
This paper is included in the Proceedings of the
11th USENIX Symposium on

Operating Systems Design and Implementation.
October 6–8, 2014 • Broomfield, CO

978-1-931971-16-4

Open access to the Proceedings of the
11th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Detecting Covert Timing Channels
with Time-Deterministic Replay

Ang Chen, University of Pennsylvania; W. Brad Moore, Georgetown University;
Hanjun Xiao, Andreas Haeberlen, and Linh Thi Xuan Phan, University of Pennsylvania;

Micah Sherr and Wenchao Zhou, Georgetown University

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chen_ang

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 541

Detecting Covert Timing Channels with Time-Deterministic Replay

Ang Chen
University of Pennsylvania

W. Brad Moore
Georgetown University

Hanjun Xiao
University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Linh Thi Xuan Phan
University of Pennsylvania

Micah Sherr
Georgetown University

Wenchao Zhou
Georgetown University

Abstract

This paper presents a mechanism called time-
deterministic replay (TDR) that can reproduce the
execution of a program, including its precise timing.
Without TDR, reproducing the timing of an execution
is difficult because there are many sources of timing
variability – such as preemptions, hardware interrupts,
cache effects, scheduling decisions, etc. TDR uses
a combination of techniques to either mitigate or
eliminate most of these sources of variability. Using
a prototype implementation of TDR in a Java Virtual
Machine, we show that it is possible to reproduce the
timing to within 1.85% of the original execution, even
on commodity hardware.

The paper discusses several potential applications of
TDR, and studies one of them in detail: the detection of
a covert timing channel. Timing channels can be used
to exfiltrate information from a compromised machine;
they work by subtly varying the timing of the machine’s
outputs, and it is this variation that can be detected with
TDR. Unlike prior solutions, which generally look for a
specific type of timing channel, our approach can detect
a wide variety of channels with high accuracy.

1 Introduction

When running software on a remote machine, it is com-
mon for users to care not only about the correctness of
the results, but also about the time at which they arrive.
Suppose, for instance, that Bob is a customer of a cloud
computing platform that is run by Alice, and suppose
Alice offers several machine types with different speeds,
for which she charges different prices. If Bob chooses
one of the faster machines to run his software but finds
that the results arrive later than expected, he might wish
to verify whether he is getting the service he is paying
for. Conversely, if an angry Bob calls Alice’s service
hotline to complain, Alice might wish to convince Bob
that he is in fact getting the promised service, and that
the low performance is due to Bob’s software.

A closely related problem has been studied in com-
puter security. Suppose Charlie is a system administra-
tor, and suppose one of his machines has been compro-
mised by an adversary who wants to exfiltrate some data
from the machine without raising Charlie’s suspicion.
In this case, the adversary might create a covert timing
channel [31]—that is, he might cause the machine to
subtly vary the timing of the network messages it sends,
based on the data it is supposed to leak. As in the previ-
ous scenario, the outputs of the machine (in this case, the
transmitted messages) are perfectly correct; the problem
can only be detected by looking at the timing.

Although the two problems appear very different at
first, they are in fact both instances of a more funda-
mental problem: checking whether the timing of a se-
quence of outputs from a machine M is consistent with
an execution of some particular software S on M. The
difference is in the part of the system that is being ques-
tioned. In the first scenario, it is the machine M: Bob
suspects that Alice has given him a slower machine than
the one he is paying for. In the second scenario, it is
the software S: Charlie suspects that the adversary may
have tampered with the software to vary the timing of
the outputs. Thus, a solution for the underlying problem
could benefit both of the scenarios we have motivated.

One possible approach would be to try to infer the
“correct” timing of running the software S on the ma-
chine M, e.g., by carefully analyzing the timing of the
various subroutines of S. But there are many factors that
can affect the timing of a program’s execution – cache
effects, hardware interrupts, inputs at runtime, preemp-
tions by the kernel or by other programs, I/O latencies,
and many more – and their combined effect is extremely
difficult to predict. Even inferring an upper bound can
be very difficult, as the extensive literature on worst-
case execution time (WCET) analysis [50] in the real-
time systems domain can attest – and even an excellent
WCET would still not be sufficient to solve our problem
because we would need to know the specific runtime,
not just an upper bound.

1

542 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

In this paper, we explore an alternative approach to
this problem. Our key insight is that it is not necessary
to predict the timing of S on M in advance – it is suffi-
cient to reproduce the timing after the fact. If Bob had
access to another machine M′ of the same type and could
reproduce the precise timing of S on that machine, he
could simply compare the timing of the outputs during
the reproduced execution to the timing of the messages
he actually observed. If M was of the correct type and
was indeed running S, the two should be identical; if
they are not, either M must have had a different type, or
S must have been modified or compromised. The poten-
tial advantage of this approach is that there is no need
to analytically understand the complex timing behavior
of, e.g., caches or interrupt handlers: if the two execu-
tions unfold in exactly the same way, the cache contents
during the executions should be very similar as well.

Deterministic replay [19] provides a partial solution
in that it can reproduce the functional behavior of a pro-
gram by carefully recording all nondeterministic events
(such as external inputs or random decisions) in a log,
and by replaying the exact same events during replay.
This ensures that the program produces the same outputs
in the same order. However, it is not sufficient to repro-
duce the program’s temporal behavior: as we will show
experimentally, the replayed execution can take substan-
tially more – or less – time than the original execution,
and the outputs can appear at very different points in
both executions. There are two key reasons for this.
First, existing replay systems reproduce only factors that
control a program’s control or data flow; they do not re-
produce factors that affect timing because the latter is
not necessary for functional replay. Second, and more
fundamentally, play and replay involve very different
operations (e.g., writing vs. reading, and capturing vs.
injecting) that have different timing behavior, and these
differences affect the program’s overall timing.

We propose to address these challenges using a mech-
anism we call time-deterministic replay (TDR). A TDR
system naturally provides deterministic replay, but it ad-
ditionally reproduces events that have nondeterministic
timing, and it carefully aligns its own operations during
play and replay so that they affect the program’s tim-
ing in a similar way. On an ideal TDR implementation,
replay would take exactly the same time as play, but in
practice, TDR is limited by the presence of time noise on
the platform on which it runs: for instance, many CPUs
speculatively execute instructions, and we do not know
a way to reproduce this behavior exactly. Nevertheless,
we show that it is possible to mitigate or eliminate many
large sources of time noise, and that the timing of com-
plex programs can be reliably reproduced on a commod-
ity machine with an error of 1.85% or less.

We also describe the design of Sanity1, a practical
TDR system for the Java Virtual Machine, and we show
how Sanity can be used in one of our target applica-
tions: the detection of covert timing channels. De-
tecting such channels is known to be a hard problem
that has been studied for years. The best known solu-
tions [15, 22, 23, 40] work by inspecting some high-
level statistic (such as the entropy) of the network traf-
fic, and by looking for specific patterns; thus, it is not
difficult for an adversary to circumvent them by varying
the timing in a slightly different way. To our knowl-
edge, TDR offers the first truly general approach: it can
in principle detect timing modifications to even a single
packet, and it does not require prior knowledge of the
encoding that the adversary will use. In summary, we
make the following five contributions:

• The TDR concept itself (Section 2);
• The design of Sanity, a system that provides TDR

for the Java Virtual Machine (Section 3);
• A prototype implementation of Sanity (Section 4);
• An application of TDR to the detection of covert

timing channels (Section 5); and
• An experimental evaluation of Sanity (Section 6).

2 Overview

In this section, we give a more precise problem state-
ment, and we explain some of the key challenges.

2.1 Problem statement
Figure 1 illustrates two variants of the scenario we con-
sider in this paper. In the variant in Figure 1(a), Alice
has promised Bob that she would run some software S
on a (virtual or physical) machine of type T ; Bob can
connect to S over the network, but he does not have
physical access to it. (This scenario commonly occurs
on today’s cloud platforms.) If the performance of S
does not meet Bob’s expectations, Bob might wonder
whether Alice has really provisioned a machine of type
T , or perhaps a less powerful type T ′.

