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Abstract
Reconfiguring a cloud storage system can improve
its overall service. Tuba is a geo-replicated key-value
store that automatically reconfigures its set of repli-
cas while respecting application-defined constraints
so that it adapts to changes in clients’ locations or
request rates. New replicas may be added, existing
replicas moved, replicas upgraded from secondary
to primary, and the update propagation between
replicas adjusted. Tuba extends a commercial cloud-
based service, Microsoft Azure Storage, with broad
consistency choices (as in Bayou), consistency-based
SLAs (as in Pileus), and a novel replication config-
uration service. Compared with a system that is
statically configured, our evaluation shows that Tuba
increases the reads that return strongly consistent
data by 63%.

1 Introduction

Cloud storage systems can meet the demanding needs
of their applications by dynamically selecting when
and where data is replicated. An emerging model
is to utilize a mix of strongly consistent primary
replicas and eventually consistent secondary replicas.
Applications either explicitly choose which replicas
to access or let the storage system select replicas at
run-time based on an application’s consistency and
performance requirements [15]. In either case, the
configuration of the system significantly impacts the
delivered level of service.

Configuration issues that must be addressed by
cloud storage systems include: (i) where to put pri-
mary and secondary replicas, (ii) how many sec-
ondary replicas to deploy, and (iii) how frequently
secondary replicas should synchronize with the pri-
mary replica. These choices are complicated by the
fact that Internet users are located in different ge-

ographical locations with different time zones and
access patterns. Moreover, systems must consider the
growing legal, security, and cost constraints about
replicating data in certain countries or avoiding repli-
cation in others.

For a stable user community, static configuration
choices made by a system administrator may be ac-
ceptable. But many modern applications, like shop-
ping, social networking, news, and gaming, not only
have evolving world-wide users but also observe time-
varying access patterns, either on a daily or seasonal
basis. Thus, it is advantageous for the storage system
to automatically adapt its configuration subject to
application-specific and geo-political constraints.

Tuba is a geo-replicated key-value store based on
Pileus [15]. It addresses the above challenges by con-
figuring its replicas automatically and periodically.
While clients try to maximize the utility of individual
read operations, Tuba improves the overall utility
of the storage system by automatically adapting to
changes in access patterns and constraints. To this
end, Tuba includes a configuration service that peri-
odically receives from clients their consistency-based
service level agreements (SLAs) along with their hit
and miss ratios. This service then changes the loca-
tions of primary and secondary replicas to improve
the overall delivered utility. A key property of Tuba is
that both read and write operations can be executed
in parallel with reconfiguration operations.

We have implemented Tuba as middleware on top
of Microsoft Azure Storage (MAS) [3]. It extends
MAS with broad consistency choices as in Bayou
[14], and provides consistency-based SLAs like Pileus.
Moreover, it leverages geo-replication for increased
locality and availability. Our API is a minor exten-
sion to the MAS Blob Store API, thereby allowing
existing Azure applications to use Tuba with little
effort while experiencing the benefits of dynamic
reconfiguration.
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An experiment with clients distributed in data-
centers (sites) around the world shows that recon-
figuration every two hours increases the fraction of
reads guaranteeing strong consistency from 33% to
54%. This confirms that automatic reconfiguration
can yield substantial benefits which are realizable in
practice.

The outline of the paper is as follows. We review
Pileus and Tuba in Section 2. We look under the
hood of Tuba’s configuration service in Section 3.
Section 4 describes execution modes of clients in Tuba.
In Section 5, we explain implementation details of
the system. Our evaluation results are presented in
Section 6. We review related work in Section 7 and
conclude the paper in Section 8.

2 System Overview

In this section, we first briefly explain features that
Tuba inherits from Pileus. Since we do not cover all
technical issues of Pileus, we encourage readers to
read the original paper [15] for more detail. Then,
we overview Tuba and its fundamental components,
and how it extends the features of the Pileus system.

