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MIT CSAIL

Abstract

Ram is a framework for building web applications that
can precisely identify inappropriately disclosed data after
a vulnerability is discovered. To do so, RAIL introduces
retroactive disclosure auditing: re-running the applica-
tion with previous inputs once the vulnerability is fixed,
to determine what data should have been disclosed. A
key challenge for RaAIL is to reconcile state divergence
between the original and replay executions, so that the
differences between executions precisely correspond to
inappropriately disclosed data. RaIL provides applica-
tion developers with APIs to address this challenge, by
identifying sensitive data, assigning semantic names to
non-deterministic inputs, and tracking dependencies.

Results from a prototype of RAIL built on top of the Me-
teor framework show that RarL can quickly and precisely
identify data disclosure from complex attacks, including
programming bugs, administrative mistakes, and stolen
passwords. RAIL incurs up to 22% throughput overhead
and 0.5 KB storage overhead per request. Porting three
existing web applications required fewer than 25 lines of
code changes per application.

1 Introduction

Unintentional disclosure of sensitive information is a
common problem, despite improvements in security tech-
niques and widespread use of best practices. Newspapers
frequently report such leaks at companies, hospitals, uni-
versities, government institutions, etc. This paper is based
on the premise that disclosures will remain common, since
even if the best security mechanism and practices are used,
humans will make mistakes: a programmer may introduce
a bug, a user may choose a weak password, or a system
administrator may misconfigure the access control policy.
Even if a state-of-the-art security system is in place, hu-
man operators can still overlook alerts [13], inadvertently
disclosing confidential data.

Dealing with data leaks can be expensive because in-
stitutions are often required by law to inform their users
of the security breach. For example, the University of
Maryland suffered a compromise and paid for one year of
credit monitoring for 309,079 potentially affected users,
since it was unable to immediately pinpoint which of the
users were actually affected [15]. However, a subsequent
manual audit, which took about a month, revealed that
only a handful of users’ information was disclosed, and

that the bulk of the cost was unnecessary. This example is
typical of the challenges administrators face after a leak.

The usual approach for identifying data disclosures is
to maintain access logs and to analyze those logs after a
security breach, in an attempt to identify who accessed
what data, and to separate out the legitimate accesses
from the illegal ones. Although there are challenges in
maintaining access logs (see, for example, Keypad [6]),
the hard problem is deciding whether data accesses were
legitimate or not. Manually auditing all accesses is labor-
intensive and imprecise, as illustrated by the University
of Maryland example.

To reduce the cost of handling leaks, this paper explores
a different, automated approach for deciding which ac-
cesses were legitimate or not, based on record and replay.
In particular, the paper describes the design of a new sys-
tem, named RaIL (Retroactive Auditing for Information
Leakage), that can precisely identify whose information
was leaked in the context of web applications, such as
a health care application that collects patients’ personal
health information or a class submission web site for as-
signments and grades.

RAIL’s main contribution is to apply record and replay
to identifying improper disclosures. Record and replay
has been used for many integrity applications, from ana-
lyzing attacks [9] to detecting past intrusions [8, 14] and
recovering integrity [2, 3, 7], but prior work did not ad-
dress the problem of dealing with past data disclosures.
During regular operation, RaIL records sufficient infor-
mation so that it can faithfully replay an application’s
requests later. Once a vulnerability has been identified,
an administrator repairs the underlying cause in the appli-
cation (e.g., fixing a bug in the application’s source code,
or changing an access control list), and then asks RaIL to
replay requests. If RAIL notices a difference between data
sent to users in the original run and the replay run, it will
report that data as having been inappropriately disclosed.
For example, if one user’s account was compromised,
Ram will report only the portion of that user’s data that
was inappropriately accessed by an adversary.

Precisely detecting data disclosures using record and
replay is challenging for several reasons. The core chal-
lenge is that the application may behave differently during
replay due to non-determinism. For example, a homework
submission system might randomly assign students to one
another for code review. If during replay some of the stu-
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dents are missing (e.g., because they were the attackers),
the system might produce an entirely different assignment
for code review. As a result, the replay will send different
homework submissions to each student, and RaiL might
report all previous homeworks as having been inappropri-
ately disclosed. Previous record and replay systems do
not have adequate solutions to this problem; they take a
best-effort approach, and any final state is acceptable in
the end, as long as all effects of the attack are gone [2, 7].
In contrast, RAIL’s goal is to minimize divergence between
normal execution and replay, in order to precisely identify
illegal data disclosures.

A second challenge lies in identifying what represents a
data item in the first place. For example, in the homework
submission system, what is the unit of data disclosure that
should be reported to the administrator?

A third challenge lies in tracking dependencies in ap-
plication code at a fine granularity (e.g., individual func-
tions). Previous systems either tracked code dependencies
at a coarse granularity (e.g., source files loaded by the
application [2]), or made extensive changes to the inter-
preter to record fine-grained dependencies [8]. However,
neither approach is ideal in practice.

Finally, a fourth challenge is making replay fast so that
an administrator can quickly audit for data disclosures
over long periods of time. One month of requests must
not take a month replay.

RaAIL addresses these challenges by providing an ex-
plicit API for developers to help administrators record
and replay applications. For instance, in the homework
submission system, the programmer uses Rar’s API to as-
sign semantic names to random pairings between students
(see §7.2), enabling the system to preserve assignments
during replay, even if some students are gone. The API in-
cludes annotations to identify data, assign semantic names
to non-deterministic inputs, and record dependencies on
state for selective replay.

We implemented the Rai. API in the context of Me-
teor [11], a framework for building web applications. The
API’s design is not limited to Meteor. We chose Meteor
because it cleanly separates data items and web interfaces
via asynchronous messages. Because of this property
(which is common in modern web frameworks), we were
able to implement much of RaIL inside of Meteor, greatly
reducing the need for application changes. In fact, we
were able to port existing, deployed Meteor applications
(e.g., a health survey application, a homework submission
application, and a social news application) to RaL with
few changes to the application code.

We evaluated RAIL using these applications and several
synthetic attacks, based on common vulnerabilities (e.g.,
code bugs and user mistakes) that result in direct data
disclosures or back doors that leak data indirectly. Our
results show that RaAIL is precise, efficient, and practical:

RAm accurately flags all inappropriate disclosures with
few false reports and minimal re-execution; the through-
put and storage overhead of RAIL during recording is 22%
and 0.5 KB per request, respectively; and porting several
web applications to use Rai’s API required fewer than
25 lines of code changes per application.

RAIL cannot identify all data leaks. For example, at-
tacks that copy the database from the server through some
external mechanism (e.g., an NSA employee with access
to the server) are outside of the scope of RaIL. In general,
RaIL does not handle attacks by system administrators, or
covert channels; RaiL focuses on data disclosed through
the web application’s normal interface.

The rest of the paper is organized as follows. §2 dis-
cusses previous related work. §3 shows how to use RAIL
from the perspective of site administrators and appli-
cation developers. §4 summarizes RAIL’s assumptions
and requirements. §5 describes the high-level design of
RAIL. §6 presents Rar’s uniform interface for managing
shared objects. §7 details the replay and handling of non-
determinism. §8 describes our prototype implementation
of RaIL. §9 evaluates RaIL’s effectiveness. §10 discusses
our experience of with RaiL. §11 concludes.

2 Related work

Ra1L is the first practical system for precisely auditing
unauthorized data disclosures. Much of the previous work
on auditing has focused on logging all accesses to confi-
dential data. For example, Keypad [6] and Pasture [10]
use either cryptography or trusted hardware to maintain
a centralized audit log of data accesses, while allowing
low-overhead access to this data across many distributed
devices. While this model is a good one for auditing unau-
thorized access when a user’s device is stolen, it cannot
distinguish legitimate from unauthorized accesses if there
is a mistake in the access control policy.