Figure 1(b) shows a different variant in which Char-
lie runs S on a machine he controls directly. Even if
S appears to be working normally, Charlie might won-
der whether the machine has been compromised by a
remote adversary who has altered S and is now trying to
leak secrets over the network by subtly altering the tim-
ing of the messages S sends. The key difference to the
first scenario is that the machine is known to be of type
T (perhaps Charlie can physically inspect it), and that
Charlie is questioning the integrity of S instead.

1The name Sanity is a play on the definition of insanity, often at-
tributed to Albert Einstein, as the exact repetition of a process while
expecting a different outcome.

2

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 543

Is Alice giving me
a or a ?Bob's

software S

Is that machine really
running program ?

d f d fModified software

Alice BobAlice's Cloud Adversary Charlie

(a) (b)

Figure 1: Two scenarios that benefit from TDR: (a) Bob
wishes to verify that his software is running on the ex-
pected type of machine in Alice’s cloud, and (b) Charlie
wishes to verify that his machine is correctly executing
his program.

In both scenarios, it seems reasonable to assume that
Bob and Charlie have a way to observe the messages
m1,m2, . . . that S sends and receives, as well as the ap-
proximate transmission or arrival time t1, t2, . . . of each
message. The problem, then, is to decide whether a se-
quence (mi,ti) of messages and message timings is con-
sistent with an execution of a software S on a machine
of type T .

2.2 Why not use prediction?
If Bob and Charlie had a way to precisely predict how
long an execution of S on T was going to take, they
could solve the problem simply by comparing the ob-
served message timings ti to his predictions. However,
the execution time depends on an enormous number of
factors, such as the inputs the program receives, the state
of the CPU’s caches and TLBs, the number of hardware
interrupts, the scheduling decisions of the kernel, and
the duration of I/O operations, to name just a few. Be-
cause of this, predicting the execution time of any non-
trivial program is known to be extremely difficult.

This problem has been extensively studied in the real-
time systems community, and a variety of powerful tim-
ing analyses are now available (cf. [7] and [50] for an
overview). But these analyses typically produce bounds
– the worst-case execution time (WCET) and the best-
case execution time (BCET) – and not the exact execu-
tion time. Moreover, the WCET (BCET) is typically
much higher (lower) than the actual execution time [49].
Such bounds are useful if the goal is to guarantee time-
liness, i.e., the execution completes before a particular
point in time; however, it is usually not precise enough
for the problem we consider here.

2.3 Approach: Reproducible timing
The solution we present in this paper is based on the
key insight that it is not actually necessary to predict
a priori how long an execution of S on T is going to
take – it would be sufficient to reproduce the timing of
an execution after the fact. This is a much easier prob-

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8

C
u

m
u

la
ti
v
e

 f
ra

c
ti
o

n

Variance (% of fastest execution)

(1) User, noisy
(2) User, quiet

(3) Kernel, noisy
(4) Kernel, quiet

Figure 2: Timing variance of a simple program that ze-
roes out a 4 MB array, in four different scenarios.

lem because it does not require an analysis of the many
complex factors that could affect the execution time; we
“merely” need to ensure that these factors affect the re-
produced execution in the same way. For instance, to
predict the impact of the caches on the execution time,
it would be necessary to predict the exact sequence of
memory accesses that S is going to perform; to repro-
duce the impact, we can simply reproduce the same se-
quence of memory accesses.

Reproducible timing would solve the problem from
Section 2.1 because it would enable a form of auditing:
if Bob and Charlie locally have another machine of type
T available, they can reproduce the execution of S on
that machine and compare the timing to the timing they
have observed on the remote machine. If the two are
similar, this suggests that the remote machine is indeed
of type T ; if the timings are dissimilar, this is evidence
that the machine is of a different type, or that it is not
running the unmodified software S.

2.4 Challenge #1: Time noise
To highlight some of the key challenges of reproducible
timing, we first consider two simple strawman solutions.
The first is to simply reproduce the remote execution us-
ing deterministic replay, i.e., to ask the remote machine
to record all nondeterministic inputs (such as messages,
interrupts, etc.) along with the precise point in the pro-
gram where each of them occurred, and to inject these
inputs at the same points during replay. Deterministic
replay is a well-established technique for which several
mature solutions exist [3, 13, 19, 20, 39, 52, 53].

However, although this approach faithfully repro-
duces the control flow and the outputs of the original
execution, it usually does not reproduce the timing. To
illustrate this, we performed a simple experiment in
which we measured the time it took to zero out a 4 MB
array. Figure 2 shows a CDF of the completion times,
normalized to the fastest time we observed. We show
results for four different scenarios: (1) user level with
GUI and network turned on; (2) user level in single-

3

544 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

user mode, running from a RAM disk; (3) kernel mode;
and (4) kernel mode with IRQ turned off, cache flushed,
TLB flushed, and execution pinned to a specific core.
Ideally, all the executions would take the same amount
of time and thus have a variance of zero, but in prac-
tice, some take considerably more time than others – the
largest variance we observed was 189% in scenario (1),
which corresponds to nearly 3x the time of the fastest
execution in that scenario. Because of this variability,
which we will refer to as time noise in the rest of this
paper, it is extremely difficult to compare the timing of
different executions, even for very simple programs.

However, Figure 2 also contains a hopeful message:
as the environment becomes more and more controlled,
the timing becomes more and more consistent. Hence, a
major focus of this paper is on identifying and removing
sources of time noise. If there were a way to completely
eliminate all sources, the timing of the original and the
repeated execution would be identical.
Where does the time noise come from? Commod-
ity hardware and software have not been designed with
repeatable timing in mind, and therefore contain many
sources of time noise, including:

• Memory: Different memory accesses during play
and replay and/or different memory layouts can in-
crease or decrease the number of cache misses at
all levels, and/or affect their timing;

• CPU: The processor can speculatively execute in-
structions or prefetch data, e.g., based on branch
target predictions;

• I/O: Input/output operations can take a variable
amount of time, particularly when HDDs are in-
volved (due to seek/rotational latency);

• IRQs: Interrupts can occur at different points in
the program; the handlers can cause delays and dis-
place part of the working set from the cache; and

• Kernel/VMM: The kernel can preempt the pro-
gram to schedule other tasks, or to take care of in-
ternal housekeeping. Also, system calls can take a
variable amount of time.

Some of these sources can be completely eliminated;
others can at least be considerably reduced by carefully
designing the kernel or VMM. For instance, we can
eliminate the variability from the address space layout
by giving the program the same physical frames dur-
ing play and replay, and we can reduce the interference
from hardware interrupts by enabling them only at cer-
tain points in the execution.

2.5 Challenge #2: Play/replay asymmetry
Even if the timing of the program and the underlying
hardware were completely deterministic, there is still a

 0

 40

 80

 120

 160

 200

 240

 0 20 40 60 80 100 120 140 160

E
la

p
s
e

d
 t

im
e

 d
u

ri
n

g
 p

la
y

(s
e

c
o

n
d

s
)

Elapsed time during replay (seconds)

Ideal behavior
Median realized behavior

Figure 3: In existing VMMs, the timing during replay
can differ substantially from the timing during play.

need to record its inputs so that its execution can be re-
produced on another machine. This gives rise to another
challenge: record and replay are fundamentally different
operations that typically involve different code, different
I/O operations, and different memory accesses. Thus,
they will typically affect the timing in a different way.

To illustrate this point, we performed the following
simple experiment. We recorded the execution of a sim-
ple Linux VM using XenTT [13], a replay-enabled vari-
ant of the Xen hypervisor, and we directed some web
requests towards an HTTP server that was running in
the VM. To get a sense of the timing of the events in the
VM, we instrumented XenTT to also record, for each
event e, the wall-clock time Tp(e). We then replayed the
log and measured, for each event e, the wall-clock time
Tr(e) at which e was replayed. By comparing Tp and
Tr, we can get a sense of the relative speed of play and
replay.

Figure 3 shows a plot in which Tp is on the vertical
axis and Tr on the horizontal axis; each point repre-
sents one event in the log. With fully time-deterministic
replay, this graph would show a straight line, but the
actual graph is far from it. There are some phases in
which replay is faster than play, e.g., the interval from
Tp(e) = 183 to Tp(e) = 196, in which the VMM was
waiting for inputs; XenTT simply skips this phase dur-
ing replay. In other phases, play is faster than replay,
e.g., during the kernel boot phase, when Linux calibrates
its internal clock.