2.1 Tuba Features from Pileus

Storage systems cannot always provide rapid access
to strongly consistent data because of the high net-
work latency between geographical sites and diverse
operational conditions. Clients are forced to select
less ideal consistency/latency combinations in many
cases. Pileus addresses this problem by allowing
clients to declare their consistency and latency priori-
ties via SLAs. Each SLA comprises several subSLAs,
and each subSLA contains a desired consistency, la-
tency and utility.

The utility of a subSLA indicates the value of the
associated consistency/latency combination to the ap-
plication and its users. Inside a SLA, higher-ranked
subSLAs have higher utility than lower-ranked sub-
SLAs. For example, consider the SLA shown in Fig-
ure 1. Read operations with strong consistency are
assigned utility 1 as long as they complete in less than
50 ms. Otherwise, the application tolerates eventu-
ally consistent data and longer response times though
the rewarded utility is very small (0.01). Pileus, when
performing a read operation with a given SLA, at-
tempts to maximize the delivered utility by meeting
the highest-ranked subSLA possible.

The replication scheme in Pileus resembles that
of other cloud storage systems. Like BigTable [4],
each key-value store is horizontally partitioned by

Rank Consistency Latency(ms) Utility
1 Strong 50 1
2 Eventual 1000 0.01

Figure 1: SLA Example

key-ranges into tablets, which serve as the granu-
larity of replication. Tablets are replicated at an
arbitrary collection of storage sites. Storage sites are
either primary or secondary. All write operations
are performed at the primary sites. Secondary sites
periodically synchronize with the primary sites in
order to receive updates.

Depending on the desired consistency and latency
as specified in an SLA, the network delays between
clients and various replication sites, and the syn-
chronization period between primary and secondary
sites, the Pileus client library decides on the site to
which a read operation is issued. Pileus provides six
consistency choices that can be included in SLAs:
(i) strong (ii) eventual (iii) read-my-writes (RMW)
(iv) monotonic reads (v) bounded(t), and (vi) causal.

Consider again the SLA shown in Figure 1. A
Pileus client reads the most recent data and hits
the first subSLA as long as the round trip latency
between that client and a primary site is less than
50ms. But, the first subSLA misses for clients with
a round trip latency of more than 50ms to primary
sites. For these clients, Pileus reads data from any
replica site and hits the second subSLA.

Pileus helps developers find a suitable consisten-
cy/latency combination given a fixed configuration of
tablets. Specifically, the locations of primary and sec-
ondary replication sites, the number of required sec-
ondary sites, and the synchronization period between
secondary and primary sites need to be specified by
system administrators manually. However, a world-
wide distribution of users makes it extremely hard
to find an optimal configuration where the overall
utility of the system is maximized with a minimum
cost. Tuba extends Pileus to specifically address this
issue.

2.2 Tuba’s New Features
The main goal of Tuba is to periodically improve the
overall utility of the system while respecting repli-
cation and cost constraints. To this end, it extends
Pileus with a configuration service (CS) delivering
the following capabilities:

1. performing a reconfiguration periodically for
different tablets, and

2. informing clients of the current configuration
for different tablets.
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We note that the above capabilities do not necessarily
need to be collocated at the same service. Yet, we
assume they are provided by the same service for the
sake of simplicity.

In order for the CS to configure a tablet’s replicas
such that the overall utility increases, it must be
aware of the way the tablet is being accessed globally.
Therefore, all clients in the system periodically send
their observed latency and the hit and miss ratios of
their SLAs to the CS.

The observed latency is a set comprising the la-
tency between a client (e.g., an application server)
and different datacenters. The original Pileus sys-
tem also requires clients to maintain this set. Since
the observed latency between datacenters does not
change very often, this set is only sent every couple
of hours, or when it changes by more than a certain
threshold.

