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ABSTRACT 
Large deep neural network models have recently 
demonstrated state-of-the-art accuracy on hard visual 
recognition tasks. Unfortunately such models are 
extremely time consuming to train and require large 
amount of compute cycles. We describe the design and 
implementation of a distributed system called Adam 
comprised of commodity server machines to train such 
models that exhibits world-class performance, scaling 
and task accuracy on visual recognition tasks. Adam 
achieves high efficiency and scalability through whole 
system co-design that optimizes and balances 
workload computation and communication. We exploit 
asynchrony throughout the system to improve 
performance and show that it additionally improves the 
accuracy of trained models. Adam is significantly 
more efficient and scalable than was previously 
thought possible and used 30x fewer machines to train 
a large 2 billion connection model to 2x higher 
accuracy in comparable time on the ImageNet 22,000 
category image classification task than the system that 
previously held the record for this benchmark. We also 
show that task accuracy improves with larger models. 
Our results provide compelling evidence that a 
distributed systems-driven approach to deep learning 
using current training algorithms is worth pursuing. 

1. INTRODUCTION 
Traditional statistical machine learning operates with a 
table of data and a prediction goal. The rows of the 
table correspond to independent observations and the 
columns correspond to hand crafted features of the 
underlying data set. Then a variety of machine learning 
algorithms can be applied to learn a model that maps 
each data row to a prediction. More importantly, the 
trained model will also make good predictions for 
unseen test data that is drawn from a similar 
distribution as the training data. Figure 1 illustrates this 
process. 
 
This approach works well for many problems such as 
recommendation systems where a human domain 
expert can easily construct a good set of features. 
Unfortunately it fails for hard AI tasks such as speech 
recognition or visual object classification where it is 
extremely hard to construct appropriate features over 
the input data. Deep learning attempts to address this 
shortcoming by additionally learning hierarchical 

features from the raw input data and then using these 
features to make predictions as illustrated in Figure 2 
[1]. While there are a variety of deep models we focus 
on deep neural networks (DNNs) in this paper. 
 
Deep learning has recently enjoyed success on speech 
recognition and visual object recognition tasks 
primarily because of advances in computing capability 
for training these models [14, 17, 18]. This is because 
it is much harder to learn hierarchical features than 
optimize models for prediction and consequently this 
process requires significantly more training data and 
computing power to be successful. While there have 
been some advances in training deep learning systems, 
the core algorithms and models are mostly unchanged 
from the eighties and nineties [2, 9, 11, 19, 25]. 
 
Complex tasks require deep models with a large 
number of parameters that have to be trained. Such 
large models require significant amount of data for 
successful training to prevent over-fitting on the 

 
Figure 1. Machine Learning. 
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Figure 2. Deep networks learn complex representations. 
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training data which leads to poor generalization 
performance on unseen test data. Figure 3 illustrates 
the impact of larger DNNs and more training data on 
the accuracy of a visual image recognition task. 
Unfortunately, increasing model size and training data, 
which is necessary for good prediction accuracy on 
complex tasks, requires significant amount of 
computing cycles proportional to the product of model 
size and training data volume as illustrated in Figure 4. 
 
Due to the computational requirements of deep 
learning almost all deep models are trained on GPUs 
[5, 17, 27]. While this works well when the model fits 
within 2-4 GPU cards attached to a single server, it 
limits the size of models that can be trained. To 
address this, researchers recently built a large-scale 
distributed system comprised of commodity servers to 
train extremely large models to world record accuracy 
on a hard visual object recognition task—classifying 
images into one of 22 thousand distinct categories 
using only raw pixel information [7, 18]. Unfortunately 
their system scales poorly and is not a viable cost-
effective option for training large DNNs [7]. 
 
This paper addresses the problem by describing the 
design and implementation of a scalable distributed 
deep learning training system called Adam comprised 
of commodity servers. The main contributions include: 

 Optimizing and balancing both computation 
and communication for this application 
through whole system co-design. We partition 
large models across machines so as to 
minimize memory bandwidth and cross-
machine communication requirements. We 
restructure the computation across machines 
to reduce communication requirements. 

 Achieving high performance and scalability 
by exploiting the ability of machine learning 
training to tolerate inconsistencies well. We 
use a variety of techniques including multi-
threaded model parameter updates without 
locks, asynchronous batched parameter 
updates that take advantage of weight updates 

being associative and commutative, and 
permit computation over stale parameter 
values. Surprisingly, it appears that 
asynchronous training also improves model 
accuracy.  

 Demonstrating that system efficiency, scaling, 
and asynchrony all contribute to 
improvements in trained model accuracy. 
Adam uses 30x fewer machines to train a 
large 2 billion connection model to 2x higher 
accuracy in comparable time on the ImageNet 
22,000 category image classification task than 
the system that previously held the record for 
this benchmark. We also show that task 
accuracy improves with model size and 
Adam’s efficiency enables training larger 
models with the same amount of resources.  