This simple experiment shows that, to achieve re-
peatable timing, removing sources of time noise is not
enough – the VMM also needs to “balance” play and
replay in such a way that they affect the timing in ap-
proximately the same way.

3 Sanity Design

In this section, we describe the design of Sanity, a
virtual-machine monitor (VMM) that provides highly
repeatable timing. Sanity is a clean-slate VMM design
that implements the Java Virtual Machine (JVM).

4

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 545

Noise source Mitigation technique(s) used Effect Section
Divergence Deterministic replay [19] Eliminated 3.2
Randomness Avoid or log random decisions Eliminated 3.2
Scheduler Deterministic multithreading [38] Eliminated 3.2
Interrupts Handle interrupts on a separate core Reduced 3.3+3.4
Play vs. replay Align JVM’s control flow and memory accesses during play and replay Eliminated 3.5
Caches Flush caches at the beginning; use the same physical frames Reduced 3.6
Paging All memory is pinned and managed by JVM Eliminated 3.6
I/O Pad variable-time operations; use SSDs instead of HDDs Reduced 3.7
Preemption Run in kernel mode; do not share core with other apps Eliminated 4.2
CPU features Disable timing-relevant CPU features, such as frequency scaling Reduced 4.2

Table 1: Sources of time noise that Sanity mitigates or eliminates, as well as the corresponding techniques.

3.1 Why a clean-slate design?

It is natural to ask why we have chosen to redesign
Sanity from scratch instead of simply extending one of
the many excellent open-source VMM implementations
that are already available. The reason is that existing
implementations were not built with time-determinism
in mind and thus tend to contain a variety of sources of
time noise, such as randomized data structures, system
calls, various types of speculation, and so on. Finding
these sources would be difficult because their effects are
not necessarily local: for instance, a function A might
invoke a system call, and in the process of handling it,
the kernel might access different memory locations, de-
pending on its current state; this might then add cache
misses to the execution of a completely different and un-
related function B that runs several milliseconds later.

By building our VMM from scratch, we gained the
ability to control every aspect of its design, and to care-
fully avoid introducing time noise at each step along the
way. Since our resources were limited, we chose the
Java Virtual Machine (JVM), which is relatively simple
– it has only 202 instructions, no interrupts, and does
not include legacy features like the x86 string instruc-
tions – and for which there is a large amount of exist-
ing software. However, even state-of-the-art JVMs are
very complex; for instance, the HotSpot JVM consists
of almost 250,000 lines of code. Hence, we necessar-
ily had to focus on the core features and omit others,
such as just-in-time (JIT) compilation, which obviously
limits Sanity’s performance. We accept this limitation
because it is not inherent: given enough time and a large
enough team, it should be perfectly feasible to build a
time-deterministic JIT compiler, as well as all the other
features we were unable to include in our prototype.

Sanity provides deterministic replay (Section 3.2),
and it includes a combination of several techniques that
reduce or eliminate time noise (Sections 3.3–3.7). Ta-
ble 1 provides an overview of the sources of time noise
we focused on, and the technique(s) we used to mitigate
or eliminate each of them.

3.2 Deterministic replay
Our implementation of deterministic replay in Sanity re-
lies mostly on standard techniques from other replay-
enabled JVM implementations [2, 16]: during the origi-
nal execution (“play”), we record all nondeterministic
events in a log, and during the reproduced execution
(“replay”), we inject the same events at the same points.
For the JVM, this is much easier than for the x86-based
replay implementations that many readers will be famil-
iar with (e.g., ReVirt [19]). This is because the latter
must record asynchronous events, such as hardware in-
terrupts, that can strike at any point during the execution
– even in the middle of CISC instructions such as rep
movsb – which requires complex logic for injecting the
event at exactly the same point during replay. The JVM,
in contrast, does not have a notion of interrupts, and a
simple global instruction counter is sufficient to identify
any point in the execution.

To reduce the number of events that must be recorded,
we implement a simple form of deterministic multi-
threading [38] in Sanity: threads are scheduled round-
robin, and each runnable thread is given a fixed budget
of Java instructions it may execute before it is forced to
yield. Since the execution of the individual threads is
already deterministic, there is no need to record infor-
mation about context switches in the log, since they will
occur at exactly the same points during replay.

If Sanity is used for long-running services – perhaps
a web server, which can run for months or even years
– it is important to enable auditors to reproduce smaller
segments of the execution individually. Like other de-
terministic replay systems, Sanity could provide check-
pointing for this purpose, and thus enable the auditor to
replay any segment that starts at a checkpoint.

3.3 Timed core and supporting core
Although the JVM itself does not have asynchronous
events, the platform on which it runs (e.g., an x86 ma-
chine) will usually have them. To prevent these events
from interfering with the timing of the JVM’s execu-

5

546 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

tion, Sanity confines them to a separate core. Thus, even
though Sanity implements a single-core JVM, it requires
a platform with at least two cores: a timed core (TC) that
executes the JVM itself, and a supporting core (SC) that
handles interrupts and I/O on the TC’s behalf.

The TC-SC separation shields the TC from most ef-
fects of asynchronous events, but, on most platforms
(with the exception of certain NUMAs), it cannot shield
it entirely, since the two cores share the same memory
bus. Even if the SC’s program fits entirely into the SC
cache, DMAs from devices must still traverse the mem-
ory bus, where they can sometimes compete with the
TC’s accesses.

3.4 Communication between TC and SC
The TC and SC communicate by means of two in-
memory ring buffers: the S-T buffer and the T-S buffer.
The SC receives asynchronous inputs, such as incom-
ing network messages, and writes them to the S-T
buffer; the TC inspects this buffer at regular intervals,
or when an explicit read operation is invoked (such as
DatagramChannel.read). Conversely, when the
TC produces outputs (e.g., outgoing network messages),
it writes them to the T-S buffer. The SC periodically in-
spects this buffer and forwards any outputs it contains.

The purpose of this arrangement is to make play and
replay look identical from the perspective of the TC –
in both cases, the TC reads inputs from the S-T buffer
and writes outputs to the T-S buffer. The SC, of course,
acts differently during replay: it reads the inputs in the
S-T buffer from the log rather than from a device, and
it discards the outputs in the T-S buffer. But the control
flow on the TC, which is crucial for repeatable timing, is
identical. (See Section 3.5 for an important exception.)

3.5 Symmetric read/writes
If both the TC’s sequence of memory accesses and its
control flow are to be exactly the same during play and
replay, there are two special cases that need to be han-
dled. The first concerns the T-S buffer. Suppose, for
instance, that the VM invokes System.nanoTime to
read the current wallclock time. This event must be
logged, along with the value that Sanity returns, so that
the call can have the same result during replay. A naı̈ve
implementation might check a “replay flag” and then
write the time to the T-S buffer if the flag is clear, and
read from it if the flag is set. However, this would cause
both different memory accesses (a dirty cache line dur-
ing play, and a clean one during replay) and different
control flow (perhaps a branch taken during play and
not taken during replay, which would pollute the BTB).

To produce the exact same control flow and memory
accesses during play and replay, we use the approach

void accessInt(int *value, int *buf) {
int temp = (*value) & playMask;
temp = temp | (*buf & ∼playMask);
*value = *buf = temp;

}

Figure 4: Algorithm for symmetric reads/writes.

shown in Figure 4 to access events in the T-S buffer.
(The figure shows, as an example, how we access an in-
teger.) playMask is a bit mask that is set to 111 . . .11
during play, and to 0 during replay. When an event oc-
curs, Sanity invokes the algorithm with *value set to
the value that would need to be recorded if this were the
play phase (e.g., the current wallclock time). The algo-
rithm then reads from the T-S buffer the data *buf that
would need to be returned if this were the replay phase.
It then computes the value temp to be either the for-
mer (during play) or the latter (during replay). Finally,
it writes temp to the T-S buffer and returns it to the
caller; the caller then proceeds with the returned value
(e.g., returns it from System.nanoTime). The over-
all effect is that the value is written to the buffer during
play and read from the buffer during replay; the memory
accesses are identical, and no branches are taken.

