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Abstract

A significant fraction of data stored in cloud storage is
rarely accessed. This data is referred to as cold data;
cost-effective storage for cold data has become a chal-
lenge for cloud providers. Pelican is a rack-scale hard-
disk based storage unit designed as the basic building
block for exabyte scale storage for cold data. In Peli-
can, server, power, cooling and interconnect bandwidth
resources are provisioned by design to support cold data
workloads; this right-provisioning significantly reduces
Pelican’s total cost of ownership compared to traditional
disk-based storage.

Resource right-provisioning in Pelican means only 8%
of the drives can be concurrently spinning. This intro-
duces complex resource management to be handled by
the Pelican storage stack. Resource restrictions are ex-
pressed as constraints over the hard drives. The data lay-
out and IO scheduling ensures that these constraints are
not violated. We evaluate the performance of a prototype
Pelican, and compare against a traditional resource over-
provisioned storage rack using a cross-validated simu-
lator. We show that compared to this over-provisioned
storage rack Pelican performs well for cold workloads,
providing high throughput with acceptable latency.

1 Introduction

Cloud storage providers are experiencing an exponential
growth in storage demand. A key characteristic of much
of the data is that it is rarely read. This data is commonly
referred to as being cold data. Storing data that is read
once a year or less frequently in online hard disk based
storage, such as Amazon S3, is expensive, as the hard-
ware is provisioned for low latency access to the data [7].
This has led to a push in industry to understand and build
out cloud-scale tiers optimized for storing cold data, for
example Amazon Glacier [1] and Facebook Cold Data
Storage [8]. These systems attempt to minimize up front

capital costs of buying the storage, as well as the costs of
running the storage.

In this paper we describe Pelican, a prototype rack-
scale storage unit that forms a basic building block for
building out exabyte-scale cold storage for the cloud.
Pelican is a converged design, with the mechanical, hard-
ware and storage software stack being co-designed. This
allows the entire rack’s resources to be carefully bal-
anced, with the goal of supporting only a cold data work-
load. We have designed Pelican to target a peak sus-
tainable read rate of 1 GB per second per PB of storage
(1 GB/PB/sec), assuming a Pelican stores 1 GB blobs
which are read in their entirety. We believe that this is
higher than the actual rate required to support a cold data
workload. The current design provides over 5 PB of stor-
age in a single rack, but at the rate of 1 GB/PB/s the en-
tire contents of a Pelican could be transferred out every
13 days.

All aspects of the design of Pelican are right-
provisioned to the expected workload. Pelican uses a
52U standard-sized rack. It uses two servers connected
using dual 10 Gbps Ethernet ports to the data center net-
work, providing an aggregate of 40 Gbps of full-duplex
bandwidth. It has 1,152 archive-grade hard disks packed
into the rack, and using currently available drives of av-
erage size 4.55 TB provides over 5PB of storage. As-
suming a goodput of approximately 100 MB/s for a hard
disk drive, including redundancy overheads, then only 50
active disks are required to sustain 40 Gbps.

A traditional storage rack would be provisioned for
peak performance, with sufficient power and cooling to
allow all drives to be concurrently spinning and active.
In Pelican there is sufficient cooling to allow only 96
drives to be spun up. All disks which are not spun up
are in standby mode, with the drive electronics powered
but the platters stationary. Likewise we have sufficient
power for only 144 active spinning drives. The PCIe-
bus is stretched out across the entire rack, and we provi-
sion it to have 64 Gbps of bandwidth at the root of the
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PCIe-bus, much less than 1 Gbps per drive. This careful
provisioning reduces the hardware required in the rack
and increases efficiency of hardware layout within the
rack. This increases storage density; the entire rack drive
density is significantly higher than any other design we
know, and reduces peak and average power consump-
tion. All these factors result in a hardware platform sig-
nificantly cheaper to build and operate.

This right-provisioning of the hardware, yet providing
sufficient resources to satisfy the workloads, differenti-
ates us from prior work. Massive Arrays of Idle Disks
(MAID) systems [5] and storage systems that achieve
power-proportionality [15] assume that there is sufficient
power and cooling to have all disks spinning and active
when required. Therefore, they simply provide a power
saving during operation but still require the hardware and
power to be provisioned for the peak. For a Pelican rack
the peak power is approximately 3.7 kW, and average
power is around 2.6 kW. Hence, a Pelican provides both
a lower capital cost per disk as well as a lower running
cost, whereas the prior systems provide just a lower run-
ning cost.

However, to benefit from our hardware design we need
a software storage stack that is able to handle the re-
strictions of having only 8% of the disks spinning con-
currently. This means that Pelican operates in a regime
where spin up latency is the modern day equivalent of
disk seek latency. We need to design the Pelican storage
stack to handle the disk spin up latencies that are on the
order of 10 seconds.

The contributions of this paper are that we describe the
core algorithms of the Pelican software stack that give
Pelican good performance even with hardware restricted
resources, in particular how we handle data layout and
IO scheduling. These are important to optimize in or-
der to achieve high throughput and low per operation la-
tency. Naive approaches yield very poor performance but
carefully designing these algorithms allows us to achieve
high-throughput with acceptable latency.

To support data layout and IO scheduling Pelican uses
groups of disks that can be considered as a schedulable
unit, meaning that all disks in the group can be spun up
concurrently without violating any hardware restrictions.
Each resource restriction, such as power, cooling, vibra-
tion, PCIe-bandwidth and failure domains, is expressed
as constraints over sets of physical disks. Disks are then
placed into one of 48 groups, ensuring that all the con-
straints are maintained. Files are stored within a single
group and, as a consequence, the IO scheduler needs to
schedule in terms of 48 groups rather than 1,152 disks.
This allows the stack to handle the complexity of the
right-provisioning.

We have built out a prototype Pelican rack, and we
present experimental results using that rack. In order

to allow us to compare to an over-provisioned storage
rack we use a rack-scale simulator to compare the per-
formance. We cross-validate the simulator against the
full Pelican rack, and show that it is accurate. The re-
sults show that we are able to sustain a good through-
put and control latency of access for workloads up to
1 GB/PB/sec.

The rest of this paper is organized as follows. Sec-
tion 2 provides an overview of the Pelican hardware, and
describes the data layout and IO Scheduler. Section 3 de-
scribes a number of issues we discovered when using the
prototype hardware, including issues around sequencing
the power-up with hardware restrictions. In Section 4
we evaluate the performance of Pelican and the design
choices. Related work is detailed in Section 5. Finally,
Section 6 discusses future work and Section 7 concludes.

2 A Pelican Rack

A Pelican stores unstructured, immutable chunks of data
called blobs and has a key-value store interface with
write, read and delete operations. Blobs in the size
range of 200 MB to 1 TB are supported, and each blob
is uniquely identified by a 20 byte key supplied with the
operation.

Pelican is designed to store blobs which are infre-
quently accessed. Under normal operation, we assume
that for the first few months blobs will be written to a
Pelican, until a target capacity utilization is hit, and from
then on blobs will be rarely read or deleted during the rest
of the lifetime of the Pelican until it is decommissioned.
Hence the normal mode of operation for the lifetime of
the rack will be servicing reads, and generating internal
repair traffic when disks fail or are replaced.

