
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Project Adam: Building an Efficient and Scalable
Deep Learning Training System

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible,
and Karthik Kalyanaraman, Microsoft Research

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chilimbi

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 571

Project Adam: Building an Efficient and Scalable Deep
Learning Training System

Trishul Chilimbi Yutaka Suzue Johnson Apacible Karthik Kalyanaraman
Microsoft Research

ABSTRACT
Large deep neural network models have recently
demonstrated state-of-the-art accuracy on hard visual
recognition tasks. Unfortunately such models are
extremely time consuming to train and require large
amount of compute cycles. We describe the design and
implementation of a distributed system called Adam
comprised of commodity server machines to train such
models that exhibits world-class performance, scaling
and task accuracy on visual recognition tasks. Adam
achieves high efficiency and scalability through whole
system co-design that optimizes and balances
workload computation and communication. We exploit
asynchrony throughout the system to improve
performance and show that it additionally improves the
accuracy of trained models. Adam is significantly
more efficient and scalable than was previously
thought possible and used 30x fewer machines to train
a large 2 billion connection model to 2x higher
accuracy in comparable time on the ImageNet 22,000
category image classification task than the system that
previously held the record for this benchmark. We also
show that task accuracy improves with larger models.
Our results provide compelling evidence that a
distributed systems-driven approach to deep learning
using current training algorithms is worth pursuing.

1. INTRODUCTION
Traditional statistical machine learning operates with a
table of data and a prediction goal. The rows of the
table correspond to independent observations and the
columns correspond to hand crafted features of the
underlying data set. Then a variety of machine learning
algorithms can be applied to learn a model that maps
each data row to a prediction. More importantly, the
trained model will also make good predictions for
unseen test data that is drawn from a similar
distribution as the training data. Figure 1 illustrates this
process.

This approach works well for many problems such as
recommendation systems where a human domain
expert can easily construct a good set of features.
Unfortunately it fails for hard AI tasks such as speech
recognition or visual object classification where it is
extremely hard to construct appropriate features over
the input data. Deep learning attempts to address this
shortcoming by additionally learning hierarchical

features from the raw input data and then using these
features to make predictions as illustrated in Figure 2
[1]. While there are a variety of deep models we focus
on deep neural networks (DNNs) in this paper.

Deep learning has recently enjoyed success on speech
recognition and visual object recognition tasks
primarily because of advances in computing capability
for training these models [14, 17, 18]. This is because
it is much harder to learn hierarchical features than
optimize models for prediction and consequently this
process requires significantly more training data and
computing power to be successful. While there have
been some advances in training deep learning systems,
the core algorithms and models are mostly unchanged
from the eighties and nineties [2, 9, 11, 19, 25].

Complex tasks require deep models with a large
number of parameters that have to be trained. Such
large models require significant amount of data for
successful training to prevent over-fitting on the

Figure 1. Machine Learning.

Training
Data

Humans

Hand-crafted
features Classifier

Objective Function

Prediction

Error

Test
Data

Trained
Classifier

Prediction

Figure 2. Deep networks learn complex representations.

Input

Low-level features

Mid-level features

High-level features

Desired outputs
Label

The network learns complex
intermediate
representations from data
without explicit labels

Pembroke Welsh Corgi

Image

572 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

training data which leads to poor generalization
performance on unseen test data. Figure 3 illustrates
the impact of larger DNNs and more training data on
the accuracy of a visual image recognition task.
Unfortunately, increasing model size and training data,
which is necessary for good prediction accuracy on
complex tasks, requires significant amount of
computing cycles proportional to the product of model
size and training data volume as illustrated in Figure 4.

Due to the computational requirements of deep
learning almost all deep models are trained on GPUs
[5, 17, 27]. While this works well when the model fits
within 2-4 GPU cards attached to a single server, it
limits the size of models that can be trained. To
address this, researchers recently built a large-scale
distributed system comprised of commodity servers to
train extremely large models to world record accuracy
on a hard visual object recognition task—classifying
images into one of 22 thousand distinct categories
using only raw pixel information [7, 18]. Unfortunately
their system scales poorly and is not a viable cost-
effective option for training large DNNs [7].

This paper addresses the problem by describing the
design and implementation of a scalable distributed
deep learning training system called Adam comprised
of commodity servers. The main contributions include:

 Optimizing and balancing both computation
and communication for this application
through whole system co-design. We partition
large models across machines so as to
minimize memory bandwidth and cross-
machine communication requirements. We
restructure the computation across machines
to reduce communication requirements.

 Achieving high performance and scalability
by exploiting the ability of machine learning
training to tolerate inconsistencies well. We
use a variety of techniques including multi-
threaded model parameter updates without
locks, asynchronous batched parameter
updates that take advantage of weight updates

being associative and commutative, and
permit computation over stale parameter
values. Surprisingly, it appears that
asynchronous training also improves model
accuracy.

 Demonstrating that system efficiency, scaling,
and asynchrony all contribute to
improvements in trained model accuracy.
Adam uses 30x fewer machines to train a
large 2 billion connection model to 2x higher
accuracy in comparable time on the ImageNet
22,000 category image classification task than
the system that previously held the record for
this benchmark. We also show that task
accuracy improves with model size and
Adam’s efficiency enables training larger
models with the same amount of resources.

Our results suggest an opportunity for a distributed-
systems driven approach to large-scale deep learning
where prediction accuracy is increased by training
larger models on vast amounts of data using efficient
and scalable compute clusters rather than relying solely
on algorithmic breakthroughs from the machine
learning community.