A related case concerns the S-T buffer. When the
TC checks the buffer during play and finds a new en-
try there (e.g., a received network packet), it must write
the JVM’s instruction counter to the entry as a virtual
“timestamp” so it can be injected at the same point dur-
ing replay. During replay, the TC must check this times-
tamp to avoid processing entries before the instruction
counter reaches that value again. We handle this case
similarly to the first one (the TC always reads, checks,
and writes the timestamp), but with an additional twist:
during play, the SC always adds a “fake” entry with a
timestamp of infinity at the end of the buffer, so that the
TC’s next-entry checks will always fail. When the SC
appends a new entry, it overwrites the previous “fake”
entry (but adds a new one at the end), and it sets the
timestamp to zero, so the TC’s check is guaranteed to
succeed. The TC can recognize this special value and
replaces it with the current instruction count.

3.6 Initialization and quiescence
To maximize the similarity between play and replay tim-
ing, Sanity must ensure that the machine is in the same
state when the execution begins. This not only involves
CPU state, but also memory contents, stable storage, and
key devices.

On the TC, Sanity flushes all the caches it can control,
including the data caches, the TLB, and any instruction
caches. This entails a certain performance penalty be-

6

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 547

cause the caches must all be repopulated, but recall that
the caches remain enabled during the execution, so it
is a one-time cost. We note that some CPUs perform
cache flushes asynchronously (such as the wbinvd in-
struction on IA-32). To account for this, the TC adds a
brief quiescence period before it begins the execution;
this allows the cache flush to complete, and it can also
be used to let hardware devices (such as the NIC) finish
any operations that are still in progress. If the instruction
stream on the TC is exactly the same and the caches have
a deterministic replacement policy (such as the popular
LRU), this is almost sufficient to reproduce the evolution
of cache states on the TC. The missing piece is virtual
memory: even if the TC has the same virtual memory
layout during play and replay, the pages could still be
backed by different physical frames, which could lead
to different conflicts in physically-indexed caches. To
prevent this, Sanity deterministically chooses the frames
that will be mapped to the TC’s address space, so they
are the same during play and replay.

During execution, no memory pages are allocated or
released on the TC; the JVM performs its own memory
management via garbage collection. Garbage collection
is not a source of time noise, as long as it is itself deter-
ministic.

3.7 I/O handling
Sanity uses the SC to perform all I/O operations. For
streaming-type devices, such as the NIC or the terminal,
this is relatively straightforward: whenever the TC has
an output to send (such as a network packet, or a termi-
nal output), it writes the data to the T-S buffer; whenever
the SC receives an input, it writes it to the S-T buffer,
which the TC checks at regular intervals.

Storage devices are more challenging because the la-
tency between the point where the VM issues a read re-
quest and the point where the data is available can be
difficult to reproduce. A common way to address this
(cf. [5]) is to pad all requests to their maximal duration.
This approach is expensive for HDDs because of their
high rotational latency, which can be several millisec-
onds, but it is more practical for the increasingly com-
mon SSDs, which are roughly three orders of magnitude
faster, and far more predictable.

3.8 What Sanity does not do
We emphasize that Sanity does not run with caches dis-
abled, and that it does not prevent the JVM from per-
forming I/O or from communicating with the outside
world. Although the effects of these features on exe-
cution time are hard to predict, we argue – and we will
demonstrate in Section 6 – that it is possible to repro-
duce them with relatively high accuracy, to a degree that

becomes useful for interesting new applications (more
about this in Section 5). Ensuring reproducibility is far
from trivial, but can be accomplished with careful de-
sign choices, such as the ones we have described here.

4 Sanity Implementation

Next, we describe a prototype of Sanity that we have
built for our experiments.

4.1 Java Virtual Machine
For our prototype, we implemented a Java Virtual Ma-
chine from the ground up. This includes support for
the JVM’s instructions, dynamic memory management,
a mark-and-sweep garbage collector, class loading, ex-
ception handling, etc. However, we designed our
JVM to be compatible with Oracle’s Java class library
(rt.jar), so we did not need to re-implement the stan-
dard classes in the java.lang package. The class li-
brary interacts with the JVM by calling native functions
at certain points, e.g., to perform I/O. For our experi-
ments, we implemented only a subset of these functions;
for instance, we did not add support for a GUI because
none of our example applications require one.

Our current prototype does not support just-in-time
compilation or Java reflection. As discussed in Sec-
tion 3.1, we decided against implementing these because
both are major sources of complexity, and neither is
likely to be a major source of time noise. Since Ora-
cle’s class library invokes reflection at some surprising
points (e.g., when instantiating a HashMap), we made
some small additions to the class library that can replace
the relevant classes without using reflection.

Altogether, our prototype consists of 9,061 lines of
C/C++ code; our additions to the class library contribute
another 1,150 lines of Java code.

4.2 Isolating the timed core
Recall from Section 3.3 that the timed core must be iso-
lated, to the extent possible, from sources of time noise
in the rest of the system. One way to accomplish this
would be to run the JVM as a standalone kernel; how-
ever, we decided against this because of the need for
driver support. Instead, we implemented our prototype
as a Linux kernel module with two threads. The TC
thread runs on one core with interrupts and the NMI
disabled; the SC thread runs on a different core and in-
teracts with the TC as discussed in Section 3.4. The
SC thread can access the kernel’s device drivers, e.g.,
to send and receive network packets. On NUMA plat-
forms, the two cores should be chosen to be far apart, so
they share as little as possible.

7

548 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

To improve the repeatability of cache effects, our pro-
totype uses the same physical memory frames for each
execution. We use a separate kernel module for this pur-
pose that is loaded during startup and that reserves a cer-
tain range of frames for later use by the TC/SC module.

To reduce the time noise from the CPU itself, we
disable timing-relevant features such as frequency scal-
ing and TurboBoost in the BIOS (and, in the case of
the latter, again during boot, since Linux surreptitiously
re-enables it). Disabling dynamic hardware-level opti-
mizations has a certain performance cost, but it seems
unavoidable, since the effect of these optimizations is
unpredictable and – at least on current hardware – they
cannot be fully controlled by the software. To further
reduce the time noise from the CPU, we carefully flush
all caches before the execution starts; specifically, we
toggle CR4.PCIDE to flush all TLB entries (including
global ones) and we use the wbinvd instruction to flush
the caches.

4.3 Limitations

Since our Sanity prototype is built on commodity hard-
ware and a commodity kernel, it cannot guarantee time-
determinism, since we cannot rule out the possibility
that there is a source of time noise that we have missed.
It should be possible to achieve such a guarantee by en-
forcing time-determinism at each layer – e.g., by starting
with a precision-timed system such as PRET [21] and
by adding a kernel that is built using the principles from
Section 3 – but this is beyond the scope of this paper.

Our Sanity design assumes that play and replay will
be performed on machines of the same type. It may be
possible to correct for small differences, e.g., by using
frequency scaling during replay to match a lower clock
speed during play, or by disabling extra cores or memory
banks that were not available during play. However we
are not aware of any efficient technique that could pre-
cisely reproduce the timing of an execution on a com-
pletely different architecture.

Two final limitations result from the fact that our de-
sign uses exactly two cores, one TC and one SC. First,
the SC is mostly idle because its only purpose is to iso-
late the TC; thus, the second core is mostly overhead.
Second, multithreaded Java programs must be executed
entirely on the TC and cannot take advantage of addi-
tional cores. These are limitations of our Sanity proto-
type, and not of TDR: the TC/SC division, and thus the
need for a second core, could be avoided in a TDR sys-
tem that runs directly on the hardware, and the restric-
tion to a single TC could be removed by adapting tech-
niques from existing multi-core replay systems, such as
SMP-ReVirt [20], perhaps in combination with novel
hardware features, as in QuickRec [41].

L LS S S
1 0 0 0 1

1 0 0 0 1

se
nd

er
re
ce
iv
er

L LS S S

… ...