Tuba clients also send their SLAs’ hit and miss
ratios periodically. It has been previously observed
that placement algorithms with client workload in-
formation (such as the request rate) perform two to
five times better than workload oblivious random
algorithms [10]. Thus, every client records aggregate
ratios of all hit and missed subSLAs for a sliding
window of time, and sends them to the CS periodi-
cally. The CS then periodically (or upon receiving an
explicit request) computes a new configuration such
that the overall utility of the system is improved,
all constraints are respected, and the cost of the mi-
grating to and maintaining the new configuration
remains below some threshold.

Once a new configuration is decided, one or more of
the following operations are performed as the system
changes to the new configuration: (i) changing the
primary replica, (ii) adding or removing secondary
replicas, and (iii) changing the synchronization peri-
ods between primary and secondary replicas. In the
next section, we explain in more detail how the above
operations are performed with minimal disruption to
active clients.

3 Configuration Service (CS)

The CS is responsible for periodically improving the
overall utility of the system by computing and ap-
plying new configurations. The CS selects a new
configuration by first generating all reasonable repli-
cation scenarios that satisfy a list of defined con-
straints.

For each configuration possibility, it then computes
the expected gained utility and the cost of reconfigu-
ration. The new chosen configuration is the one that
offers the highest utility-to-cost ratio. Once a new

configuration is chosen, the CS executes the reconfig-
uration operations required for making a transition
from the old configuration to the new one.

In the remaining of this section, we first explain
the different types of constraints and the cost model
used by the CS. Then, we introduce the algorithm be-
hind the CS to compute a new configuration. Finally,
we describe how the CS executes different reconfigu-
ration operations to install the new configuration.

3.1 Constraints
Given the simple goal of maximizing utility, the CS
would have a greedy nature: it would generally de-
cide to add replicas. Hence, without constraints, the
CS could ultimately replicate data in all available
datacenters. To address this issue, a system admin-
istrator is able to define constraints for the system
that the CS respects.

Through an abstract constraint class, Tuba allows
constraints to be defined on any attribute of the
system. For example, a constraint might disallow
creating more than three secondary replicas or disal-
low a reconfiguration to happen if the total number of
online users is greater than 1 million. Tuba abides by
all defined constraints during every reconfiguration.

Several important constraints are currently im-
plemented and ready for use including: (i) Geo-
replication factor, (ii) Location, (iii) Synchronization
period, and (iv) Cost.

With geo-replication constraints, the minimum
and maximum number of replicas can be defined.
For example, consider an online music store. Devel-
opers may set the maximum geo-replication factor
of tablets containing less popular songs to one, and
set the minimum geo-replication factor of a tablet
containing top-ten best selling songs to three. Even
if the storage cost is relatively small, limiting the
replication factor may still be desirable due to the
cost of communication between sites for replica syn-
chronization.

Location constraints are able to explicitly force
replication in certain sites or disallow them in others.
For example, an online social network application
can respond to security concerns of European citizens
by allowing replication of their data only in Europe
datacenters.

With the synchronization period constraint, ap-
plication developers can impose bounds on how of-
ten a secondary replica synchronizes with a primary
replica.

The last and perhaps most important constraint
in Tuba is the cost constraint. As mentioned before,
the CS picks a configuration with the greatest ratio
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of gained utility over cost. With a cost constraint,
application developers can indicate how much they
are willing to pay (in terms of dollars) to switch
to a new configuration. For instance, one possible
configuration is to put secondary replicas in all avail-
able datacenters. While the gained utility for this
configuration likely dominants all other possible con-
figurations, the cost of this configuration may be
unacceptably large. In the next section, we explain
in more detail how these costs are computed in Tuba.

Should the system administrator neglect to impose
any constraint, Tuba has two default constraints in
order to avoid aggressive replication and to avoid fre-
quent synchronization between replicas: (1) a lower
bound for the synchronization period, and (2) an
upper bound on the recurring cost of a configuration.

3.2 Cost Model
The CS considers the following costs for computing
a new configuration:

• Storage: the cost of storing a tablet in a partic-
ular site.

• Read/Write Operation: the cost of performing
read/write operations.

• Synchronization: the cost of synchronizing a
secondary replica with a primary one.