We also assume that Pelican is used as a lower tier in
a cloud-based storage system. Data is staged in a higher
tier awaiting transfer to a Pelican, and the actual time
when the data is migrated is under the control of the tar-
get Pelican. This means that writes can always occur
during quiescent or low load periods. Therefore, we fo-
cus on the performance of a Pelican for read-dominated
workloads.

We start by providing an overview of the Pelican hard-
ware, before describing in detail how the storage stack
performs data placement and request scheduling to han-
dle the right-provisioned hardware.

2.1 Pelican hardware
Pelican is a 52U rack filled with 1,152 archival class
3.5” SATA disks. Pelican uses a new class of archival
drive manufactured for cold storage systems. The disks
are placed in trays of 16 disks. The rack contains six 8U
chassis each containing 12 trays (192 disks) organized
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Figure 1: Schematic representation of the Pelican rack

in 2 rows of 6 trays. Each tray is approximately 4U high
and the disks are inserted as 8 pairs back-to-back and ver-
tically mounted in the tray. Each chassis has a backplane
connecting the 12 horizontally laid trays. Figure 1 shows
a schematic representation of a Pelican, a cuboid of 6
(width) x 16 (depth) x 12 (height) disks where the power
is shared by disks in the same row and cooling shared
by disks in the same column. The backplane supplies
power to the 72 trays, and this is currently configured
to be sufficient to support two active spinning or spin-
ning up disks. A tray is an independent power domain.
Due to the nature of power distribution, and the use of
electronic fuses, we provision the system to support a
symmetrical power draw across all trays. In-rack cool-
ing uses multiple forced air flow channels, each cooling
a section of multiple trays, the cooling domain. Each air
flow is shared by 12 disks. There are 96 independent
cooling domains in the rack, and each is currently cali-
brated to support cooling only one active or spinning up
disk. Pelican supports the cooling of 96 drives, but there
is sufficient power to have 144 drives spinning. The num-
ber of cooling domains and trays is in part driven by con-
venience for the mechanics and physical layout. Given
that approximately 50 drives need to be active in order
to allow a Pelican to generate 40Gbps of network traffic,
having 96 drives active at any one time, allows us to be
servicing requests concurrently with spinning up drives
for queued requests.

The SATA disks in the trays are connected to a Host
Bus Adapter (HBA) on the tray. The tray HBAs connect
to a PCIe switch on the backplane. This supports virtual
switching, allowing the physical switch to be partitioned
into two virtual switches, each with a root port connected
to one of the two servers. Each HBA is connected to one
of the two virtual switches; this selection is dynamic and
under software control.

Each of the six chassis are connected to both servers

(12 cables in total) and each PCIe hierarchy provides
only 64 Gbps bandwidth at its root. Under normal op-
eration the rack is vertically partitioned into two halves
(of 36 trays) with no shared cooling or power constraints.
Each server can therefore independently and concur-
rently handle reads and writes to its half of the rack.
However, if a server fails, the PCIe virtual switches can
be reconfigured so all disks attach to a single server.
Hence, servers, chassis, trays and disks are the failure
domains of the system.

This right-provisioning of power, cooling and inter-
nal bandwidth resources permits more disks per rack and
reduces total cost of ownership. The cost reduction is
considerable. However, the storage software stack must
ensure that the individual resource demands do not ex-
ceed the limits set by the hardware.

2.2 Pelican Software Storage Stack

The software storage stack has to minimize the impact on
performance of the hardware resource restrictions. Be-
fore describing the data layout and IO scheduling algo-
rithms used in Pelican we more formally define the dif-
ferent resource domains.

2.2.1 Resource domains

We assume that each disk uses resources from a set
of resource domains. Resource domains capture right-
provisioning: a domain is only provisioned to supply its
resource to a subset of the disks simultaneously. Re-
source domains operate at the unit of disks, and a single
disk will be in multiple resource domains (exactly one
for each resource).

Disks that are in the same resource domain for any re-
source are domain-conflicting. Two disks that share no
common resource domains are domain-disjoint. Disks
that are domain-disjoint can move between disk states
independently, and it is guaranteed there will be no over-
committing of any resources. Disks which are domain-
conflicting cannot move independently between states,
as doing so could lead to resource over-commitment.
Most normal storage systems provisioned for peak per-
formance only take into account only failure domains.
With resource right-provisioning we increase consider-
ably the number of domains and so the complexity.

In order to allow the scheduling and the placement to
be efficient, we express resource domains as constraints
over the disks. We classify the constraints as hard or
soft. Violating a hard constraint causes either short- or
long-term failure of the hardware. For example, power
and cooling are hard constraints. Violating the power
constraint causes an electronic fuse to trip that means
drives are not cleanly unmounted, and potentially dam-
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aging the hardware. A tray becomes unavailable until
the electronic fuse (automatically) resets. Violating the
cooling constraint bakes the drives, reducing their life-
time. In contrast, violating a soft constraint does not lead
to failure but instead causes performance degradation or
inefficient resource usage. For example, bandwidth is a
soft constraint: the PCIe bus is a tree topology, and vi-
olating the bandwidth constraint simply results in link
congestion resulting in a throughput drop.

The Pelican storage stack is designed to enforce oper-
ation within the hardware constraints with performance.
The Pelican storage stack uses the following constraints:
(i) one disk spinning or spinning up per cooling domain;
(ii) two disks spinning or spinning up per power domain;
(iii) shared links in the PCIe interconnect hierarchy; and
(iv) disks located back-to-back in a tray share a vibration
domain. Like other storage systems we also have failure
domains, in our case for disks, trays and chassis.

2.2.2 Data layout

In order to provide resiliency to failures, each blob is
stored over a set of disks selected by the data layout al-
gorithm. Blob placement is key as it impacts the concur-
rency of access to blobs.

When a blob is to be written into a Pelican, it is split
into a sequence of 128 kB data fragments. For each k
fragments we generate r additional fragments containing
redundancy information using a Cauchy Reed-Solomon
erasure code [4] and store the k+ r fragments. We use
a systematic code, which means if the k original frag-
ments are read back then the input can be regenerated
by simply concatenating these fragments1. Alternatively,
a reconstruction read can be performed by reading any
k fragments, allowing the reconstruction of the k input
fragments. We refer to the k + r fragments as a stripe.
To protect against failures, we store a stripe’s fragments
on independent disks. For efficiency all the fragments
associated with a single blob are stored on the same set
of k+ r disks. Further, all the fragments of the blob on a
single disk are stored contiguously in a single file, called
a stripe stack. While any k stripe stacks are sufficient
to regenerate a blob, the current policy is to read all the
k+ r stripe stacks on each request for the blob to allow
each stripe stack to be integrity checked to prevent data
corruption. Minimally we would like to ensure that the
k+ r drives that store a blob can be concurrently spun up
and accessed.

In the current Pelican prototype we are using k = 15
and r = 3. First, this provides good data durability
with the anticipated disk and tray annual failure rates
(AFRs) with a reasonable capacity overhead of 20%. The

1Non-systematic codes could also be used if beneficial [3].

r = 3 allows up to three concurrent disk failures with-
out data loss. Secondly, during a single blob read Pel-
ican would like saturate a 10 Gbps network link, and
reading from 15 disks concurrently can be done at ap-
proximately 1,500 MB/s or 12 Gbps provided that all
the disks are spun-up and are chosen to respect the PCI
bandwidth constraints. Thirdly, it is important that each
blob is mapped to 18 domain-disjoint disks. If the disks
cannot be spinning concurrently to stream out the data
then in-memory buffering at the servers proportional to
the size of the blob being accessed would be needed. If
the disks are domain-disjoint then at most k+ r 128 kB
fragments need to be buffered in memory for each read,
possibly reconstructed, and then sent to the client. Simi-
larly for writes only the fragments of the next stripe in the
sequence are buffered in memory, the redundancy frag-
ments are generated, and all fragments sent to disk.