… …

Figure 5: An example covert timing channel that en-
codes the bitstring 10001.

5 Application: Covert Timing Channels

Next, we present a concrete example application for
TDR: the detection of covert timing channels that ex-
filtrate information from a compromised machine.

A covert channel is an unauthorized channel that al-
lows the surreptitious communication of information.
Covert channels have become a pervasive security threat
in distributed systems, and have produced an arms race
between methods for achieving covertness and tech-
niques for detecting such channels (see Section 8). Here,
we focus on a class of covert channels called covert tim-
ing channels in which a compromised host manipulates
the timing of network activities to directly embed covert
information into inter-packet delays (IPDs). By observ-
ing the timing of packets, the receiver can reconstruct
the covert message.

Figure 5 illustrates a simple covert timing channel.
The sender manipulates the delays between sending two
consecutive packets to encode a covert message, where
bit 1 (resp. 0) is encoded by adding a large (resp. small)
IPD, indicated as ‘L’ (resp. ‘S’) in the Figure. Upon re-
ceiving the network flow, the receiver can then recover
the covert message by observing the IPDs between con-
secutive packets.

5.1 Examples of timing channels
Since Lampson first proposed covert timing channels in
the 1970s [31], a number of practical channels have been
demonstrated in the literature (cf. [4, 11, 12, 14, 15, 45–
47]), broadly falling into the following categories:
IP covert timing channel (IPCTC). Like most early
timing channels, IPCTC is based on a simple idea: the
sender transmits bit 1 by sending a packet within a pre-
determined time interval, and transmits 0 by remaining
silent in that interval. Due to their unique traffic signa-
tures, IPCTCs are straightforward to detect.
Traffic replay covert timing channel (TRCTC).
TRCTC tries to confuse detectors by replaying the IPDs
from legitimate traffic (without covert channels). It cat-
egorizes IPDs in the legitimate traffic stream into two

8

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 549

bins (B0 and B1 for small and large IPDs, respectively).
It then transmits a 0 by choosing a delay from B0 and a
1 by choosing a delay from B1. However, since the en-
coding scheme is constant, TRCTC exhibits more regu-
lar patterns than a legitimate traffic stream, the latter of
which usually has high variability (e.g., burstiness).
Model-based covert timing channel (MBCTC).
MBCTC generates IPDs to mimic the statistical prop-
erties of legitimate traffic. It periodically fits samples of
a legitimate traffic to several models and picks the best
fit. Gianvecchio et al. [24] have shown that the shape
of the MBCTC traffic is almost the same as the one of
legitimate traffic. However, as there is no correlation
between consecutive IPDs, MBCTC is highly regular.

There are multiple types of defenses against covert
timing channels; for instance, it is possible to disrupt
them or to reduce their bandwidth [5, 28, 30, 32], and
certain types can even be eliminated with language-
based techniques [1] (albeit at the expense of limiting
expressiveness). However, recent work has begun to fo-
cus more on detection, typically based on traffic statis-
tics. It is this work that is most relevant here.

5.2 State of the art in detection
Next, we briefly describe four state-of-the-art detection
techniques for covert timing channels.
Shape test [15]. The shape test checks only flow-level
statistics; it assumes that the covert channel traffic could
be differentiated from legitimate traffic using only first-
order statistics, such as the mean and variance of IPDs.
While the shape test detects IPCTCs, it is often insuffi-
cient to detect more advanced timing channels.
Kolmogorov-Smirnov test (KS-test) [40]. The KS-test
assumes that the legitimate traffic and the covert chan-
nel traffic are drawn from two different distributions.
The KS-test calculates the distance between the empir-
ical distributions of the test sample and training sample
(from legitimate traffic). If the distance is above a pre-
determined threshold, the test distribution is considered
to contain a covert timing channel.
Regularity test (RT-test) [15]. The RT-test is based on
the observation that the variance of IPDs in legitimate
traffic varies over time, while a covert channel mani-
fests a relatively constant variance due to its constant
encoding scheme. RT-test groups the traffic into sets of
w packets, and compares the standard deviation of pair-
wise differences between each set. RT-test has the dis-
advantage that it exhibits a high false positive rate when
the legitimate traffic is highly variant.
Corrected conditional entropy (CCE) [22]. The CCE
metric extends the notion of the regularity test. It uses a
high-order entropy rate to recognize the repeated pattern
that is formed by the covert timing channel.

5.3 Detecting timing channels with TDR

Existing statistic-based detection techniques rely on the
availability of a sufficient amount of legitimate traffic
to construct accurate models and tune cut-off thresh-
olds. This greatly reduces the effectiveness of these
techniques when such information is not available. In
addition, statistic-based techniques are effective when
covert timing channels transmit information at a high
rate; it is much more difficult to detect slow-rate covert
timing channels in which traffic patterns are almost in-
distinguishable from legitimate ones.

To address these limitations, we propose a novel
detection technique for covert timing channels that is
based on TDR. Our approach differs fundamentally
from the existing ones in Section 5.2 in that we do not
look for the presence or absence of specific patterns in
the observed traffic; rather, we use TDR to reconstruct
what the timing of the packets ought to have been. Con-
cretely, each machine would be required to record its in-
puts in a log; this log could then be audited periodically,
perhaps authenticated with an accountability technique
like PeerReview [25], and then replayed with TDR on a
different machine, using a known-good implementation
of the audited machine’s software. In the absence of
timing channels, the packet timing during replay should
match any observations during play (e.g., from traffic
traces); any significant deviation would be a strong sign
that a channel is present.

Note that this approach does not require knowledge
of a specific encoding, and that it can in principle de-
tect even a delay of a single packet. The adversary’s
only way to avoid detection would be to make very small
changes to the timing, so that they stay below TDR’s re-
play accuracy; however, if the accuracy is high enough,
the adversary may no longer be able to distinguish the
timing changes from network jitter, which effectively
renders the channel unusable.

6 Evaluation

Next, we report results from our experimental evalua-
tion of Sanity. We focus on three key questions: 1) How
accurately does Sanity reproduce the timing of the origi-
nal execution?, 2) What are the costs of running Sanity?,
and 3) Is Sanity effective in detecting a variety of covert
timing channels?

6.1 Experimental setup

For our experiments, we deployed Sanity on a Dell Opti-
plex 9020 workstation, which has a 3.40 Ghz Intel Core
i7-4770 CPU, 16 GB of RAM, an 128 GB Vector ZDO
SSD, and a 1 Gbps network card. We installed Ubuntu

9

550 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Benchmark Sanity Oracle-INT Oracle-JIT
SOR 7.4211 1 0.2634
SMM 1.0674 1 1.1200
MC 4.0890 1 0.0305
FFT 8.4068 1 0.1590
LU 0.2555 1 0.0353

Table 2: SciMark2 performance of Sanity and Oracle’s
JVM, normalized to Oracle’s JVM in interpreted mode.

13.12 as the host OS, and we configured it with a RAM
disk for storing the logs and the files for the NFS server.

We also installed the 32-bit version of Oracle’s Java
SE 7u51 JVM, so we can compare the performance
of Sanity to that of a state-of-the-art JVM. However,
Oracle’s JVM supports just-in-time (JIT) compilation,
whereas Sanity does not; hence, to enable meaningful
comparisons, we report two sets of results for the Oracle
JVM: one with the default settings, and another in which
the -Xint flag is set. The latter forces the JVM to inter-
pret the Java bytecode rather than compiling it, just like
Sanity. We refer to these configurations as Oracle-JIT
and Oracle-INT, respectively.

6.2 Speed

The first question we examine is whether the presence
of TDR imposes a major performance penalty. Ide-
ally, we would simply “enable” and “disable” TDR in
the same codebase, but this is hard to do because TDR
is a design feature. However, we can at least obtain
some qualitative results by comparing the results from
a computation-intensive benchmark.

As a workload, we chose NIST’s SciMark 2.0 [42]
Java benchmark that consists of five computational ker-
nels: a fast Fourier transform (FFT), a Jacobi succes-
sive over-relaxation (SOR), a Monte Carlo integration
(MC), a sparse matrix multiply (SMM) and a lower-
upper factorization (LU). We ran each benchmark in
each of our three configurations (Sanity, Oracle-JIT, and
Oracle-INT), and we measured the completion time.