 
Our results suggest an opportunity for a distributed-
systems driven approach to large-scale deep learning 
where prediction accuracy is increased by training 
larger models on vast amounts of data using efficient 
and scalable compute clusters rather than relying solely 
on algorithmic breakthroughs from the machine 
learning community. 
 
 The rest of the paper is organized as follows. Section 
2 covers background material on training deep neural 
networks for vision tasks and provides a brief 
overview of large-scale distributed training. Section 3 
describes the Adam design and implementation 
focusing on the computation and communication 
optimizations, and use of asynchrony, that improve 
system efficiency and scaling. Section 4 evaluates the 
efficiency and scalability of Adam as well as the 
accuracy of the models that it trains. Finally, Section 5 
covers related work. 

2. BACKGROUND 
2.1 Deep Neural Networks for Vision 
Artificial neural networks consist of large numbers of 
homogeneous computing units called neurons with 
multiple inputs and a single output. These are typically 
connected in a layer-wise manner with the output of 
neurons in layer l-1 connected to all neurons in layer l 
as in Figure 2. Deep neural networks have multiple 
layers that enable hierarchical feature learning. 

 
Figure 3. Accuracy improvement with larger models and 

more data. 
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Figure 4. Deep Learning Computational Requirements. 
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The output of a neuron i in layer l, called the 
activation, is computed as a function of its inputs as 
follows: 

ai(l) = F((j=1..k wij(l-1,l)*aj(l-1)) + bi) 

where wij is the weight associated with the connection 
between neurons i and j and bi is a bias term associated 
with neuron i. The weights and bias terms constitute 
the parameters of the network that must be learned to 
accomplish the specified task. The activation function, 
F, associated with all neurons in the network is a pre-
defined non-linear function, typically sigmoid or 
hyperbolic tangent. 

Convolutional neural networks are a class of neural 
networks that are biologically inspired by early work 
on the visual cortex [15, 19]. Neurons in a layer are 
only connected to spatially local neurons in the next 
layer modeling local visual receptive fields. In 
addition, these connections share weights which allows 
for feature detection regardless of position in the visual 
field. The weight sharing also reduces the number of 
free parameters that must be learned and consequently 
these models are easier to train compared to similar 
size networks where neurons in a layer are fully 
connected to all neuron in the next layer. A 
convolutional layer is often followed by a max-pooling 
layer that performs a type of nonlinear down-sampling 
by outputting the maximum value from non-
overlapping sub-regions. This provides the network 
with robustness to small translations in the input as the 
max-pooling layer will produce the same value.  
 
The last layer of a neural network that performs 
multiclass classification often implements the softmax 
function. This function transforms an n-dimensional 
vector of arbitrary real values to an n-dimensional 
vector of values in the range between zero and one 
such that these component values sum to one. 
 
We focus on visual tasks because these likely require 
the largest scale neural networks given that roughly 
one third of the human cortex is devoted to vision. 
Recent work has demonstrated that deep neural 
networks comprised of 5 convolutional layers for 
learning visual features followed by 3 fully connected 
layers for combining these learned features to make a 
classification decision achieves state-of-the-art 
performance on visual object recognition tasks [17, 
27].  

2.2 Neural Network Training  
Neural networks are typically trained by back-
propagation using gradient descent. Stochastic gradient 
descent is a variant that is often used for scalable 
training as it requires less cross-machine 
communication [2]. In stochastic gradient descent the 

training inputs are processed in a random order. The 
inputs are processed one at a time with the following 
steps performed for each input to update the model 
weights. 

Feed-forward evaluation: 

The output of each neuron i in a layer l, called its 
activation, a, is computed as a function of its k inputs 
from neurons in the preceding layer l-1 (or input data 
for the first layer). If wij(l-1,l) is the weight associated 
with a connection between neuron j in layer l-1 and 
neuron i in layer l: 

ai(l) = F((j=1..k wij(l-1,l)*aj(l-1)) + bi) 

where b is a bias term for the neuron. 

Back-propagation: 

Error terms, , are computed for each neuron, i, in the 
output layer, ln, first as follows: 

i(ln) = (ti(ln) – ai(ln))*F’(ai(ln)) 

where t(x) is the true value of the output and F’(x) is 
the derivative of F(x). 