The objective of the data layout algorithm is to maxi-
mize the number of requests that can be concurrently ser-
viced while operating within the constraints. Intuitively,
there is a queue of incoming requests, and each request
has a set of disks that need to be spinning to service the
request. We would like to maximize the probability that,
given one executing request, we can find a queued re-
quest which can be serviced concurrently.

To understand how we achieve layout we first ex-
tend the definition of domain-conflict and domain-
disjointness to sets of disks as follows: two sets, sa and
sb are domain-conflicting if any disk in sa is domain
conflicted with any disk in sb. Operations on domain-
conflicting sets of disks need to be executed sequentially,
while operations on domain-disjoint sets can be executed
concurrently.

Imagine a straw-man algorithm in which the set of
disks is selected with a simple greedy algorithm: all
1,152 disks are put into a list, one is randomly selected
and all drives that have a domain-conflict with it are re-
moved from the list, and this repeats until 18 disks have
been chosen. This is very simple, but yields very poor
concurrency. If you take two groups, a and b, of size g
populated using this algorithm then each disk in b has
a probability proportional to g of conflict with group
a. Therefore, the probability for a and b to be domain-
conflicting is proportional to g2.

The challenge with more complex data layout is to
minimize the probability of domain conflicts while tam-
ing the computational complexity of determining the set
of disks to be used to store a blob. The number of com-
binations of 18 out of 1,152 disks, C1152

18 , is large.
In order to handle the complexity we divided the disks

into l groups, such that each disk is a member of a single
group and all disks within a group are domain-disjoint,
so they can be spinning concurrently. The group abstrac-
tion then removes the need to consider individual disks
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or constraints. The complexity is now determining if
l2 pairs of logical groups are domain-disjointed or not,
rather than C1152

18 sets of disks.
To improve concurrency compared to the straw-man

algorithm, we enforce that if one disk in group a collides
with group b, all the disks in a collide with b. In other
words we make groups either fully colliding or fully dis-
joint, which reduces the collision probability from be-
ing proportional to g2 to being proportional to g. This is
close to the lower bound on the domain-collision proba-
bility for the Pelican hardware because g is the number
of cooling domains used by a group (only one disk can
be active per cooling domain and disks within a group
are domain-disjoint).

Figure 2 shows a simplified example of how we assign
disks to groups. The black squares show one group of
12 disks, the red-and-white squares another group. No-
tice they collide in all their power and cooling domains
and so both groups cannot be spinning simultaneously.
We start with the black group and generate all its rota-
tions, which defines 12 mutually-colliding groups: the
light-blue squares. These groups all fully collide, and we
call this set of groups a class. Within a class only one
group can be spinning at a time because of the domain
conflicts. However the remaining domains are not con-
flicted and so available to form other classes of groups
which will not collide with any of the 12 groups in the
first class. By forming classes of maximally-colliding
groups we reduce collisions between the other remaining
groups and so greatly improve the available concurrency
in the system.

Selecting l is reasonably straightforward: we wish to
maximize (to increase scheduling flexibility) the number
l of groups of size g given l × g = 1152 and with g >=
k+ r (groups have to be large enough to store a stripe).
In the current implementation we use g = 24 rather than
g = 18 so that a blob can always entirely reside within
a single group even after some disks have failed. Stripe
stacks stored on failed drives are initially regenerated and
stored on other drives in the group. Hence l = 48; the 48
groups divide into 4 classes of 12 groups, and each class
is independent from the others.

Using groups for the data layout has several benefits:
(i) groups encapsulate all the constraints because disks in
a group are domain-disjointed by definition; (ii) groups
define the concurrency that can be achieved while servic-
ing a queue of requests: groups from the same class have
disks that share domain-conflicts and so need to be ser-
viced sequentially, while groups from different classes
have disks that are all domain-disjoint so can be serviced
concurrently; (iii) groups span multiple failure domains:
they contain disks distributed across the trays and all
backplanes; and (iv) groups reduce time required to re-
cover from a failed disk because all the required data is
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Figure 2: Two fully colliding groups.

contained within the group.
A blob is written to k+ r disks in a single randomly

selected group. The group has 24 disks but the blob only
needs 18 disks. To select the disks to store the blob we
split the group’s disks into six sets each containing disks
from the same backplane failure domain. The six sets are
then ordered on spare capacity and the three disks with
the highest spare capacity are selected. As we will show
this simple approach achieves a high disk utilization.

Pelican preserves the group arrangement even when
disks fail. A disk failure triggers rebuilds of all the blobs
that stored a stripe stack on it. Rebuilding a single blob
requires reading at least k stripe stacks and regenerating
the missing stripe stack(s) across other disks in the group.
By requiring blobs to be entirely within a group we en-
sure that rebuild operations use disks which are all spin-
ning concurrently. The alternative would require buffer-
ing data in memory and spinning disks up and down dur-
ing rebuild, which would slow down rebuild.

We use an off-rack metadata service called the cata-
log which is durable and highly available. Once disks
have been chosen for a write request, the catalog is up-
dated. It holds the mapping from a blob key to the 18
disks and group which store the blob, and other ancillary
metadata. The catalog is modified during write, rebuild
and delete requests, and information is looked up during
read requests.

Using groups to abstract away the underlying hard-
ware constraints is an important simplification for the
IO scheduler: it needs simply consider which class the
group is in rather than the constraints on all the drives.
As we showed, increasing the number of groups which
totally collide also increases the number of independent
groups leading to better throughput and lower latency for
operations. In the next section, we describe the IO sched-
uler in detail.

2.2.3 IO scheduler

In Pelican spin up is the new seek latency. Traditional
disk schedulers have been optimized to re-order IOs in
order to minimize seek latency overheads [14, 16]. In
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Pelican we need to re-order requests in order to minimize
the impact of spin up latency. The four classes defined by
the data layout are domain-disjoint and are thus serviced
independently. For each class, we run an independent
instance of the scheduler that only services requests for
its class. It has no visibility of requests on other classes
and therefore the re-ordering happens at a class-level.

Traditional IO re-ordering attempts to order the re-
quests to minimize the disk’s physical head movement;
every IO in the queue has a different relative cost to ev-
ery other IO in the queue. We can define a cost function
cd(hl , IO1, IO2) which, given two IO requests IO1 and
IO2 and the expected head position hl , calculates the ex-
pected time cost of servicing IO1 and then IO2. This cost
function will take into account the location of data being
read or written, the rotational speed of the disk platters
and the speed at which the head can move. This is a con-
tinuous function and cd(hl , IO1, IO2) �= cd(hl , IO2, IO1).
In contrast, in Pelican there is a fixed constant cost of
spinning up a group, which is independent of the current
set of disks spinning. The cost function is cp(ga, IOg)
where ga is the currently spinning group and an IO has a
group associated with it, so IOg refers to an IO operation
on group g. The cost function is binary, and if ga = g
then the cost is zero, else it is 1.