 The rest of the paper is organized as follows. Section
2 covers background material on training deep neural
networks for vision tasks and provides a brief
overview of large-scale distributed training. Section 3
describes the Adam design and implementation
focusing on the computation and communication
optimizations, and use of asynchrony, that improve
system efficiency and scaling. Section 4 evaluates the
efficiency and scalability of Adam as well as the
accuracy of the models that it trains. Finally, Section 5
covers related work.

2. BACKGROUND
2.1 Deep Neural Networks for Vision
Artificial neural networks consist of large numbers of
homogeneous computing units called neurons with
multiple inputs and a single output. These are typically
connected in a layer-wise manner with the output of
neurons in layer l-1 connected to all neurons in layer l
as in Figure 2. Deep neural networks have multiple
layers that enable hierarchical feature learning.

Figure 3. Accuracy improvement with larger models and

more data.

0

5

10

15

20

25

0 50000 100000 150000

To
p

 1
 A

cc
u

ra
cy

 (%
)

Data size

0

5

10

15

20

25

0 5E+09 1E+10 1.5E+10

To
p

 1
 A

cc
u

ra
cy

 (%
)

Model size

Figure 4. Deep Learning Computational Requirements.

Complexity of task Complexity of task

Si
ze

 o
f

m
o

d
e

l

Size of model

A
m

o
u

n
t

o
f

(w
e

ak
ly

 la
b

e
le

d
)

d
at

a

C
o

m
p

u
ta

ti
o

n

re
q

u
ir

e
d

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 573

The output of a neuron i in layer l, called the
activation, is computed as a function of its inputs as
follows:

ai(l) = F((j=1..k wij(l-1,l)*aj(l-1)) + bi)

where wij is the weight associated with the connection
between neurons i and j and bi is a bias term associated
with neuron i. The weights and bias terms constitute
the parameters of the network that must be learned to
accomplish the specified task. The activation function,
F, associated with all neurons in the network is a pre-
defined non-linear function, typically sigmoid or
hyperbolic tangent.

Convolutional neural networks are a class of neural
networks that are biologically inspired by early work
on the visual cortex [15, 19]. Neurons in a layer are
only connected to spatially local neurons in the next
layer modeling local visual receptive fields. In
addition, these connections share weights which allows
for feature detection regardless of position in the visual
field. The weight sharing also reduces the number of
free parameters that must be learned and consequently
these models are easier to train compared to similar
size networks where neurons in a layer are fully
connected to all neuron in the next layer. A
convolutional layer is often followed by a max-pooling
layer that performs a type of nonlinear down-sampling
by outputting the maximum value from non-
overlapping sub-regions. This provides the network
with robustness to small translations in the input as the
max-pooling layer will produce the same value.

The last layer of a neural network that performs
multiclass classification often implements the softmax
function. This function transforms an n-dimensional
vector of arbitrary real values to an n-dimensional
vector of values in the range between zero and one
such that these component values sum to one.

We focus on visual tasks because these likely require
the largest scale neural networks given that roughly
one third of the human cortex is devoted to vision.
Recent work has demonstrated that deep neural
networks comprised of 5 convolutional layers for
learning visual features followed by 3 fully connected
layers for combining these learned features to make a
classification decision achieves state-of-the-art
performance on visual object recognition tasks [17,
27].

2.2 Neural Network Training
Neural networks are typically trained by back-
propagation using gradient descent. Stochastic gradient
descent is a variant that is often used for scalable
training as it requires less cross-machine
communication [2]. In stochastic gradient descent the

training inputs are processed in a random order. The
inputs are processed one at a time with the following
steps performed for each input to update the model
weights.

Feed-forward evaluation:

The output of each neuron i in a layer l, called its
activation, a, is computed as a function of its k inputs
from neurons in the preceding layer l-1 (or input data
for the first layer). If wij(l-1,l) is the weight associated
with a connection between neuron j in layer l-1 and
neuron i in layer l:

ai(l) = F((j=1..k wij(l-1,l)*aj(l-1)) + bi)

where b is a bias term for the neuron.

Back-propagation:

Error terms, , are computed for each neuron, i, in the
output layer, ln, first as follows:

i(ln) = (ti(ln) – ai(ln))*F’(ai(ln))

where t(x) is the true value of the output and F’(x) is
the derivative of F(x).

These error terms are then back-propagated for each
neuron i in layer l connected to m neurons in layer l+1
as follows:

i(l) = (j=1..m j(l+1)*wji(l,l+1))*F’(ai(l))

Weight updates:

These error terms are used to update the weights (and
biases similarly) as follows:

wij(l-1,l) = *i(l)*aj(l-1) for j = 1 .. k

where  is the learning rate parameter. This process is
repeated for each input until the entire training dataset

has been processed, which constitutes a training epoch.
At the end of a training epoch, the model prediction
error is computed on a held out validation set.
Typically, training continues for multiple epochs,
reprocessing the training data set each time, until the
validation set error converges to a desired (low) value.

Figure 5. Distributed Training System Architecture.

.

Global Model Parameter Store

Model
Workers

Data Shards

Model
Replica W W

574 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

The trained model is then evaluated on (unseen) test
data.

2.3 Distributed Deep Learning Training
Recently, Dean et al. described a large-scale
distributed system comprised of tens of thousands of
CPU cores for training large deep neural networks [7].
The system architecture they used (shown in Figure 5)
is based on the Multi-Spert system and exploits both
model and data parallelism [9]. Large models are
partitioned across multiple model worker machines
enabling the model computation to proceed in parallel.
Large models require significant amounts of data for
training so the systems allows multiple replicas of the
same model to be trained in parallel on different
partitions of the training data set. All the model
replicas share a common set of parameters that is
stored on a global parameter server. For speed of
operation each model replica operates in parallel and
asynchronously publishes model weight updates to and
receives updated parameter weights from the
parameter server. While these asynchronous updates
result in inconsistencies in the shared model
parameters, neural networks are a resilient learning
architecture and they demonstrated successful training
of large models to world-record accuracy on a visual
object recognition task [18].