Table 2 shows our results. Since Sanity lacks a JIT
compiler, it cannot match the performance of Oracle’s
JVM with JIT compilation enabled. However, the com-
parison with the Oracle JVM in interpreted mode is
more mixed; sometimes one JVM is faster, and some-
times the other. We note that Sanity has some advan-
tages over the Oracle JVM, such as the second core
and the privilege of running in kernel mode with pinned
memory and IRQs disabled, so this is not a completely
fair comparison. Nevertheless, at the very least, these
results suggest that TDR is not impractical.

 0

 20

 40

 60

 80

SOR SMM MC LU FFT

V
a
ri
a
n
c
e
 (

%
)

Benchmark

79

15

.3

51

16

1.2

32

17

.09

32

15

.08

44

14

1.2

Dirty
Clean
Sanity

Figure 6: Timing variance for SciMark2, using either
Sanity or the Oracle JVM in the “dirty” and “clean” con-
figurations (see text).

6.3 Timing stability
A key requirement for any TDR implementation is tim-
ing stability: two executions of the same program with
the same inputs and the same initial state must take a
very similar amount of time. To quantify the stability of
Sanity’s timing, we again use the SciMark benchmark
because it takes no external inputs, so it is easy to re-
produce the same execution even without deterministic
replay. We ran each benchmark on Sanity 50 times, and
we calculated the difference between the longest and the
shortest execution. For comparison, we performed the
same experiment on two variants of the Oracle-INT con-
figuration: a “dirty” variant, in which the machine is in
multi-user mode, with a GUI and with networking en-
abled, and a “clean” variant in which the machine is in
single-user mode and the JVM is the only program run-
ning. The latter approximates the closest one can get to
timing stability with an out-of-the-box Oracle JVM.

Figure 6 shows our results. Not surprisingly, timing in
the “dirty” configuration can vary considerably, in some
cases by 79%; this is because of the many sources of
time noise (such as preemptions and concurrent back-
ground tasks) that are present in this configuration. In
the “clean” configuration, the variability is more than an
order of magnitude lower; Sanity can reduce it by an-
other order of magnitude or more, to the point where all
execution times are within 0.08%–1.22% of each other
(the corresponding bars in Figure 6 are there, but are
hard to see). This suggests that Sanity effectively miti-
gates or eliminates the major sources of time noise.

6.4 Replay accuracy
Next, we examine how well Sanity can fulfill its promise
of repeatable timing. For this purpose, we use an I/O-
intensive benchmark because I/O is a major source of
time noise; also, this allows us to easily collect many
traces with different inputs and thus different timing
behavior. We chose nfsj [37], an open-source NFS
server that is written in Java. We made some small mod-

10

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 551

 6

 6.5

 7

 7.5

 8

 8.5

 9

 6 6.5 7 7.5 8 8.5 9

IP
D

 d
u
ri
n
g
 r

e
p
la

y
 (

m
s
)

IPD during play (ms)

Data points
Perfect accuracy
1.85% accuracy

Figure 7: Comparison of inter-packet delays during play
and replay, for the NFS traces.

ifications to nfsj to adapt it to our Java runtime, mostly
to constructs that require reflection, which Sanity does
not yet support.

We gathered 100 one-minute traces of the NFS server
while it was handling requests, and we then replayed
each of the traces. As a first sanity check, we com-
pared the original execution time of each trace to the
execution times of its replay. We found that 97% of the
replays were within 1% of the original execution time;
the largest difference we observed was 1.85%. Recall
that deterministic replay requires very different opera-
tions in the VMM during play and replay, so this result
is far more remarkable than the stability we have shown
in Section 6.3: it is a result of the careful alignment of
play and replay in Sanity’s design.

To examine these results in more detail, we also
recorded the timing of each individual message the NFS
server transmitted during each play and replay. We then
took each pair of consecutive messages (mi

j,m
i
j+1) in

each replayed trace Ti and calculated the difference be-
tween a) the transmission times of these messages dur-
ing replay, and b) the transmission times of the corre-
sponding messages during play, shown respectively on
the y- and x-axes of Figure 7. If Sanity had reproduced
the timing exactly, the two differences would be identi-
cal, and the graph would show a straight line; in prac-
tice, there is some remaining variability due to remain-
ing sources of time noise. However, all the differences
are within 1.85%.

6.5 Log size
An important source of overhead in Sanity is the log of
nondeterministic events that the SC must write to stable
storage during the execution. To quantify this, we exam-
ined our NFS traces from Section 6.4 and found that the
logs grew at a rate of approximately 20 kB/minute. Not
surprisingly, the logs mostly contained incoming net-
work packets (84% in our trace); recall that these must
be recorded in their entirety, so that they can be injected
again during replay. (In contrast, packets that the NFS

server transmits need not be recorded because the re-
played execution will produce an exact copy.) A small
fraction of the log consisted of other entries, e.g., en-
tries that record the wall-clock time during play when
the VM invokes System.nanoTime.

We note that Sanity requires no additional log entries
specifically for TDR, so its logs should generally be no
larger (or smaller) than those of previous implementa-
tions of deterministic replay. For instance, Dunlap et
al. [19], which describes a replay system for IA-32, re-
ported a log growth rate of 1.4 GB/day for SPECweb99,
and 0.2 GB/day for a desktop machine in day-to-day
use. We expect that Sanity’s logs would have a simi-
lar size, so, given today’s inexpensive storage, keeping
the logs for a few days should be perfectly feasible.

6.6 Covert-channel experiments

In the rest of this section, we report results from our
covert-channel experiments. For these experiments, we
implemented the IPCTC, TRCTC, and MBCTC covert
channels from Section 5.1 in our nfsj-based NFS file
server. The channels add delays using a special JVM
primitive that we can enable or disable at runtime; this
allows us to easily collect traces with and without timing
channels, without making changes to the server code.

In a real attack – e.g., in the cloud computing sce-
nario – the server’s messages would need to traverse a
wide-area network and thus incur additional time noise
that must be considered by the sender of a covert timing
channel. To represent this in our experiments, we locate
the NFS client and server at two different universities
on the U.S. East coast. The RTT between the two was
approximately 10 ms, and (based on 1000 ICMP ping
measurements) the 50th, 90th, and 99th percentile jitter
was 0.18 ms, 0.80 ms, and 3.91 ms, respectively. Since
the content of the files on the NFS server is irrelevant,
we simply used a workload of 30 files with sizes be-
tween 1kB and 30kB; the client reads all of these files
one after the other.

To compare Sanity against the timing detectors de-
scribed in Section 5.1 – shape test, KS-test, regularity
test (RT-Test), and corrected conditional entropy (CCE-
Test) – we ran experiments with each detector-channel
combination. During each experiment, we gathered a
packet trace on the server itself; this eliminates detection
errors due to network jitter, and it approximates a sce-
nario where the detector is very close to the server (for
instance, it might be run by the network administrator).
The traces were available to detectors; our Sanity-based
detector additionally had access to the server’s log and
(for replay) to a non-compromised nfsj binary.

11

552 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e

n
s
it
iv

it
y
)

False positive rate (1-specificity)

Shape test (1.000)
KS test (1.000)
RT test (1.000)

CCE test (1.000)
Sanity (1.000)

(a) IPCTC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e

n
s
it
iv

it
y
)

False positive rate (1-specificity)

Shape test (0.457)
KS test (0.833)
RT test (0.726)

CCE test (1.000)
Sanity (1.000)

(b) TRCTC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e

n
s
it
iv

it
y
)

False positive rate (1-specificity)

Shape test (0.223)
KS test (0.412)
RT test (0.527)

CCE test (0.885)
Sanity (1.000)

(c) MBCTC

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

T
ru

e
 p

o
s
it
iv

e
 r

a
te

 (
s
e

n
s
it
iv

it
y
)

False positive rate (1-specificity)

Shape test (0.751)
KS test (0.813)
RT test (0.532)

CCE test (0.638)
Sanity (1.000)

(d) Needle

Figure 8: ROC curves for our four covert channels and five detectors. Area under the curve (AUC) is shown in
parentheses in the legends.