We define the cost c of a proposed schedule of IO re-
quest as the sum of cp() for each request, assuming that
the g of the previous request in the queue is ga for the
next request. Only one group out of the 12 can be spun
up at any given time, and if there are q requests queued,
and we use a FIFO queue, then c ≈ 0.92q, as there is a
probability of 0.92 that two consecutive operations will
be on different groups. Note that there is an upper bound
c = q, where every request causes a group to spin up.

The goal of the IO scheduler is to try to minimize c,
given some constraint on the re-ordering queuing delay
each request can tolerate. When c≈ q then Pelican yields
low throughput, as each spin up incurs a latency of at
least 8 seconds. This means that in the best case only
approximately 8 requests are serviced per minute. This
also has the impact that, not only is throughput low, but
the queuing latency for each operation will be high, as
requests will be queued during the spin ups for the earlier
requests in the queue.

Another challenge is ensuring that the window of vul-
nerability post-failures is controlled to ensure the prob-
ability of data loss is low. A disk failure in a group
triggers a set of rebuild operations to regenerate the lost
stripe-stacks. This rebuild requires activity on the group
for a length of time equal to the data on the failed disk
divided by the disk throughput (e.g., 100 MBps) since
k+ r− 1 stripe-stack reads and 1 stripe-stack write pro-
ceed concurrently. During the rebuild Pelican needs to
service other requests for data from the affected group as

well as other groups in the same class. Simply prioritiz-
ing rebuild traffic over other requests would provide the
smallest window of vulnerability, but would also cause
starvation for the other groups in the class.

The IO scheduler addresses these two challenges using
two mechanisms: request reordering and rate limiting.
Internally each scheduler instance uses two queues, one
for rebuild operations the other for all other operations.
We now describe these two mechanisms.
Reordering. In each queue, the scheduler can reorder
operations independently. The goal of reordering is to
batch sets of operations for the same group to amor-
tize the group spin up latency over the set of operations.
Making the batch sizes as large as possible minimizes c,
but increases the queuing delay for some operations. To
quantify the acceptable delay we use the delay compared
to FIFO order.

Conceptually, the queue has a timestamp counter t that
is incremented each time an operation is queued. When
an operation r is to be inserted into the queue it is tagged
with a timestamp tr = t and is assigned a reordering
counter or = t. In general, or − tr represents the absolute
change in ordering compared to a FIFO queue. There
is an upper bound u on the tolerated re-ordering, and
oa − ta ≤ u must hold for all operations a in the queue.
The scheduler examines the queue and finds l, the last
operation in the same group as r. If no such operation ex-
ists, r is appended to the tail of the queue and the process
completes. Otherwise, the scheduler performs a check to
quantify the impact if r were inserted after l in the queue.
It considers all operations i following l. If oi +1− ti ≤ u
no longer holds for any i, then r is appended to the tail of
the queue. Otherwise all oi counters are incremented by
one, and r is inserted after l with or = tr −|i| where |i| is
the number of requests i, which r has overtaken.

To ease understanding of the algorithm, we have de-
scribed the u in terms of the number of operations, which
works if all the operations are for a uniform blob size. In
order to support non-uniform blob sizes, we operate in
wall clock time, and estimate dynamically the time each
operation will be serviced, given the number of group
spin ups and the volume of data to be read or written by
operations before it in the queue. This allows us to spec-
ify u in terms of wall clock time.

This process is greedily repeated for each queued re-
quest, and guarantees that: (i) batching is maximized un-
less it violates fairness for some requests; and (ii) for
each request the reordering bound is enforced. The al-
gorithm expresses the tradeoff between throughput and
fairness using u, which controls the reordering. For ex-
ample, setting u = 0 results in a FIFO service order pro-
viding fairness, conversely setting u = ∞ minimizes the
number of spin ups which increases throughput, but also
means the request queuing delay is unbounded.
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Rate limiting. The rate at which each queue is serviced
is then controlled, to manage the interference between
the rebuild and other operations. In particular, we want to
make sure that the rebuild traffic gets sufficient resources
to allow it to complete the rebuild within an upper time
bound, to allow us to probabilistically ensure data dura-
bility if we know the AFR rates of the hardware.

The scheduler maintains two queues, one for the re-
build operations and one for other operations. We use
a weighted fair queuing mechanism [6, 12] across the
two queues which allows us to control the fraction of re-
sources dedicated to servicing the rebuild traffic.

The approximate time to repair after a single disk fail-
ure is x/t × 1/w where x is the amount of data on the
failed disk, t is the average throughput of a single disk
(e.g., 100 MB/s) and w is the fraction of the resources
the scheduler allocates to the rebuild.

3 Implementation

Early experience with the hardware has highlighted a
number of other issues with right-provisioning. The first
is to ensure that we do not violate the cooling or power
constraints from when power is applied until the OS has
finished booting and the Pelican service is managing the
disks. We achieve this by ensuring the disks do not spin
up when first powered, as done by RAID enclosures. Our
first approach was to float pin 11 of the SATA power con-
nector, which means that the drive spins up only when it
successfully negotiates a PHY link with the HBA. We
modified the Windows Server disk device driver to keep
the PHY disabled until the Pelican service explicitly en-
ables it. Once enabled the device driver announces it
to the OS as normal, and Pelican can start to use it.
However, this added considerable complexity, and so we
moved to use Power Up In Standby (PUIS) where the
drives establish a PHY link on power up, but require an
explicit SATA command to spin up. This ensures disks
do not spin without the Pelican storage stack managing
the constraints.

At boot, once the Pelican storage stack controls the
drives, it needs to mount and check every drive. Se-
quentially bring each disk up would adhere to the power
and cooling constraints, but provides long boot times.
In order to parallelize the boot process we exploit the
group abstraction. We generate an initialization request
for each group and schedule these as the first operation
performed on each group. We know that the disks within
the groups are domain-disjoint, so we can perform ini-
tialization concurrently on all 24 disks in the group. If
there are no user requests present then four groups (96
disks) are concurrently initialized, initializing the entire
rack takes the time required to sequentially initialize 12
disks (less than 3 minutes). External read and write re-

quests can be concurrently scheduled, with the IO sched-
uler effectively on-demand initializing groups, amortiz-
ing the spin up time. The first time a disk is seen, Pelican
writes a fresh GPT partition table and formats it with an
NTFS filesystem.

During early development we observed unexpected
spin ups of disks. When Pelican spins down a disk, it
drains down IOs to the disk, unmounts the filesystem,
and then sets the OFFLINE disk attribute. It then issues
a STANDBY IMMEDIATE command to the disk, causing
it to spin down. Disks would be spun up without a re-
quest from Pelican, due to services like the SMART disk
failure predictor polling the disk. We therefore added
a special No Access flag to the Windows Server driver
stack that causes all IOs issued to a disk marked to return
with a “media not ready” error code.

We also experienced problems with having many
HBAs attached to the PCIe bus. The BIOS is respon-
sible for initial PCI resource allocations of bus numbers,
memory windows, and IO port ranges. Though neither
the HBAs nor the OS require any IO ports, a small num-
ber are exposed by the HBA for legacy purposes. PCI
requires that bridges decode IO ports at a granularity of
4 kB and the total IO port space is only 64 kB. We saw
problems with BIOS code hanging once the total require-
ments exceeded 64 kB instead of leaving the PCI decode
registers disabled and continuing. We have a modified
BIOS on the server we use to ensure it can handle all 72
HBAs.