These error terms are then back-propagated for each 
neuron i in layer l connected to m neurons in layer l+1 
as follows: 

i(l) = (j=1..m j(l+1)*wji(l,l+1))*F’(ai(l)) 

Weight updates: 

These error terms are used to update the weights (and 
biases similarly) as follows: 

wij(l-1,l) = *i(l)*aj(l-1) for j = 1 .. k  

where  is the learning rate parameter. This process is 
repeated for each input until the entire training dataset 

has been processed, which constitutes a training epoch. 
At the end of a training epoch, the model prediction 
error is computed on a held out validation set. 
Typically, training continues for multiple epochs, 
reprocessing the training data set each time, until the 
validation set error converges to a desired (low) value. 

 
Figure 5. Distributed Training System Architecture. 
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The trained model is then evaluated on (unseen) test 
data. 

2.3 Distributed Deep Learning Training 
Recently, Dean et al. described a large-scale 
distributed system comprised of tens of thousands of 
CPU cores for training large deep neural networks [7]. 
The system architecture they used (shown in Figure 5) 
is based on the Multi-Spert system and exploits both 
model and data parallelism [9]. Large models are 
partitioned across multiple model worker machines 
enabling the model computation to proceed in parallel. 
Large models require significant amounts of data for 
training so the systems allows multiple replicas of the 
same model to be trained in parallel on different 
partitions of the training data set. All the model 
replicas share a common set of parameters that is 
stored on a global parameter server. For speed of 
operation each model replica operates in parallel and 
asynchronously publishes model weight updates to and 
receives updated parameter weights from the 
parameter server. While these asynchronous updates 
result in inconsistencies in the shared model 
parameters, neural networks are a resilient learning 
architecture and they demonstrated successful training 
of large models to world-record accuracy on a visual 
object recognition task [18].  

3. ADAM SYSTEM ARCHITECTURE 
Our high-level system architecture is also based on the 
Multi-Spert system and consists of data serving 
machines that provide training input to model training 
machines organized as multiple replicas that 
asynchronously update a shared model via a global 
parameter server. While describing the design and 
implementation of Adam we focus on the computation 
and communication optimizations that improve system 
efficiency and scaling. These optimizations were 
motivated by our past experience building large-scale 
distributed systems and by profiling and iteratively 
improving the Adam system. In addition, the system is 
built from the ground up to support asynchronous 
training. 

While we focus on vision tasks in this paper, the Adam 
system is general-purpose as stochastic gradient 
descent is a generic training algorithm that can train 
any DNN via back-propagation. In addition, Adam 
supports training any combination of stacked 
convolutional and fully-connected network layers and 
can be used to train models on tasks such as speech 
recognition and text processing. 

3.1 Fast Data Serving 
Training large DNNs requires vast quantities of 
training data (10-100 TBs). Even with large quantities 
of training data these DNNs require data 

transformations to avoid over-fitting when iterating 
through the data set multiple times. We configure a 
small set of machines as data serving machines to 
offload the computational requirements of these 
transformations from the model training machines and 
ensure high throughput data delivery.  

For vision tasks, the transformations include image 
translations, reflections, and rotations. The training 
data set is augmented by randomly applying a different 
transformation to each image so that each training 
epoch effectively processes a different variant of the 
same image. This is done in advance since some of the 
image transformations are compute intensive and we 
want to immediately stream the transformed images to 
the model training machines when requested.  

The data servers pre-cache images utilizing nearly the 
entire system memory as an image cache to speed 
image serving. They use asynchronous IO to process 
incoming requests. The model training machines 
request images in advance in batches using a 
background thread so that the main training threads 
always have the required image data in memory.  

3.2 Model Training 
Models for vision tasks typically contain a number of 
convolutional layers followed by a few fully connected 
layers [17, 27]. We partition our models vertically 
across the model worker machines as shown in Figure 
6 as this minimizes the amount of cross-machine 
communication that is required for the convolution 
layers. 

3.2.1 Multi-Threaded Training 
Model training on a machine is multi-threaded with 
different images assigned to threads that share the 
model weights. Each thread allocates a training context 
for feed-forward evaluation and back propagation. This 

 
Figure 6. Model partitioning across training machines. 
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training context stores the activations and weight 
update values computed during back-propagation for 
each layer. The context is pre-allocated to avoid heap 
locks while training. Both the context and per-thread 
scratch buffer for intermediate results use NUMA-
aware allocations to reduce cross-memory bus traffic 
as these structures are frequently accessed.  

3.2.2 Fast Weight Updates 
To further accelerate training we access and update the 
shared model weights locally without using locks. 
Each thread computes weight updates and updates the 
shared model weights. This introduces some races as 
well as potentially modifying weights based on stale 
weight values that were used to compute the weight 
updates but have since been changed by other threads. 
We are still able to train models to convergence despite 
this since the weight updates are associative and 
commutative and because neural networks are resilient 
and can overcome the small amount of noise that this 
introduces. Updating weights without locking is 
similar to the Hogwild system except that we rely on 
weight updates being associative and commutative 
instead of requiring that the models be sparse to 
minimize conflicts [23]. This optimization is important 
for achieving good scaling when using multiple threads 
on a single machine. 

