usenix
.' THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Ski: Exposing Kernel Concurrency Bugs through
Systematic Schedule Exploration

Pedro Fonseca, Max Planck Institute for Software Systems (MPI-SWS);
Rodrigo Rodrigues, CITI/NOVA University of Lisbon;
Bjorn B. Brandenburg, Max Planck Institute for Software Systems (MPI-SWS)

https://www.usenix.org/conference/osdil4/technical-sessions/presentation/fonseca

This paper is included in the Proceedings of the
11th USENIX Symposium on
Operating Systems Design and Implementation.
October 6-8, 2014 - Broomfield, CO
978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems
Design and Implementation

is sponsored by USENIX.

SKI: Exposing Kernel Concurrency Bugs through
Systematic Schedule Exploration

Pedro Fonseca

Max Planck Institute for Software Systems

(MPI-SWS)

Rodrigo Rodrigues
NOVA University of Lisbon
(CITI/NOVA-LINCS)

Bjorn B. Brandenburg
Max Planck Institute for Software Systems
(MPI-SWS)

Abstract

Kernel concurrency bugs are notoriously difficult to
find during testing since they are only triggered under
certain instruction interleavings. Unfortunately, no tools
for systematically subjecting kernel code to concurrency
tests have been proposed to date. This gap in tool support
may be explained by the challenge of controlling pre-
cisely which kernel interleavings are executed without
modifying the kernel under test itself. Furthermore, to be
practical, prohibitive runtime overheads must be avoided
and tools must remain portable as the kernel evolves.

In this paper, we propose SKI, the first tool for the
systematic exploration of possible interleavings of kernel
code. SKI finds kernel bugs in unmodified kernels, and is
thus directly applicable to different kernels. To achieve
control over kernel interleavings in a portable way, SKI
uses an adapted virtual machine monitor that performs
an efficient analysis of the kernel execution on a virtual
multiprocessor platform. This enables SKI to determine
which kernel execution flows are eligible to run, and also
to selectively control which flows may proceed. In addi-
tion, we detail several essential optimizations that enable
SKI to scale to real-world concurrency bugs.

We reliably reproduced previously reported bugs by
applying SKI to different versions of the Linux kernel
and to the FreeBSD kernel. Our evaluation further shows
that SKI was able to discover, in widely used and already
heavily tested file systems (e.g., ext4, btrfs), several un-
known bugs, some of which pose the risk of data loss.

1 Introduction

In the current multi-core era, kernel developers are under
permanent pressure to continually increase the perfor-
mance of kernels through concurrency. Examples of such
efforts include reducing the granularity of locking [59],

rewriting subsystems to use parallel algorithms [26],
and using non-traditional and optimistic synchroniza-
tion primitives (such as RCU [52] and lock-free data
structures [67]). Unfortunately, previous experience has
shown that all these efforts are error-prone and can eas-
ily lead to kernel concurrency bugs — bugs that are only
exposed by a subset of the possible thread interleavings.

In practice, kernel developers find concurrency bugs
mostly through manual code inspection [39, 69] and
stress testing [14, 64] (i.e., applying intense workloads
to increase the chances of triggering concurrency bugs).
While useful, both approaches have significant short-
comings: code inspection is labor-intensive and requires
significant skill and experience, and stress testing, de-
spite having low overhead and being amenable to au-
tomation, offers no guarantees and can easily fail to un-
cover difficult to find concurrency bugs — i.e., edge
cases that are only triggered by a tiny subset of the inter-
leavings. It thus stands to reason that kernel developers
could benefit from tools without these limitations.

To this end, we propose a complementary testing
approach for automatically finding kernel concurrency
bugs. Our approach explores the kernel interleaving
space in a systematic way by taking full control over
the kernel thread interleavings. Similar approaches have
been explored for user-mode applications, yielding good
results [20, 53, 54], but have not yet been applied to
commodity kernels because achieving control over the
thread interleavings of kernels involves several chal-
lenges. First, to be practical, a concurrency testing tool
must be generally applicable, rather than being specific
to a particular kernel or kernel version, which precludes
kernel-specific modifications. Second, the kernel is the
software layer that implements its own thread scheduler,
as well as the thread abstraction itself, making the exter-
nal control of thread interleavings non-trivial. Finally, to

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI “14) 415

be effective, such a tool must be able to control kernel
interleavings while introducing a low overhead.

In this paper, we report on the design and an evalua-
tion of SKi1!, the first tool for the systematic exploration
of kernel interleavings to overcome these challenges. To
achieve control over kernel interleavings in a portable
way, SKI uses an adapted virtual machine monitor that
(1) determines the status of the various threads of exe-
cution, in terms of being blocked or ready to run, to un-
derstand the scheduling restrictions, and (2) selectively
blocks a subset of these threads in order to enforce the
desired schedule. Notably, these key tasks are achieved
without any modification to the kernel and without spe-
cific knowledge of the semantics of the kernel’s inter-
nal synchronization primitives. Furthermore, we propose
several optimizations, both at the algorithmic and at the
implementation levels, that we found to be important for
scaling SKI to real-world concurrency bugs.

We evaluated SKI by testing several file systems in re-
cent versions of the Linux kernel and we found 11 previ-
ously unknown concurrency bugs. Of these, several con-
currency bugs can cause serious data loss in important
file systems (ext4 and btrfs). We also show how SKI can
be used to reproduce concurrency bugs that have been
previously reported in two different operating systems
(Linux and FreeBSD), and compare SKI’s performance
against the traditional stress testing approach.

We believe that SKI is an important step towards
increased kernel reliability on multicore platforms.
Nonetheless, there remains significant room for exploit-
ing domain- and kernel-specific knowledge. For in-
stance, in this paper we propose a scheduling algorithm
(for performing the schedule exploration) that is generic
in the sense that it makes no assumptions about the ker-
nel under test. However, based on the SKI infrastruc-
ture, other kernel-specific scheduling algorithms could
be implemented, for example, to restrict the interleavings
explored to those that affect specific kernel instructions,
such as code that was recently modified. Thus, we be-
lieve that SKI can provide benefits even beyond those de-
scribed in this paper, since it can serve as an experimen-
tation framework for different systematic techniques.

The rest of the paper is organized as follows. Section 2
motivates the need for better kernel testing tools. Sec-
tion 3 presents the design of SKI. Section 4 proposes
several optimizations to make SKI scale to real-world
concurrency bugs. Section 5 describes the details of our
implementation. Section 6 evaluates SKI and Section 7
discusses some of its limitations. In Section 8 we discuss
related work and finally we conclude in Section 9.

ISystematic Kernel Interleaving explorer

2 Systematic testing

A systematic exploration of the interleaving space, in
contrast with a stress testing approach, relies on judi-
ciously controlling the thread schedule for each execu-
tion of the software under test to maximize the coverage
of the interleaving space.

At a high level, systematic approaches increase the
effectiveness of testing by avoiding redundant interleav-
ings and prioritizing interleavings that are more likely to
expose bugs, e.g., those that differ more from interleav-
ings that have already been explored. It has been shown
both analytically and empirically that such methods offer
better results than traditional ad hoc approaches [20].

To achieve this level of control over interleavings, sys-
tematic approaches rely on a custom thread scheduler
that implements two basic mechanisms. The first mech-
anism infers thread liveness to understand which sched-
ules it can choose, which can be achieved by intercepting
and understanding the semantics of the synchronization
functions. The second mechanism overrides the regular
scheduler by allowing only a specifically chosen thread
to make progress at any point in time.

In the case of user-mode applications, both of these
two essential mechanisms can be easily implemented in
a proxy layer (e.g., through LD_PRELOAD or ptrace) by
intercepting all relevant synchronization primitives to in-
fer and override the liveness state of each thread [20, 53,
54]. Unfortunately, a direct application of the user-mode
method to the kernel would require modifying the kernel
itself, which would suffer from several disadvantages:

e Lack of portability and API instability. Any de-
pendency on kernel-internal APIs would a priori
limit the portability of the envisioned testing tool,
preventing its seamless application across different
kernels and even across different versions of the
same kernel. In contrast to well-documented, stan-
dardized user-space interfaces (e.g., the pthreads
API), the internal API of most kernels is not guar-
anteed to be stable, and in fact typically changes
from version to version. In particular, given the cur-
rent trend towards increased hardware parallelism,
kernel synchronization has generally been an ac-
tive area of development in Linux and other ker-
nels [26, 52].

e Complexity of the internal interface. An addi-
tional problem with the internal API of the kernel,
also noted in previous work [32], is that the seman-
tics of in-kernel synchronization operations are par-
ticularly complex. Furthermore, the exact seman-
tics of such operations tend to differ from kernel to

416 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

kernel. This calls for solutions that do not require a
detailed understanding of these semantics.

o Other forms of concurrency. Interrupts are perva-
sive and critical to kernel code. However, exercising
fine-level control over their timing from within the
kernel itself would be particularly challenging, as
interrupts are scheduled by the hardware.?

o Intrusive testing. Requiring modifications to the
tested software goes against the principles of test-
ing [43] — testing modified versions of the software
can potentially introduce or elide bugs.

In the next section we explain how SKI overcomes
these challenges while enabling the systematic explo-
ration of kernel thread interleavings.