4 Evaluation

This section evaluates Pelican and in particular quan-
tifies the impact of the resource right-provisioning on
performance. We have a prototype Pelican rack with 6
chassis and a total of 1,152 disks. Our prototype uses
archival class disks from a major disk manufacturer. Six
PCIe uplinks from the chassis backplanes are connected
to a single server using a Pelican PCIe aggregator card.
The server is an HP ProLiant DL360p Gen8 with two
eight-core Intel Xeon E5-2665 2.4GHz processors, 16
GB DRAM, and runs Windows Server 2012 R2. The
server has a single 10 Gbps NIC. In order to allow us to
evaluate the final Pelican configuration with two servers
and to compare to alternative design points, we have de-
veloped a discrete event-based Pelican simulator. The
simulator runs the same algorithms and has been cross-
validated against the storage stack running on the full
rack.

4.1 Pelican Simulator
The discrete event simulator models the disks, network
and PCIe/SATA physical topology. In order to ensure
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Figure 3: Distributions and parameters used in the simulation.

that the simulator is accurate we have parameterized the
simulator using micro-benchmarks from the rack. We
have then also cross-validated the simulator against the
rack for a range of workloads.

We measure the spin up delays (shown in Figure 3(a))
and delays for mounting and unmounting a drive once
it is spun up (shown in Figure 3(b) and 3(c)). For the
spin up and unmounts delays we spun up and down disks
100,000 times, and measured the spin up and unmount
latency. We observe that the volume mount delays are
dependent on the load of the system. Under heavy load,
the probability that at least one disk in a group is a strag-
gler when all disks in the group are being mounted is
much higher than when under low load. We therefore
generate the mount delay distributions by taking sam-
ples of mount latencies during different load regimes on
the Pelican. Figure 3(b) compares the distributions taken
during high and low loads. In simulation, the mount de-
lays are sampled from the distribution that corresponds
to the current load.

For the disk throughput we measured the actual
throughput of the disks in a quiescent system, and con-
figure the simulator with an average disk throughput of
105 MB/s. Seeks are simulated by including a constant
latency of 4.2ms for all disk accesses as specified in the
disk data-sheet. In Pelican, seek latency has negligible
impact on performance. Reads are for large blobs, and
even though they are striped over multiple disks, each
stripe stack will be a single contiguous file on disk. Fur-
ther, as we can see from Figure 3(a) and 3(b) the latency
of spinning the disk up and mounting the volume heavily
dominate over seek time. The simulator uses a distribu-
tion of disk sizes shown in Figure 3(e). The capacities
shown are for the drive capacity after formatting with

NTFS. Finally, the Pelican is not CPU bound so we do
not model CPU overheads.

In order to allow us to understand the performance ef-
fects of right-provisioning in Pelican, we also simulate a
system organized like Pelican but with full provisioning
for power and cooling which we denote as FP. In the FP
configuration disks are never spun down, but the same
physical internal topology is used. The disks are, as with
Pelican, partitioned into 48 groups of 24 disks, however,
in the FP configuration all 48 groups can be concurrently
accessed. There is no spin up overhead to minimize, so
FP maintains a queue per group and services each queue
independently in FIFO order. FP represents an idealized
configuration with no resource constraints and is hard to
realize in practice. In particular, due to the high disk den-
sity in Pelican, little physical space is left for cooling and
so forth.

In both configurations we assume, since the stripe
stacks are contiguous on a disk, that they can be read
at full throughput once the disk is spun up and mounted.
The simulator models the PCIe/SATA and network band-
width at flow level. For congested links the throughput
of each flow is determined by using max-min fair shar-
ing. As we will show in Section 4.4 we are able to cross-
validate the Pelican simulator with the Pelican rack with
a high degree of accuracy.

4.2 Configuration parameters

In all experiments the Pelican rack and simulator are con-
figured with 48 groups of 24 disks as described. The
groups are divided into 4 classes, and a scheduler is used
per class. Blobs are stored using a 15+3 erasure encod-
ing so each blob has 15 data blocks and 3 redundancy
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blocks, all stored on separate disks. The maximum queue
depth per scheduler is set to 1000 requests, and the max-
imum reordering allowance is set to 500 GB. For the
cross-validation configuration, all 4 schedulers are run
by a single server with one 10 Gbps NIC. In the rest of
the evaluation, the rack has two servers such that each
server runs two schedulers. Each server is configured
with 20 Gbps network bandwidth, providing an aggre-
gate network throughput of 40 Gbps for the entire Peli-
can rack.

4.3 Workload
We expect Pelican to be able to support a number of
workloads, including archival workloads that would tra-
ditionally use tape. Pelican represents a new design point
for cloud storage, with a small but non-negligible read
latency and a limited aggregate throughput. We expect
tiering algorithms and strategies will be developed that
can identify cold data stored in the cloud that could be
serviced by a Pelican. Due to the wide range of work-
loads we would like to support, we do not focus on a sin-
gle workload but instead do a full parameter sweep over
a range of possible workload characteristics. We gen-
erate a sequence of client read requests using a Poisson
process with an average arrival rate 1/λ , and vary λ =
0.125 to 16. For clarity, in the results we show the aver-
age request rate per second rather than the λ value. As
write requests are offloaded to other storage tiers, we as-
sume that servicing read requests is the key performance
requirement for Pelican and, hence focus on read work-
loads. The read requests are randomly distributed across
all the blobs stored in the rack. Unless otherwise stated
requests operate on a blob size of 1 GB, to allow the
metric of requests per second to be easily translated into
an offered load. Some experiments use a distribution of
blob sizes which is shown in Figure 3(d); a distribution
of VHD image sizes from an enterprise with mean blob
size of 3.3 GB.

In all simulator experiments, we wait for the system to
reach steady state, then gather results over 24 simulated
hours of execution.

4.4 Metrics
Our evaluation uses the following metrics:
Completion time. This is the time between a request
being issued by a client and the last data byte being sent
to the client. This captures the queuing delay, spin up
latency and the time to read and transfer the data.
Time to first byte. The time between a request being
issued by a client and the first data byte being sent to the
client. This includes the queuing delay and any disk spin
up and volume mount delays.

Service time. This is the time from when a request is
dequeued by the scheduler to when the last byte associ-
ated with the request is transferred. This includes delays
due to spinning up disks and the time taken to transfer
the data, but excludes the queuing delay.
Average reject rate. These experiments use an open
loop workload; when the offered load is higher than the
Pelican or FP system can service, requests will be re-
jected once the schedulers’ queues are full. This met-
ric measures the average fraction of requests rejected.
The NIC is the bottleneck at 5 requests per second for
40 Gbps. Therefore in all experiments, unless otherwise
stated, we run the experiment to a rate of 8 request per
second.
Throughput. This is the average rack network through-
put which is calculated as the total number of bytes trans-
ferred during the experiment across the network link di-
vided by the experiment duration.

First we cross-validated the simulator against the cur-
rent Pelican rack. The current prototype rack can support
only one disk spinning and one disk spinning up per tray,
rather than two disks spinning up. The simulator is con-
figured with this restriction for the cross-validation. The
next revision of the rack and drives will be able to sup-
port two disks spinning up per tray. We configure the
simulator to match the prototype Pelican rack hardware.
A large number of experiments were run to test the algo-
rithmic correctness of the simulator against the hardware
implementation.