6.7 Detection performance: Haystacks
To make comparisons amongst the detectors, we vary
the discrimination threshold of each detection tech-
nique. For the Sanity-based detector, this is the mini-
mum difference between an observed IPD and the corre-
sponding IPD during replay that will cause the detector
to report the presence of a channel; the other detectors
have similar thresholds. For each setting, we obtain a
true-positive and a false-positive rate, and we plot these
in a graph to obtain each detector’s receiver operating
characteristic (ROC) curve. An ideal detector would ex-
hibit perfect recall (a true positive rate of 1.0) and speci-
ficity (a false positive rate of 0), and is depicted in a
ROC curve as an upside-down L. We also measure the
area under the curve (AUC) of each ROC curve, which
correspondingly ranges from 0 (poor classification) to 1
(an ideal classifier).

Figures 8a–c show the resulting ROC curves for the
IPCTC, TRCTC, and MBCTC channels. As expected,
the simplistic IPCTC technique is detected by all tests,
confirming earlier results [15]. The other channels more
successfully evade detection when pitted against a mis-
matched detection technique; for instance, TRCTC does
well against shape tests but is detectable by more ad-
vanced detection techniques; it preserves first-order traf-
fic statistic but produces a distribution of IPDs that sig-
nificantly differs from that of normal traffic. As ex-
pected, our Sanity-based detector offered perfect detec-
tion (AUC=1), which confirms that it can match or ex-
ceed the performance of existing detectors.

6.8 Detection performance: Needles
Next, we consider our fourth covert timing channel,
which differs from all the other channels in that it is
short-lived. This represents a more realistic scenario in
which the sender (the NFS server) wishes to exfiltrate
a small secret—for example, a password or private key.
To minimize the risk of detection, the sender toggles its
use of the covert channel, transmitting a single bit once

every 100 packets. Thus, the channel does not change
high-level traffic statistics very much, which makes it
very difficult to detect with existing methods.

Figure 8d shows the ROC curves for this channel.
As expected, all the existing detectors failed to reliably
detect the channel; in contrast, our Sanity-based detec-
tor still provided perfect accuracy. This is expected be-
cause, unlike existing detectors, Sanity does not rely on
statistical tests that must be carefully tuned to balance
the risks of under- and over-detection; instead, TDR-
based detectors can potentially find any significant tim-
ing variation, even if it affects only a single packet.

6.9 Time noise vs. jitter
As discussed in Section 3 and empirically measured in
Sections 6.3 and 6.4, TDR does not completely elimi-
nate all sources of time noise. For example, contention
between the SC and the TC on the memory bus might
affect different executions in slightly different ways. In
theory, an adversary could exploit this remaining time
noise to construct a covert channel that avoids detec-
tion: if the differences between log and replay due to
the covert channel are within the range of normal time
noise, then Sanity will fail to detect the channel.

However, such a strategy is infeasible in practice due
to the vast asymmetry between time noise allowed by
Sanity and time noise due to the network (i.e., network
jitter). Figure 7 demonstrated that the timing noise al-
lowed by Sanity is under 1.85% of the original IPDs,
that is, 0.14 ms for a median IPD of 7.4 ms. On the
other hand, the measured median jitter is 0.18 ms, which
is 129% of the allowed noise. Note that the jitter is mea-
sured between two well-provisioned universities; it is a
very conservative estimation of the jitter that the traffic
of a covert timing channel would encounter. For exam-
ple, the median jitter of broadband connection has been
measured to be approximately 2.5 ms [18]. To avoid de-
tection, the adversary would need to accept an extremely
low accuracy of reception, making such an avoidance
strategy impractical.

12

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 553

6.10 Summary
Our results confirm that it is possible to reproduce ex-
ecution times with high accuracy, even on commodity
hardware. Our prototype currently cannot match the
performance of a state-of-the-art JVM, but, as discussed
in Section 3.1 it should be possible to get better per-
formance by adding features such as JIT. As an exam-
ple of an interesting new application that TDR enables,
we have demonstrated a novel, TDR-based detector for
covert timing channels that outperforms existing detec-
tors both in terms of accuracy and in terms of general-
ity. To avoid triggering this detector, an adversary would
need to use extremely small timing variations that would
most likely be lost in the jitter of a wide-area network.

7 Discussion

Multi-tenancy: Although Sanity currently supports
only a single VM per machine, it should be possible
to provide TDR on machines that are running multiple
VMs. The key challenge would be isolation: the extra
VMs would introduce additional time noise into each
other’s execution, e.g., via the shared memory bus. We
speculate that recent work in the real-time domain [51]
could mitigate the “cross-talk” between different VMs;
techniques such as [33] could be used to partition the
memory and the cache. If the partitions are equivalent,
it may even be possible to replay an execution in a dif-
ferent partition from the one in which it was recorded,
which would remove the need to have the same physical
pages available during play and replay.
Accountability: Although TDR can detect inconsisten-
cies between the timing of messages and the machine
configuration that supposedly produced them, it cannot
directly prove such inconsistencies to a third party. This
capability could be added by combining TDR with ac-
countability techniques, such as accountable virtual ma-
chines [26]. However, the latter are designed for asyn-
chronous systems, so a key challenge would be to extend
them with some form of “evidence of time”.

8 Related Work

Covert timing channels. We have already discussed
prior work on timing channel detection in Sections 5.1
and 5.2. Briefly, TDR is different in two ways: 1)
it looks at the timing of individual packets rather than
high-level traffic statistics, which gives it the ability to
detect even low-rate, sporadic channels, and 2) it does
not look for specific anomalies but rather for deviations
from the expected timing, which enables the detection of
novel channels. We know of only one other work, Liu et
al. [34] that uses a VM-based detector, but [34] simply
replicates incoming traffic to two VMs on the same ma-

chine and compares the timing of the outputs. Moreover,
without determinism the two VMs would soon diverge
and cause a large number of false positives.
Deterministic replay. There is a large body of work on
enabling deterministic replay at various levels, e.g., at
the hardware level [27] or the OS level [3, 6, 8–10, 17,
36, 38, 39]. However, these solutions reproduce only the
functional behavior of the program. To our knowledge,
TDR is the first primitive that can accurately reproduce
the temporal behavior as well.
Real-time systems. Timing stability has also been a
design goal of precision-timed (PRET) machines [21].
The PRET machines reduce variances in the execution
time using deadline instructions [29], thread-interleaved
pipeline [35], and scratchpad-based memory hierar-
chy [35, 43]. These machines can potentially achieve
a very stable timing, although they do require new pro-
cessor designs. There also exist time-predictable archi-
tectures for real-time systems that can indirectly enable
stable timing, such as MCGREP [48] and JOP [44], by
making the execution time more deterministic. How-
ever, we are not aware of any existing work that provides
both repeatable timing and deterministic replay.

9 Conclusion

This paper introduces time-deterministic replay (TDR),
a mechanism for reproducing both the execution and the
timing of a program. TDR is well-suited for a number
of system administrator and developer tasks, including
debugging, forensics, and attack detection.

TDR presents a number of design and engineering
challenges—modern commodity processors and operat-
ing systems are tailored for performance, not for pre-
cise and identical repetition of processes. We eliminate
or mitigate many sources of “time noise” and demon-
strate the feasibility of TDR by implementing a proof-
of-concept TDR-capable JVM that we call Sanity. Our
benchmarking experiments reveal that Sanity can repro-
duce the timing of an execution to within 1.85% of the
original. We additionally demonstrate the practicality
of TDR by using Sanity to detect a variety of classes
of covert timing channels. Our results are encourag-
ing: Sanity is able to detect even extremely subtle and
low-bandwidth timing channels that fail to be detected
using standard shape- and statistical-based detection ap-
proaches.

Acknowledgments: We thank our shepherd Peter Chen
and the anonymous reviewers for their comments and
suggestions. This work was supported by NSF grants
CNS-1065130, CNS-1054229, CNS-1149832, CNS-
1064986, CNS-1117185, and CNS-1040672, as well as
DARPA contract FA8650-11-C-7189.