Information flow control and taint tracking systems,
such as TaintDroid [5] and TightLip [16], try to prevent
disclosure of confidential data in the first place. However,
we believe such systems cannot be 100% eftective, and
disclosures will still happen. For example, a system ad-
ministrator may misconfigure labels, or a user’s password
may be guessed by an attacker. Unlike these systems,
RAIL does not try to prevent any data leaks; rather, it can
detect the leak after the fact without a priori knowledge
about which data is sensitive. Moreover, although Ram.
and TightLip [16] share the common idea of comparing
execution outputs, RAIL addresses the unique challenge
of reconciling state divergence, which improves auditing
accuracy and performance.

Similarly, encryption is often used to prevent data dis-
closure in the face of a compromised server, such as in the
Mylar web framework [12]. However, encryption does
not protect against all disclosures, such as when an ad-
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var Users = App.getDBCollection(’users’);

var Homeworks = App.getDBCollection(’hws’);

var Answers = App.getDBCollection(’answers’);

App.publish(’pub_ans’, function (userid) {
var uid = userid;

+ var uid = App.getSessionUserId();

var u = Users.findOne( {_id: uid} );

if (u & u.profile.type === ’staff’)
9 return Answers.findAl1(Q);
10 return Answers.find( {user: uid} );
1 b
12 App.method(’submit’, function(hw_id, answer) {
13 var uid = App.getSessionUserId();
14 var hw = Homework.findOne( {_id: hw_id} );
15 var ctx = Rail.inputContext(hw_id, uid);
16 if (luid || 'hw || hw.dueDate < ctx.date())
17 throw new Error(’Submission failed’);
18 Answers.insert( {_id: ctx.random(),
19 hw: hw_id, user: uid, answer: answer} );
20 I3H

Figure 1: Part of the server-side code from a homework submission
application as our running example. Invocations of built-in framework
APIs are prefixed with App; RaiL-specific API are prefixed with Rail.

ministrator misconfigures a system or when programmers
make mistakes in the application logic.

RAIL uses many ideas from prior work on record and re-
play, such as the action history graph and selective replay
from Retro [7], and the comparison of normal execution
and replay from Rad [14] and Poirot [8]. RaiL’s key con-
tribution lies in providing an API that programmers can
use to minimize divergence during replay. Prior replay
systems were focused on restoring integrity, and reduc-
ing divergence was not a priority, resulting in heuristic
solutions that attempted to match up replay with normal
execution but did not offer strong guarantees. For ex-
ample, Retro matches non-deterministic system calls in
sequential order [7], which might not make sense in our
homework submission system’s code review assignments.
Poirot [8] stops replay when it detects the entry point of
an attack, and reports only the initial problematic request;
Ram identifies leaked data in all future requests that are
indirectly affected by the attack, and reports precisely
which data items were disclosed.

Brown’s undoable mail server [1] proposes structuring
server software around a verb API to handle replay after
state changes. However, Brown’s API is not designed to
identify data items that may be disclosed.

3 Using RaL

Using RaIL with an application involves three main phases.
First, the application developer modifies their applica-
tion’s source code to invoke the RaiL API. Second, during
normal operation, RaIL records inputs to the web applica-
tion, along with other information specified through the
RawL API, to a log. Third, when an administrator detects
that there was a problem, she can describe the problem
to RaL (e.g., supply a patch or fix an access control list,

Web Client Web Server
Application code
(1) ans")
subscribec‘p“b’ : publish handler
m ﬂ for "pub_ans"
wyub_ans’s <)
“pdated( Po — 0 :
method handler
call( "Submit,,’ ) for "submit" |1 database

—— @

Figure 2: Typical workflow for the running example. 1) The client
sends an RPC request to subscribe to the “pub_ans” dataset. 2) The
corresponding publish handler is executed, which returns a query. 3)
The server runs the query and sends the initial dataset to the client
via “updated” messages. 4) The client calls the RPC method “submit”
to hand in an answer to a homework. 5) The server runs the method
handler, which updates the database. 6) The server reruns published
queries affected by the update, and pushes updates to all clients that
subscribed to it, via several “updated” messages.

and pinpoint the time when the problem first arose). Ra
will replay requests from the start of the problem, detect
which data items may have been inappropriately disclosed
as a result, and report them to the administrator.

To understand how this works, consider an example
application: a website for submitting homework assign-
ments. Figure 1 shows the server-side code of this appli-
cation, written in the Meteor framework [11], along with
changes that the developer would make to use the RaL
API. Figure 2 illustrates a typical workflow for the code.
The application defines an RPC method “submit” (line
12), which allows students to submit their answers to a
homework. The framework does not explicitly send data
to the clients, but adopts a publish—subscribe pattern: the
server publishes a database query with a name (line 4);
when the results of the query might change, the server
reruns the query and pushes any updates to all clients
that subscribed to it. As we can see from lines 7—10, the
publish code returns different queries based on the user’s
account profile: course staff members are permitted to see
all submissions, but students can see only their own.

Suppose the application developer made a mistake
checking permissions; as can be seen on lines 5-6, the
mistake allows the client to supply the current user 1D
as an argument to the pub_ans subscription, instead of
using the App.getSessionUserId method, which returns
the currently authenticated user ID; such a mistake was
discovered in the Telescope social news application [4].
This mistake could have been exploited by an adversary
to view all students’ submissions, by supplying the user
ID of a staff member when subscribing to pub_ans.

After running the application with Ra1L for a while, the
site administrator discovers the vulnerability. She wants
to know if an adversary exploited the bug, and whose
homework submissions were disclosed as a result. To do
so, she first applies a patch that fixes the bug (lines 5-6),
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Leaked data for session RuZw9cCaDMJ]Ldsj8G:

Login: evil_student @ 4/24/2014 3:14:15 PM
IP: 192.168.0.10
- answers/fNKXudhNDF7 fields: answer, grade, ...
- answers/jxT5w7jRIpm fields: answer, grade, ...

Figure 3: An example report from RaIL indicating that several home-
work submissions were inappropriately disclosed.

and specifies a time before any possible disclosures (e.g.,
the time of the first submission). Then she launches the
web application again in replay mode. RAIL re-executes
all subsequent events which might be affected by the
patch. Finally, RAiL compares the new data items sent to
each client with those from the original execution, and
generates a disclosure report that details any differences.
For example, Figure 3 shows a possible report for this
example, indicating that several homework submissions
were inappropriately disclosed to a client at a particular
IP address.

In order to precisely identify disclosed data, RaAmL
requires application developers to use Ram. APIs to
name and access shared objects and to annotate non-
deterministic inputs in their code. These names, known
as context identifiers, help RaL match up semantically
equivalent operations between the original execution and
re-execution. For example, on line 15 of Figure 1, the
code creates an input context with an identifier composed
of the homework ID and user ID, and uses the context
to generate dates and random numbers (lines 16 and 18).
As long as the identifier remains unchanged during re-
execution, RamL will reproduce the same date and random
number from the context. RaIL also relies on context
identifiers to track dependencies, as we describe in §6.