During the initial experiments on the real platform, we
noticed that the NIC was unable to saturate the 10 Gbps
NIC. Testing the performance of the NIC in isolation
on an unloaded server using TTCP [10] identified that
it had a peak throughput of only 8.5 Gbps. Figure 3(f)
shows the network throughput as a function of the num-
ber of TCP flows. Despite our efforts to tune the NIC,
the throughput of the NIC never exceeded 8.5 Gbps. For
the cross-validation we configure the simulator to use an
8.5Gbps NIC.

We ran a set of performance evaluation experiments
where we generated a set of trace files consisting of a
burst of b read requests for 1GB blobs uniformly dis-
tributed over 60 seconds, where we varied b from 15 to
1,920. We created a test harness that runs on a test server
and reads a trace file and performs the read operations
using the Pelican API running on the Pelican rack. Each
experiment ran until all requests had been serviced. We
replayed the same trace in the simulator. In both cases we
pre-loaded the Pelican with the same set of blobs which
are read during the trace.

To cross-validate we compare the mean throughput,
request completion times, service times and times to first
byte for different numbers of requests. The compari-
son is summarized in Figure 4. Figures 4(a) to 4(d) re-
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Figure 5: Base performance of Pelican.

spectively show average throughput of the system, and
average per-request completion time, time to first byte
and service time as a function of the number of requests.
These results show that the simulator accurately captures
the performance of the real hardware for all the consid-
ered metrics. Traditionally, simulating hard disk-based
storage accurately is very hard due to the complexity
of the mechanical hard drives and their complex control
software that runs on the drive [17]. In Pelican, the over-
heads are dominated by the spin up and disk mount la-
tencies. The IO pattern at each disk is largely sequential,
hence we do not need to accurately simulate the low-level
performance of each physical disk.

All further results presented for Pelican and FP use
this cross-validated simulator.

4.5 Base performance

The first set of experiments measure the base perfor-
mance of Pelican and FP. Figure 5(a) shows the through-
put versus the request rate for Pelican, FP and for the
straw-man random layout (described in Section 2.2.2).

The straw-man performs poorly because the random
placement means that the probability of being able to
concurrently spin up two sets of disks to concurrently
service two requests is very low. Across all request rates,
it never achieves a throughput of more than 0.7 Gbps.
The majority of requests are processed sequentially with
group spin ups before each request. The latency of spin-
ning up disks dominates and impacts throughput.

In Figure 5(a) we can also see that the throughput for
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Figure 6: Reject rates versus workload request rate.

the default configurations of Pelican and FP configured
with two servers each with 20 Gbps network bandwidth
(labelled 40 Gbps in Figure 5(a)) is almost identical up
to 4 requests per second. These results show that, for
throughput, the impact of spinning up disks is small:
across all the 40 Gbps configurations Pelican achieves
a throughput within 20% of FP. The throughput plateaus
for both systems after 5 requests per second at 40 Gbps
which is the aggregate network bandwidth.

Figure 5(a) also shows the results for Pelican and
FP configured with unbounded network bandwidth per
server. This means the network bandwidth is never the
bottleneck resource. This clearly shows the impact of
right-provisioning. FP is able to utilize the extra re-
sources in rack when the network bandwidth is no longer
the bottleneck, and is able to sustain a throughput of
106 Gbps. In contrast, Pelican is unable to generate
load for the extra network bandwidth because it is right-
provisioned and configured for a target throughput of 40
Gbps.

Figure 6 shows the average reject rates for all the con-
figurations under different loads, except for FP with un-
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bounded bandwidth as it never rejects a request. No con-
figuration rejects a request for rates lower than 5 requests
per second. At 5 requests per second, Pelican and Pelican
unbounded start to become overloaded and reject 35%
and 21% of the requests respectively. FP also marginally
rejects about 1% of requests because request queues are
nearly full and minor fluctuations in the Poisson arrival
rate occasionally cause some requests to be rejected. As
the request rates increase the rejection rate increase sig-
nificantly, with more than half of the submitted requests
rejected.

The results above show that Pelican can achieve a
throughput comparable to FP. The next results explore
the per request service time. Figure 5(b) shows the av-
erage request service time as a function of the request
rate. For FP when the offered load is low, there is no
contention on the network, and hence the service time is
simply the time taken to read the blob from the disks.
Hence, for 1 GB blobs the lower bound on service time
is approximately 0.65 seconds, given the disk throughput
of 105 MB/s. As the offered load increases, concurrent
requests get bottlenecked on the network, leading to the
per-request service time increasing.

For Pelican, request rates in the range of 0.0625 and
0.25 per second, results in most requests incurring a
spin up delay because requests are uniformly distributed
across groups, and there are only 4 groups spun up at
any time out of 48, so the probability of a request be-
ing for a group already spinning is low. As the request
rate increases, the probability of multiple requests being
queued for same group increases, and the average service
time decreases. Above 0.25 requests per second there is
sufficient number of requests being queued for the sched-
uler to re-order them to reduce the number of group spin
ups. Although requests will not be serviced in the order
they arrive, the average service time decreases as multi-
ple requests are serviced per group spin up. Interestingly,
for a rate of 4 requests per second and higher the service
time for Pelican drops below FP, because in FP 48 re-
quests are serviced concurrently versus only 4 in Pelican.
The Pelican requests therefore obtain a higher fraction of
the network bandwidth per request and so complete in
less time.

Next we explore the impact on data access latency of
needing to spin up disks. Figure 5(c) shows the aver-
age and maximum time on a log scale to first byte as a
function of request rate for Pelican and FP. Under low of-
fered load the latency is dominated by the disk seek for
FP and by spin up for Pelican, so FP is able to get the
first byte back in tens of milliseconds on average, while
Pelican has an average time to first byte of 14.2 seconds
even when idle. The maximum times show that FP has
a higher variance, due to a request that experiences even
short queuing delay being impacted by the service time
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Figure 7: Scheduler performance.

of requests scheduled before it. However, the maximum
for FP is over an order of magnitude lower than the mean
for Pelican, until the request rate is 5 requests per second
and are bottlenecked on the network bandwidth.

Overall, the results in Figure 5 show that Pelican can
provide a high utilization with reasonable latency. In an
unloaded Pelican blobs can be served quickly, whereas
under heavy load, high throughput is delivered.

4.5.1 Impact of disk failure

Next, we evaluate how recovering from a disk failure im-
pacts the time to first byte for concurrent client requests.
We also evaluate the time Pelican takes to rebuild all lost
blobs. The experiment is the same as that of the previous
section, except that we mark one disk as failed once the
system reaches steady state. The disk contains 4.28 TB
of data and 64,329 blobs stored in the group have a stripe
stack on the failed disk. For each blob ≥ k undamaged
stripe stacks are read and the regenerated stripe stack is
written to the same group, which has sufficient spare ca-
pacity distributed across the other disks in the group. The
scheduler rate-limits client requests to ensure that the re-
build has at least 50% of the throughput.

Figure 7(a) shows the time to rebuild and persist all the
blobs versus the client request rate. At low client request
rates the offered client load is low enough that it does
not use all the resources available to it, and due to work
conservation, the time to recover is low. As the offered
client traffic increases, the time taken to recover from the
disk failure grows. The rebuild time plateaus below 24
hours, when both the rebuild and client request use their
allocated 50%. Figure 7(b) shows the time to first byte
for the 95th percentile of client requests versus client re-
quest rate with and without rebuild requests. The rate
limiting increases the 95th percentile time to first byte for
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Figure 8: Cost of fairness.

client requests by a factor of 2.2 at high workload rates.
The rebuild traffic only affects client requests in the class
impacted by the disk failure. Other classes observe no
performance impact.