The first two costs are computed precisely for a
certain period of time, and the third cost is estimated
based on read/write ratios.

Given the above categories, the cost of a primary
replica is the sum of its storage and read/write oper-
ation costs, and the cost of a secondary replica is the
sum of storage, synchronization, and read operation
costs. Since Tuba uses batching for synchronization
to a secondary replica and only sends the last write
operation on an object in every synchronization cycle,
the cost of a primary replica is usually greater than
that of secondary replicas.

In addition to the above costs, the CS also con-
siders the cost of creating a new replica; this cost is
computed as one-time synchronization cost.

3.3 Selection
Potential new configurations are computed by the
CS in the following three steps:

Ratios aggregation. Clients from the same geo-
graphical region usually have similar observed access
latencies. Therefore, as long as they use the same
SLAs, their hit and miss ratios can be aggregated
to reduce the computation. We note that this phase
does not necessarily need to be in the critical path,

Rank Consistency Latency(ms) Utility
1 Strong 100 1
2 RMW 100 0.9
3 Eventual 1000 0.01

Figure 2: SLA of a Social Network Application

and aggregations can be done once clients send their
ratios to the CS.

Configuration computation. In this phase, pos-
sible configurations that can improve the overall util-
ity of the system are generated and sorted. For each
missed subSLA, and depending on its consistency,
the CS may produce several potential configurations
along with their corresponding reconfiguration op-
erations. For instance, for a missed subSLA with
strong consistency, two scenarios would be: (i) creat-
ing a new replica near the client and making it the
solo primary replica, or (ii) adding a new primary
replica near the client and making the system run in
multi-primary mode.

Each new configuration has an associated cost of
applying and maintaining it for a certain period of
time. The CS also computes the overall gained utility
of every new configuration that it considers. Finally,
the CS sorts all potential configurations based on
their gained utility over their cost.

Constraints satisfaction. Configurations that
cannot satisfy all specified constraints are eliminated
from consideration. Constraint classes also have the
ability to add configurations being considered. For in-
stance, the minimum geo-replication constraint might
remove low-replica configurations and create several
new ones with additional secondary replicas at dif-
ferent locations.

3.4 Operations
Once a new configuration is selected, the CS executes
a set of reconfiguration operations to transform the
system from the current configuration. In this section,
we explain various reconfiguration operations and
how they are executed abstractly by the CS, leaving
the implementation specifics to Section 5.

3.4.1 Adjust the Synchronization Period

When a secondary replica is added to the system for
a particular tablet, a default synchronization period
is set, which defines how often a secondary replica
synchronizes with (i.e., receives updates from) the
primary replica. Although this value does not affect
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the latency of read operations with strong or even-
tual consistency, the average latency of reads with
intermediary consistencies (i.e., RMW, monotonic
reads, bounded, and causal) can depend heavily on
the frequency of synchronization. Typically, the cost
of adjusting the synchronization period is smaller
than the cost of adding a secondary replica or of
changing the locations of primary/secondary replicas.
Hence, it is likely that the CS will decide to decrease
this period to increase the hit ratios of subSLAs with
intermediary consistencies.

For example, consider a social network application
with the majority of users located in Brazil and India
accessing a storage system with a primary replica
located in Brazil, initially, and a secondary replica
placed in South Asia with the synchronization period
set to 10 seconds. Assume that the SLA shown in
Figure 2 is set for all read operations. Given the fact
that the round trip latency between India and Brazil
is more than 350 ms, the first subSLA will never
hit for Indian users. Yet, depending on the synchro-
nization period and frequency of write operations
performed by Indian users, the second subSLA might
hit. Thus, if the CS detects low utility for Indian
users, a possible new configuration would be similar
to the old one but with a reduced synchronization
period.

In this case, the chosen operation to apply the
new configuration is adjust_sync_period. Executing
this operation is very simple since the value of the
synchronization period need only be changed in the
secondary replica. Clients do not directly observe
any difference between the new configuration and
the old one, but they benefit from a more up-to-date
secondary replica.