All non-deterministic inputs and shared objects, in-
cluding current date and time, random numbers, session
variables, database records, and top-level functions, must
be accessed via a RAIL wrapper to preserve access seman-
tics during replay. In principle, this could be a burden
for the programmer, but in our experience, most of the
wrapping can be confined to the web framework itself,
requiring little additional per-application effort from the
developer. In the example application from Figure 1, the
developer uses standard APIs from the underlying web
framework to retrieve the currently logged-in user (lines
6 and 13), and access the database (lines 7, 9, 10, 14, and
18). Behind the scenes, the web framework itself contains
calls to the Rar. APIs that wrap these objects, taking care
of object naming and dependency tracking.

4 Assumptions

RA1L relies on the following assumptions to work properly.
First, the developer should correctly use Ram. APIs to
access shared objects, read non-deterministic inputs, and
generate outputs. Developers should also name context

identifiers appropriately so that states can be matched up
during re-execution.

Second, RAIL assumes that the inputs from clients’ web
browsers remain the same during replay. In general, this
might not be true if the user reacts differently to changes
in the UI (e.g., some buttons might have changed during
replay), but in all of the examples that we have considered,
the user’s interaction with the application is unchanged.
In cases when the administrator knows about client-side
changes that must be accounted for, Ram allows the ad-
ministrator to supply a script to update the client inputs.

Third, RamL assumes that the mistakes leading to dis-
closures, either administrative or programming, are dis-
covered before Rar’s log rolls over.

Fourth, RawwL deals only with data leaked through the
web application. It cannot detect data revealed through
other channels, such as an attacker directly querying the
database or accessing the file system. RAIL also cannot
detect timing attacks, such as an attacker inferring a secret
based on how long a response took.

Finally, RAL assumes that the software stack on the
server is not compromised, which includes the operating
system, system libraries, the web server, framework, and
Raw itself. The adversary can, however, take advantage
of vulnerabilities in the web application code.

S System overview

Atits core, RaIL is a record and replay system. RAIL views
an application’s execution as a stream of actions. Each ac-
tion can read and write objects, such as database contents,
session state, output, and non-deterministic inputs. This
fine-grained view of an application’s execution enables
RAL to precisely track dependencies between actions and
objects. This, in turn, allows RAIL to replay a subset of
actions when auditing, if it can determine that certain
actions were not affected by a mistake. To maintain this
dependency information, RamL records dependencies in a
log during normal operation, and RAIL’s replay controller
uses this log to decide what actions to replay for auditing.

Figures 4 and 5 summarize RAIL’s architecture and API,
which we will outline in the rest of this section.

Action APIs. All application code in Ram is executed
in the context of some action. Actions are the unit of
dependency tracking and the unit of replay in RawL. RaL
assumes that all application code runs in response to some
event, such as an RPC request or a periodic timer event;
there are no long-running threads. The web framework
maintains a mapping between events and handlers for
those events. For example, in Figure 1, the application reg-
isters two handlers: one for pub_ans subscription events,
and one for submit RPC events. The handler for each
event, stored by the web framework, is actually a named
RAIL object representing the code for that handler. The ex-
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Figure 4: The architecture of RaiL. Strong shading indicates compo-
nents introduced by RaiL. RaiL’s object API constructs shadow objects
for most of the shared state, inputs, and outputs in the web framework;
these relationships are shown as dashed lines.

responses

isting APIs provided by the web framework create these
named object wrappers on the application’s behalf; for
example, both App.publish and App.method create such
wrappers in Figure 1.

When the web framework receives an event, it retrieves
the appropriate handler from its own tables, creates a new
action to represent the execution of this event’s handler,
and invokes the handler in the context of this action, with
the event as an argument. The last two steps are performed
using the doAction API, as shown in Figure 5. In the
example in Figure 1, the publish handler (lines 4-11)
will run in a new action in response to each subscription
request, and the submit method handler (lines 12-20) will
run in a new action for every submit RPC request.

Each action has a timestamp, the time at which the
action is triggered. Since the handler is a wrapper object,
as described above, when the web framework invokes
the handler, the handler first records a dependency from
the handler object’s name to the current action, and then
runs the code wrapped by the object. This helps RaiL
determine which actions need to re-execute when some
code object changes.

Object APIs. Every shared object in RaIL, such as a
database record, a function (code) object, or a session
variable, is identified by a globally unique name. For each
shared object, RaL maintains two things: first, a set of
dependencies between actions and objects, used to track
down the set of actions that accessed an object during
recording, and second, multiple versions of the object’s
state at different points in time, used during replay to
implement rollback and to check for equivalence.

RAm assumes that all application code uses object ac-
cessors to read and write shared objects, so that RAwL can
track the input and output dependencies of actions, and

can checkpoint the state of an object at different times.
RAL wraps existing framework objects using accessors,
so that in most cases there is no need for the application
developer to change the application code. For instance,
on lines 6 and 13 of Figure 1, the application code uses
the web framework’s interface to access the user ID for
the current session, which is session-level shared state.

RAIL provides an API for naming and accessing shared
objects, which is used both by application code and by
web framework code. The findObject () function returns
a shared object given its unique name. Applications can
perform two kinds of operations on a shared object: they
can either read it, using getValue(), which registers a
dependency from the object to the current action, or they
can modify it, using an object-specific mutator, which
registers a dependency fo the object from the current
action, and also records a checkpoint of the object’s value.

This object API is used to handle dependencies for
different kinds of objects, as we describe in more detail
in §6.1. Some Ra1L shared objects actually hold the state
represented by the object. For example, this is the case for
session state objects (accessed by the getSessionUserId
method in Figure 1). In such situations, RaIL takes care
of checkpointing, rollback, etc. In other cases, the RaL
shared object is just a placeholder, and the actual value
is stored elsewhere. For example, this is the case for
objects representing database state (where checkpointing
and rollback takes place in the database, as opposed to in
Rar’s log). This is also the case for code objects, since it
is difficult to store a JavaScript closure in a log and restore
it later on. Each object type defines its own mutators,
using the defineMutator function; we will discuss these
in more detail in §6.2.

Logs and dependency graph. Rai’s dependency graph
is an action history graph [7] that connects action and
object nodes. An edge from object o to action @ means
o is a’s input (0 — a, or a reads o). Conversely, an edge
from a to 0 means o is a’s output (a — o, or a writes o).

Since an object’s state can change over time, depen-
dencies in the action history graph refer to an object at a
particular time. More precisely, 0 — a indicates that a
depends on o’s state right before time 7,, where #, is a’s
timestamp. Here, RAIL assumes that actions are atomic,
since all dependencies to and from an action effectively
take place at a single instant in time. This is a reasonable
assumption if the web framework provides serializabil-
ity, which is true in the Meteor framework that our RaiL
prototype is built on.

During an action’s execution, RAIL connects edges from
and to the current action’s node as the action accesses
objects. When the action completes, RaL appends an
entry to its persistent log, which contains the action’s
timestamp, its arguments (from the event), and the names
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Return type  API

Description

Public APIs for web framework and application developers

— doAction(args, func)

Allocate a new action and run func within its context.

action  getCurrentAction() Return the current running action.
object  findObject(id) Create or return the RaIL object identified by id.
<any>  object.getValue() Accessor. Return the object’s current state and update dependency.
function  defineMutator(func) Return a mutator function based on func, which alters the binding
object’s state and updates dependency.
— registerObjectType(type, proto)  Register a custom object type using template object proto.
function  registerCode(id, func) Shortcut for creating a code object with the given id; returns a wrapper
function that takes care of dependency tracking.
object  inputContext(args, ...) Shortcut for creating an input context object identified by args.
Private APIs for the replay controller
number  action.timestamp t,, the timestamp when action starts. Also used to identify the action.
list<object>  action.reads List of objects that the action depends on (inputs).
list<object>  action.writes List of objects that depend on the action (outputs).
object  action.args Return the argument object associated with the action.
— replayAction(action) Re-execute the given action based on its args.
string  object.type The type name of the object.
number  object.time The timestamp of the object’s current state during replay.
list<action>  object.actions List of actions that read or write the object.
boolean  equiv(object, ts) Check if the object’s current state is semantically equivalent to its state

at time s during original execution.