3 SKiI: Exploring kernel interleavings

This section presents the design of SKI. We start by
providing an overview of our solution (Section 3.1), and
then we describe how SKI exercises control over thread
interleavings (Section 3.2) and how it gathers the nec-
essary liveness information (Section 3.3). We conclude
this section with a description of the scheduling algo-
rithms employed, i.e., the interleavings chosen for each
run (Section 3.4).

3.1 Overview

The inputs given to SKI are the initial state of the system
under test and the kernel input that is to be tested concur-
rently (i.e., two or more concurrent system calls). Given
these inputs, SKI carries out several test runs correspond-
ing to different concurrent executions, where each test
run is fully serialized, i.e., the tool enables only a single
thread to execute at each instant. This enables precise
control over which interleavings are executed, and allows
SKI’s scheduler to choose successive runs to improve the
interleaving space coverage. Either during or after each
test run, a bug detector is used to determine if the test has
flagged a possible bug. Such bug detectors can perform
simple, generic actions like detecting crashes, or com-
plex, application-specific actions like running a system
integrity check after the test run.

As mentioned in the previous section, for SKI’s sched-
uler to gain control over the interleavings executed by the
kernel, it must perform two key tasks: inferring thread

2While user-mode signals are similar to interrupts, many programs
do not use them and therefore existing user-mode tools do not handle
them [20, 53].

liveness and overriding the scheduler. To accomplish
both without modifying the OS kernel under test, we im-
plement the scheduler of SKI at the level of a modified
virtual machine monitor (VMM), taking as input a virtual
machine (VM) image that incorporates the initial state of
the kernel immediately before the system calls are in-
voked concurrently. Implementing the scheduler at the
VMM level enables it to both observe and control the
kernel under test.

This advantage comes, however, at the cost of making
it more difficult to implement the two aforementioned
key tasks. This is because, at the VMM level, the hy-
pervisor observes a stream of machine instructions to be
executed, and has direct access only to the physical re-
sources of the underlying hardware (such as registers or
memory contents). These low-level concepts are distant
from the abstractions that are implemented by the kernel
in software, such as threads and their respective contexts.
Furthermore, it would intuitively seem necessary to have
access to these abstractions for suspending the execution
of a thread and replacing it with another thread.

3.2 Exercising control over threads

To control the progress of threads, SKI relies on the ob-
servation that the most widely used kernels (e.g., Linux,
Windows, MacOS X, FreeBSD) include a mechanism
to allow applications to pin threads to individual CPUs
(i.e., to specify the thread affinity). This mechanism,
provided by kernels to user-mode applications for per-
formance reasons, can be exploited to create a 1:1 map-
ping between threads (a kernel abstraction) and virtual
CPUs (an ISA component, controllable by the VMM).
This mapping in turn allows SKI to block and resume
a thread execution by simply suspending and resuming
the corresponding virtual CPU’s execution of machine
instructions.

Apart from the user-space threads that invoke system
calls, operating systems have another type of threads,
which similarly execute kernel code, namely kernel
threads [7]. Kernel threads are used by the kernel to
asynchronously execute tasks. Despite not being associ-
ated with user-mode processes, some kernel threads can
be pinned to different CPUs from user-space. For ker-
nel threads that cannot be pinned to other CPUs for OS-
specific reasons, SKI is not able to explicitly control their
schedule and therefore lets the OS schedule them.

To implement the mapping between threads and
CPUs, SKI includes, in addition to the modified VMM,
a user-mode component that runs inside the VM and is-
sues system calls to pin threads to virtual CPUs (see Sec-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 417

tion 5.3). Note that for scalability reasons, each test gen-
erally involves only few threads, and hence it suffices to
configure a small number of virtual CPUs.

3.3 Inferring liveness

To explore the interleaving space, SKI requires infor-
mation about whether threads are blocked or able to
progress, analogously to what is required by the exist-
ing user-mode tools [20, 53, 54]. This requires SKI to be
able to identify constructs such as spin-locks or barriers,
where a CPU executes a tight loop, constantly check-
ing the value of a memory location for changes. SKI
would be impractical if it were not able to detect such
constructs, for several reasons. First, executions would
take longer because more instructions would be executed
(e.g., iterations of a spin loop). Second, because more in-
structions would be executed, the space of possible inter-
leavings would significantly increase, since the number
of possible interleavings is exponential in the length of
the test. Third, and most importantly, given the schedul-
ing algorithm that we describe in Section 3.4, two inter-
leavings could be considered different even when they
only differ in the number of iterations executed by the
polling loop of a spin lock. This would be detrimental to
the efficiency of SKI, since many of the explored sched-
ules would be effectively equivalent.

The difficulty in inferring thread liveness is that, from
the point of view of the VMM, CPUs are constantly ex-
ecuting instructions. As such, it is difficult to distinguish
the normal execution of a program from a polling loop.

One possible solution that we considered, but ulti-
mately rejected, relies on annotating the kernel by spec-
ifying the locations within the kernel code where the
CPU executes instructions without making any actual
progress, namely situations where the kernel is waiting
for some event external to the CPU (such as an action
performed by some other CPU or a device notification).
However, this approach would be laborious, error prone,
and non-portable.

Instead, we found several simple heuristics indepen-
dent of the kernel code that enable the VMM to infer
whether a CPU is making progress or not.

H1: Halt heuristic. The first heuristic flags the CPU
as non-live when it executes the halt instruction (HLT).3
According to the instruction set specification, HLT marks
the CPU as waiting for interrupts. This instruction is typ-
ically used by kernels to implement, in an energy effi-
cient way, the idle thread when the kernel scheduler has

3We focus on the ubiquitous x86 architecture in this paper; the pre-
sented ideas, however, can be similarly applied to other architectures.

no other threads to run. When the CPU subsequently re-
ceives an interrupt, it is marked as live again.

H2: Pause heuristic. The second heuristic relies on
the observation that kernels use the pause instruction
(PAUSE) to efficiently implement spin-locks. In the x86
architecture, the pause instruction has been introduced
to avoid wasting bandwidth on the memory bus when a
CPU goes into a tight polling loop, and therefore its ex-
ecution is a good indication that the CPU is spinning on
a lock. Thus, when our modified VMM detects the ex-
ecution of two nearby pause instructions, i.e., within an
instruction window of size h,, it considers the CPU to
be non-live and takes note of the memory read-set as-
sociated with the instructions executed between the two
pause instructions. Pause instructions in close proximity
are detected by the VMM by checking, at every pause in-
struction, whether another pause instruction was recently
executed. Later on, when another CPU changes one of
the addresses in the read-set, the non-live CPU is opti-
mistically marked as live again.

H3: Loop heuristic. The third heuristic detects situa-
tions where the CPU is waiting for some external event,
but that are not caught by the second heuristic. This
could happen if, for example, a spin-lock were imple-
mented without including the pause instruction. To de-
tect CPUs stuck in a polling loop, our modified VMM
maintains a window, of size A3, of the last few instruc-
tions executed by each CPU. If a CPU repeatedly exe-
cutes the same instructions (i.e., if it executes a loop),
and if an instruction in the loop repeatedly reads the same
value from the same memory address, the executing con-
text is flagged as non-live after a certain number of loop
iterations. Again, SKI takes note of the read-set of de-
tected polling loops to later re-enable the CPU.

H4: Starvation heuristic. As a last resort, in case the
above heuristics are not able to detect situations where
there is no progress, SKI keeps a count of the number of
instructions executed continuously by the current CPU,
and, if it exceeds a threshold (h4), it conservatively pre-
sumes that the CPU is no longer making progress. The
CPU is marked live again after a certain number of in-
structions have been executed by the other CPUs. This
heuristic ensures the detection, for example, of loops that
are missed by H3 if /3 is set smaller than the loop size.

We determined the values for the thresholds of these
heuristics, which remained constant throughout all our
tests, through simple experimentation. From our expe-
rience, these mechanisms were sufficient to ensure the
effectiveness of SKI for a wide range of kernel versions,
at both reproducing previously known bugs and at find-
ing unknown bugs.

418 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

3.4 Scheduling algorithm

SKI executes a VM multiple times under different sched-
ules to ensure interleaving diversity across the runs. To
select and prioritize the interleavings that are to be ex-
plored SKI needs to implement a scheduling algorithm.
SKI uses an extension of the PCT algorithm [20], a
state-of-the-art algorithm originally developed for user-
mode applications, which has been shown to be effective
at uncovering user-mode concurrency bugs. SKI extends
PCT by supporting interrupts (Section 3.4.2), which is a
fundamental requirement for testing operating systems.
Nonetheless, we consider the proposed algorithm to
be just one instance from a range of possible algorithms
(albeit one that in our experience happens to work well),
and developers that make use of the tool might consider
adding other, more refined algorithms. For example, it
may be possible to develop effective scheduling algo-
rithms that exploit specific characteristics of kernel code.
Since the SKI scheduler must handle both threads and
interrupts, it schedules contexts instead of threads; we
will thus refer to contexts throughout this description.

3.4.1 Background: PCT algorithm

Conceptually the scheduler executes instructions sequen-
tially one by one; that is, at any point during the execu-
tion, only one of the live contexts is allowed to progress,
and the eligibility of the context to execute another in-
struction is re-evaluated after each instruction. Through
this process, the scheduler is able to effectively control
the chosen interleaving. In practice, however, our imple-
mentation optimizes this process by using a JIT compiler
and by only introducing checks as needed (Section 5).