3.2.3 Reducing Memory Copies 
During model training data values need to be 
communicated across neuron layers. Since the model is 
partitioned across multiple machines some of this 
communication is non local. We use a uniform 
optimized interface to accelerate this communication. 
Rather than copy data values we pass a pointer to the 
relevant block of neurons whose outputs need 
communication avoiding expensive memory copies. 
For non-local communication, we built our own 
network library on top of the Windows socket API 
with IO completion ports. This library is compatible 
with our data transfer mechanism and accepts a pointer 
to a block of neurons whose output values need to be 
communicated across the network. We exploit 
knowledge about the static model partitioning across 
machines to optimize communication and use 
reference counting to ensure safety in the presence of 
asynchronous network IO. These optimizations reduce 
the memory bandwidth and CPU requirements for 
model training and are important for achieving good 
performance when a model is partitioned across 
machines. 

3.2.4 Memory System Optimizations 
We partition models across multiple machines such 
that the working sets for the model layers fit in the L3 
cache. The L3 cache has higher bandwidth than main 
memory and allows us to maximize usage of the 

floating point units on the machine that would 
otherwise be limited by memory bandwidth. 

We also optimize our computation for cache locality. 
The forward evaluation and back-propagation 
computation have competing locality requirements in 
terms of preferring a row major or column major 
layout for the layer weight matrix. To address this we 
created two custom hand-tuned assembly kernels that 
appropriately pack and block the data such that the 
vector units are fully utilized for the matrix multiply 
operations. These optimizations enable maximal 
utilization of the floating point units on a machine.  

3.2.5 Mitigating the Impact of Slow Machines 
In any large computing cluster there will always be a 
variance in speed between machines even when all 
share the same hardware configuration. While we have 
designed the model training to be mostly asynchronous 
to mitigate this, there are two places where this speed 
variance has an impact. First, since the model is 
partitioned across multiple machines the speed of 
processing an image is limited by slow machines. To 
avoid stalling threads on faster machines that are 
waiting for data values to arrive from slower machines, 
we allow threads to process multiple images in 
parallel. We use a dataflow framework to trigger 
progress on individual images based on arrival of data 
from remote machines. The second place where this 
speed variance manifests is at the end of an epoch. 
This is because we need to wait for all training images 
to be processed to compute the model prediction error 
on the validation data set and determine whether an 
additional training epoch is necessary. To address this, 
we implemented the simple solution of ending an 
epoch whenever a specified fraction of the images are 
completely processed. We ensure that the same set of 
images are not skipped each epoch by randomizing the 
image processing order for each epoch. We have 
empirically determined that waiting for 75% of the 
model replicas to complete processing all their images 
before declaring the training epoch complete can speed 
training by up to 20% with no impact on the trained 
model’s prediction accuracy. An alternative solution 
that we did not implement is to have the faster 
machines steal work from the slower ones. However, 
since our current approach does not affect model 
accuracy this is unlikely to outperform it.  

3.2.6 Parameter Server Communication 
We have implemented two different communication 
protocols for updating parameter weights. The first 
version locally computes and accumulates the weight 
updates in a buffer that is periodically sent to the 
parameter server machines when k (which is typically 
in the hundreds) images have been processed. The 
parameter server machines then directly apply these 
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accumulated updates to the stored weights. This works 
well for the convolutional layers since the volume of 
weights is low due to weight sharing. For the fully 
connected layers that have many more weights we use 
a different protocol to minimize communication traffic 
between the model training and parameter server 
machines. Rather than directly send the weight updates 
we send the activation and error gradient vectors to the 
parameter server machines where the matrix multiply 
can be performed locally to compute and apply the 
weight updates. This significantly reduces the 
communication traffic volume from M*N to k*(M+N) 
and greatly improves system scalability. In addition, it 
has an additional beneficial aspect as it offloads 
computation from the model training machines where 
the CPU is heavily utilized to the parameter server 
machines where the CPU is underutilized resulting in a 
better balanced system.  

3.3 Global Parameter Server 
The parameter server is in constant communication 
with the model training machines receiving updates to 
model parameters and sending the current weight 
values. The rate of updates is far too high for the 
parameter server to be modeled as a conventional 
distributed key value store. The architecture of a 
parameter server node is shown in Figure 7. 