— rollback(object, ts)

Revert object’s current state to its state at time £s during original run.

Figure 5: List of RaiL APIs.

of its input and output objects. The action history graph
can be reconstructed from the log during replay. RAIL also
logs every object mutation, so that during replay it can
reconstruct the object’s state at any instant. Objects that
do not store actual state in the Ra1L’s shared object must
maintain their own versioning outside of RaiL’s log.

Replay controller. During auditing, the site’s adminis-
trator initiates replay through the replay controller, by
supplying either a code patch (e.g., fixing a software vul-
nerability), or a short JavaScript program that fixes the
state of the system (e.g., correcting a mistake in an ac-
cess control list). The administrator can also manipulate
the action history graph and the versioned database state
through JavaScript APIs, if necessary. The replay con-
troller, in turn, reconstructs the action history graph from
the log, and replays the relevant actions that were affected
by the administrator’s change, as we describe in §7.1. The
replay controller computes the view of each session dur-
ing replay, which represents the set of data objects sent
to that client, and compares the views during replay with
those during the original execution. Data objects that no
longer show up in the view during replay are reported as
inappropriate data disclosures.

6 Shared objects

To simplify dependency tracking and replay, RaiL defines
a uniform API for managing different shared objects.

Object type Naming convention

Action argument
Code

Handler table entry
Database document
Session user ID
Session subscriptions
Session output view
Input context

args/<action id>
code/<identifier>
handler/<table>/<key>
db/<collection>/<doc id>
userid/<session id>
subs/<session id>
view/<session id>
input/<action id>/<context id>

Figure 6: List of built-in object types.

6.1 Object types

RawL identifies objects by globally unique names in
the form of “object_type/path_name”. There are sev-
eral predefined object types in Rai, as shown in Fig-
ure 6. These types represent most of the abstractions
exposed by the web framework. When needed, the de-
veloper can also define their own object types using the
registerObjectType API. In the rest of this subsection,
we will describe what each object type represents.

Action argument. Every action depends on an argument
object associated with it. If the action is triggered by a
client request, for example, the argument contains the
request message. Argument objects are immutable during
replay, but the administrator can alter them before replay
so as to force certain actions to be re-executed. For exam-
ple, to cancel a request that creates a malicious account,

560 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI "14)

USENIX Association



the administrator can change the corresponding action
argument object to a null request.

Code object. Ram. must be able to determine which ac-
tions executed a given piece of code, so that if the code
turns out to be buggy, RAIL can replay just the actions
that may have been affected by that bug. To do this, RAIL
uses a code object for every piece of application code,
and records a dependency between an action and the code
object when the action invokes the code.

RAIL creates code objects at function granularity, be-
cause it is easy to interpose on function invocation through
a wrapper. The wrapper, created by the registerCode
API function, records a dependency on the unique identi-
fier of the function’s code object, and then executes the
function. This ensures that even if an action invokes many
functions, the action history graph will contain dependen-
cies to all functions invoked by that action.

RAIL automatically wraps global functions, and names
the corresponding objects code/ filename/ funcname. For
anonymous functions supplied as callbacks, the devel-
oper must assign a name to the anonymous callback in
the function that accepts the callback argument. For ex-
ample, in Figure 1, the App.publish function assigns
the name code/publish/pub_ans to its anonymous call-
back, and the App.method function assigns the name
code/method/submit to its anonymous callback.

During replay, Ra’s replay controller checks if any of
the code objects have changed by comparing the textual
representation of the new code object to the original tex-
tual representation of the code object as recorded in the
log. If any of the code objects have been modified, the
replay controller marks all of the actions that executed
that code for replay. The textual representation of a func-
tion is insufficient to compare closures—e.g., references
to variables in outer scopes are not well-defined in the
textual representation. However, this is not a problem in
JavaScript, because the only way to create an outer scope
is to define another function, and if the outer scope of a
function changes, the textual representation of that outer
scope’s function will be different, and will be flagged for
replay by RAIL.

Handler table. In addition to tracking dependencies on
functions, RAIL also needs to keep track of dependencies
on the handler for a given type of event. For example,
in Figure 1, the application developer may register a dif-
ferent, non-anonymous function as the handler for the
submit RPC method. In this case, if the handler for the
submit RPC method changes during replay, RAL must
detect this and replay all subsequent submit RPC invoca-
tions. To do this, the RaiL web framework creates a han-
dler table object for every kind of handler registered in the
web framework. For example, in Figure 1, App.publish
records a dependency to the handler/publish/pub_ans

object, and App.method records a dependency to the
handler/method/submit object. The handler table ob-
ject’s value contains the function that will be invoked for
that event (which, in practice, is likely to be a code object
wrapper).

Database documents. Rar assumes that the web appli-
cation uses a key-value store as its persistent storage.
Each data item, namely a document, has a unique identi-
fier and other mutable fields. However, RAIL’s approach
is general enough so that it is also applicable to other stor-
age models, including SQL databases and file systems.
In particular, every database document is represented by
an object named db/collection/docid. For efficiency,
the Ra. web framework does not store the actual data
in the RaiL database object; instead, the RAIL object is a
placeholder for dependency tracking, and the actual data
is stored, versioned, and rolled back in the database.

Output channel view. Rai. models a view of each ses-
sion (i.e., the set of data items sent to that client) as a
separate view object. View objects accumulate all data
items disclosed through the corresponding output channel.
By adding a data object, such as a database document, to
the view, the application or framework code records that
it sent the current state of the object through the output
channel associated with the view. The Ra. web frame-
work implements two types of view objects: a session
view object, which represents all documents sent to a web
browser, and an email view object, which represents all
documents sent to a particular email address. Application
developers can define new view objects for other types of
output channels.

Other shared state. Accesses to in-memory global state,
either application-level or session-level, should also go
through the object APIL. Currently, RamL defines two types
of session state objects: current user ID objects and sub-
scription objects. The current user ID object stores the
logged-in user’s identifier for each session. Subscription
objects are necessary for interactive web applications that
adopt a publish—subscribe pattern. They store a list of
database queries that a session is interested in, so that
whenever the results of any of these queries change, the
web framework can notify the client about the updates.

Input context. Input context objects handle non-
deterministic inputs requested by an action, such as cur-
rent date and random numbers. They are important for
stable re-execution, as we will discuss in §7.2.

6.2 Accessors and mutators

Every object has an accessor and a few mutators. Mu-
tators vary with object types. For example, session
user ID (userid) objects have two mutating methods:
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login(userid) assigns the given user ID to the object’s
current state, and logout () resets its current state to null.

During normal execution, the accessor connects the
object to the current action in the action history graph,
and returns the current state of the object. Similarly, mu-
tators connect the current action to the object, and change
the current state of the object accordingly. In addition,
mutators also log the mutating operation, so that by re-
playing the log during re-execution, RAIL can reconstruct
checkpoints for all history states of the object.

During re-execution, accessors and mutators behave
differently than during normal execution. If an object
has been rolled back, the accessor returns the object’s
latest state; otherwise it returns the checkpoint state right
before the current action. Mutators do not log changes
during re-execution, but roll back the object before updat-
ing the object (see TrRyRoLLBAck in Figure 7). Since two
executions are not identical, replay can introduce new de-
pendencies that did not show up in the original execution.
Ram must keep updating the action history graph during
replay to capture the new dependencies.