3. ADAM SYSTEM ARCHITECTURE
Our high-level system architecture is also based on the
Multi-Spert system and consists of data serving
machines that provide training input to model training
machines organized as multiple replicas that
asynchronously update a shared model via a global
parameter server. While describing the design and
implementation of Adam we focus on the computation
and communication optimizations that improve system
efficiency and scaling. These optimizations were
motivated by our past experience building large-scale
distributed systems and by profiling and iteratively
improving the Adam system. In addition, the system is
built from the ground up to support asynchronous
training.

While we focus on vision tasks in this paper, the Adam
system is general-purpose as stochastic gradient
descent is a generic training algorithm that can train
any DNN via back-propagation. In addition, Adam
supports training any combination of stacked
convolutional and fully-connected network layers and
can be used to train models on tasks such as speech
recognition and text processing.

3.1 Fast Data Serving
Training large DNNs requires vast quantities of
training data (10-100 TBs). Even with large quantities
of training data these DNNs require data

transformations to avoid over-fitting when iterating
through the data set multiple times. We configure a
small set of machines as data serving machines to
offload the computational requirements of these
transformations from the model training machines and
ensure high throughput data delivery.

For vision tasks, the transformations include image
translations, reflections, and rotations. The training
data set is augmented by randomly applying a different
transformation to each image so that each training
epoch effectively processes a different variant of the
same image. This is done in advance since some of the
image transformations are compute intensive and we
want to immediately stream the transformed images to
the model training machines when requested.

The data servers pre-cache images utilizing nearly the
entire system memory as an image cache to speed
image serving. They use asynchronous IO to process
incoming requests. The model training machines
request images in advance in batches using a
background thread so that the main training threads
always have the required image data in memory.

3.2 Model Training
Models for vision tasks typically contain a number of
convolutional layers followed by a few fully connected
layers [17, 27]. We partition our models vertically
across the model worker machines as shown in Figure
6 as this minimizes the amount of cross-machine
communication that is required for the convolution
layers.

3.2.1 Multi-Threaded Training
Model training on a machine is multi-threaded with
different images assigned to threads that share the
model weights. Each thread allocates a training context
for feed-forward evaluation and back propagation. This

Figure 6. Model partitioning across training machines.

…
..

…
..

I21I11 …… IN1 I22I12 …… IN2 I2MI1M …… INM

…
..

…
..

…
..

…
..

………
.

Convolutional
Layers (1..K)

Fully
Connected
Layers (1..L)

Machine 1 Machine 2 Machine M

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 575

training context stores the activations and weight
update values computed during back-propagation for
each layer. The context is pre-allocated to avoid heap
locks while training. Both the context and per-thread
scratch buffer for intermediate results use NUMA-
aware allocations to reduce cross-memory bus traffic
as these structures are frequently accessed.

3.2.2 Fast Weight Updates
To further accelerate training we access and update the
shared model weights locally without using locks.
Each thread computes weight updates and updates the
shared model weights. This introduces some races as
well as potentially modifying weights based on stale
weight values that were used to compute the weight
updates but have since been changed by other threads.
We are still able to train models to convergence despite
this since the weight updates are associative and
commutative and because neural networks are resilient
and can overcome the small amount of noise that this
introduces. Updating weights without locking is
similar to the Hogwild system except that we rely on
weight updates being associative and commutative
instead of requiring that the models be sparse to
minimize conflicts [23]. This optimization is important
for achieving good scaling when using multiple threads
on a single machine.

3.2.3 Reducing Memory Copies
During model training data values need to be
communicated across neuron layers. Since the model is
partitioned across multiple machines some of this
communication is non local. We use a uniform
optimized interface to accelerate this communication.
Rather than copy data values we pass a pointer to the
relevant block of neurons whose outputs need
communication avoiding expensive memory copies.
For non-local communication, we built our own
network library on top of the Windows socket API
with IO completion ports. This library is compatible
with our data transfer mechanism and accepts a pointer
to a block of neurons whose output values need to be
communicated across the network. We exploit
knowledge about the static model partitioning across
machines to optimize communication and use
reference counting to ensure safety in the presence of
asynchronous network IO. These optimizations reduce
the memory bandwidth and CPU requirements for
model training and are important for achieving good
performance when a model is partitioned across
machines.

3.2.4 Memory System Optimizations
We partition models across multiple machines such
that the working sets for the model layers fit in the L3
cache. The L3 cache has higher bandwidth than main
memory and allows us to maximize usage of the

floating point units on the machine that would
otherwise be limited by memory bandwidth.

We also optimize our computation for cache locality.
The forward evaluation and back-propagation
computation have competing locality requirements in
terms of preferring a row major or column major
layout for the layer weight matrix. To address this we
created two custom hand-tuned assembly kernels that
appropriately pack and block the data such that the
vector units are fully utilized for the matrix multiply
operations. These optimizations enable maximal
utilization of the floating point units on a machine.