3.3.1 Throughput Optimizations 

The model parameters are divided into 1 MB sized 
shards, which represents a contiguous partition of the 
parameter space, and these shards are hashed into 
storage buckets that are distributed equally among the 
parameter server machines. This partitioning improves 
the spatial locality of update processing while the 

distribution helps with load balancing. Further, we 
opportunistically batch updates. This improves 
temporal locality and relieves pressure on the L3 cache 
by applying all updates in a batch to a block of 
parameters before moving to next block in the shard. 
The parameter servers use SSE/AVX instructions for 
applying the update and all processing is NUMA 
aware. Shards are allocated on a specific NUMA node 
and all update processing for the shard is localized to 
that NUMA node by assigning tasks to threads bound 
to the processors for the NUMA node by setting the 
appropriate processor masks. We use lock free data 
structures for queues and hash tables in high traffic 
execution paths to speed up network, update, and disk 
IO processing. In addition, we implement lock free 
memory allocation where buffers are allocated from 
pools of specified size that vary in powers of 2 from 
4KB all the way to 32MB. Small object allocations are 
satisfied by our global lock free pool for the object. All 
of these optimizations are critical to achieving good 
system scalability and were arrived at through iterative 
system refinement to eliminate scalability bottlenecks. 

3.3.2 Delayed Persistence 
We decouple durability from the update processing 
path to allow for high throughput serving to training 
nodes. Parameter storage is modelled as a write back 
cache, with dirty chunks flushed asynchronously in the 
background. The window of potential data loss is a 
function of the IO throughput supported by the storage 
layer. This is tolerable due to the resilient nature of the 
underlying system as DNN models are capable of 
learning even in the presence of small amounts of lost 
updates. Further, these updates can be effectively 
recovered if needed by retraining the model on the 
appropriate input data. This delayed persistence allows 
for compressed writes to durable storage as many 
updates can be folded into a single parameter update, 
due to the additive nature of updates, between rounds 
of flushes. This allows update cycles to catch up to the 
current state of the parameter shard despite update 
cycles being slower. 

3.3.3 Fault Tolerant Operation 
There are three copies of each parameter shard in the 
system and these are stored on different parameter 
servers. The shard version that is designated as the 
primary is actively served while the two other copies 
are designated as secondary for fault tolerance. The 
parameter servers are controlled by a set of parameter 
server (PS) controller machines that form a Paxos 
cluster. The controller maintains in its replicated state 
the configuration of parameter server cluster that 
contains the mapping of shards and roles to parameter 
servers. The clients (model training machines) contact 
the controller to determine request routing for 
parameter shards. The PS controller hands out bucket 

 
Figure 7. Parameter Server Node Architecture. 
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assignments (primary role via a lease, secondary roles 
with primary lease information) to parameter servers 
and persists the lease information in its replicated state. 
The controller also receives heart beats from parameter 
server machines and relocates buckets from failed 
machines evenly to other active machines. This 
includes assigning new leases for buckets where the 
failed machine was the primary.  

The parameter server machine that is the primary for a 
bucket accepts requests for parameter updates for all 
chunks in that bucket. The primary machine replicates 
changes to shards within a bucket to all secondary 
machines via a 2 phase commit protocol. Each 
secondary checks the lease information of the bucket 
for a replicated request initiated by primary before 
committing. Each parameter server machine sends 
heart beats to the appropriate secondary machines for 
all buckets for which it has been designated as 
primary. Parameter servers that are secondary for a 
bucket initiate a role change proposal to be a primary 
along with previous primary lease information to the 
controller in the event of prolonged absence of heart 
beats from the current primary. The controller will 
elect one of the secondary machines to be the new 
primary, assigns a new lease for the bucket and 
propagates this information to all parameter server 
nodes involved for the bucket. Within a parameter 
server node, the on disk storage for a bucket is 
modelled as a log structured block store to optimize 
disk bandwidth for the write heavy work load. 

We have used Adam extensively over the past two 
years to run several training experiments. Machines 
did fail during these runs and all of these fault 
tolerance mechanisms were exercised at some point.  

3.3.4 Communication Isolation 
Parameter server machines have two 10Gb NICs.  
Since parameter update processing from a client 
(training) perspective is decoupled from persistence, 
the 2 paths are isolated into their own NICs to 
maximize network bandwidth and minimize 
interference as shown in Figure 7. In addition, we 
isolate administrative traffic from the controller to the 
1Gb NIC. 