3.4.2 Add/Remove Secondary Replica

In certain cases, the CS might decide to add a sec-
ondary replica to the system. For example, consider
an online multiplayer game with the SLA shown in
Figure 3 and where the primary replica is located
in the East US region. In order to deliver a better
user experience to gamers around the globe, the CS
may add a secondary replica near users during their
peak times. Once the peak time has passed, in order
to reduce costs, the CS may decide to remove the
added, but now lightly used, secondary replica.

Executing add_secondary(sitei) is straight-
forward. A dedicated thread is dispatched to copy
objects from the primary replica to the secondary
one. Once the whole tablet is copied to the secondary
replica, the new configuration becomes available
to clients. Clients with the old configuration may

Rank Consistency Latency(ms) Utility
1 RMW 50 1
2 Monotonic Read 50 0.5
3 Eventual 500 0

Figure 3: SLA of an online multiplayer game

continue submitting read operations to previously
known replicas, and they eventually will become
aware of the newly added secondary replica at sitei.

Executing remove_secondary(sitei) is also simple.
The CS removes the secondary replica from the
current configuration. In addition, a thread is dis-
patched to physically delete the secondary replica.

3.4.3 Change Primary Replica

In cases where the system maintains a single primary
site, the CS may decide to change the location of the
primary replica. For instance, consider the example
given in Section 3.4.1. The CS may detect that
adjusting the synchronization period between the
primary and secondary replicas cannot improve the
utility. In this case, the CS may decide to swap the
primary and secondary replica roles. During peak
times in India, the secondary replica in South Asia
becomes the primary replica. Likewise, during peak
times in Brazil, the replica in Brazil becomes primary.

The CS calls the change_primary(sitei) opera-
tion to make the configuration change. If a sec-
ondary replica does not exist in sitei, the operation
is performed in three steps. First, the CS creates a
new empty replica at sitei. It also invalidates the
configuration cached in clients. As we shall see later,
when a cached configuration is invalid, a client needs
to contact the CS when executing certain operations.
Second, once every cached configuration becomes in-
valid, the CS makes sitei a write_only primary
site. In this mode, all write operations are forwarded
to both the primary site and sitei, but sitei is not
allowed to execute read operations. Finally, once
sitei catches up with the primary replica, the CS
makes it the solo primary site. If a replica exists in
sitei, the first step is skipped. We will explain the
implementation of this operation in Section 5.3.

3.4.4 Add Primary Replica

For applications that require clients to read up-to-
date data as fast as possible, the system may benefit
from having multiple primary sites that are strongly
consistent. In multi-primary mode, write operations
are applied synchronously in several sites before the
client is informed that the operation has completed.
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Operation Effect Cost
Decrease synchronization
period of secondary
replica at sitei

Increase hit ratios of subSLAs with bounded,
causal, or RMW consistencies for clients near sitei

Increase in
communication

Add sitei as a secondary
replica

Increase hit ratios of subSLAs with eventual or
intermediary consistencies for clients near sitei

Additional storage;
increased communication

Upgrade sitei from
secondary to primary,
and downgrade sitej

from primary to
secondary

Increase hit ratios of subSLAs with strong or
intermediary consistency for clients near sitei;
decrease hit ratios of subSLAs with strong or
intermediary consistency for clients near sitej

No change

Add sitei as a primary
replica (upgraded from
secondary)

Increase hit ratios of subSLAs with strong or
intermediary consistency for clients near sitei

Increased
communication;
increased write latency

Figure 4: Summary of Common Reconfiguration Operations, Effects on Hit Ratios, and Costs.

The operation that performs the configuration
transformation is called add_primary(sitei). Its exe-
cution is very similar to change_primary(sitei) with
one exception. In the third step, instead of mak-
ing the write_only sitei the solo primary, sitei is
added to the list of primary replicas, thereby making
the system multi-primary. In this mode, multiple
rounds of operations are needed to execute a write.
The protocol that we use is described in Section 5.2.3.