3.2.5 Mitigating the Impact of Slow Machines
In any large computing cluster there will always be a
variance in speed between machines even when all
share the same hardware configuration. While we have
designed the model training to be mostly asynchronous
to mitigate this, there are two places where this speed
variance has an impact. First, since the model is
partitioned across multiple machines the speed of
processing an image is limited by slow machines. To
avoid stalling threads on faster machines that are
waiting for data values to arrive from slower machines,
we allow threads to process multiple images in
parallel. We use a dataflow framework to trigger
progress on individual images based on arrival of data
from remote machines. The second place where this
speed variance manifests is at the end of an epoch.
This is because we need to wait for all training images
to be processed to compute the model prediction error
on the validation data set and determine whether an
additional training epoch is necessary. To address this,
we implemented the simple solution of ending an
epoch whenever a specified fraction of the images are
completely processed. We ensure that the same set of
images are not skipped each epoch by randomizing the
image processing order for each epoch. We have
empirically determined that waiting for 75% of the
model replicas to complete processing all their images
before declaring the training epoch complete can speed
training by up to 20% with no impact on the trained
model’s prediction accuracy. An alternative solution
that we did not implement is to have the faster
machines steal work from the slower ones. However,
since our current approach does not affect model
accuracy this is unlikely to outperform it.

3.2.6 Parameter Server Communication
We have implemented two different communication
protocols for updating parameter weights. The first
version locally computes and accumulates the weight
updates in a buffer that is periodically sent to the
parameter server machines when k (which is typically
in the hundreds) images have been processed. The
parameter server machines then directly apply these

576 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

accumulated updates to the stored weights. This works
well for the convolutional layers since the volume of
weights is low due to weight sharing. For the fully
connected layers that have many more weights we use
a different protocol to minimize communication traffic
between the model training and parameter server
machines. Rather than directly send the weight updates
we send the activation and error gradient vectors to the
parameter server machines where the matrix multiply
can be performed locally to compute and apply the
weight updates. This significantly reduces the
communication traffic volume from M*N to k*(M+N)
and greatly improves system scalability. In addition, it
has an additional beneficial aspect as it offloads
computation from the model training machines where
the CPU is heavily utilized to the parameter server
machines where the CPU is underutilized resulting in a
better balanced system.

3.3 Global Parameter Server
The parameter server is in constant communication
with the model training machines receiving updates to
model parameters and sending the current weight
values. The rate of updates is far too high for the
parameter server to be modeled as a conventional
distributed key value store. The architecture of a
parameter server node is shown in Figure 7.

3.3.1 Throughput Optimizations

The model parameters are divided into 1 MB sized
shards, which represents a contiguous partition of the
parameter space, and these shards are hashed into
storage buckets that are distributed equally among the
parameter server machines. This partitioning improves
the spatial locality of update processing while the

distribution helps with load balancing. Further, we
opportunistically batch updates. This improves
temporal locality and relieves pressure on the L3 cache
by applying all updates in a batch to a block of
parameters before moving to next block in the shard.
The parameter servers use SSE/AVX instructions for
applying the update and all processing is NUMA
aware. Shards are allocated on a specific NUMA node
and all update processing for the shard is localized to
that NUMA node by assigning tasks to threads bound
to the processors for the NUMA node by setting the
appropriate processor masks. We use lock free data
structures for queues and hash tables in high traffic
execution paths to speed up network, update, and disk
IO processing. In addition, we implement lock free
memory allocation where buffers are allocated from
pools of specified size that vary in powers of 2 from
4KB all the way to 32MB. Small object allocations are
satisfied by our global lock free pool for the object. All
of these optimizations are critical to achieving good
system scalability and were arrived at through iterative
system refinement to eliminate scalability bottlenecks.

3.3.2 Delayed Persistence
We decouple durability from the update processing
path to allow for high throughput serving to training
nodes. Parameter storage is modelled as a write back
cache, with dirty chunks flushed asynchronously in the
background. The window of potential data loss is a
function of the IO throughput supported by the storage
layer. This is tolerable due to the resilient nature of the
underlying system as DNN models are capable of
learning even in the presence of small amounts of lost
updates. Further, these updates can be effectively
recovered if needed by retraining the model on the
appropriate input data. This delayed persistence allows
for compressed writes to durable storage as many
updates can be folded into a single parameter update,
due to the additive nature of updates, between rounds
of flushes. This allows update cycles to catch up to the
current state of the parameter shard despite update
cycles being slower.

3.3.3 Fault Tolerant Operation
There are three copies of each parameter shard in the
system and these are stored on different parameter
servers. The shard version that is designated as the
primary is actively served while the two other copies
are designated as secondary for fault tolerance. The
parameter servers are controlled by a set of parameter
server (PS) controller machines that form a Paxos
cluster. The controller maintains in its replicated state
the configuration of parameter server cluster that
contains the mapping of shards and roles to parameter
servers. The clients (model training machines) contact
the controller to determine request routing for
parameter shards. The PS controller hands out bucket

Figure 7. Parameter Server Node Architecture.

TCP End Point
Shard
Table

Read
Shard

Update
Shard

Shard
TableShard

TableShard
Table

TCP End PointShard
Table

Read
Shard

Update
Shard

Shard
Table Shard

TableShard
Table

TCP End Point Durable Media

Administrative TCP End PointLoad
Shard Unload

Shard

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 577

assignments (primary role via a lease, secondary roles
with primary lease information) to parameter servers
and persists the lease information in its replicated state.
The controller also receives heart beats from parameter
server machines and relocates buckets from failed
machines evenly to other active machines. This
includes assigning new leases for buckets where the
failed machine was the primary.