4.6 Cost of fairness
The next experiments evaluate the impact on fairness by
the Pelican scheduler. We fix the client workload at 5
read requests per second, the maximum rate which the
network could sustain. We ran the experiment varying u,
the tolerance on re-ordering, between 50 and 1000 GB.
Figure 8(a) shows the throughput and 99th percentile of
time to first byte as a function of u. We show the 99th
percentile for time to first byte to quantify the impact on
the tail, those requests most impacted by queuing delay.

Changing u from 50 to 350 GB nearly doubles the
throughput of the system. Increasing u beyond this has
only a modest impact on throughput. This is because the
fraction of time spent spinning up drives is low therefore
the majority of time is being spent reading data. When
u is below 350 GB, the 99th percentile of time to first
byte is dominated by the queuing delay. A significant
fraction of the time is spent spinning disks up, impact-
ing both throughput and latency of request. Hence in-
creasing reordering improves throughput and reduces the
queuing delay. At above 350GB the 99th percentile for
time to first byte increases, despite the slight increase in
throughput. This is slightly counter intuitive, until you
remember that as u increases we are allowing requests to
be queued for longer. This is then reflected when looking
at the 99th percentile. This also impacts the number of
requests that are rejected. Figure 8(b) shows the reject
rate of the system as a function of u. Changing u from 50
to 1000 GB reduces the percentage of rejected requests

from nearly 85% to approximately 25% due to increased
throughput.

4.7 Disk Lifetime
An obvious concern is the impact on the lifetime of the
disks of spinning them up and down. Also, the new
class of archival drive that systems like Pelican use are
rated for a number of terabytes read and written per year.
We therefore ran an experiment to determine the aver-
age number of spin ups per year as well as the expected
number of terabytes transferred. Figure 9(a) shows the
average number of spin ups and terabytes transferred per
year as a function of the workload rate. The average data
transferred increases with the request rate and peaks at 99
TB per year when the request rate saturates the system.
This is within the specification for the new generation of
archival drives. Currently in the prototype Pelican we do
not do any proactive background data scrubbing, which
is common in storage systems to check for integrity is-
sues. Background scrubbing increases the volume of
data transferred per disk, which in itself impacts the disk
AFR. We are currently long-term empirically testing the
drives and plan to add scrubbing functionality once we
have a better understanding of the drives longer term per-
formance.

The number of spin ups is also shown in Figure 9(a);
interestingly the peak is at 0.5 requests per second. Be-
low this rate the number of spin ups grows with load as
the scheduler has little opportunity to reorder requests.
Above this rate the number of spin ups decreases because
the queues are long enough for the scheduler to perform
reordering. At 4 requests per second the scheduler hits
the maximum reordering limit and the number of spin
ups remains constant as the request rate increases further.
We believe that the archival class of drive that we are us-
ing can tolerate this many spin up cycles per year with
minimal impact on the AFR. It should be noted that these
are controlled head park and unpark operations triggered
by issuing a SATA command to the drive, which is then
allowed to park the head. They are not induced by sud-
den power failure. When a disk is spun down, all the
electronics in the drive are still powered and operating.

4.8 Power Consumption
We now quantify the power savings resulting from power
right-provisioning. The prototype Pelican hardware en-
ables us to measure the power draw of each tray inde-
pendently. We ran an experiment in which we sequen-
tially spun up then down every disk in a tray, sampling
the tray power draw. This allows us to estimate the aver-
age power draw of a disk in standby, spinning up and ac-
tive states. The tray power is dominated by the disks, so
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Figure 9: Power draw and disk usage.

we place all 16 disks in standby and estimate the power
draw per disk as 1

16 th of the power draw of a tray. The
average power draw for a disk active or spinning up is
then computed using the average power draw of a tray
with one disk in that test state minus the power draw of
the other disks in standby. The power draws for the three
disks states is: Pstandby = 1.56 W, Pspinup = 21.53 W and
Pactive = 9.42 W.

We parameterize the simulator with these values and
measure the power consumed by just the disks. Fig-
ure 9(b) shows the power draw of the 1,152 disks un-
der different configurations as a function of the work-
load rate. The figure shows the average and peak power
draw for Pelican. It also shows the lower bound when
all drives in spun down in standby and, in order to allow
comparison with a fully provisioned system, it shows the
power draw for all drives spun up and active.

The average power draw of Pelican varies with the
workload rate. The highest average power consumption
which is 3.3 kW is reached when the number of spin ups
is the highest, at around 0.5 requests per second because
spin ups have the highest power draw. At this rate, there
are sufficient requests to require frequent group spin ups,
but not enough for extensive batching. For both lower
and higher request rates, group spin ups are less frequent
and the power consumption is close to 2.6 kW. Across
all request rates the average Pelican power draw is be-
tween 3.6 and 4.1 times lower compared to the fully pro-
visioned power draw with all disk spinning. Pelican peak
power consumption is 3.7 kW and is reached when 96
drives are concurrently spinning up. For comparison,
peak power draw is 3 times lower than all disks active.
In the fully provisioned rack the peak power draw would
be achieved if all 1,152 drives were concurrently spun up
and would peak at 25.8kW. Of course, in practice some
form of deferred spin up technique would be used.

4.9 Capacity Utilization

The final set of experiments evaluate the Pelican data lay-
out algorithm with respect to capacity utilization, partic-
ularly with non-uniform disk capacities. We ran an ex-

periment with a 100% write workload that stopped when
the first write request was rejected because no group had
sufficient remaining capacity to store the blob. We mea-
sure the per-disk utilization across the rack. For this ex-
periment, the blobs sizes are selected using a distribution
of VHD sizes from an internal company VHD store, with
sizes from 200 MB to 9 GB with an average of 3.3 GB.

Figure 9(c) shows the CDF of per-disk utilization for
three configurations. The solid line uses the Pelican
placement policy with variable disk capacities, the dotted
line is if the disks within a group are selected randomly
from the subset that have sufficient spare capacity. Fi-
nally, the dashed line is for disks of equal size (set to the
mean capacity of the disks used for variable). Comparing
the Pelican approach to the random policy with variable
capacity disks shows the benefit of Pelican approach.

To understand this more consider the rack utilization,
rather than per-disk utilization. The total capacity uti-
lization for an entire rack is 99.386% for Pelican with
variable disk capacities as shown in figure 3(e) versus
99.998% for uniform disk capacities. At 1,152 disks,
this implies that the equivalent of 7.07 disks are com-
pletely empty when using variable capacities when the
first request is rejected. However, a traditional RAID
system would have clipped all these drives to the min-
imum 4.2 TB. Therefore, compared to a 100% utiliza-
tion at 4.2 TB, adapting to variable capacity is giving us
99.4×4.55/4.2 = 107.7% utilization.