3.4.5 Summary

Figure 4 summarizes the reconfiguration operations
that are generally considered by the CS (inverse and
other less common operations are not shown). Note
that the listed effects are only potential benefits.
Adjusting the synchronization period or adding a
secondary replica to sitei does not impact the ob-
served consistency or write latency of clients that
are not near this site. These operation can possibly
increase the hit ratios of subSLAs with intermedi-
ary consistencies observed by clients close to sitei.
Adding a secondary replica can increase the hit ratios
of subSLAs with eventual consistency. Making sitei

the solo primary increases the hit ratios of subSLAs
with both strong and intermediary consistencies for
clients close to sitei. However, clients close to the
previous primary replica now may miss subSLAs with
strong or intermediary consistencies. Adding a pri-
mary replica can boost strong consistency without
having a negative impact on read operations; but, it
increases the cost of write operations for all clients.

4 Client Execution Modes

Since the CS may reconfigure the system periodically,
clients need to be aware of possible changes in the

locations of primary and secondary replicas. Instead
of clients asking the CS for the latest configuration
before executing each operation, Tuba allows clients
to cache the configuration of a tablet (called the
cview ) and use it for performing read and write
operations. In this section, we explain how clients
avoid two potential safety violations: (i) performing
a read operation with strong consistency on a non-
primary replica, or (ii) executing a write operation
on a non-primary replica.

Based on the freshness of a client’s cview, the client
is either in fast or slow mode. Roughly speaking, a
client is in the fast mode for a given tablet if it
knows that it has the latest configuration. That is, it
knows exactly the locations of primary and secondary
replicas, and it is guaranteed that the configuration
will not change in the near future. On the other hand,
whenever a client suspects that a configuration may
have changed, it enters slow mode until it refreshes
its local cache.

Initially, every client is in slow mode. In or-
der to enter fast mode, a client requests the latest
configuration of a tablet (Figure 5). If the CS has
not scheduled a change to the location of a primary
replica, the client obtains the current configuration
along with a promise that the CS will not modify the
set of primary replicas within the next Δ seconds.
Suppose the duration from when the client issues its
request to when it receives the latest configuration
is measured to be δ seconds. The client then enters
the fast mode for Δ− δ seconds. During this period,
the client is sure that the CS will not perform a
reconfiguration that compromises safety.

In order to remain in fast mode, a client needs to
periodically refresh its cview. As long as it receives
the latest configuration within the fast mode window,
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Figure 5: Clients Fast and Slow Execution Modes

it will remain in fast mode, and its fast mode window
is extended.

The CS can force all clients to enter slow mode at
any time by preventing them from refreshing their
configuration views. This feature is used before exe-
cuting change_primary() and add_primary() oper-
ations (see Section 5.3).

Fast Mode. When a client is in fast mode, read
and single-primary write operations involve a single
round-trip to one selected replica. No additional
overhead is imposed on these operations. Multi-
primary write operations use a three-phase protocol
in fast or slow mode (see Section 5.2.3).

Slow Mode. Being in slow mode (for a given
tablet) means that the client is not totally sure about
the latest configuration, and the client needs to take
some precautions. Slow mode has no affect on read
operations with relaxed consistency, i.e., with any
desired consistency except strong consistency. Be-
cause read operations with strong consistency must
always go to a primary replica, when a client is in
slow mode it needs to confirm that such an opera-
tion is indeed executed at a current primary replica.
Upon completion of a strong consistency read, the
client validates that the responding replica selected
from its cview is still a primary replica. If not, the
client retries the read operation.

Unlike read operations, write operations are more
involved when a client is in slow mode. More precisely,
any client in slow mode that wishes to execute a write
operation on a tablet needs to take a non-exclusive
lock on the tablet’s configuration before issuing the
write operation. On the other hand, the CS needs
to take an exclusive lock on the configuration if it
decides to change the set of primary replicas. This
lock procedure is required to ensure the linearizability
[7] of write operations.