4. EVALUATION 
4.1 Visual Object Recognition Tasks 
We evaluate Adam using two popular benchmarks for 
image recognition tasks. MNIST is a digit 
classification task where the input data is composed of 
28x28 images of the 10 handwritten digits [20]. This is 
a very small benchmark with 60,000 training images 
and 10,000 test images that we use to characterize the 
baseline system performance and accuracy of trained 
models. ImageNet is a large dataset that contains over 

15 million labeled high-resolution images belonging to 
around 22,000 different categories [8]. The images 
were gathered from a variety of sources on the web 
and labeled by humans using Mechanical Turk. 
ImageNet contains images with variable resolution but 
like others we down-sampled all images to a fixed 
256x256 resolution and used half of the data set for 
training and the other half for testing. This is the 
largest publicly available image classification 
benchmark and the task of correctly classifying an 
image among 22,000 categories is extremely hard (for 
e.g., distinguishing between an American and English 
foxhound). Performance on this task is measured in 
terms of top-1 accuracy, which compares the model’s 
top choice with the image label and assigns a score of 
1 for a correct answer and 0 for an incorrect answer. 
No partial credit is awarded. Random guessing will 
result in a top-1 accuracy of only around 0.0045%. 
Based on our experience with this benchmark it is 
unlikely that human performance exceeds 20% 
accuracy as this task requires correctly distinguishing 
between hundreds of breeds of dogs, butterflies, 
flowers, etc.1 We use this benchmark to characterize 
Adam’s performance and scaling, and the accuracy of 
trained models. 
4.2 System Hardware 
Adam is currently comprised of a cluster of 120 
identical machines organized as three equally sized 
racks connected by IBM G8264 switches. Each 
machine is a HP Proliant server with dual Intel Xeon 
E5-2450L processors for a total of 16 cores running at 
1.8Ghz with 98GB of main memory, two 10 Gb NICs 
and one 1 Gb NIC. All machines have four 7200 rpm 
HDDs. A 1TB drive hosts the operating system 
(Windows 2012 server) and the other three HDDs are 
3TB each and are configured as a RAID array.  This 
set of machines can be configured slightly differently 
based on the experiment but model training machines 
are selected from a pool of 90 machines, parameter 
servers from a pool of 20 machines and image servers 
from a pool of 10 machines. These pools include 
standby machines for fault tolerance in case of 
machine failure. 

4.3 Baseline Performance and Accuracy 
We first evaluate Adam’s baseline performance by 
focusing on single model training and parameter server 
machines. In addition, we evaluate baseline training 
accuracy by training a small model on the MNIST digit 
classification task. 

                                                           

 
1 We invite people to test their performance on this 

benchmark available at http://www.image-net.org  
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4.3.1 Model Training System 
We train a small MNIST model comprising around 2.5 
million connections (described later) to convergence 
on a single model training machine with no parameter 
server and vary the number of processor cores used for 
training. We measure the average training speed 
computed as billions of connections trained per second 
(Model connections*Training examples*Number of 
Epochs)/(Wall clock time) and plot this against the 
number of processor cores used for training. The 
results are shown in Figure 8. Adam shows excellent 
scaling as we increase the number of cores since we 
allow parameters to be updated without locking. The 
scaling is super-linear up to 4 cores due to caching 
effects and linear afterwards. 

4.3.2 Parameter Server 
To evaluate the multi-core scaling of a single 
parameter server we collected parameter update traffic 
from ImageNet 22K model training runs, as MNIST 
parameter updates are too small to stress the system, 
and ran a series of simulated tests. For all tests we 
compare the parameter update rate that the machine is 
able to sustain as we increase the amount of server 
cores available for processing. Recall that we support 

two update APIs—one where the parameter server 
directly receives weight updates and the other where it 
receives activation and error gradient vectors that it 
must multiply to compute the weight updates. The 
results are shown in Figure 9. The network bandwidth 
is the limiting factor when weight updates are sent over 
the network resulting in poor performance and scaling. 
With a hypothetical fast network we see scaling up to 8 
cores after which we hit the memory bandwidth 
bottleneck. When the weight updates are computed 
locally we see good scaling as we have tiled the 
computation to efficiently use the processor cache 
avoiding the memory bandwidth bottleneck. While our 
current networking technology limits our update 
throughput, we are still able to sustain a very high 
update rate of over 13 Bn updates/sec.  

4.3.3 Trained Model Accuracy 
The MNIST benchmark is primarily evaluated in two 
forms. One variant transforms the training data via 
affine transformations or elastic distortions to 
effectively expand the limited training data to a much 
larger set resulting in the trained models generalizing 
well and achieving higher accuracy on the unseen test 
data [5, 26]. The traditional form allows no data 
transformation so all training has to proceed using only 
the limited 60,000 training examples. Since our goal 
here is to evaluate Adam’s baseline performance on 
small models trained on little data we used the MNIST 
data without any transformation. 

 We trained a fairly standard model for this benchmark 
comprising 2 convolutional layers followed by two 
fully connected layers and a final ten class softmax 
output layer [26]. The convolutional layers used 5x5 
kernels and each is followed by a 2x2 max-pooling 
layer. The first convolutional layer has 10 feature maps 
and the second has 20. Both fully connected layers use 
400 hidden units. The resulting model is small and has 
around 2.5 million connections. The prediction 
accuracy results are shown in Table 1. We were 

 
Figure 9. Parameter Server Node Performance. 
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Figure 10. Scaling Model Size with more Workers. 
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Figure 8. Model Training Node Performance. 