A strawman design for the scheduler would be to use a
fixed ordering of the various contexts, and to run the first
context for the longest possible period until it is no longer
able to run. At this point, the scheduler chooses the sec-
ond context to run until either it is also no longer able to
run, or the first context becomes able to run again, and
so on. While this initial design suffices to create valid
schedules and allows tests to finish, it does not create a
diverse set of schedules.

To achieve a good diversity of schedules across differ-
ent runs, the scheduler uses two strategies. The first is
to randomly assign initial priorities to the contexts, and
use these priorities instead of a fixed order to determine
the context that should run at each instant — this is the
context with the highest priority among those that are
not blocked. The second strategy consists of reducing, at
random points during the execution of a test, the priority
of the context that is scheduled. If the priority decrease is

large enough, this will cause another context to become
the one with the highest priority, and therefore this other
context will be scheduled to run. By varying both the ini-
tial priorities and the location of such reschedule points
in a controlled way, the scheduler is able to control the
range of tested schedules.

The reschedule points are chosen prior to each run
by randomly selecting a set of offsets from the start of
the test (in terms of the total number of instructions ex-
ecuted) within a certain range. Then, during the exe-
cution, whenever the total number of instructions exe-
cuted reaches one of these offsets, the priority of the cur-
rently scheduled context is lowered so that it becomes the
lowest-priority context, and thus another runnable con-
text is selected for execution in the next step.

The set of reschedule points is determined according
to two parameters: the expected number of execution
steps k and the desired number of reschedule points p,
with the simple interpretation that there will be up to p
reschedules within the first k instructions of the execution
of the test (and none thereafter, should the test execute
for more than k instructions). That is, for a given k and
p, the set of p reschedule points is selected by choosing
uniformly at random p offsets from the range [0, k].

3.4.2 Handling interrupts

Given that SKI operates at the level of the virtual ma-
chine monitor, it does not have access to the thread ab-
straction that is used by schedulers for user-mode appli-
cations. Thus, instead of scheduling threads, our algo-
rithm schedules CPUs. In addition, another distinction
to user-mode schedulers is that the scheduler needs to
make decisions regarding when interrupts should be dis-
patched. Interrupts do not appear in the context of user-
mode programs, but we need to control their schedule
when testing the kernel for two different reasons. First,
concurrency bugs may depend on the interleaving of in-
terrupts, so our algorithm should be able to explore this
part of the interleaving space. Second, interrupts are in
some cases required for the successful completion of sys-
tem calls, and therefore interrupts need to be scheduled
to conclude the execution of the tests. For example, some
system calls are only able to finish if, during their execu-
tion, other CPUs handle the TLB flush interrupt.

As the scheduler needs to consider when interrupts
are handled, each CPU is tracked as being in one of
two different contexts: it may either execute in the con-
text of an interrupt handler (interrupt-context), or it may
execute outside of the context of any interrupt handlers
(CPU-context). Each interrupt-context is defined by the
CPU on which it arrived and by the interrupt number

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI'14) 419

Schedule 1 Schedule 2
CPU1 1INT1 CPU2 CPU1l 1INT1 CPU2
INST 1
INST 1
INST 2
INST 2 .
<inv>
INST 3
INST 1
INST 4
INST 2
<end>
<end>
INST 1
INST 1
INST 2
INST 2
<end>
INST 3
INST 1
<end>
INST 2
INST 3
INST 3
INST 4
<end>
<end>

Figure 1: Two examples illustrating schedules produced
by SKI. Each schedule involves three contexts, two CPU-
contexts and one interrupt-context. Both schedules start
with the same initial context priorities. However, Sched-
ule 2 differs from Schedule 1 because it contains one pri-
ority inversion (<inv>).

that it represents. From the point of view of the sched-
uler, interrupt-contexts are created, and therefore be-
come schedulable, when the corresponding interrupt ar-
rives on its specific CPU. These execution contexts are,
to our scheduler, the equivalent to threads for other sys-
tematic exploration algorithms, and as such they need
to be detected by the scheduling logic. SKI infers the
context by tracking the interrupt handler dispatches and
the IRET instruction invocations (which are used to re-
turn from interrupt handlers). Figure 1 shows exam-
ples of schedules involving two CPU-contexts and one
interrupt-context.

To achieve further control over the tests, SKI allows
the user to specify a set of execution contexts that are al-
lowed to run during the test. In particular, placing restric-
tions on the set of eligible execution contexts may be use-
ful in specific testing scenarios, to restrict the scheduling
space that is explored.

3.5 Discussion

The design of SKI ensures correctness, meaning that SKI
never causes the kernel to exhibit a behavior that could
not possibly occur during normal executions of the ker-
nel, because SKI exercises control over the kernel sched-
ule by temporarily suspending the execution of instruc-
tions on chosen CPUs. Correct kernels have to be able

to handle this mechanism because the hardware speci-
fication does not provide guarantees about the speed of
the CPUs. Furthermore, modern kernels are expected to
work well within virtual machines, where the apparent
speed of CPUs is not guaranteed to be regular simply be-
cause the host system might be under heavy load.
Despite this correctness guarantee, some bug detectors
may still produce false positives (e.g., data race detec-
tors). In such cases and regardless of how the interleav-
ing space is explored, the obtained results require further
analysis specific to the the employed bug detector.

4 Efficiency: Scaling to real code

The total number of possible schedules grows exponen-
tially with the length of the code under test. For most
programs, including the kernel, it is not practical to ex-
haustively explore all interleavings, and therefore it is
important for concurrency testing tools to include mech-
anisms for increased scalability.

The p parameter, used by the scheduling algorithm
(Section 3.4), constrains the schedules that may be ex-
plored and therefore improves scalability by bounding
the number of possible schedules. This is done with-
out much impact on the effectiveness of the testing tool,
given the observation that, in practice, most bugs can
be triggered with few reschedule points [20]. Similarly,
it has been shown that many concurrency bugs can be
triggered with a small number of threads [48] and with
a small number of concurrent requests [60]. Based on
these observations, we configured SKI in our tests to
use small values for these three dimensions (reschedule
points, number of CPUs, and number of system calls).

Despite these optimizations, we noticed in our initial
tests that SKI’s scalability was limited by the fact that
even a single system call can execute a large number of
instructions — typical system calls execute many thou-
sands or even millions of instructions. This implied that,
even if we limited SKI to p = 1, the number of runs that
would be required to explore all schedules were on the
same order of magnitude as the number of instructions.

To address this scalability issue, SKI relies on a tech-
nique first proposed by Godefroid [36] that exploits the
fact that some schedules are equivalent and thus redun-
dant, as illustrated in Figure 2. In particular, we rely
on the observations that (1) schedules that do not differ
in terms of the relative order of communication points
(where threads see the effects of each other) are obser-
vationally equivalent from the standpoint of the inter-
leaved threads, and that (2) most of the kernel instruc-
tions do not constitute communication points between

420 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

Schedule 1 Schedule 2 Schedule 3
CPU1 CPU2 CPU1l CPU2 CPU1l CPU2
A=1 A=1 A=1
<inv> B=1 B=1
A=0 <inv> C=B+A
D=A+1 A=0 <inv>
B=1 D=A+1 A=0
C=B+A C=B+A D=A+1
PRINT C PRINT C PRINT C

Figure 2: Example showing two equivalent schedules
(Schedules 1 and 2) and one schedule that is not equiv-
alent to either of the others (Schedule 3). In this exam-
ple, only variable A is used for communication between
CPUs. Because variable B is accessed by only one CPU,
placing the priority inversion point (<inv>) immedi-
ately before (Schedule 1) or immediately after (Schedule
2) the statement B=1 does not change the result of the
execution.

CPUs. Taken together, these two observations allow us
to significantly improve SKI's scalability by restricting
reschedules to occur only at communication points.

More precisely, we define a point of communication
as an instruction that accesses a memory location that is
also accessed by another CPU during the test, and where
at least one of the accesses is a write. Such concurrent
memory accesses can influence the final outcome of the
execution: in the case of two concurrent writes, the last
value to be written prevails, and in the case of a write
concurrent with a read, the value read may or may not
reflect the write, depending on the schedule. Prior tools
have also tried to avoid equivalent schedules, but rely
instead on identifying and preempting threads at either
possible data races or the invocation of synchronization
primitives [53].

SKI gathers the location of possible communication
points by monitoring memory accesses during the tests.
During each run, it tracks the locations of the memory
accesses, the CPU responsible for the accesses, and the
types of accesses (read or write). After each run, SKI
generates a set of program addresses that are potential
communication points, and merges this information with
an accumulated set of potential communication points
for that specific test case. Note that this process does not
rely on sample runs — every run monitors the memory
accesses and, therefore, potentially learns new commu-
nication points. As this accumulated set is constructed,
it is used in subsequent runs for the same test case to de-
cide which schedules are equivalent, thereby limiting the
set of instructions that qualify as reschedule points.

In our experiments, we observed that, as expected,
both data and synchronization accesses were identified
as communication points. To give some examples, data
accesses occur when both CPUs try to modify the same
field in a shared structure (e.g., a file reference count),
and synchronization accesses occur when both CPUs try
to acquire the same lock. An advantage of SKI's dynamic
approach is that whether or not an instruction qualifies as
a reschedule point depends on the code that both CPUs
actually execute (e.g., the specific system calls or inter-
rupt handlers that are invoked). As a result, if two CPUs
acquire different locks unrelated to the tested functional-
ity, such accesses will not be considered communication
points (in the context of the current test case).