13

554 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

References
[1] J. Agat. Transforming out timing leaks. In Proc. POPL, Jan.

2000.
[2] B. Alpern, T. Ngo, J.-D. Choi, and M. Sridharan. DejaVu: De-

terministic Java Replay Debugger for Jalapeño Java Virtual Ma-
chine. In OOPSLA Addendum, Oct. 2000.

[3] G. Altekar and I. Stoica. ODR: Output-deterministic replay for
multicore debugging. In Proc. SOSP, Oct. 2009.

[4] S. Arimoto. An algorithm for computing the capacity of arbi-
trary discrete memoryless channels. IEEE Trans. Inf. Theor., 18
(1):14–20, Sept. 2006.

[5] A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box
mitigation of timing channels. In Proc. CCS, Oct. 2010.

[6] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proc. OSDI, Oct. 2010.

[7] P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan,
B. Jonsson, P. Marwedel, J. Reineke, C. Rochange, M. Sebas-
tian, R. von Hanxleden, R. Wilhelm, and W. Yi. Building tim-
ing predictable embedded systems. ACM TECS, 13(4):82:1–37,
2014.

[8] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman.
Coredet: A compiler and runtime system for deterministic mul-
tithreaded execution. In Proc. ASPLOS, Mar. 2010.

[9] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dOS. In Proc. OSDI, Oct. 2010.

[10] E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe multi-
threaded programming for C/C++. In Proc. OOPSLA, Oct. 2009.

[11] V. Berk, A. Giani, and G. Cybenko. Detection of covert channel
encoding in network packet delays. Technical Report TR2005-
536, Dartmouth College.

[12] R. Blahut. Computation of channel capacity and rate-distortion
functions. IEEE Trans. Inf. Theor., 18(4):460–473, 1972.

[13] A. Burtsev. Xen deterministic time-travel (XenTT). http://
www.cs.utah.edu/˜aburtsev/xen-tt-doc/.

[14] S. Cabuk. Network Covert Channels: Design, Analysis, Detec-
tion, and Elimination. PhD thesis, Purdue Univ., Dec. 2006.

[15] S. Cabuk, C. E. Brodley, and C. Shields. IP covert timing chan-
nels: Design and detection. In Proc. CCS, Oct. 2004.

[16] J.-D. Choi and H. Srinivasan. Deterministic Replay of Java Mul-
tithreaded Applications. In Proc. SPDT, Aug. 1998.

[17] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: Determin-
istic shared memory multiprocessing. In Proc. ASPLOS, Mar.
2009.

[18] M. Dischinger, A. Haeberlen, K. P. Gummadi, and S. Saroiu.
Characterizing Residential Broadband Networks. In Proc. IMC,
Oct. 2007.

[19] G. W. Dunlap, S. T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling intrusion analysis through virtual-machine
logging and replay. In Proc. OSDI, Dec. 2002.

[20] G. W. Dunlap, D. Lucchetti, P. M. Chen, and M. Fetterman. Exe-
cution replay for multiprocessor virtual machines. In Proc. VEE,
Mar. 2008.

[21] S. A. Edwards and E. A. Lee. The case for the precision timed
(PRET) machine. In Proc. DAC, June 2007.

[22] S. Gianvecchio and H. Wang. Detecting covert timing channels:
An entropy-based approach. In Proc. CCS, Oct. 2007.

[23] S. Gianvecchio and H. Wang. An Entropy-Based Approach to
Detecting Covert Timing Channels. IEEE Transactions on De-
pendable and Secure Computing, 8(6):785–797, Nov 2011.

[24] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia. Model-
based covert timing channels: Automated modeling and evasion.
In Proc. RAID, Sept. 2008.

[25] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Prac-
tical accountability for distributed systems. In Proc. SOSP, Oct.
2007.

[26] A. Haeberlen, P. Aditya, R. Rodrigues, and P. Druschel. Ac-
countable virtual machines. In Proc. OSDI, Oct. 2010.

[27] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin:
Deterministic or not? free will to choose. In Proc. HPCA, 2011.

[28] W.-M. Hu. Reducing timing channels with fuzzy time. In IEEE
Symposium on Security and Privacy, May 1991.

[29] N. J. H. Ip and S. A. Edwards. A processor extension for cycle-
accurate real-time software. In Proc. EUC, Aug. 2006.

[30] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A network pump.
IEEE Trans. Softw. Eng., 22:329–338, May 1996.

[31] B. W. Lampson. A note on the confinement problem. Commu-
nications of the ACM, 16:613–615, Oct. 1973.

[32] P. Li, D. Gao, and M. K. Reiter. Mitigating access-driven timing
channels in clouds using StopWatch. In Proc. DSN, June 2013.

[33] J. Liedtke, H. Härtig, and M. Hohmuth. OS-controlled cache
predictability for real-time systems. In Proc. RTAS, June 1997.

[34] A. Liu, J. Chen, and H. Wechsler. Real-time covert timing chan-
nel detection in networked virtual environments. In Proc. Inter-
national Conference on Digital Forensics. Jan. 2013.

[35] I. Liu, J. Reineke, D. Broman, M. Zimmer, and E. Lee. A
PRET microarchitecture implementation with repeatable timing
and competitive performance. In Proc. ICCD, Sept. 2012.

[36] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: Efficient
deterministic multithreading. In Proc. SOSP, Oct. 2011.

[37] nfsj. https://code.google.com/p/nfsj/.
[38] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient

deterministic multithreading in software. In Proc. ASPLOS, Mar.
2009.

[39] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: Probabilistic replay with execution sketching on
multiprocessors. In Proc. SOSP, Oct. 2009.

[40] P. Peng, P. Ning, and D. Reeves. On the secrecy of timing-based
active watermarking trace-back techniques. In Proc. IEEE Secu-
rity and Privacy, May 2006.

[41] G. Pokam, K. Danne, C. Pereira, R. Kassa, T. Kranich, S. Hu,
J. Gottschlich, N. Honarmand, N. Dautenhahn, S. T. King, and
J. Torrellas. QuickRec: Prototyping an Intel architecture exten-
sion for record and replay of multithreaded programs. In Proc.
ISCA, June 2013.

[42] R. Pozo and B. Miller. SciMark 2.0. http://math.nist.
gov/scimark2/.

[43] J. Reineke, I. Liu, H. Patel, S. Kim, and E. A. Lee. Pret dram
controller: Bank privatization for predictability and temporal
isolation. In Proc. CODES+ISSS, Oct. 2011.

[44] M. Schoeberl. A java processor architecture for embedded real-
time systems. J. Syst. Archit., 54(1-2):265–286, Jan. 2008.

[45] G. Shah, A. Molina, and M. Blaze. Keyboards and covert chan-
nels. In Proc. USENIX Security, July 2006.

[46] X. Wang and D. S. Reeves. Robust correlation of encrypted
attack traffic through stepping stones by manipulation of inter-
packet delays. In Proc. CCS, Oct. 2003.

[47] X. Wang, S. Chen, and S. Jajodia. Tracking anonymous peer-to-
peer VoIP calls on the internet. In Proc. CCS, Nov. 2005.

[48] J. Whitham and N. Audsley. MCGREP–A predictable architec-
ture for embedded real-time systems. In Proc. RTSS, Dec. 2006.

[49] R. Wilhelm. Determining bounds on execution times. In R. Zu-
rawski, editor, Handbook on Embedded Syst. CRC Press, 2005.

[50] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström.
The worst-case execution-time problem–overview of methods
and survey of tools. ACM TECS, 7(3):36:1–36:53, May 2008.

[51] Z. P. Wu, Y. Krish, and R. Pellizzoni. Worst case analysis of
DRAM latency in multi-requestor systems. In Proc. RTSS, Dec.
2013.

[52] M. Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and
B. Weissman. ReTrace: Collecting execution trace with virtual
machine deterministic replay. In Proc. MoBS, June 2007.

[53] Z. Yang, M. Yang, L. Xu, H. Chen, and B. Zang. ORDER:
Object centRic DEterministic Replay for Java. In Proc. USENIX
ATC, June 2011.

14

