction. Likewise, the optimizations developed for graph
processing systems reduce to indexing, distributed join
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Figure 11: Graph Analytics Pipeline: requires multiple
collection and graph views of the same data.

site selection, multicast joins, partial materialization, and
incremental view maintenance.

The Narrow Waist: In designing the GraphX abstrac-
tion, we sought to develop a thin extension on top of
dataflow operators with the goal of identifying the essen-
tial data model and core operations needed to support
graph computation. We aimed for a portable framework
that could be embedded in a range of dataflow frame-
works. We believe that the GraphX design can be adopted
by other dataflow systems, including MPP databases, to
efficiently support a wide range of graph computations.

Analytics Pipelines: GraphX provides the ability to
stay within a single framework throughout the analytics
process, eliminating the need to learn and support mul-
tiple systems (e.g., Figure 11) or write data interchange
formats and plumbing to move between systems. As a
consequence, it is substantially easier to iteratively slice,
transform, and compute on large graphs as well as to share
data-structures across stages of the pipeline. The gains in
performance and scalability for graph computation trans-
late to a tighter analytics feedback loop and therefore a
more efficient work flow.

Adoption: GraphX was publicly released as part of the
0.9.0 release of the Apache Spark open-source project.2

It has since generated substantial interest in the commu-
nity and has been used in production at various places.3

Despite its nascent state, there has been considerable open-
source contribution to GraphX with contributors provid-
ing some of the core graph functionality. We attribute this
to its wide applicability and the simple abstraction built
on top of an existing, popular dataflow framework.

8 Conclusions and Future Work

In this work we introduced GraphX, an efficient graph
processing system that enables distributed dataflow frame-
works such as Spark to naturally express and efficiently
execute iterative graph algorithms. We identified a sim-
ple pattern of join–map–group-by dataflow operators that
forms the basis of graph-parallel computation. Inspired
by this observation, we proposed the GraphX abstraction,

2https://spark.apache.org
3For a large-scale commercial use case see [14].

which represents graphs as horizontally-partitioned col-
lections and graph computation as dataflow operators on
those collections. Not only does GraphX support existing
graph-parallel abstractions and a wide range of iterative
graph algorithms, it enables the composition of graphs
and collections, freeing the user to adopt the most natural
view without concern for data movement or duplication.

Guided by the connection between graph computation
and dataflow operators, we recast recent advances in graph
processing systems as range of classic optimizations in
database systems. We recast vertex-cut graph partitioning
as horizontally-partitioned vertex and edge collections,
active vertex tracking as incremental view maintenance,
and vertex mirroring as multicast joins with routing tables.
As a result, for graph algorithms, GraphX is over an order
of magnitude faster than the base dataflow system and is
comparable to or faster than specialized graph processing
systems. In addition, GraphX benefits from features pro-
vided by recent dataflow systems such as low-cost fault
tolerance and transparent recovery.

We believe that our work on GraphX points to a larger
research agenda in the unification of specialized data pro-
cessing systems. Recent advances in specialized systems
for topic modeling, graph processing, stream processing,
and deep learning have revealed a range of new system
optimizations and design trade-offs. However, the full
potential of these systems is often realized in their inte-
gration (e.g., applying deep learning to text and images in
a social network). By casting these systems within a com-
mon paradigm (e.g., dataflow operators) we may reveal
common patterns and enable new analytics capabilities.
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