In practice, SKI estimates the expected number of
instructions, k (recall Section 3.4), based on previous
runs. With the communication points optimization, in-
stead of considering individual instructions when placing
reschedule points, we consider only communicating in-
structions, and thus let the algorithm take coarser-grained
steps in its exploration of the interleaving space. That is,
by limiting the set of reschedule point candidates, the
magnitude of the parameter k is effectively reduced. In
addition to these algorithmic optimizations, SKI includes
several optimizations, at the level of the implementation,
to ensure its effectiveness (Section 5.4).

S Implementation

We implemented SKI by modifying QEMU, a mature
and open-source VMM, and its JIT compiler. In total,
our implementation added 13,542 lines of source code
to QEMU. We also built a user-mode testing framework
consisting of 674 lines of source code to help users write
test cases for SKI (Section 5.3). In addition, we imple-
mented various scripts to set up and automate tests and
also to analyze the gathered information.

5.1 Overview

SKI provides a helper tool to allow kernel developers
to specify the concurrent system calls, by building a
VM containing the corresponding test case (Section 5.3).
When executed under SKI, this VM first goes through
an initialization phase, performing test-specific actions
to configure the system, and then signals the beginning
of the test to the VMM using hypercalls (i.e., calls be-
tween the VM and the VMM). When all virtual CPUs
have received the signal, the SKI scheduler is activated.
SKI’s first action is to take a snapshot of the VM. The
VM snapshot includes the entire machine state (memory

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI"14) 421

state, disk state, CPU state, etc.) and thus allows SKI to
run multiple executions from an identical initial state.

Starting from this VM snapshot, SKI places resched-
ule points and assigns starting priorities as described in
Sections 3.4 and 4, and then resumes the execution of the
highest-priority context and enforces the chosen sched-
ule, thereby exploring different schedules on each run.

To mark the end of the test, the user-mode component
inside the VM issues a hypercall to the VMM. After-
wards, the VM is allowed to run normally (i.e., without
schedule restrictions) until the testing application asks to
terminate the execution. This last phase is useful to let
the user-mode component execute test-specific diagnos-
tics (such as a file system check) inside the VM.

5.2 Runnable contexts

The scheduler of SKI allows, at any point in time, only
the live and active context with the highest priority to
run. The liveness of a context is inferred by the VMM
according to the heuristics explained in Section 3.3; the
criteria for determining whether a context is active or not
depends on the type of context. A CPU-context is consid-
ered active if it has not reached the end of the test, which
is flagged by the user-mode component using a hyper-
call, as discussed above, whereas an interrupt-context is
considered active only after it has been triggered by the
respective hardware device and before the corresponding
IRET instruction has been executed.

5.3 Helper testing framework

We built a user-mode helper framework that allows users
to easily build a testing VM ready to be used by SKI.
It includes a user-mode application that runs inside the
testing VM for the purpose of setting up the kernel and
for providing the required test input (e.g., system calls).

The user-mode test framework automatically creates
the testing threads/processes, pins each thread/process to
a dedicated virtual CPU, issues the hypercalls to mark
the beginning of the test (right before the test function is
called) and the ending of the test (right after the test func-
tion returns), and finally requests the termination of the
VM (when all post-test functions have completed). This
framework can be used both to manually create test cases
(Section 6.3) or to adapt existing test suites to leverage
SKI for the interleaving exploration (Section 6.2).

We first implemented the framework targeting Linux
and subsequently ported it to FreeBSD, and have been
using it to conduct tests on both operating systems. The
helper framework itself was easily ported because only
few of the system/library calls it relies upon are not part

of the POSIX standard (namely the calls to pin thread-
s/processes, which have slightly different interfaces).

5.4 Optimizations and parallelization

In addition to the algorithmic optimizations described in
Section 4, we have implemented several other optimiza-
tions to improve the performance of SKI. One of our
main optimizations avoids resuming from a snapshot for
each tested execution, which can take a few seconds in
the original version of QEMU. Instead we have imple-
mented in SKI a multi-threaded forking mechanism to
take advantage of the copy-on-write semantics offered
by the host OS, amortizing the cost of resuming from
a snapshot over multiple executions. This benefit is not
limited to executions that test the same input because we
allow the testing application to receive, through a hyper-
call, a parameter that specifies the testing input. Thus,
from a single snapshot, SKI can explore different inputs
and different interleavings, making the overall cost of
creating and resuming from a snapshot negligible.

In addition, given that in our testing scenario after each
execution we discard most of the state of the VM (e.g.
VM RAM and disk contents), we optimized SKI by con-
verting several file system operations, performed by the
original QEMU on the host, into memory operations.

Given that our workload is parallelizable, SKI takes
advantage of multicore host machines by spawning mul-
tiple VMs to perform multiple concurrent tests. We have
also implemented a testing infrastructure to distribute the
workload across multiple machines, further increasing
the testing throughput.

5.5 Bug detectors

Section 3 presented the algorithms and mechanisms that
SKI employs to explore the thread interleaving space of
the kernel. However, to find concurrency bugs an orthog-
onal problem needs to be addressed — it is necessary to
identify which of these executions triggered bugs.

In Section 6 we show how SKI can be combined with
different types of bug detectors — we evaluate SKI us-
ing bug detectors to detect crashes, assertion violations,
data races and file system inconsistencies. Our imple-
mentation detects crashes and assertion violations by
monitoring the console output at the VMM level. The
detection of data races is also performed at the VMM
level by recording racing memory accesses, similarly to
DataCollider [32]. File system inconsistencies, in con-
trast, are detected by running existing file system check-
ers inside the VM itself after each test.

422 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

5.6 Traces and bug diagnosis

To enable the implementation of external bug detectors
and to allow the diagnosis of bugs through manual in-
spection, SKI is able to produce detailed logs of the ex-
ecutions. These traces contain the exact ordering of in-
structions and the identity of the context responsible for
the instructions. In addition, SKI can be configured to
produce traces with all the memory accesses and the val-
ues of the main CPU registers.

We built some analysis tools that parse these traces
to provide useful information. One of our tools pro-
duces source code information by disassembling the in-
structions and by annotating the trace with the source
code that generated the instructions (assuming the ker-
nel is compiled with debugging symbols). We also im-
plemented another diagnosis tool that generates the call
graph for each execution. While none of these tools is
conceptually particularly challenging, in our experience,
they complement each other well and make the rich in-
formation collected by SKI much more accessible.

Apart from the traces produced by SKI, the bug de-
tectors we built are another important source of diagnos-
tic information. For example, the data race detector that
we implemented identifies the exact memory address as
well as the instruction addresses involved. As another
example, the crash reports produced by the Linux kernel
include a detailed stack trace that is very convenient for
developers to diagnose bugs.

6 Evaluation

This section evaluates the effectiveness of SKI in reveal-
ing real-world kernel concurrency bugs. After describing
the configuration that we employed in our experiments,
we report our experience in applying SKI to recent and
stable versions of the Linux kernel, which resulted in the
discovery of several previously unknown concurrency
bugs (Section 6.2). We then report on our experiments
using SKI to reproduce previously known bugs and com-
paring it with traditional approaches (Section 6.3).

6.1 Configuration

We conducted our experiments on host machines with
dual Intel Xeon X5650 processors and 48 GB of RAM
running Linux 3.2.48.1 as the host kernel. To increase the
testing throughput, we configured SKI to run 22 testing
executions in parallel on each machine and we ran our
experiments on up to 12 machines at a time.

For each test case reported in this paper, we configured
SKI to use p = 2 and we explored 200 schedules in the

large-scale experiments to find new bugs (Section 6.2)
and 50,000 schedules in the experiments to reproduce
known bugs (Section 6.3). SKI’s liveness heuristics used
hy = 30, h3 = 20 and hy = 500,000 (Section 3.3). We
tested several different versions of Linux, ranging from
2.6.28 to 3.13.5, depending on the experiment, and one
of the experiments tested FreeBSD, version 8.0. Impor-
tantly, the same configuration of SKI was used in all tests:
we did not have to modify any settings to adjust SKI to a
particular tested kernel version, and we also did not have
to modify the kernels under test.

6.2 Finding concurrency bugs

To demonstrate the effectiveness of SKI in finding real
world concurrency bugs, we tested several file systems
from recent versions of the Linux kernel.

To create the inputs that form the various tests, we
modified fsstress [44], adding calls to SKI’s hypercalls to
flag the beginning and the end of the tests, and we mod-
ified the test suite to issue concurrent system calls. For
convenience we also converted some of the debugging
messages to use SKI's own debugging hypercalls. Be-
cause one of the file systems (btrfs) supports several op-
erations that were not supported by the original fsstress,
we also added support for twelve of those file system op-
erations (e.g., snapshot/sub-volume operations and dy-
namic addition/removal of devices). In total, we added
or modified 900 lines of code in fsstress, of which 700
lines are related to the btrfs operations.

6.2.1 Bug detectors

We ran SKI with three bug detectors. The first detec-
tor monitors the console output to detect crashes, asser-
tion violations and kernel warning messages. The sec-
ond detector uses file system checkers (fsck), which are
specific to each file system and are only supported/ma-
ture in the case of some file systems, to detect file sys-
tem corruption. This bug detector runs inside the VM,
in contrast with the others, which are implemented at the
VMM level. To limit the performance impact of running
fsck after each execution, we created small file systems
(300 MB) and we mounted the file system in memory
using loop + tmpfs (in addition to the optimizations de-
scribed in Section 5.4).