For performance reasons, accessors and mutators for
database document objects are handled differently. RAL
employs a time-travel database [2] to keep every version
that ever existed for each document in the database. Dif-
ferent versions of the same document are distinguished
by two additional fields, start_ts and end_ts, which in-
dicate the time interval within which the version is valid.
Application code uses the web framework’s database API
to access the database as before. RAIL interposes on query
processing and cursor accesses such that only the desired
version is returned or updated. Rai also performs de-
pendency bookkeeping for the corresponding placeholder
object of each affected document.

7 Replay

In order to determine what data was inappropriately dis-
closed, RAIL must re-compute the view objects for every
session, and if it detects any session whose new view ob-
ject is not a superset of the old view object, it reports the
difference as a leak. Note that new data disclosed during
replay does not result in a report.

RaAIL recomputes the view objects by replaying previ-
ously recorded events and re-executing the corresponding
actions. There are two challenges in doing so. First, for
efficiency, RawL should not re-execute every action; to
this end, RamL implements selective re-execution (§7.1).
Second, for precision, RaIL should minimize divergence
between replay and the original execution; to do this, RAIL
uses context-based matching (§7.2).

7.1 Selective re-execution

Figure 7 shows the pseudo-code for Rar’s selective replay
algorithm, inspired by Retro [7]. The algorithm relies

1: procedure INITIALIZEREPLAY
2: objects «— LoapLoGs()
3: for all o € objects do
4: > Admin might change code or argument objects
5: if o.type € { “code”, “args” } then o.time « 0
6: else o.time « oo
7: return objects
8: procedure NEXTACTION(0bjs)
9: acts « {a | Yo € objs (a € o.actions A t, > o.time)}
10: if acts = 0 then return nil
11: return argmin,{z, | a € acts}
12: procedure TrRYRoLLBACK(0, 1)
13: if o.time > ¢ then
14: RoLLBAck (o, )
15: o.time « ¢
16: procedure MoveEForRwARD(0, 1)
17: if Equiv(o,t + 1) then
18: RoLLBack (0, )
19: o.time « o
20: else o.time « ¢
21: procedure SELECTIVEREPLAY
22: objects < INITIALIZEREPLAY()
23: a «— NEXTAcTION(0bjects)
24: while a # nil do
25: C;, « do € a.reads (o.time < oo A =Equiv(o, t,))
26: C,u < Jo € a.writes (o.time < t,)
27: > Replay if either inputs or outputs are changed
28: if C;, v C,,; then
29: for all o € a.writes do TrRyRoLLBACK(0, 1,,)
30: REepPLAYACTION(a)
31: for all o € a.writes do MovEForRwARD(0, 1,,)
32: for all o € a.reads do o.time < max(o.time, z,)
33: a « NEXTAcTION(0bjects)

Figure 7: The selective replay algorithm. The algorithm uses private
RaIL APIs listed in Figure 5.

on the time variable of each object, which indicates the
timestamp of an object’s current state and controls the
progress of the re-execution.

Initially, every object is in its latest state (time = o),
except for code and action argument objects, which the
administrator could change to kick off replay.

In each round, RAIL picks the first action (action with
the minimal timestamp) from a set of candidate actions to
replay. Candidate actions are actions that read or wrote an
object, and whose timestamps are bigger than the object’s
current time, meaning that they happen after the object’s
current state. Then, RaiL checks if the picked action
needs re-execution. If any of its inputs have changed
(Cyy 1s true), RaiL must rerun it to generate new outputs;
similarly, if any output has been rolled back to a state
before the action took place (C,,, is true), RAIL must rerun
the action to reconstruct the output. Otherwise, RAIL can
skip the action, and advance the timestamps for all of its
inputs, so that the same action will not be selected again.

To replay an action, Ram first rolls back all of the
action’s output objects recorded during the original execu-
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tion to the state right before the action. This is important
because the replayed action might not update the same
objects as original. Then Ram reruns the action and up-
dates the timestamps for the action’s output objects. Note
that during replay, mutators might roll back other output
objects which were not captured in the original execution.
As an optimization, if after replaying an action, an ob-
ject’s state is equivalent to its next state in the original
execution, RamL will directly roll forward the object to its
latest state to avoid considering actions that access the
object in the future.

The selective re-execution algorithm is guaranteed to
terminate because RaIL always chooses the earliest avail-
able action. After each iteration, every relevant object
will have a timestamp which is no smaller than the chosen
action’s. Therefore the timestamp of the picked action in
each iteration monotonically increases.

Because of RawL’s precise dependency tracking, the
selective re-execution algorithm can minimize the num-
ber of actions replayed to just those that may have been
affected by the mistake that triggered the audit. In our
experience, selective re-execution replays only a small
fraction of the total number of recorded actions.

One concern of selective re-execution is dealing with
patches that significantly alter the control flow of an ap-
plication. RaiL works in this scenario because its unit of
replay is an individual action (e.g., a client RPC request),
and RarL’s report is based on the set of objects that end up
in a session’s view. As long as the original and patched
code add the same objects to the view, no disclosures will
be reported regardless of code changes. In the case that
the new code accesses many different shared objects, such
as by issuing new database queries, RAL will replay more
actions due to additional dependencies.

7.2 Context matching

Ra’s goal is to precisely identify inappropriately dis-
closed data. Since RamL computes the set of disclosed
data items as the difference between the original and the
replayed view objects, Ram. will report a data object as
inappropriately disclosed if it fails to show up in the re-
played view. This is desirable if the data item fails to show
up in the replay view due to a fixed vulnerability. How-
ever, this is undesirable if it is a result of non-determinism,
and some other choice of non-deterministic inputs could
have led to the data not being flagged as disclosed.

This problem is made more complicated by the fact that
some inputs to an action may have changed during replay.
To minimize false reports, programmers must ensure that
during replay, the behavior of non-deterministic code in
the application remains as close as possible to that of
the original execution, even in the face of input changes.
We refer to this property as application stability. To
help application writers to achieve this property, RAIL

App.method(’populate_admins’, function() {
- var admins = [’Alice’, ’'Mallory’, ’'Bob’];
+ var admins = [’Alice’, ’Bob’];
for (var i = 0; i < admins.length; ++i) {
var pwd = Math.random();
/* BETTER: var pwd = Rail.inputContext(
‘populate’, admins[i]).random(); */
Users.insert({name: admins[i], passwd: pwd});
}
10 I3H

© ® 9 L B W N =

Figure 8: Example code demonstrating the necessity of using context
identifiers to retrieve non-deterministic inputs.

provides helpful APIs. In some cases, using these APIs,
it is easy for the application writers to achieve application
stability, while in other cases it requires some thought. We
provide a few examples to illustrate the issues in achieving
application stability. Note that if an application does not
achieve application stability, RamL will work correctly, but
may generate false reports.

For some application functions, it is relatively easy to
make them stable. For example, in Figure 1, the submit
RPC handler checks the current time (to see if the submis-
sion is late), and assigns a random ID to the submission.
To ensure stability for this code, the programmer creates
an input context object on line 15, which instructs RAIL to
reuse that same randomness during replay.

As a more complex case, consider the code fragment
and patch shown in Figure 8. The code is intended to
populate the database with a few predefined administrator
accounts. Suppose that the site administrator later found
out that Mallory was not supposed to have administra-
tive privileges, and she wanted to see what information
may have been disclosed as a result of this mistake. She
does this by running RAIL in auditing mode with Mallory
removed from the list (see the change on lines 2-3 in
Figure 8). Since Mallory was in the middle of the list, a
simple heuristic that returns non-deterministic outputs in
the same order as they were requested in the original run
would reuse Mallory’s password (the second invocation
of Math.random()) for Bob during replay (since it is now
the second invocation of Math.random()). Thus Bob’s
recorded login requests will fail during replay, causing
many data items to be flagged as leaks. Prior systems
such as Retro [7] and Warp [2] use this heuristic.