5 Related Work

There has been extensive work on enabling disks to spin
down under low load, including [5, 9, 2, 15]. Several
of these systems proposed to modify the individual disk
IO handling to increase periods of disk inactivity, allow-
ing disks to spin down to save power [9, 13]. Write off-
loading [9] proposed allowing active disks to be used to
buffer writes that were targeted against disks that were
spun down. Only read requests for data not available
required disks to be spun up, increasing the fraction of
time disks could be spun down. Write-offloading makes
no assumptions on the data layout used and worked at
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the block level. Pergamum [13] is a MAID-like system;
it incorporates NVRAM to handle meta-data, absorbing
meta-data reads and writes as well as buffering writes
to spun down disks. It also uses spin up tokens to limit
peak power draw. These mechanisms could be exploited
to support right-provisioning of power. However, unlike
Pelican, Pergamum allows clients to select the disks be-
ing used to store their data. In Pelican the data layout is
a function of the physical location of the disks which de-
termines their power and cooling domains, and Pelican
schedules these accesses appropriately.

Massive Arrays Of Idle Disks (MAID) [5] systems
assume that the power and cooling resources are provi-
sioned to support a peak performance. In contrast, Peli-
can is right-provisioned for the workload rather than for
peak hardware performance.

Systems such as Rabbit [2] and Sierra [15] are power-
proportional. In a power-proportional system the power
consumption is proportional to the load. This is usually
achieved through careful data layout schemes [15]. How-
ever, again most of these systems assume at peak perfor-
mance all disks can be spun up. In many ways Pelican is
also power-proportional, the number of disks spinning is
a function of the workload, except the number of drives
spinning never exceeds 8% of the disks.

Pergamum [13] also assumed a model where each
disk was effectively connected directly to the network
using an Ethernet port, with a small processor board
mounted in front of each disk for local processing. This
general model has been adopted by the Seagate Kinetic
drives [11]. Pelican uses standard SATA archival drives
and PCIe at the rack-scale, primarily to minimize costs.
Further, this allows a single server to accurately control
the drives and their states during boot time and during
operation.

Finally, Amazon Glacier [1] and the Facebook cold
data storage SKU [8] have never had public details re-
leased on their software stack to date. Facebook has re-
leased a design of the hardware through the Open Com-
pute Project (OCP). Compared to the public information,
Pelican has a higher disk density, lower system power
consumption per disk, lower hardware cost, and provides
smaller failure domains when compared to the OCP Cold
Storage reference design.

6 Future Work

Pelican raises a number of interesting questions which
we leave open for future work. The current Pelican soft-
ware stack was co-designed with the hardware. This has
the benefit that we are able to right-provision Pelican,
but it has the drawback that the disk group assignment is
very brittle with respect to hardware changes. For exam-
ple, changing the cooling or power domains, or adding a

new constraint, would require a redesign of the data lay-
out and re-working of the IO scheduler. Further, design-
ing the storage stack to work within the constraints is not
trivial and took many months, and getting it wrong is not
always immediately or trivially visible, for example vio-
lating the vibration domain. We do not know if we have
an optimal design, simply we have one that seems to per-
form well. To address these issues we are currently de-
veloping tools to automatically synthesize the data layout
and IO scheduling policies. We believe that we can en-
capsulate the underlying principles that we learnt when
building this storage stack in a tool. This will enable
rapid (automatic) optimisation of cold storage.

The other issue is that for many years the enterprise
storage community has avoided spinning disks up and
down, as it tends to yield higher failure rates, and even
worse, correlated failures. We hope to gain understand-
ing of this empirically over time. In particular, the spin-
ning up and down of groups together, while helping
improve performance when batching multiple requests,
means all drives in the same group have an identical his-
tory. If we observe correlated failures, we can be more
conservative and spin up only the 18 disks which are
required to service a particular operation. We can also
make sure that all groups spin up with a particular mini-
mum frequency, as well as watch particular performance
metrics for early signs of high wear. Many of these things
we will only discover over time and we look forward to
reporting them to the community.

7 Conclusion

Pelican is designed to support workloads where data
stored is rarely read, often referred to as cold data. Pel-
ican is unique in that the hardware has been designed
to be right-provisioned. In this paper we have described
and evaluated how these hardware limitations impact the
data layout and IO scheduling. We have shown that the
Pelican mechanisms are effective and compared against
a fully provisioned system.
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[4] BLÖMER, J., KALFANE, M., KARP, R., KARPINSKI, M.,
LUBY, M., AND ZUCKERMAN, D. An XOR-Based Erasure-
Resilient Coding Scheme. Tech. Rep. ICSI TR-95-048, Univer-
sity of California, Berkeley, August 1995.

[5] COLARELLI, D., AND GRUMWALD, D. Massive Arrays of
Idle Disks for Storage Archives. In IEEE Supercomputing (July
2002).

[6] DEMERS, A., KESHAV, S., AND SHENKER, S. Analysis and
simulation of a fair queueing algorithm. In Symposium Proceed-
ings on Communications Architectures & Protocols (New York,
NY, USA, 1989), SIGCOMM ’89, ACM, pp. 1–12.

[7] MARCH, A. Storage pod 4.0: Direct wire drives - faster, simpler,
and less expensive. http://blog.backblaze.com/2014/03/
19/backblaze-storage-pod-4/, March 2014.

[8] MORGAN, T. P. Facebook loads up innovative cold storage dat-
acenter. http://www.enterprisetech.com/2013/10/25/

facebook-loads-innovative-cold-storage-datacenter/,
October 2013.

[9] NARAYANAN, D., DONNELLY, A., AND ROWSTRON, A. Write
off-loading: Practical power management for enterprise storage.
Trans. Storage 4, 3 (Nov. 2008), 10:1–10:23.

[10] Ntttcp. http://gallery.technet.microsoft.com/

NTttcp-Version-528-Now-f8b12769, July 2013.

[11] SEAGATE. The seagate kinetic open storage vision. http://

tinyurl.com/noj7glm, August 2014.

[12] SHREEDHAR, M., AND VARGHESE, G. Efficient fair queue-
ing using deficit round robin. In Proceedings of the Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communication (New York, NY, USA, 1995), SIG-
COMM ’95, ACM, pp. 231–242.

[13] STORER, M. W., GREENAN, K. M., MILLER, E. L., AND
VORUGANTI, K. Pergamum: Replacing tape with energy ef-
ficient, reliable, disk-based archival storage. In Proceedings of
the 6th USENIX Conference on File and Storage Technologies
(2008), USENIX Association, p. 1.

[14] TEOREY, T. J., AND PINKERTON, T. B. A comparative anal-
ysis of disk scheduling policies. In Proceedings of the Third
ACM Symposium on Operating Systems Principles (New York,
NY, USA, 1971), SOSP ’71, ACM, pp. 114–.

[15] THERESKA, E., DONNELLY, A., AND NARAYANAN, D. Sierra:
Practical power-proportionality for data center storage. In Pro-
ceedings of the Sixth Conference on Computer Systems (New
York, NY, USA, 2011), EuroSys ’11, ACM, pp. 169–182.

[16] WORTHINGTON, B. L., GANGER, G. R., AND PATT, Y. N.
Scheduling algorithms for modern disk drives. In Proceedings of
the 1994 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems (New York, NY, USA, 1994),
SIGMETRICS ’94, ACM, pp. 241–251.

[17] WORTHINGTON, B. L., GANGER, G. R., PATT, Y. N., AND
WILKES, J. On-line extraction of scsi disk drive parameters. In
ACM SIGMETRICS Conference on Measurement and Modeling
of Computer Systems (1995), pp. 146–156.