The third bug detector consists of a data race detec-
tor that we implemented, which analyzes all memory ac-
cesses, without sampling. Similarly to other data race de-
tectors [32], our detector finds racing memory accesses
without distinguishing whether those accesses are per-
formed by synchronization functions. The main chal-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 423

Bug || Kernel FS Function Detector / Failure E FS Status
1 3.11.1 | Btfs | btrfs_find_all_root() Crash: Null-pointer 41 10.030|| Fixed
2 3.11.1 | Btfs | run_clustered_refs() | Crash: Null-pointer + Warning | 26 | 0.020 || Fixed
3 3.11.1 | Btrfs | record_one_backref() Warning 74 10.030 Fixed
4 3.11.1 | Bufs NA Fsck: Refs. not found 11 | 0.200 || Reported
5 || 3.12.2+p | Btrfs | btrfs_find_all_root() Crash: Null pointer 61 |0.060 | Fixed
6 3.12.2 | Btrfs inode_tree_add() Warning 53 10.010|| Fixed
7 3.13.5 | Logfs | indirect_write_alias() Crash: Null pointer 31 | 0.065 || Reported
8 3.13.5 | Logfs btree_write_alias() Crash: Invalid paging 142 | 0.020 || Reported
9 3.13.5 Jfs IbmIODone() Crash: Assertion 74 | 0.005 || Reported
10 3.13.5 | Ext4 | ext4_do_update_inode() Data race 32 |0.005 Fixed
11 3.13.5 | VFS generic_fillattr() Data race 125 | 0.005 || Reported

Table 1: Bugs that have been discovered by SKI in recent versions of the Linux kernel and that we have reported to
developers. For the specific input that triggered each bug, we show the number of schedules that were required to
expose the bug (E) and the fraction of schedules that triggered the bug (FS). Eventually we found out that bug #3 had
previously been reported. A patched version of the kernel, expected to solve bug #1, was tested on request from the
developers but SKI revealed that the kernel could still crash in a different location of the same function (bug #5).

Reports
False data race 76
Benign 53
Data race | Under investigation 37
Harmful 24

Table 2: Types of race reports found during our exper-
iments. The numbers displayed refer to the number of
reports after associating related races. Note that a sin-
gle bug may be involved in multiple data races (e.g., if it
affects multiple variables).

lenge in this case is filtering out the false positives (false
data races and benign data races) [32, 51, 62, 78]. In
order to facilitate this manual process, our tool groups
together distinct pairs or racing instructions that were
found to race directly or transitively. Using this method,
we we were able to group together 3114 pairs of races
into 190 race reports. Filtering out race reports that were
not data races was straightforward, but the difficult part
was separating real data races into benign and harmful
ones. In some cases, this requires careful analysis of the
code and documentation and, ultimately, it may require
asking the developers — who may not even agree among
themselves. Heuristics could have been used to analyze
the results, but unfortunately these typically offer limited
help for the more complicated cases. Given this com-
plexity, we gathered some reports (not included in Ta-
ble 1) that may constitute bugs but are still under analy-
sis, and for which, in some cases, we are still waiting for
feedback from the developers. Table 2 shows the number
of race reports that we obtained in the file systems tests

Burfs | Ext4 | Jfs | Logfs
SK1 347 | 626 | 616 | 612
SKi1+ DR 32.1 | 619 | 595 58.8
SKI+ Fsck 64 | 208 | 182 | N/A
SKI1+ Fsck + DR 6.1 | 206 | 179 | N/A

Table 3: SKI’s throughput (for each machine) with dif-
ferent bug detectors. Throughput is given in thousands of
executions per hour. DR denotes the data race detector.
Fsck tests on logfs are absent due to the lack of compati-
ble mature checkers.

according to their type.

6.2.2 Results

The results in Figure 1 show that SKI was able to find
several unknown concurrency bugs in mature versions
of the Linux kernel. One of the bugs found affects the
widely used ext#4 file system and six bugs affect the btrfs
file system — which is expected to soon become the de-
fault file system in some distributions [8]. We have re-
ported the 11 bugs listed in Table 1; of those, 6 have
already been fixed.

Furthermore, although FS related system calls tend to
be expensive, SKI was able to achieve a testing through-
put that reached 62 thousand executions per hour on each
machine (Table 3). Even though the current performance
of SKI proved to be effective, significant performance
improvements may still be achievable by using more ef-
ficient virtual machines monitors, possibly using hard-
ware acceleration, or even by building SKI using binary

424 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

Bug Kernel OS Component Failure E FS

A [4] || Linux 2.6.28 Anonymous pipes Crash 28 | 0.00572
B [5] Linux 3.2 Inotify + FAT32 Crash 53 | 0.13770
C[9] Linux 3.6.1 | Proc file system + Ext4 | Semantic 51 0.01004
D [3] || FreeBSD 8.0 Sockets Semantic | 3519 | 0.00014

Table 4: Known bugs reproduced with SKI. The table shows the number of schedules that were required to expose the
bug (E) and the fraction of schedules that triggered the bug (FS). The table shows the kernel version under which we
reproduced the bug, the OS components involved and the type of failure that the bug causes.

instrumentation frameworks.

It is worth pointing out that many of the bugs found by
SKI are serious — six of the bugs cause the kernel to crash
and most of the bugs found cause persistent data loss.
For example, the ext4 bug, which is due to improper syn-
chronization while updating the inodes, causes the field
i_disksize (containing information about the size of the
inodes) to become corrupted. To fix this bug, developers
applied patches that involved refactoring the code and the
introduction of additional synchronization.

6.3 Reproducing concurrency bugs

We also evaluated the effectiveness of SKI in reproduc-
ing previously reported kernel concurrency bugs. To
find typical bug reports, we searched the kernel Bugzilla
databases, the kernel development histories (i.e., the git
changelogs), and the mailing list archives. From these
sources, we selected four independently confirmed ker-
nel concurrency bugs. We opted for a diverse set of bugs
that were particularly well documented. Furthermore,
to enable a direct comparison, we considered only bug
reports that included instructions for triggering the re-
ported bugs through stress testing.

As listed in Table 4, the selected bugs exhibited dif-
ferent types of failures in various kernel components.
Bug A causes a memory access violation (an “Oops” in
Linux parlance) in the pipe communication mechanism,
which can occur during concurrent open and close calls
on anonymous pipes. Bug B also results in a memory
access violation and is triggered on some interleavings
when a FAT32-formatted partition is unmounted concur-
rently with the removal of an inotify watch* associated
with the same partition. Bug C does not result in a crash,
but rather causes a read system call to return corrupted
values. Finally, bug D affects FreeBSD and is triggered
by concurrent calls on sockets that cause the kernel to
incorrectly return error values.

4Linux’s inotify interface allows processes to receive change notifi-
cations for file system objects such as files, directories, or mount points.

Based on these four bug reports, we determined the
system calls that would expose the bugs and produced
the corresponding SKI test cases, as described in Sec-
tion 5.3. For the bugs that had semantic manifestations,
i.e., system calls that returned wrong results, we imple-
mented bug-specific detectors, according to the informa-
tion provided in the bug reports.

SKI exposed bugs A and B by triggering the crash af-
ter exploring 28 and 53 schedules, respectively. Bugs C
and D were exposed after 51 and 3519 schedules, respec-
tively, causing wrong results to be returned. Given that
SKI requires few executions to trigger concurrency bugs,
with a suitable test suite (e.g. regression test suites [38]),
SKI’s throughput is sufficient to reproduce on the order
of hundreds of such concurrency bugs per hour (Table 5).

These experiments confirm that SKI is effective at re-
producing real-world concurrency bugs. Most impor-
tantly, it should be noted that the reproduced bugs stem
from two different OS code bases (FreeBSD and Linux)
and from a wide range of Linux kernel versions spanning
several years of intense development. In fact, even if we
ignore the cumulative number of lines changed (i.e., the
churn rate) and take into consideration only the increase
in the total number of lines of source code, the Linux ker-
nel grew by an impressive 60% from version 2.6.28 (10M
SLOC) to version 3.6.1 (16M SLOC). SKI handled the
different versions of the Linux kernel and the FreeBSD
kernel without requiring any changes to the VMM itself
or its configuration, which provides evidence for the con-
siderable versatility intrinsic to SKI’s design.

6.3.1 Comparison with stress testing

In the discussions that led to the resolution of these four
bugs, the kernel developers proposed non-systematic
methods to reproduce them. In particular, they provided
simple stress tests, which continuously execute the same
operations in a tight loop, waiting until a buggy inter-
leaving occurs. We executed the original stress tests pro-
posed by the developers to compare SKI to a traditional
approach. For this purpose, we ran the stress tests in an

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 425

Bug || Throughput
A 302.0
B 169.3
C 218.7
D 501.4

Table 5: SK1’s throughput for each machine. Throughput
is presented in thousand executions per hour.

unmodified VMM, i.e., without making use of SKI.