RaIL tackles this problem by asking the programmer
to assign stable context identifiers to non-deterministic
inputs. During replay, Raw supplies non-deterministic
values from the same context ID. Moreover, the current
action’s timestamp is also considered part of any context
ID, so that all non-deterministic inputs are local to each
action. Non-deterministic values with the same context
ID are supposed to be semantically equivalent, therefore
the programmer should make sure that the identifiers they
choose are semantically stable. As an example, in the
comments in lines 67 of Figure 8, we use the account
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function pair_reviews(ids) {

1

2 var seeds = [];

3 for (var i = 0; i < ids.length; i++) {

4 var ctx = Rail.inputContext(’seed’, ids[i]);

5 seeds[i] = { sid: ids[i], rnd: ctx.random() };
6 }

7 var shuffle = _.sortBy(seeds, function (e) {

8 return e.rnd;

9 s

10 for (var i = 0; i < ids.length; i++) {

1 var reviewer = shuffle[i].sid;

12 var reviewee = shuffle[(i+1) % ids.length].sid;
13 var ctx = Rail.inputContext(’pair’, reviewer);
14 Pairings.insert({ _id: ctx.random(),

15 reviewer: reviewer, reviewee: reviewee });
16 }

Figure 9: Illustration of a stable pairing algorithm.

name as part of the context identifier, which effectively
ensures that the same account name will get the same
password during replay, even if the list order has changed.
In contrast, including the loop iterator i in the context ID
is a bad idea, because it does not preserve semantics.

In some cases, making a function stable is an even
more difficult problem. Consider the problem of pairing
up students in a homework submission system for peer
review. If one of the students is removed during replay,
the set of pairwise assignments produced by most pairing
algorithms would be quite different. To solve this prob-
lem, the programmer must devise a stable algorithm using
context identifiers. Figure 9 illustrates such an algorithm
that we designed for the homework submission applica-
tion. The algorithm works by assigning every student a
random pairing order, and then sorting the students by
this pairing order. The pairing order is chosen through a
context identifier tied to the user’s username. This ensures
that if students are added or removed, the overall sorted
order is largely the same. Students are then paired up with
other students next to them in this sort order. As a result,
if a student is added or removed, this results in only a
small number of changes to the overall pairings.

8 Implementation

We implemented a prototype of RaIL on top of the Meteor
web framework. Meteor has a clean interface for exchang-
ing data between browser and server, which allows RAIL
to clearly identify data items. The core of the prototype is
a standalone package that implements RarL’s action APIs
and object APIs.

The core package also maintains the action history
graph and on-disk logs in two B-tree-like data structures—
one stores actions (indexed by timestamps) and the other
stores objects (indexed by object identifiers). Edges be-
tween actions and objects are stored twice (in both B-
trees). During replay, RaiL reconstructs the graph pro-
gressively without scanning the entire log. The prototype

caches recently used B-tree blocks in memory and writes
back dirty blocks in the background.

The prototype changes a few built-in packages in Me-
teor, so that accesses to standard Meteor abstractions are
wrapped using RaiL APIs. These abstractions include
session user IDs, RPC dispatchers, session subscriptions,
and MongoDB documents. Application developers can
use standard interfaces to access these objects as before.

The prototype also includes a code rewriter, which auto-
matically names and wraps top-level JavaScript functions
using RA1L’s code objects when the application is loaded.

Our prototype consists of about 3,800 lines of
JavaScript code, of which 2,987 lines are in the core pack-
age, 422 lines are for Meteor integration, and another 358
lines are for the code rewriter and command line tools.

9 Evaluation

We evaluate the RaL prototype with three real-world ap-
plications under synthetic attack workloads. Our evalua-
tion aims to answer the following questions:

e What is the effort to port applications to Ra.? (§9.1)
e What attack scenarios can RaiL handle? (§9.2)
e How precise are RaiL’s data disclosure reports? (§9.3)

e What are RAL’s performance and storage overheads
during recording? (§9.4)

e How do the techniques described in §7 improve RaIL’s
accuracy and performance for auditing? (§9.5)

9.1 Applications and developer effort

We ported three real-world web applications to RAL. Two
of them are privacy-sensitive: one is Submit, a website
that manages homework and grades, written by course
staff from our department; the other is EndoApp, a medi-
cal survey application. Both applications run in produc-
tion and have dozens to hundreds of users. We also ported
Telescope, a widely used open-source social news appli-
cation, to see how well RAIL can support a full-fledged
application with a relatively large code base.

Figure 10 summarizes the effort for porting these ap-
plications to Rarm. APIs. We had to modify fewer than 25
lines of code for each application. Most of the changes are
related to non-deterministic inputs: programmers must
provide context identifiers when generating date and ran-
dom numbers in the application.

For Submit, modifications of two staff-only method
handlers were necessary to ensure auditing correctness.
First, the getGrades method summarizes grades of each
assignment for all students, and returns a grid of grades
directly to the client (not using the standard publish—
subscribe mechanism). We rewrote the code using RawL’s
object API to explicitly add revealed data items to the
current session’s view object. Second, we modified the
pairing function, as described in §7.2.
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Appliation Description LoC (in JavaScript)

changed server client

Submit homework grading 24 769 891
EndoApp medical survey 2599 900
Telescope social news 20 1,169 1,781

Figure 10: Real-world web applications used in our evaluation, and the
developer effort to port them to Rai. APIs. We do not count HTML/CSS
and third-party library code. Only server-side code is modified.

9.2 Attack case study

To evaluate whether RAIL can identify disclosures after an
attack, we chose the following common mistakes that can
lead to data breaches in real-world settings.

Access control list error. In Submit, a course staff mem-
ber erroneously grants “staff”” privileges when creating a
student account. The student logs in with this account and
sees other students’ homework solutions and grades. The
staff later realizes the mistake, rectifies the initial request
that created the account, and wants to know what unin-
tended information has been revealed to the student. RAIL
identifies the leaks because during re-execution, the stu-
dent’s subscription request will be rejected by the server
given the correct user privilege.

Stolen password. In EndoApp, a careless surgeon
chooses a weak password, which is obtained by an outside
attacker. Managing to stay concealed, the attacker creates
another surgeon account, and logs in to the new account
several times to retrieve sensitive patient profiles. After
the administrator discovers the breach, presumably by
looking for logins from unintended IP addresses, she can-
cels the suspicious login request to the careless surgeon’s
account, and wants to know what has been disclosed as
a result of the suspicious login. Ramw reports all breaches
from both accounts, because without the initial login, all
subscriptions and the account creation request would fail.
All subsequent logins to the new account would also be
denied since that bad account no longer exists.

Code bugs. This attack is based on a real bug in Tele-
scope’s commit history [4], in which the application per-
forms permission checks according to a client-supplied
current user ID, and publishes sensitive user emails for all
accounts based on the flawed security check. An attacker
can exploit the bug by executing JavaScript code with a
chosen user ID from the browser console. After patch-
ing the code, the administrator wants to know if anyone
exploited the bug, and whose emails were leaked. RarL de-
tects the code change and reruns all subscription requests
that depend on the code. The malicious request will be
rejected during re-execution, while the legitimate ones
(where the supplied user ID is the same as the session
user ID) will return the same result as before. Therefore

RAIL can precisely identify leaked data from sessions that
truly exploited the bug.