The parameter server machine that is the primary for a
bucket accepts requests for parameter updates for all
chunks in that bucket. The primary machine replicates
changes to shards within a bucket to all secondary
machines via a 2 phase commit protocol. Each
secondary checks the lease information of the bucket
for a replicated request initiated by primary before
committing. Each parameter server machine sends
heart beats to the appropriate secondary machines for
all buckets for which it has been designated as
primary. Parameter servers that are secondary for a
bucket initiate a role change proposal to be a primary
along with previous primary lease information to the
controller in the event of prolonged absence of heart
beats from the current primary. The controller will
elect one of the secondary machines to be the new
primary, assigns a new lease for the bucket and
propagates this information to all parameter server
nodes involved for the bucket. Within a parameter
server node, the on disk storage for a bucket is
modelled as a log structured block store to optimize
disk bandwidth for the write heavy work load.

We have used Adam extensively over the past two
years to run several training experiments. Machines
did fail during these runs and all of these fault
tolerance mechanisms were exercised at some point.

3.3.4 Communication Isolation
Parameter server machines have two 10Gb NICs.
Since parameter update processing from a client
(training) perspective is decoupled from persistence,
the 2 paths are isolated into their own NICs to
maximize network bandwidth and minimize
interference as shown in Figure 7. In addition, we
isolate administrative traffic from the controller to the
1Gb NIC.

4. EVALUATION
4.1 Visual Object Recognition Tasks
We evaluate Adam using two popular benchmarks for
image recognition tasks. MNIST is a digit
classification task where the input data is composed of
28x28 images of the 10 handwritten digits [20]. This is
a very small benchmark with 60,000 training images
and 10,000 test images that we use to characterize the
baseline system performance and accuracy of trained
models. ImageNet is a large dataset that contains over

15 million labeled high-resolution images belonging to
around 22,000 different categories [8]. The images
were gathered from a variety of sources on the web
and labeled by humans using Mechanical Turk.
ImageNet contains images with variable resolution but
like others we down-sampled all images to a fixed
256x256 resolution and used half of the data set for
training and the other half for testing. This is the
largest publicly available image classification
benchmark and the task of correctly classifying an
image among 22,000 categories is extremely hard (for
e.g., distinguishing between an American and English
foxhound). Performance on this task is measured in
terms of top-1 accuracy, which compares the model’s
top choice with the image label and assigns a score of
1 for a correct answer and 0 for an incorrect answer.
No partial credit is awarded. Random guessing will
result in a top-1 accuracy of only around 0.0045%.
Based on our experience with this benchmark it is
unlikely that human performance exceeds 20%
accuracy as this task requires correctly distinguishing
between hundreds of breeds of dogs, butterflies,
flowers, etc.1 We use this benchmark to characterize
Adam’s performance and scaling, and the accuracy of
trained models.
4.2 System Hardware
Adam is currently comprised of a cluster of 120
identical machines organized as three equally sized
racks connected by IBM G8264 switches. Each
machine is a HP Proliant server with dual Intel Xeon
E5-2450L processors for a total of 16 cores running at
1.8Ghz with 98GB of main memory, two 10 Gb NICs
and one 1 Gb NIC. All machines have four 7200 rpm
HDDs. A 1TB drive hosts the operating system
(Windows 2012 server) and the other three HDDs are
3TB each and are configured as a RAID array. This
set of machines can be configured slightly differently
based on the experiment but model training machines
are selected from a pool of 90 machines, parameter
servers from a pool of 20 machines and image servers
from a pool of 10 machines. These pools include
standby machines for fault tolerance in case of
machine failure.

4.3 Baseline Performance and Accuracy
We first evaluate Adam’s baseline performance by
focusing on single model training and parameter server
machines. In addition, we evaluate baseline training
accuracy by training a small model on the MNIST digit
classification task.

1 We invite people to test their performance on this

benchmark available at http://www.image-net.org

578 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

4.3.1 Model Training System
We train a small MNIST model comprising around 2.5
million connections (described later) to convergence
on a single model training machine with no parameter
server and vary the number of processor cores used for
training. We measure the average training speed
computed as billions of connections trained per second
(Model connections*Training examples*Number of
Epochs)/(Wall clock time) and plot this against the
number of processor cores used for training. The
results are shown in Figure 8. Adam shows excellent
scaling as we increase the number of cores since we
allow parameters to be updated without locking. The
scaling is super-linear up to 4 cores due to caching
effects and linear afterwards.

4.3.2 Parameter Server
To evaluate the multi-core scaling of a single
parameter server we collected parameter update traffic
from ImageNet 22K model training runs, as MNIST
parameter updates are too small to stress the system,
and ran a series of simulated tests. For all tests we
compare the parameter update rate that the machine is
able to sustain as we increase the amount of server
cores available for processing. Recall that we support

two update APIs—one where the parameter server
directly receives weight updates and the other where it
receives activation and error gradient vectors that it
must multiply to compute the weight updates. The
results are shown in Figure 9. The network bandwidth
is the limiting factor when weight updates are sent over
the network resulting in poor performance and scaling.
With a hypothetical fast network we see scaling up to 8
cores after which we hit the memory bandwidth
bottleneck. When the weight updates are computed
locally we see good scaling as we have tiled the
computation to efficiently use the processor cache
avoiding the memory bandwidth bottleneck. While our
current networking technology limits our update
throughput, we are still able to sustain a very high
update rate of over 13 Bn updates/sec.

4.3.3 Trained Model Accuracy
The MNIST benchmark is primarily evaluated in two
forms. One variant transforms the training data via
affine transformations or elastic distortions to
effectively expand the limited training data to a much
larger set resulting in the trained models generalizing
well and achieving higher accuracy on the unseen test
data [5, 26]. The traditional form allows no data
transformation so all training has to proceed using only
the limited 60,000 training examples. Since our goal
here is to evaluate Adam’s baseline performance on
small models trained on little data we used the MNIST
data without any transformation.