Note that without a deep knowledge of the kernel
code, in the general case, it is hard to generate stress tests
for the bugs that SKI discovered in Section 6.2. The rea-
son for this is that it is not straightforward to ensure that,
for every one of the various iterations of the stress test,
the state of the kernel is such that it can trigger the con-
currency bugs. (SKI avoids this problem because it auto-
matically restores the initial state through snapshotting).
Thus, to ensure a more objective comparison between the
two approaches, we chose to use stress tests produced by
the kernel developers themselves since these are the ones
offering better effectiveness guarantees.

As expected, and consistent with earlier comparisons
of systematic and unsystematic user-mode concurrency
testing approaches [20, 53], SKI proved to be much more
effective in reproducing concurrency bugs than the non-
systematic approaches. Despite the fact that we gave
each stress test up to 24 hours to complete, bug A and
bug D were not triggered at all by their corresponding
stress tests. While the stress tests for bugs B and C
did eventually trigger their corresponding bugs, they re-
quired significantly more executions (and time) than SKI:
the stress tests required more than 200,000 iterations (4
hours) to reproduce bug B and more than 800 iterations
(1 minute) to trigger bug C, compared to 53 and 51 iter-
ations (both a few seconds), respectively, under SKI.

Overall, the relative difficulty of reproducing bugs
with simple stress tests is not surprising given prior com-
parisons of systematic approaches and stress testing in
the context of user-mode applications [20]. Furthermore,
this difficulty was also reported by the kernel developers
themselves. For example, in the case of bug A (which the
stress test failed to reproduce in our experiments) the de-
veloper stated that the “failure window is quite small” [6]
and recommended introducing a carefully placed sleep
statement in the kernel to trigger the bug.

6.3.2 Liveness heuristics

We instrumented SKI to log the activation of SKI’s
heuristics. Using this data we calculated the percent-

Bug H1 H2 H3 H4 H*
A 1.72% | 0.61% | 5.711% | 0.57% | 7.97%
B || 88.80% | 49.70% | 0.05% | 13.73% | 88.93%
C 1.50% | 23.56% | 0.00% | 0.00% | 25.06%
D 0.53% | 2.66% | 0.00% | 0.00% | 3.05%

Table 6: Percentage of schedules that triggered the live-
ness heuristics. H* refers to the percentage of schedules
that trigger any heuristic.

Bug || HI | H2 | H3 | H4 | H*
0.08 | 0.01 | 0.06 | 0.01 | 0.17

14.97 | 1.59 | 36.38 | 0.14 | 53.08
0.01 | 0.44 | 0.00 | 0.00 | 045
0.01 | 0.03 | 0.00 | 0.00 | 0.03

gQw»

Table 7: Average number of times the liveness heuristics
were triggered per schedule. H* refers to the percentage
of schedules that trigger any heuristic.

age of schedules that triggered each of the heuristics (Ta-
ble 6) and the average number of times each heuristic
was triggered per schedule (Table 7).

The results show that some of the schedules do not
trigger heuristics. This is expected to happen when
SKI chooses schedules in which threads do not experi-
ence lock contention and is more likely to occur in op-
erating systems that are well optimized for scalability.
Even though not all of the tests activate all heuristics, all
heuristics were activated in at least one of the test cases.

In addition, we observed that in these tests the heuris-
tics were triggered at 167 distinct instruction addresses.
The large number of distinct addresses is indicative of the
challenges that would result from manually annotating
the kernel to infer thread liveness, as opposed to relying
on the four simple heuristics implemented by SKI.

6.3.3 Effectiveness of communication points

To evaluate the effectiveness of the optimization of keep-
ing track of communication points and allowing resched-
ules to occur only at these points (described in Section 4),
we calculated for each test case the average number of
instructions and the average number of communication
points executed per run. As shown in Table 8, this op-
timization reduced the number of potential reschedule
points by up to an order of magnitude in our experiments,
thereby avoiding the wasteful exploration of redundant,
effectively equivalent schedules. This shows the impor-
tance of this optimization to the scalability of SKI.

426 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

Bug I CP I/CP
A 87673.5 | 12511.2 | 7.00
B 210693.0 | 23432.8 | 8.99
C 651269 | 6372.3 | 10.22
D 22641.3 | 6503.2 | 3.48

Table 8: Effectiveness of the communication points op-
timization described in Section 4. The table shows for
each reproduced bug the average number of instructions
executed per run (I) and the average communication
points executed per run (CP). The last column charac-
terizes the optimization’s effectiveness as the ratio of the
two metrics.

7 Discussion

SKI proposes a VMM-based scheduler. In this section,
we discuss some of the implications of this choice.

A limitation of relying on a VMM is that the kernel
running inside a virtual machine is limited to using the
hardware virtualized by the VMM. For a testing tool,
it means that it is not possible to reproduce bugs that
require hardware that is not virtualized by the VMM.
However, we believe this does not detract significantly
from SKI’s practical value because the size of the device-
independent kernel core is already considerable. Further,
it may be possible to overcome the VMM dependency by
building an equivalent tool based on kernel binary instru-
mentation, which is an active area of research [33].

The choice of a VMM-based approach has another im-
portant consequence. Because the VMM emulates one
instruction at a time, and propagates its effects to all other
CPUs immediately afterwards, concurrency bugs that
arise from wrongly assuming a strong memory model are
not necessarily exposed. This is because some CPUs of-
fer weaker memory models, which can have very com-
plex semantics, to the point where official specifications
have been found to not match the observed semantics of
hardware [11]. This is a complex problem — significant
effort has been directed at simply studying the seman-
tics of CPUs with relaxed memory models [61] — and
we believe that effectively diagnosing this type of con-
currency bug will likely require more specialized tools.
Such bugs are currently not the target of SKI.

8 Related Work

Schedule space exploration. The traditional way to test
applications for concurrency bugs relies on manually cre-
ated stress tests. To increase the chances of unmask-
ing concurrency bugs, researchers have proposed various

tools that rely on introducing sleeps in the code to disrupt
the scheduling of threads [14, 19, 32, 56, 63, 64]. The
common limitation to these approaches is that they do
not systematically explore the thread interleaving space.

To address these limitations, a different class of tools
has been proposed to test for concurrency bugs [20, 53,
54]. This approach relies on taking full control of the
scheduling of threads to avoid redundant interleavings
and therefore increases the effectiveness of testing [20].
A previous attempt [17] to systematically test kernel
code has focused on small-scale educational kernels and
relied on modifications to the tested kernels. SKI follows
the systematic approach, but distinguishes itself from ex-
isting tools by being applicable to kernel code and by
being scalable to real-world kernels.

Because the schedule space is extremely large, sys-
tematic tools take advantage of different techniques to
restrict the schedule exploration while still ensuring ef-
fectiveness. Examples used in the context of finding
user-mode concurrency bugs include preemption bound-
ing [53], reschedule bounding [20] and the elimination of
redundant schedules [36]. Other work has proposed lim-
iting the valid run-time schedules by reducing or elimi-
nating the schedule non-determinism [27-30, 46, 71, 75].
Restricting the kernel schedules by applying these tech-
niques could further increase the effectiveness of SKI.

Symbolic execution [21, 25] is an analysis technique
that systematically explores the application execution
path space by keeping track, during execution, of sym-
bolic values instead of concrete values. Symbolic execu-
tion has been applied to multi-threaded applications by
implementing a custom user-mode scheduler [41]. More
recently, SymDrive [57] has been successful at testing
kernel device drivers using symbolic execution, although
it requires modifications to the kernel and does not target
concurrency bugs. Similarly, SWIFT [22] uses symbolic
execution to test kernel file system checkers but does not
target concurrency bugs. By using SKT1’s ability to instru-
ment kernel schedules, it may be possible to leverage the
symbolic execution approach in the context of testing the
kernel for concurrency bugs.

Similarly to shared-memory systems, which are the
focus of SKI, distributed systems are also prone to
schedule-dependent bugs [45, 47, 58] and the complex-
ity of distributed systems also requires dedicated tech-
niques to scale to real-world applications. For example,
CrystalBall [73] proposes model checking live systems
and steering their execution away from states that trigger
bugs. By exploring states based on snapshots of live sys-
tems, CrystalBall is able to explore states that are more
likely to be relevant to the current execution than con-

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI '14) 427

ducting the entire exploration from a single initial state.
MoDist [74] also finds bugs in distributed systems but
does so transparently, without requiring implementations
to be written in special languages. MoDist is able to scale
to complex implementations by judiciously simulating
events that typically trigger bugs, such as the reordering
of messages and the expiration of timers.

Detecting concurrency bugs. Different types of
bug detectors have been proposed to detect at runtime
whether an execution is anomalous [2, 18, 32, 34, 35,
49, 51, 62, 68, 78]. Detecting anomalous executions is
a challenge complementary to the exploration of the in-
terleaving space. DataCollider [32] is a kernel data race
detector that randomly pauses CPUs, through the use of
hardware breakpoints, to cause non-systematic schedule
diversity. In Section 5.5 we show how we combined
DataCollider’s data race detection mechanism with SKI
to detect data races. RedFlag [66] is another example of
a concurrency bug detector for the kernel that combines a
block-based atomicity checker with a lockset based data
race detector. In Section 5.5, we describe in detail how
SKI leverages various bug detectors.