9.3 Auditing precision

To see if RAIL can precisely report leaked data, we run
the three attack workloads in parallel with other benign
workloads in the background as noise. For each attack
workload we consider two traces: a short trace in which
background workloads stop soon after the attack, and a
longer trace where benign accesses continue for several
minutes. We compare the total number of data items ac-
cessed during the trace with the number reported by RAIL.
We manually inspect the report to count false reports (le-
gitimate disclosures flagged by RAIL as inappropriate) and
missed ones (inappropriate disclosures according to our
knowledge of the workload not reported by Ra). The
result is shown in the last group of columns in Figure 11.

The number in the “accessed” column simulates what
an access log based system, like Keypad, would report.
As we can see, RaL precisely differentiates disclosures to
the attacker from disclosures to legitimate users, resulting
in fewer reports. RAL’s report is stable: the duration of
the trace and when the attack begins in the trace do not
lead to more false reports.

After changing applications to use the RaiL APIs, as de-
scribed in §9.1, we do not observe any missed disclosures
in our experiment. There is a single false report, however,
for EndoApp workload. The reported database item is the
malicious surgeon account added by the attacker, which
is an expected disclosure for other legitimate surgeons
logged in after the attack, because surgeons automatically
subscribe to all user accounts upon login. But Ra1L flags
it because the malicious surgeon does not appear in the
re-execution anymore. We believe this false report is ac-
ceptable since it is related to the attack, and also helps the
system administrator to identify the vulnerability.

9.4 Performance and overhead

We measure the performance of RAIL using two machines
running recent versions of Debian Linux. The server
has an Intel Core i7 3.3 GHz processor and 24 GB of
RAM; the client has eight 10-core Intel Xeon E7-8870
2.4 GHz processors with 256 GB of RAM. The client
and the server are connected via a 1 Gbps network. To
get a stable result, we pin the web server process to a
single core of the server machine. The client machine
is significantly more powerful to allow us to run enough
browser instances to saturate the server. We use Splinter
to drive PhantomJS browsers for all experiments.

Performance during normal execution. We compare
the performance of RaL during normal execution to the
performance of an unchanged version of Meteor, using
Submit as the benchmark. In the “browse” workload, each
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Attack workload Trace Number of requests

Running time (seconds) Number of data items

total attacker replayed

original replay exec. other

accessed reported false missed

ACL error Submit.short 2,972 45 16
Submit.long 12,366 45 16
Stolen password EndoApp.short 2,967 25 42
EndoApp.long 8,597 25 270
Code bugs Telescope.short 1,426 14 20
Telescope.long 7,763 14 833

161.0 1.6 09 07 1,142 193 0 0
664.0 32 20 12 1,121 193 0 0
149.0 09 06 03 1,871 137 1 0
6400 100 3.1 69 3,521 197 1 0
113.0 1.2 09 03 23 10 0 0
603.0 612 259 353 23 10 0 0

Figure 11: Replay performance and auditing precision under various workloads. “attacker” counts requests from the attacker’s session. “original” is
the duration for recording the trace. Replay time is broken down into two parts: “exec.” shows the time for re-executing actions; “other” shows the
time spent in other parts of the replay loop (all except line 30 of Figure 7). “reported” counts distinct data items flagged by RaIL, out of all data items

accessed by the trace.
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Figure 12: Server throughput when running Submit with the “browse”
workload with an increasing number of concurrent clients. Circles mark
the points where the server’s average CPU usages exceeds 90%.

client repeatedly logs in using a random student account,
browses the account’s grades, and then logs out.

With a single client, the average latency for handling
an individual request increases by 34% (from 15.0 to 20.1
msec). Profiling shows that executing wrappers, updating
logs, and handling time-travel database queries contribute
to the majority of the overhead.

To see how RaiL performs under heavy workloads, we
stress the server with an increasing number of clients,
which send RPC requests as fast as possible. We mea-
sure the server’s throughput and average CPU usage. As
shown in Figure 12, the stock Meteor saturates at about
80 concurrent clients, while RaIL saturates at 64 clients.
For an under-loaded server (under 48 clients), RAIL incurs
less than 5% throughput overhead; for an over-loaded
server (112 clients), the overhead is about 22%.

We also measure the throughput overhead for work-
loads with different write ratios. In the “upload” work-
load, there is a 20% probability that the user will submit
a new answer to a homework after logging in (based on
our historical logs), which leads to more write requests.
Figure 13 shows the result: increasing the write ratio
has a small impact for the overall performance, with the
overhead going up from 16.9% to 17.9%.

Storage overhead. Figure 13 also shows the storage
overhead. RAIL’s storage overhead consists of two parts:
the compressed log, which contains the action history
graph and the objects’ mutation history, and the time-

Workload Throughput (reqs/sec) Storage (KB/req)

w/o RalL  RaL  overhead logs DB total
Browse 45.14 3752 16.9% 0.34 0.12 0.46
Upload 4550 3736 17.9% 0.35 0.14 0.49

Figure 13: Performance and storage overhead during normal execution.
Numbers are from a fully utilized server running Submit and serving
80 concurrent clients, which send requests as fast as possible. Two
workloads with different write ratios are shown.

traveling database, which preserves all history versions of
database records. The average overhead is 0.46 KB per re-
quest for the “browse” workload, and 0.49 KB per request
for the “upload” workload. Note that login and logout
also write to the database, updating login timestamps and
tokens; this is why the numbers for the two workloads are
close. With this overhead, a 500 GB disk can store 1 year
worth of logs even for a fully utilized server. The time
span is sufficient for most disclosure auditing tasks.

Replay performance. We measure Rar’s replay perfor-
mance using the traces shown in Figure 11. We consider
two metrics: the number of replayed requests versus total
number of requests, and the time to finish the replay, as
shown in the first two groups of columns in Figure 11.

In Submit and EndoApp, RAIL replays only a small
fraction of all requests—just those related to the attack.
For Submit, the number is even smaller than the total
number of requests from the attacker’s session, indicating
that RarL’s selective replay algorithm can effectively pick
out just the relevant actions. In the Telescope workload,
because the patched code is in the publish handler, RAL
has to rerun subscription requests from all sessions, which
causes each session’s view object to be rolled back, and
in turn triggers more replays. All of the re-executions are
necessary to ensure that RAwwL captures all undesired leaks.

The “original” column shows the time to record each
trace, which represents a typically loaded web server
incurring about 20%—-30% of CPU overhead. As we can
see, RaiL can replay lengthy traces in a small amount of
time, and can report data leaks with high precision.

To understand what the performance bottleneck is dur-
ing replay, we break down the replay time into two parts:
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. # of requests  # of leaked data
Technique

total replayed reported false

RaL 103 5 2 0

w/o selective replay 103 93 2 0

w/o context matching 103 13 16 14

Figure 14: Impact of disabling each of RaIL’s techniques.

the time to re-execute actions (column “exec.” in Fig-
ure 11), and the time spent in other parts of the replay
loop (“other” in Figure 11), which comprises the over-
heads of the replay algorithm (including selecting actions,
checking object equivalence, and updating object states).
Both times increase as the number of replayed requests
increases. For the “EndoApp.long” and “Telescope.long”
workloads, the “other” time is higher than the “exec” time
of re-executing actions. The “other” time, however, is
time well spent: it is the overhead paid for avoiding re-
execution of irrelevant actions.