5 Implementation

Tuba is built on top of Microsoft Azure Storage
(MAS) [3] and provides a similar API for reading
and writing blobs. Every MAS storage account is
associated with a particular storage site. Although
MAS supports Read-Access Geo-Redundant Storage
(RA-GRS) in which both strong and eventual con-
sistencies are provided, it lacks intermediary consis-
tencies, and replication is limited to a single primary
site and a single secondary site. Our implementa-
tion extends MAS with: (i) multi-site geo-replication
(ii) consistency-based SLAs, and (iii) automatic re-
configuration.

A user of Tuba supplies a set of storage accounts.
This set determines all available sites for replica-
tion. The CS then selects primary and secondary
replica sites by choosing storage accounts from this
set. Thus, a configuration is a set of MAS storage
accounts tagged with primary or secondary.

In the rest of this section, we explain the com-
munication between clients and the CS, and how
operations are implemented in Tuba. We ignore
the implementation of consistency guarantees and
consistency-based SLAs since these aspects of Tuba
are taken directly from the Pileus system [15].

5.1 Communication
Clients communicate with the CS through a des-
ignated Microsoft Azure Storage container. Clients
periodically write their latency and hit/miss ratios to
storage blobs in this shared container. The CS reads
this information and stores the latest configuration
as a blob in this same container. Likewise, clients
periodically read the latest configuration blob from
the shared container and cache it locally.

As we explained in Section 4, when a client reads
the latest configuration, it enters fast mode for Δ−δ
seconds. Since there is no direct communication be-
tween the client and the CS, we also need to ensure
that the CS does not modify a primary replica and
install a new configuration within the next Δ sec-
onds. Our solution is simple. When the CS wants
to perform certain reconfiguration operations (i.e.,
changing or adding a primary replica), it writes a
special reconfiguration-in-progress (RiP) flag to the
configuration blob’s metadata. The CS then waits
for at least Δ seconds before installing the new con-
figuration. If a client fails to refresh its cview on time
or if it finds that the RiP flag is set, then the client
enters slow mode. Once the CS completes the opera-
tions needed to reconfigure the system, it overwrites
the configuration blob with the latest configuration
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and clears the RiP flag. Clients will re-enter fast
mode when they next retrieve the new configuration.

5.2 Client Operations
5.2.1 Read Operation

For each read operation submitted by an application,
the client library selects a replica based on the client’s
latency, cview, and a provided SLA (as in Pileus).
The client then sends a read request to the chosen
replica. Upon receiving a reply, if the client is in fast
mode or if the read operation does not expect strong
consistency, the data is returned immediately to the
application. Otherwise, the client confirms that the
contacted replica had been the primary replica at the
time it answered the read request. More precisely,
when a client receives a read reply message in slow
mode, it reads the latest configuration and confirms
that the timestamp of the configuration blob has not
changed.

5.2.2 Single-primary Write Operation

To execute a single-primary write operation, a client
first checks that it is in fast mode and that the re-
maining duration of the fast mode interval is longer
than the expected time to complete the write opera-
tion. If not, it refreshes its cview. Assuming the RiP
flag is not set, the client then writes to the primary
replica. Once the client receives a positive response
to this write operation, the client checks that it is still
in fast mode. If so, the write operation is finished. If
the write operation takes more time than expected
such that the client enters slow mode during the
execution of the write operation, the client confirms
that the primary replica has not changed.

When a client discovers a reconfiguration in
progress and remains in slow mode, we considered
two approaches for performing writes. The simplest
approach is for the client to wait until a new config-
uration becomes available. In other words, it could
wait until the RiP flag is removed from the configu-
ration blob’s metadata. The main drawback is that
no write operation is allowed on the tablet being
reconfigured for Δ seconds and, during this period,
the CS does nothing while waiting for all clients to
enter slow mode.