Deterministic replay. Determinism is valuable for di-
agnosing concurrency bugs [13, 15, 27, 28, 30, 46], but
ensuring determinism is orthogonal to the systematic in-
terleaving exploration problem. Given the same, fixed
input parameters, SKI, like its user-mode counterparts,
can deterministically re-execute the same schedule, pro-
vided the kernel is given identical input in each run. Cur-
rently, SKI does not ensure that the same hardware input
is provided to the kernel (e.g. low-granularity timer val-
ues). Input determinism could be achieved through the
use of another layer running below the VMM [46] or by
modifying the VMM [31, 72].

Input space exploration. Dynamic testing techniques
require running the tested software and providing it with
testing input. The traditional approach has relied on
manually writing test cases [38], but more sophisticated
approaches have been proposed to address this chal-
lenge. Such approaches include blackbox fuzzers [16],
semantically-aware fuzzers [1, 10] and symbolic execu-
tion techniques [21, 37, 42]. Because file systems have a
particularly large input space and are critical components
in the system, file system testing has been a particularly
active area of research [12, 22, 50, 76, 77]. Even though
the focus of SKI is on the exploration of the interleav-
ing space, to evaluate SKI we explored the kernel input
space with an existing file system test suite, fsstress [44].

Virtual machine introspection (VMI). Several
VMM mechanisms have been proposed to infer high-
level information of virtual machines [23]. In many cases

the purpose of these mechanisms is to increase perfor-
mance. Examples include improving the host memory
usage by inferring which guest memory is actively be-
ing used [24], improving IO performance by anticipating
IO requests [40] and improving the scalability of virtual
machine monitors by inferring whether the virtual ma-
chine is executing critical sections [65, 70]. In addition,
VMI techniques have been leveraged to gather informa-
tion about virtual machines in security contexts [55]. Us-
ing the introspection approach, SKI infers the liveness
of threads for the purpose of achieving fine-level control
over the threads schedules. For example, SKI leverages
the observation that the PAUSE instruction is typically
associated with spin-locks, as does the work of Wang et.
al [70] in the context of increasing VMM performance.

9 Conclusion

This paper introduces SKI, the first practical testing tool
to systematically explore the interleaving space of real-
world kernel code. SKI does not require any modifica-
tions to tested kernels, nor does it require knowledge of
the semantics of any kernel synchronization primitives.
We detailed key optimizations that make SKI scale to
real-world code, and we have shown that SK1 is effective
at finding buggy schedules in both FreeBSD and various
versions of the Linux kernel, without changing or anno-
tating the tested kernel.

As future work, we plan to explore different bug de-
tectors and to leverage the control provided by SKI to
effectively explore the input space.

Acknowledgements

We thank the anonymous reviewers for their valuable
feedback and our shepherd, Junfeng Yang, for his help.
Pedro Fonseca was partially supported by a fellowship
from the Portuguese Foundation for Science and Tech-
nology (FCT). Rodrigo Rodrigues was funded by the Eu-
ropean Research Council under an ERC starting grant.

References

[11 A Linux System call fuzz tester.
org.uk/projects/trinity/.

http://codemonkey.

[2] ANNOUNCE: Lock validator. http://lwn.net/
Articles/185605/.
[3] Bug 144061 [socket] race on wunix socket close.

https://bugs.freebsd.org/bugzilla/show_
bug.cgi?id=144061.

428 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

[4]

(5]

(6]

[7

—

[8

—

91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Bug 14416 - Null pointer dereference in fs/pipe.c . http://
bugzilla.kernel.org/show_bug.cgi?id=14416.

Bug 22602 - Oops while unmounting an USB key with
a FAT filesystem. https://bugzilla.kernel.org/
show_bug.cgi?id=22602.

FS: pipe.c null pointer dereference. https://
git.kernel.org/cgit/linux/kernel/git/
stable/stable-queue.git/tree/queue-2.6.
31/fs-pipe.c-null-pointer—-dereference.
patch?id=36e97dec52821£76536a25b763e320eb
7434c2ab.

Kernel threads made easy. http://lwn.net/Articles/
65178/.

OpenSUSE News. https://news.opensuse.org/
2014/03/19/development-for-13-2-kicks-off/.

Patch “ext4: fix crash when accessing /proc/mounts
concurrently” has been added to the 3.6-stable tree.
http://www.mail-archive.com/stable@vger.
kernel.org/msgl9380.html.

AITEL, D. The advantages of block-based protocol analysis for
security testing. Tech. rep., Immunity, Inc., 2002.

ALGLAVE, J., FOX, A., ISHTIAQ, S., MYREEN, M. O.,
SARKAR, S., SEWELL, P., AND NARDELLI, F. Z. The seman-
tics of POWER and ARM multiprocessor machine code. In Proc.
of Workshop on Declarative Aspects of Multicore Programming
(DAMP) (2008).

ARPACI-DUSSEAU, A. C., ARPACI-DUSSEAU, R. H.,,
BAIRAVASUNDARAM, L. N., DENEHY, T. E., Porovicl, F. 1.,
PRABHAKARAN, V., AND SIVATHANU, M. Semantically-smart
disk systems: Past, present, and future. SIGMETRICS Perform.
Eval. Rev. 33, 4 (Mar. 2006), 29-35.

AVIRAM, A., WENG, S.-C., Hu, S., AND FORD, B. Efficient
system-enforced deterministic parallelism. In Proc. of Operating
System Design and Implementation (OSDI) (2010).

BEN-ASHER, Y., EYTANI, Y., FARCHI, E., AND UR, S. Noise
makers need to know where to be silent — Producing schedules
that find bugs. In Proc. of International Symposium on Leverag-
ing Applications of Formal Methods, Verification and Validation
(ISoLA) (2006).

BERGER, E. D., YANG, T., L1U, T., AND NOVARK, G. Grace:
Safe multithreaded programming for C/C++. In Proc. of Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA) (2009).

BIRD, D. L., AND MUNOZ, C. U. Automatic generation of ran-
dom self-checking test cases. IBM Syst. J. 22, 3 (Sept. 1983),
229-245.

BLUM, B. Landslide: Systematic Dynamic Race Detection
in Kernel Space. MS thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, May 2012.
http://www.pdl.cmu.edu/PDL-FTP/associated/
CMU-CS-12-118.pdf.

BoND, M. D., Coons, K. E., AND MCKINLEY, K. S. PACER:
Proportional detection of data races. In Proc. of Programming
Languages Design and Implementation (PLDI) (2010).

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

[31]

[32]

BRON, A., FARCHI, E., MAGID, Y., NIR, Y., AND UR, S. Ap-
plications of synchronization coverage. In Proc. of Symposium
on Principles and Practice of Parallel Programming (PPoPP)
(2005).

BURCKHARDT, S., KOTHARI, P., MUSUVATHI, M., AND NA-
GARAKATTE, S. A randomized scheduler with probabilistic
guarantees of finding bugs. In Proc. of International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS) (2010).

CADAR, C., DUNBAR, D., AND ENGLER, D. KLEE: Unas-
sisted and automatic generation of high-coverage tests for com-
plex systems programs. In Proc. of Operating System Design and
Implementation (OSDI) (2008).

CARREIRA, J. A., RODRIGUES, R., CANDEA, G., AND MA-
JUMDAR, R. Scalable testing of file system checkers. In Proc. of
European Conference on Computer Systems (EuroSys) (2012).

CHEN, P. M., AND NOBLE, B. D. When virtual is better than
real. In Proc. of Hot Topics in Operating Systems (HotOS) (2001).

CHIANG, J.-H., L1, H.-L., AND CHIUEH, T.-C. Introspection-
based memory de-duplication and migration. In Proc. of Inter-
national Conference on Virtual Execution Environments (VEE)
(2013).

CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2E:
A platform for in-vivo multi-path analysis of software systems.
In Proc. of International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(2011).

CLEMENTS, A. T., KAASHOEK, M. F., AND ZELDOVICH, N.
RadixVM: Scalable address spaces for multithreaded applica-
tions. In Proc. of European Conference on Computer Systems
(EuroSys) (2013).

Cuil, H., SiMsaA, J., LIN, Y.-H., L1, H., BLuMm, B., XU, X.,
YANG, J., GIBSON, G. A., AND BRYANT, R. E. Parrot: A
practical runtime for deterministic, stable, and reliable threads.
In Proc. of Symposium on Operating System Principles (SOSP)
(2013).

Cul, H., WU, J., GALLAGHER, J., GUO, H., AND YANG, J. Ef-
ficient deterministic multithreading through schedule relaxation.
In Proc. of Symposium on Operating System Principles (SOSP)
(2011).

Cul, H., Wu, J., TsAl C.-C., AND YANG, J. Stable determin-
istic multithreading through schedule memoization. In Proc. of
Operating System Design and Implementation (OSDI) (2010).

DEVIETTI, J., LUCIA, B., CEZE, L., AND OSKIN, M. DMP:
Deterministic shared memory multiprocessing. In Proc. of Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2009).

DUNLAP, G. W., LUCCHETTI, D. G., FETTERMAN, M. A,,
AND CHEN, P. M. Execution replay of multiprocessor virtual
machines. In Proc. of International Conference on Virtual Exe-
cution Environments (VEE) (2008).

ERICKSON, J., MUSUVATHI, M., BURCKHARDT, S., AND
OLYNYK, K. Effective data-race detection for the kernel. In
Proc. of Operating System Design and Implementation (OSDI)
(2010).

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14) 429

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

FEINER, P., BROWN, A. D., AND GOEL, A. Comprehensive
kernel instrumentation via dynamic binary translation. In Proc. of
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (2012).