 We trained a fairly standard model for this benchmark
comprising 2 convolutional layers followed by two
fully connected layers and a final ten class softmax
output layer [26]. The convolutional layers used 5x5
kernels and each is followed by a 2x2 max-pooling
layer. The first convolutional layer has 10 feature maps
and the second has 20. Both fully connected layers use
400 hidden units. The resulting model is small and has
around 2.5 million connections. The prediction
accuracy results are shown in Table 1. We were

Figure 9. Parameter Server Node Performance.

0

5

10

15

20

25

1 2 4 8 16

B
il

li
o

n
 p

a
ra

m
e

te
r

u
p

d
a

te
s/

se
c

of processor cores

Weight updates Weight updates over network
Local weight computation Local weight computation with inputs over network

Figure 10. Scaling Model Size with more Workers.

0

5

10

15

20

25

30

35

40

4 8 12 16

Bi
lli

on
 c

on
ne

ct
io

ns

of Machines

Figure 8. Model Training Node Performance.

0

1

2

3

4

5

6

7

1 2 4 8 16

B
il

li
o

n
 c

o
n

n
e

ct
io

n
s

tr
a

in
e

d
/s

e
c

of Processor cores

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 579

targeting competitive performance with the state-of-
the-art accuracy on this benchmark from Goodfellow
et al. that uses sophisticated training techniques that we
have not implemented [12]. To our surprise, we
exceeded their accuracy by 0.08%. To put this
improvement in perspective, it took four years of
advances in deep learning to improve accuracy on this
task by 0.08% to its present value. We believe that our
accuracy improvement arises from the asynchrony in
Adam which adds a form of stochastic noise while
training that helps the models generalize better when
presented with unseen data. In addition, it is possible
that the asynchrony helps the model escape from
unstable local minima to potentially find a better local
minimum. To validate this hypothesis, we trained the
same model on the MNIST data using only a single
thread to ensure synchronous training. We trained the
model to convergence, which took significantly longer.
The result from our best synchronous variant is shown
in Table 1 and indicates that asynchrony contributes to
improving model accuracy by 0.24%, which is a
significant increase for this task. This result contradicts
conventional established wisdom in the field that holds
that asynchrony lowers model prediction accuracy and
must be controlled as far as possible.

Table 1. MNIST Top-1 Accuracy

4.4 System Scaling and Accuracy
We evaluate our system performance and scalability
across multiple dimensions and evaluate its ability to
train large DNNs for the ImageNet 22K classification
task.

4.4.1 Scaling with Model Workers
We evaluate the ability of Adam to train very large
models by partitioning them across multiple machines.
We use a single training epoch of the ImageNet
benchmark to determine the maximum size model we
can efficiently train on a given multi-machine
configuration. We do this by increasing the model size
via an increase in the number of feature maps in
convolutional layers and training the model for an
epoch until we observe a decrease in training speed.
For this test we use only a single model replica with no
parameter server. The results are shown in Fig. 10 and
indicate that Adam is capable of training extremely
large models using a relatively small number of
machines. Our 16 machine configuration is capable of
training a 36 Bn connection model. More importantly,

the size of models we can train efficiently increases
super-linearly as we partition the model across more
machines. Our measurements indicate that this is due
to cache effects where larger portions of the working
sets of model layers fits in the L3 cache as the number
of machines is increased. While the ImageNet data set
does not have sufficient training data to train such
large models to convergence these results indicate that
Adam is capable of training very large models with
good scaling.

4.4.2 Scaling with Model Replicas
We evaluate the impact of adding more model replicas
to Adam. Each replica contains 4 machines with the
ImageNet model (described later) partitioned across
these machines. The results are shown in Figure 11
where we evaluated configurations comprising 4, 10,
12, 16, and 22 replicas. All experiments used the same
parameter server configuration comprised of 20
machines. The results indicate that Adam scales well
with additional replicas. Note that the configuration
without a parameter server is merely intended as a
reference for comparison since the models cannot
jointly learn without a shared parameter server. While
the parameter server does add some overhead the
system still exhibits good scaling.

4.4.3 Trained Model Accuracy
We trained a large and deep convolutional network for
the ImageNet 22K category object classification task
with a similar architecture to those described in prior
work [17, 27]. The network has five convolutional
layers followed by three fully connected layers with a

Systems MNIST Top-1 Accuracy

Goodfellow et al [12] 99.55%

Adam 99.63%

Adam (synchronous) 99.39%

Figure 11. System scaling with more Replicas.

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70 80 90 100

B
ill

io
n

co
nn

ec
ti

on
s

tr
ai

ne
d/

se
c

of Machines

System with PS Linear (no PS)

Table 2. ImageNet 22K Top-1 Accuracy.

Systems ImageNet 22K Top-1 Accuracy

Le et al. [18] 13.6%
Le et al. (with

pre-training) [18] 15.8%

Adam 29.8%

580 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

final 22,000-way softmax. The convolutional kernels
range in size from 3x3 to 7x7 and the convolutional
feature map sizes range from 120 to 600. The first,
second and fifth convolutional layers are followed by a
3x3 max-pooling layer. The fully-connected layers
contain 3000 hidden units. The resulting model is
fairly large and contains over 2Bn connections. While
Adam is capable of training much larger models the
amount of ImageNet training data is a limiting factor in
these experiments.