9.5 Technique effectiveness

To demonstrate the value of selective re-execution and
context identifiers, we use Submit with a setup of 30 stu-
dents and one staff account. The staff member first creates
a new account for a malicious student; then she initiates
pairing, assigning each student (including the malicious
one) two random reviewees using an algorithm similar
to Figure 9. After five students log in and browse the
reviews for their code, the staff runs RAIL in replay mode
after canceling the creation of the malicious account.
Figure 14 shows the result. Ra flags exactly two data
items: one is the malicious user and the other is the pairing
record for the user. Out of 103 requests, RAIL replayed
only five, which includes the pairing request and four
requests from students paired with the malicious account.
Without selective re-execution, RAIL reruns 93 requests
in total, including all requests that follow the account
creation. Disabling context matching introduces 14 false
reports: as pairings change, most students see homework
answers from different peers during replay; the IDs of
pairing records will also be different, constituting the rest
of the false reports. This demonstrates the importance of
Rar’s selective re-execution and context matching.

10 Discussion
This section discusses our experience with RaIL.

10.1 Supporting Ram in other frameworks

Our Ram prototype demonstrates that by utilizing the
rich semantics available in the web framework, one can
achieve fine-grained information tracking at low cost. Al-
though our prototype is based on a specific framework
(Meteor), the design of Ramw’s core API is framework-
independent. RAIL’s techniques can be applied to other
web frameworks as long as they meet a few assumptions.

First, the framework should force developers to use the
framework’s abstractions and APIs to access web objects,
such as requests, responses, sessions, databases, and files.
Bypassing these interfaces should be considered rare or
prohibited entirely. This helps RAIL interpose on accesses
to these objects at a level where useful semantics are
preserved. Adopting RAIL to another framework involves
wrapping the framework’s object APIs with Rai. APIs.

Second, the framework should provide a mechanism
that separates data items from their web representation.
Meteor attains the separation by sending data items di-
rectly over the wire, and constructing web pages purely on
the client side. Other commonly used frameworks, such
as Ruby and Django, do not share this paradigm. How-
ever, they do adopt the model-view-controller (MVC)
pattern using server-side template rendering systems that
clearly separate data and views. The major difference
in porting Ram to these frameworks lies in how to track
responses: one could wrap the template rendering system
(as opposed to the publish system in Meteor) with RaiL’s
output view object API to capture revealed data.

Third, the framework should maintain as little global
state as possible. To correctly support selective re-
execution, RAIL must interpose on accesses to all global
objects in order to track dependencies and make con-
tinuous checkpoints. Excessive use of global state can
introduce false dependencies among requests and increase
space overhead. Fortunately, most web frameworks do
not maintain global state other than the persistent storage
(e.g., the database) and a simple session store in their core
packages. External packages, however, might keep their
own shared state. As an example, Meteor’s account pack-
age does not reuse Meteor’s session store, but keeps per-
session authentication tokens on its own. When porting
RaAIL to a new framework, one must also examine external
packages to ensure that all package-defined global objects
are properly wrapped.

Finally, Rar’s current design has a simplified API that
assumes action serializability. We believe this captures
an important class of real-world web applications: for
instance, Node.js applications fall into this sequential exe-
cution model. Nevertheless, RaiL’s API could be extended
to support concurrent action execution. This would re-
quire finer-grained dependency tracking and replay at a
lower level. For instance, one could treat each access
to a shared object (e.g., database query) as atomic, and
record dependencies between such operations. During
replay, each action might be interleaved with the replay
of other actions. This is similar to how multi-threaded
record-replay systems work, and to how Retro [7] dealt
with record-replay of concurrent processes.
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10.2 Porting applications

Porting an application to RaIL is easy, because the frame-
work wrappers do most of the work, such as wrapping
and trapping accesses to global objects. In rare cases, if
an application defines its own class of global objects, the
programmer must wrap accesses to these objects using
the Rar. APIL.

For most applications, no matter how large the code
size is, the majority of changes will be for handling non-
deterministic input. Since application stability must ex-
ploit high-level knowledge unavailable in the code, it can-
not be implemented without help from developers. For
example, no one knows better than the developer what
the context identifier should be for a non-deterministic
value. Identifying non-determinism in the code could be
a potential challenge when porting applications.

Fortunately, there are only a handful of sources of non-
deterministic input that have to be handled—for most
cases they are date, time, and random numbers. These val-
ues usually come from the language’s library calls, such
as now() and random(). Simply hiding these library inter-
faces from developers could help them identify sources of
non-determinism and force them to use RaiL’s wrappers.

Simple program analysis can also help identify these
sources of non-determinism, and can be used to suggest
context identifiers, as we will discuss next.

10.3 Choosing context identifiers

The goal of context IDs is to preserve application stability.
As a general guideline, the context ID usually contains the
primary key of the data item tied to the non-deterministic
value, plus an optional string describing the purpose of
the value. In this subsection, we illustrate this rule with
examples we encountered in benchmark applications.

The most common use of context IDs is to generate
random identifiers for new data items. For example,
when generating a document ID for a new homework
submission in Figure 1, the context ID should be the
pair (homework_ID, student_ID), which uniquely iden-
tifies a homework submission. Similarly, when adding
a comment in Telescope, the context ID should contain
the topic ID and the user ID. If multiple random values
are requested using the same primary key within a sin-
gle action, one can add descriptive strings to distinguish
different invocations, like on lines 4 and 13 of Figure 8.
In practice, this process could be automated by a simple
analysis of the database schema.

Another common use is to generate dates and time-
stamps. For instance, when a student adds a homework
submission, the application needs to check the current
date against the homework’s deadline. Since the current
date is not tied to any data item, we simply supply a
constant string “checkdeadline” as the context identifier.
The descriptive string helps distinguish this date query

from others in the same action, if any. Often, the calling
function’s name and signature can be used as the descrip-
tive string when requesting the current date.

Context IDs also play an important role in preserving
cryptographic randomness. For example, Meteor’s ac-
count package uses the SRP protocol to authenticate user
logins. Internally, SRP generates random values, and if
they are not preserved, login will not replay correctly. In
this case, we use the encrypted password as the context ID
when generating the random SRP verifier, so that the same
login password yields the same verifier during replay.

10.4 Misuse of RaiL APIs

Inadvertent misuses of Ram. APIs might affect Rar’s accu-
racy. RAIL requires the developer to use the framework’s
standard interface to access global objects, such as the
database. If the developer forgets to wrap application-
defined global state with RaiL APIs, Rar will miss the de-
pendency, omitting relevant actions from selective replay.
This will leave the replayed application in an inconsistent
state, and likely lead to false negatives.

If the developer does not use RAIL’s wrappers to retrieve
non-deterministic values, or inappropriately chooses con-
text IDs, Ramw will produce a different value during re-
play. Consequently, requests that depend on these non-
deterministic inputs (such as logins) will behave differ-
ently. The divergence will cause more actions to be re-
played, and introduce false positives and false negatives.

Note that the worst outcome of API misuse is unnec-
essary re-execution and inaccurate reports. The entire
replay process is guaranteed to terminate.

11 Conclusion

RAL is the first system for precisely auditing past data
disclosures in web applications. Based on rollback and
replay, RAIL introduces an explicit API that application
developers must use to identify data items, track depen-
dencies, and match up states. The API helps Ram. mini-
mize state divergence and unnecessary re-execution, pro-
viding fast and precise auditing. Measurements with a
RALL prototype show that RaIL can precisely distinguish
legitimate data disclosures from illegal ones caused by
human mistakes. RAIL requires only minor changes to
web applications and incurs a moderate performance
overhead. RAIL’s source code is publicly available at
https://github.com/haogang/rail.
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