 

 

0

1

2

3

4

5

6

7

1 2 4 8 16

B
il

li
o

n
 c

o
n

n
e

ct
io

n
s 

tr
a

in
e

d
/s

e
c

# of Processor cores



USENIX Association  11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 579

targeting competitive performance with the state-of-
the-art accuracy on this benchmark from Goodfellow 
et al. that uses sophisticated training techniques that we 
have not implemented [12]. To our surprise, we 
exceeded their accuracy by 0.08%. To put this 
improvement in perspective, it took four years of 
advances in deep learning to improve accuracy on this 
task by 0.08% to its present value. We believe that our 
accuracy improvement arises from the asynchrony in 
Adam which adds a form of stochastic noise while 
training that helps the models generalize better when 
presented with unseen data. In addition, it is possible 
that the asynchrony helps the model escape from 
unstable local minima to potentially find a better local 
minimum. To validate this hypothesis, we trained the 
same model on the MNIST data using only a single 
thread to ensure synchronous training. We trained the 
model to convergence, which took significantly longer. 
The result from our best synchronous variant is shown 
in Table 1 and indicates that asynchrony contributes to 
improving model accuracy by 0.24%, which is a 
significant increase for this task. This result contradicts 
conventional established wisdom in the field that holds 
that asynchrony lowers model prediction accuracy and 
must be controlled as far as possible. 

Table 1. MNIST Top-1 Accuracy 

   

4.4 System Scaling and Accuracy 
We evaluate our system performance and scalability 
across multiple dimensions and evaluate its ability to 
train large DNNs for the ImageNet 22K classification 
task. 

4.4.1 Scaling with Model Workers 
We evaluate the ability of Adam to train very large 
models by partitioning them across multiple machines. 
We use a single training epoch of the ImageNet 
benchmark to determine the maximum size model we 
can efficiently train on a given multi-machine 
configuration. We do this by increasing the model size 
via an increase in the number of feature maps in 
convolutional layers and training the model for an 
epoch until we observe a decrease in training speed. 
For this test we use only a single model replica with no 
parameter server. The results are shown in Fig. 10 and 
indicate that Adam is capable of training extremely 
large models using a relatively small number of 
machines. Our 16 machine configuration is capable of 
training a 36 Bn connection model. More importantly, 

the size of models we can train efficiently increases 
super-linearly as we partition the model across more 
machines. Our measurements indicate that this is due 
to cache effects where larger portions of the working 
sets of model layers fits in the L3 cache as the number 
of machines is increased. While the ImageNet data set 
does not have sufficient training data to train such 
large models to convergence these results indicate that 
Adam is capable of training very large models with 
good scaling. 

4.4.2 Scaling with Model Replicas 
We evaluate the impact of adding more model replicas 
to Adam. Each replica contains 4 machines with the 
ImageNet model (described later) partitioned across 
these machines. The results are shown in Figure 11 
where we evaluated configurations comprising 4, 10, 
12, 16, and 22 replicas. All experiments used the same 
parameter server configuration comprised of 20 
machines. The results indicate that Adam scales well 
with additional replicas. Note that the configuration 
without a parameter server is merely intended as a 
reference for comparison since the models cannot 
jointly learn without a shared parameter server. While 
the parameter server does add some overhead the 
system still exhibits good scaling. 

4.4.3 Trained Model Accuracy  
We trained a large and deep convolutional network for 
the ImageNet 22K category object classification task 
with a similar architecture to those described in prior 
work [17, 27]. The network has five convolutional 
layers followed by three fully connected layers with a 

Systems MNIST Top-1 Accuracy 

Goodfellow et al [12] 99.55% 

Adam 99.63% 

Adam (synchronous) 99.39% 

 
Figure 11. System scaling with more Replicas. 
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Table 2. ImageNet 22K Top-1 Accuracy. 

Systems ImageNet 22K Top-1 Accuracy 

Le et al. [18] 13.6% 
Le et al. (with 

pre-training) [18] 15.8% 

Adam 29.8% 
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final 22,000-way softmax. The convolutional kernels 
range in size from 3x3 to 7x7 and the convolutional 
feature map sizes range from 120 to 600. The first, 
second and fifth convolutional layers are followed by a 
3x3 max-pooling layer. The fully-connected layers 
contain 3000 hidden units.  The resulting model is 
fairly large and contains over 2Bn connections. While 
Adam is capable of training much larger models the 
amount of ImageNet training data is a limiting factor in 
these experiments. 