We trained this model to convergence in ten days using
4 image servers, 48 model training machines
configured as 16 model replicas containing 4 machines
per replica and 10 parameter servers for a total of 62
machines. The results are shown in Table 2. Le et al.
held the previous best top-1 accuracy result on this
benchmark of 13.6% that was obtained by training a
1Bn connection model on 2,000 machines for a week
(our model exceeds 13.6% accuracy with a single day
of training using 62 machines). When they
supplemented the ImageNet training data with 10
million unlabeled images sampled from Youtube
videos, which they trained on using 1,000 machines for
3 days, they were able to increase prediction accuracy
to 15.8%. Our model is able to achieve a new world
record prediction accuracy of 29.8% using only
ImageNet training data, which is a dramatic 2x
improvement over the prior best.

To better understand the reasons for this accuracy
improvement, we used Adam to train a couple of
smaller models to convergence for this task. The
results are shown in Figure 12 and indicate that
training larger models increases task accuracy. This
highlights the importance of Adam’s efficiency and
scalability as it enables training larger models. In
addition, our 1.1 Bn connection model achieves 24%
accuracy on this task as compared to prior work that
achieved 13.6% accuracy with a similar size model.
While we are unable to isolate the impact of
asynchrony for this task as the synchronous execution
is much too slow, this result in conjunction with the

MNIST accuracy data provides evidence that
asynchrony contributes to the accuracy improvements.
The graph also appears to suggest that improvements
in accuracy slow down as the model size increases but
we note that the larger models are being trained with
the same amount of data. It is likely that larger models
for complex tasks require more training data to
effectively use their capacity.

4.4.4 Discussion
Adam achieves high multi-threaded scalability on a
single machine by permitting threads to update local
parameter weights without locks. It achieves good
multi-machine scalability through minimizing
communication traffic by performing the weight
update computation on the parameter server machines
and performing asynchronous batched updates to
parameter values that take advantage of these updates
being associative and commutative. Finally, Adam
enables training models to high accuracy by exploiting
its efficiency to train very large models and leveraging
asynchrony to further improve accuracy.

5. RELATED WORK
Due to the computational requirements of deep
learning, deep models are popularly trained on GPUs
[5, 14, 17, 24, 27]. While this works well when the
model fits within 2-4 GPU cards attached to a single
server, it limits the size of models that can be trained.
Consequently the models trained on these systems are
typically evaluated on the much smaller ImageNet
1,000 category classification task [17, 27].

Recent work attempted to use a distributed cluster of
16 GPU servers connected with Infiniband to train
large DNNs partitioned across the servers on image
classification tasks [6]. Training large models to high
accuracy typically requires iterating over vast amount
of data. This is not viable in a reasonable amount of
time unless the system also supports data parallelism.
Unfortunately the mismatch in speed between GPU
compute and network interconnects makes it extremely
difficult to support data parallelism via a parameter
server. Either the GPU must constantly stall while
waiting for model parameter updates or the models
will likely diverge due to insufficient synchronization.
This work did not support data parallelism and the
large models trained had lower accuracy than much
smaller models.

The only comparable system that we are aware of for
training large-scale DNNs that supports both model
and data parallelism is the DistBelief system [7]. The
system has been used to train a large DNN (1 billion
connections) to high accuracy on the ImageNet 22K
classification task but at a significant compute cost of
using 2,000 machines for a week. In addition, the

Figure 12. Model accuracy with larger models.

0

5

10

15

20

25

30

35

1000 1200 1400 1600 1800 2000 2200 2400

To
p-

1
ac

cu
ra

cy
 (%

)

Model size (# connections in millions)

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 581

system exhibits poor scaling efficiency and is not a
viable cost-effective solution.

GraphLab [21] and similar large scale graph
processing frameworks are designed for operating on
general unstructured graphs and are unlikely to offer
competitive performance and scalability as they do not
exploit deep network structure and training
efficiencies.

The vision and computer architecture community has
started to explore hardware acceleration for neural
network models for vision [3, 4, 10, 16, 22]. Currently,
the work has concentrated on efficient feed-forward
evaluation of already trained networks and
complements our work that focuses on training large
DNNs.

6. CONCLUSIONS
We show that large-scale commodity distributed
systems can be used to efficiently train very large
DNNs to world-record accuracy on hard vision tasks
using current training algorithms by using Adam to
train a large DNN model that achieves world-record
classification performance on the ImageNet 22K
category task. While we have implemented and
evaluated Adam using a 120 machine cluster, the
scaling results indicate that much larger systems can
likely be effectively utilized for training large DNNs.

7. ACKNOWLEDGMENTS
We would like to thank Patrice Simard for sharing his
gradient descent toolkit code that we started with as a
single machine reference implementation. Leon Bottou
provided valuable guidance and advice on scalable
training algorithms. John Platt served as our machine
learning consultant throughout this effort and
constantly shared valuable input. Yi-Min Wang was an
early and constant supporter of this work and provided
the initial seed funding. Peter Lee and Eric Horvitz
provided additional support and funding. Jim Larus,
Eric Rudder and Qi Lu encouraged this work. We
would also like to acknowledge the contributions of
Olatunji Ruwase, Abhishek Sharma, and Xinying Song
to the system. We benefitted from several discussions
with Larry Zitnick, Piotr Dollar, Istvan Cseri, Slavik
Krassovsky, and Sven Groot. Finally, we would like to
thank our reviewers and our paper shepherd, Geoff
Voelker, for their detailed and thoughtful comments.

8. REFERENCES
[1] Bengio, Y., and LeCun, Y. 2007. Scaling

Learning Algorithms towards AI. In Large-Scale
Kernel Machines, Bottou, L. et al. (Eds), MIT
Press.

[2] Bottou, L., 1991. Stochastic gradient learning in
neural networks. In Proceedings of Neuro-Nîmes
91, EC2, Nimes, France.