FLANAGAN, C., AND FREUND, S. N. Atomizer: A dy-
namic atomicity checker for multithreaded programs. In Proc.
of Symposium on Principles of Programming Languages (POPL)
(2004).

FONSECA, P., LI, C., AND RODRIGUES, R. Finding complex
concurrency bugs in large multi-threaded applications. In Proc.
of European Conference on Computer Systems (EuroSys) (2011).

GODEFROID, P. Model checking for programming languages
using VeriSoft. In Proc. of Symposium on Principles of Program-
ming Languages (POPL) (1997).

GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected automated random testing. SIGPLAN Not. 40, 6 (2005),
213-223.

GRAVES, T. L., HARROLD, M. J., KiM, J.-M., PORTER, A.,
AND ROTHERMEL, G. An empirical study of regression test se-
lection techniques. ACM Trans. Softw. Eng. Methodol. 10, 2 (Apr.
2001), 184-208.

HOLZMANN, G. J. Mars code. Commun. ACM 57, 2 (2014),
64-73.

JONES, S. T., ARPACI-DUSSEAU, A. C., AND ARPACI-
DUSSEAU, R. H. Antfarm: Tracking processes in a virtual ma-
chine environment. In Proc. of Annual Technical Conference
(ATC) (2006).

KAsikcI, B., ZAMFIR, C., AND CANDEA, G. Data races vs.
data race bugs: Telling the difference with portend. In Proc. of
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (2012).

KING, J. C. Symbolic execution and program testing. Commun.
ACM 19,7 (July 1976), 385-394.

KOEHNEMANN, H., AND LINDQUIST, T. E. Towards target-
level testing and debugging tools for embedded software. In TRI-
Ada (1993).

LARSON, P. Testing linux with linux test project. In Proc. of
Ottawa Linux Symposium (OLS) (2002).

L1, S., ZHoU, H., LIN, H., X1A0, T., LIN, H., LIN, W., AND
XIE, T. A characteristic study on failures of production dis-
tributed data-parallel programs. In Proc. of International Con-
ference on Software Engineering (ICSE) (2013).

Liu, T., CURTSINGER, C., AND BERGER, E. D. Dthreads: Ef-
ficient deterministic multithreading. In Proc. of Symposium on
Operating System Principles (SOSP) (2011).

Liu, X. WiDS checker: Combating bugs in distributed sys-
tems. In Proc. of Networked Systems Design and Implementation
(NSDI) (2007).

Lu, S., PARK, S., SEO, E., AND ZHOU, Y. Learning from
mistakes: A comprehensive study on real world concurrency bug
characteristics. In Proc. of International Conference on Architec-
tural Support for Programming Languages and Operating Sys-
tems (ASPLOS) (2008).

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Lu, S., TUCEK, J., QIN, F., AND ZHOU, Y. AVIO: detecting
atomicity violations via access interleaving invariants. In Proc. of
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS) (2006).

Ma, A., DRAGGA, C., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. Ffsck: The fast file system checker.

MARINO, D., MUSUVATHI, M., AND NARAYANASAMY, S. Lit-
eRace: Effective sampling for lightweight data-race detection.
In Proc. of Programming Languages Design and Implementation
(PLDI) (2009).

MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy update:
Using execution history to solve concurrency problems. In Proc.
of International Conference on Parallel and Distributed Comput-
ing and Systems (PDCS) (1998).

MUSUVATHI, M., QADEER, S., BALL, T., BASLER, G.,
NAINAR, P. A., AND NEAMTIU, I. Finding and reproducing
heisenbugs in concurrent programs. In Proc. of Operating Sys-
tem Design and Implementation (OSDI) (2008).

NAGARAKATTE, S., BURCKHARDT, S., MARTIN, M. M., AND
MUSUVATHI, M. Multicore acceleration of priority-based sched-
ulers for concurrency bug detection. In Proc. of Programming
Languages Design and Implementation (PLDI) (2012).

NANCE, K., BISHOP, M., AND HAY, B. Virtual machine in-
trospection: Observation or interference? IEEE Security and
Privacy 6, 5 (Sept. 2008), 32-37.

PARK, S., LU, S., AND ZHOU, Y. CTrigger: Exposing atom-
icity violation bugs from their hiding places. In Proc. of Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (2009).

RENZELMANN, M. J., KADAV, A., AND SWIFT, M. M. Sym-
Drive: Testing drivers without devices. In Proc. of Operating
System Design and Implementation (OSDI) (2012).

REYNOLDS, P., KILLIAN, C., WIENER, J. L., MoGUL, J. C.,
SHAH, M. A., AND VAHDAT, A. Pip: Detecting the unexpected
in distributed systems. In Proc. of Networked Systems Design and
Implementation (NSDI) (2006).

RUSSELL, P. R. Unreliable Guide To Locking. http://
kernelbook.sourceforge.net/kernel-locking.
pdf.

SAHOO, S. K., CRISWELL, J., AND ADVE, V. S. An empirical
study of reported bugs in server software with implications for
automated bug diagnosis. Tech. Report 2142/13697, University
of Illinois, 2009.

SARKAR, S., SEWELL, P., NARDELLI, F. Z., OWENS, S.,
RIDGE, T., BRAIBANT, T., MYREEN, M. O., AND ALGLAVE,
J. The semantics of x86-CC multiprocessor machine code. In
Proc. of Symposium on Principles of Programming Languages
(POPL) (2009).

SAVAGE, S., BURROWS, M., NELSON, G., SOBALVARRO, P.,
AND ANDERSON, T. Eraser: A dynamic data race detector for
multi-threaded programs. In Proc. of Symposium on Operating
System Principles (SOSP) (1997).

430 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

SEN, K. Race directed random testing of concurrent programs.
In Proc. of Programming Languages Design and Implementation
(PLDI) (2008).

STOLLER, S. D. Testing concurrent Java programs using ran-
domized scheduling. In Proc. of Workshop on Runtime Verifica-
tion (RV) (2002).

UHLIG, V., LEVASSEUR, J., SKOGLUND, E., AND DAN-
NOWSKI, U. Towards scalable multiprocessor virtual machines.
In Proc. of Conference on Virtual Machine Research And Tech-
nology Symposium (VM) (2004).

URTEAGA, 1. N., BARNHART, K., AND HAN, Q. REDFLAG: A
run-time, distributed, flexible, lightweight, and generic fault de-
tection service for data-driven wireless sensor applications. Per-
vasive Mob. Comput. 5 (October 2009), 432-446.

VALOIS, J. D. Implementing lock-free queues. In Proc. of Inter-
national Conference on Parallel and Distributed Computing and
Systems (PDCS) (1994).

VEERARAGHAVAN, K., CHEN, P. M., FLINN, J., AND
NARAYANASAMY, S. Detecting and surviving data races using
complementary schedules. In Proc. of Symposium on Operating
System Principles (SOSP) (2011).

WAGNER, S., JURJIENS, J., KOLLER, C., AND TRISCHBERGER,
P. Comparing bug finding tools with reviews and tests. In Pro-
ceedings of the 17th IFIP TC6/WG 6.1 International Conference
on Testing of Communicating Systems (Testcom) (2005).

WANG, Z., L1u, R., CHEN, Y., WU, X., CHEN, H., ZHANG,
W., AND ZANG, B. COREMU: A scalable and portable parallel
full-system emulator. In Proc. of Symposium on Principles and
Practice of Parallel Programming (PPoPP) (2011).

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

Wu, J., TANG, Y., HU, G., Cul, H., AND YANG, J. Sound
and precise analysis of parallel programs through schedule spe-
cialization. In Proc. of Programming Languages Design and Im-
plementation (PLDI) (2012).

XU, M., MALYUGIN, V., SHELDON, J., VENKITACHALAM,
G., AND WEISSMAN, B. Retrace: Collecting execution trace
with virtual machine deterministic replay. In Proc. of Annual
Workshop on Modeling, Benchmarking and Simulation (MoBS)
(2007).

YABANDEH, M., KNEZEVIC, N., KOSTIC, D., AND KUNCAK,
V. CrystalBall: Predicting and preventing inconsistencies in de-
ployed distributed systems. In Proc. of Networked Systems De-
sign and Implementation (NSDI) (2009).

YANG, J., CHEN, T., Wu, M., Xu, Z.,, Liu, X., LIN, H.,
YANG, M., LONG, F., ZHANG, L., AND ZHOU, L. MODIST:
Transparent model checking of unmodified distributed systems.
In Proc. of Networked Systems Design and Implementation
(NSDI) (2009).

YANG, J., Cul, H., Wu, J., TANG, Y., AND HU, G. Determin-
ism is not enough: Making parallel programs reliable with stable
multithreading. Communications of the ACM (2014).

YANG, J., SAR, C., AND ENGLER, D. EXPLODE: a
lightweight, general system for finding serious storage system er-
rors. In Proc. of Operating System Design and Implementation
(OSDI) (2006).

YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M.
Using model checking to find serious file system errors. In Proc.
of Operating System Design and Implementation (OSDI) (2004).

YU, Y., RODEHEFFER, T., AND CHEN, W. RaceTrack: Efficient
detection of data race conditions via adaptive tracking. In Proc.
of Symposium on Operating System Principles (SOSP) (2005).

USENIX Association

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI '14)

431