We trained this model to convergence in ten days using 
4 image servers, 48 model training machines 
configured as 16 model replicas containing 4 machines 
per replica and 10 parameter servers for a total of 62 
machines. The results are shown in Table 2. Le et al. 
held the previous best top-1 accuracy result on this 
benchmark of 13.6% that was obtained by training a 
1Bn connection model on 2,000 machines for a week 
(our model exceeds 13.6% accuracy with a single day 
of training using 62 machines). When they 
supplemented the ImageNet training data with 10 
million unlabeled images sampled from Youtube 
videos, which they trained on using 1,000 machines for 
3 days, they were able to increase prediction accuracy 
to 15.8%. Our model is able to achieve a new world 
record prediction accuracy of 29.8% using only 
ImageNet training data, which is a dramatic 2x 
improvement over the prior best.  

To better understand the reasons for this accuracy 
improvement, we used Adam to train a couple of 
smaller models to convergence for this task. The 
results are shown in Figure 12 and indicate that 
training larger models increases task accuracy. This 
highlights the importance of Adam’s efficiency and 
scalability as it enables training larger models. In 
addition, our 1.1 Bn connection model achieves 24% 
accuracy on this task as compared to prior work that 
achieved 13.6% accuracy with a similar size model. 
While we are unable to isolate the impact of 
asynchrony for this task as the synchronous execution 
is much too slow, this result in conjunction with the 

MNIST accuracy data provides evidence that 
asynchrony contributes to the accuracy improvements. 
The graph also appears to suggest that improvements 
in accuracy slow down as the model size increases but 
we note that the larger models are being trained with 
the same amount of data. It is likely that larger models 
for complex tasks require more training data to 
effectively use their capacity.  

4.4.4 Discussion 
Adam achieves high multi-threaded scalability on a 
single machine by permitting threads to update local 
parameter weights without locks. It achieves good 
multi-machine scalability through minimizing 
communication traffic by performing the weight 
update computation on the parameter server machines 
and performing asynchronous batched updates to 
parameter values that take advantage of these updates 
being associative and commutative. Finally, Adam 
enables training models to high accuracy by exploiting 
its efficiency to train very large models and leveraging 
asynchrony to further improve accuracy.  

5. RELATED WORK 
Due to the computational requirements of deep 
learning, deep models are popularly trained on GPUs 
[5, 14, 17, 24, 27]. While this works well when the 
model fits within 2-4 GPU cards attached to a single 
server, it limits the size of models that can be trained. 
Consequently the models trained on these systems are 
typically evaluated on the much smaller ImageNet 
1,000 category classification task [17, 27]. 
 
Recent work attempted to use a distributed cluster of 
16 GPU servers connected with Infiniband to train 
large DNNs partitioned across the servers on image 
classification tasks [6]. Training large models to high 
accuracy typically requires iterating over vast amount 
of data. This is not viable in a reasonable amount of 
time unless the system also supports data parallelism. 
Unfortunately the mismatch in speed between GPU 
compute and network interconnects makes it extremely 
difficult to support data parallelism via a parameter 
server. Either the GPU must constantly stall while 
waiting for model parameter updates or the models 
will likely diverge due to insufficient synchronization. 
This work did not support data parallelism and the 
large models trained had lower accuracy than much 
smaller models.  
 
The only comparable system that we are aware of for 
training large-scale DNNs that supports both model 
and data parallelism is the DistBelief system [7]. The 
system has been used to train a large DNN (1 billion 
connections) to high accuracy on the ImageNet 22K 
classification task but at a significant compute cost of 
using 2,000 machines for a week. In addition, the 

 
Figure 12. Model accuracy with larger models. 
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system exhibits poor scaling efficiency and is not a 
viable cost-effective solution. 
  
GraphLab [21] and similar large scale graph 
processing frameworks are designed for operating on 
general unstructured graphs and are unlikely to offer 
competitive performance and scalability as they do not 
exploit deep network structure and training 
efficiencies. 
 
The vision and computer architecture community has 
started to explore hardware acceleration for neural 
network models for vision [3, 4, 10, 16, 22]. Currently, 
the work has concentrated on efficient feed-forward 
evaluation of already trained networks and 
complements our work that focuses on training large 
DNNs.   

6. CONCLUSIONS 
We show that large-scale commodity distributed 
systems can be used to efficiently train very large 
DNNs to world-record accuracy on hard vision tasks 
using current training algorithms by using Adam to 
train a large DNN model that achieves world-record 
classification performance on the ImageNet 22K 
category task. While we have implemented and 
evaluated Adam using a 120 machine cluster, the 
scaling results indicate that much larger systems can 
likely be effectively utilized for training large DNNs. 
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