[3] S. Chakradhar, M. Sankaradas, V. Jakkula, and S.
Cadambi. 2010. A dynamically configurable
coprocessor for convolutional neural networks. In
International symposium on Computer
Architecture, ISCA’10.

[4] Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., Chen,
Y., and Temam, O. 2014. DianNao: A Small-
Footprint High-Throughput Accelerator for
Ubiquitous Machine-Learning. In International
Conference on Architectural Support for
Programming Languages and Operating Systems.
ASPLOS’14.

[5] Ciresan, D. C, Meier, U., and Schmidhuber, J.
2012. Multicolumn deep neural networks for
image classification. In Computer Vision and
Pattern Recognition. CVPR’12.

[6] Coates, A., Huval, B., Wang, T., Wu, D., Ng, A.,
and Catanzaro, B. 2013. Deep Learning with
COTS HPC. In International Conference on
Machine Learning. ICML’13.

[7] Dean, J., Corrado, G., Monga, R., Chen, K.,
Devin, M., Mao, M., Ranzato, M., Senior, A.,
Tucker, P., Yang, K., Le, Q., and Ng, A. 2012.
Large Scale Distributed Deep Networks. In
Advances in Neural Information Processing
Systems. NIPS’12.

[8] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K.,
and Fei-Fei, L. 2009. ImageNet: A Large-Scale
Hierarchical Image Database. In Computer Vision
and Pattern Recognition. CVPR ‘09.

[9] Faerber, P., and Asanović, K. 1997. Parallel neural
network training on Multi-Spert. In IEEE 3rd
International Conference on Algorithms and
Architectures for Parallel Processing (Melbourne,
Australia, December 1997).

[10] Farabet, C., Martini, B., Corda, B., Akselrod, P.,
Culurciello, E., and LeCun, Y. 2011. NeuFlow: A
runtime reconfigurable dataflow processor for
vision. In Computer Vision and Pattern
Recognition Workshop (June 2011), pages 109–
116.

[11] Fukushima, K. 1980. Neocognitron: A self-
organizing neural network for a mechanism of
pattern recognition unaffected by shift in position.
In Biological Cybernetics, 36(4): 93-202.

[12] Goodfellow, I., Warde-Farley, D., Mirza, M.,
Courville, A., and Bengio, Y. 2013. Maxout

582 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Networks. In International Conference on
Machine Learning. ICML’13.

[13] Hahnloser, R. 2003. Permitted and Forbidden Sets
in Symmetric Threshold-Linear Networks. In
Neural Computing. (Mar. 2003), 15(3):621-38.

[14] Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed,
A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen,
P., Sainath, T., and Kingsbury, B. 2012. Deep
neural networks for acoustic modeling in speech
recognition. In IEEE Signal Processing Magazine,
2012.

[15] Hubel, D. and Wiesel, T. 1968. Receptive fields
and functional architecture of monkey striate
cortex. In Journal of Physiology (London), 195,
215–243.

[16] Kim, J., Member, S., Kim, M., Lee, S., Oh, J.,
Kim, K. and Yoo, H. 2010. A 201.4 GOPS 496
mW Real-Time Multi-Object Recognition
Processor with Bio-Inspired Neural Perception
Engine. In IEEE Journal of Solid-State Circuits,
(Jan. 2010), 45(1):32–45.

[17] Krizhevsky, A., Sutskever, I., and Hinton, G.
2012. ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in
Neural Information Processing Systems. NIPS’12.

[18] Le, Q., Ranzato, M., Monga, R., Devin, M., Chen,
K., Corrado, G., Dean, J., and Ng, A. 2012.
Building high-level features using large scale
unsupervised learning. In International
Conference on Machine Learning. ICML’12.

[19] LeCun, Y., Boser, B., Denker, J., Henderson, D.,
Howard, R., Hubbard, W., and Jackel, L. 1989.
Backpropagation Applied to Handwritten Zip
Code Recognition. In Neural Computation,
1(4):541-551.

[20] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
1998. Gradient-based learning applied to
document recognition. In Proceedings of the
IEEE, 86(11):2278–2324, (Nov. 1998).

[21] Low, Y., Gonzalez, J., Kyrola, A., Bickson, D.,
Guestrin, C., and Hellerstein, J. 2012. Distributed
GraphLab: A framework for machine learning in
the cloud. In International Conference on Very
Large Databases. VLDB’12.

[22] Maashri, A., Debole, M., Cotter, M.,
Chandramoorthy, N., Xiao, Y., Narayanan, V.,
and Chakrabarti, C. 2012. Accelerating
neuromorphic vision algorithms for recognition. In
Proceedings of the 49th Annual Design
Automation Conference, DAC’12.

[23] Niu, F., Retcht, B., Re, C., and Wright, S. 2011.
Hogwild! A lock-free approach to parallelizing
stochastic gradient descent. In Advances in Neural
Information Processing Systems. NIPS’11.

[24] Raina, R., Madhavan, A., and Ng., A. 2009.
Large-scale deep unsupervised learning using
graphics processors. In International Conference
on Machine Learning. ICML’09.

[25] Rumelhart, D., Hinton, G., and Williams, R. 1986.
Learning representations by back-propagating
errors. In Nature 323 (6088): 533–536.

[26] Simard, P., Steinkraus, D., and Platt, J. 2003. Best
Practices for Convolutional Neural Networks
applied to Visual Document Analysis. In ICDAR,
vol. 3, pp. 958-962.

[27] Zeiler, M. and Fergus, R. 2013. Visualizing and
Understanding Convolutional Networks. In Arxiv
1311.2901. http://arxiv.org/abs/1311.2901