Instead, Tuba allows a client in slow mode to ex-
ecute a write operation by taking a lock. A client
acquires a non-exclusive lock on the configuration
to ensure that the CS does not change the primary
replica before it executes the write operation. The
CS, on the other hand, grabs an exclusive lock on
the configuration before changing it. This locking

mechanism is implemented as follows using MAS’s
existing lease support. To take a non-exclusive lock
on the configuration, a client obtains a lease on the
configuration blob and stores the lease-id as meta-
data in the blob. Other clients wishing to take a
non-exclusive lock simply read the lease-id from the
blob’s metadata and renew the lease. To take an
exclusive lock, the CS breaks the client’s lease and re-
moves the lease-id from the metadata. The CS then
acquires a new lease on the configuration blob. Note
that no new write is allowed after this point. After
some safe threshold equal to the maximum allowed
leased time, the CS updates the configuration.

5.2.3 Multi-primary Write Operation

Tuba permits configurations in which multiple servers
are designated as primary replicas. A key imple-
mentation challenge was designing a protocol that
atomically updates any number of replicas on con-
ventional storage servers and that operates correctly
in the face of concurrent readers and writers. Our
multi-primary write protocol involves three phases:
one in which a client marks his intention to write
on all primary replicas, one where the client updates
all of the primaries, and one where the client indi-
cates that the write is complete. To guard against
concurrent writers, we leverage the concept of ETags
in Microsoft Azure, which is also part of the HTML
1.1 specification. Each blob has a string property
called an ETag that is updated whenever the blob
is modified. Azure allows clients to perform a condi-
tional write operation on a blob; the write operation
executes only if the provided ETag has not changed.

When an application issues a write operation to a
storage blob and there are multiple primary replicas,
the Tuba client library performs the following steps.

Step 1: Acquire a non-exclusive lock on the con-
figuration blob. This step is the same as previously
described for a single-primary write in slow mode. In
this case, the configuration is locked even if the client
is in fast mode since the multi-primary write may
take longer than Δ seconds to complete. This en-
sures that the client knows the correct set of primary
replicas throughout the protocol.

Step 2: At the main primary site, add a special
write-in-progress (WiP) flag to the metadata of the
blob being updated. The main primary site is the
one listed first in the set of primary replicas. This
metadata write indicates to readers that the blob is
being updated, and it returns an ETag that is used
later when the data is actually written. Updates to
different blobs can take place in parallel.

Step 3: Write the WiP flag to the blob’s metadata
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on all other primary replicas. Note that these writes
can be done in any order or in parallel.

Step 4: Perform the write on the main primary site
using the ETag acquired in Step 2. Note that since
writes are performed first at the main primary, this
replica always holds the truth, i.e. the latest data.
Other primary replicas hold stale data at this point.
This conditional write may fail because the ETag is
not current, indicating that another client is writing
to the same blob. In the case of concurrent writers,
the last writer to set the WiP flag will successfully
write to the main primary replica; clients whose
writes fail abandon the write protocol and possibly
retry those writes later.

Step 5: Perform conditional writes on all the other
primary replicas using the previously aquired Etags.
These writes can be done in parallel. Again, a failed
write indicates that a concurrent write is in progress.
In this case, this client stops the protocol even though
it may have written to some replicas already; such
writes will be (or may already have been) overwritten
by the latest writer (or by a recovery process as
discussed in section 5.4).

Step 6: Clear the WiP flags in the metadata at all
non-main primary sites. These flags can be cleared
in any order or in parallel. This allows clients to
now read from these primary replicas and obtain the
newly written data. To ensure that one client does
not prematurely clear the flag while another client is
still writing, these metadata updates are performed
as conditional writes using the ETags obtained from
the writes in the previous step.

Step 7: Clear the WiP flag in the metadata on
the main primary using a conditional write with the
ETag obtained in Step 4. Because this is done as the
final step, clients can check if a write is in progress
simply by reading the metadata at the main primary
replica.

An indication that the write has been successfully
completed can be returned to the caller at any time
after Step 4 where the data is written to the main pri-
mary. Waiting until the end of the protocol ensures
that the write is durable since it is held at multiple
primaries.

If a client attempts a strongly consistent read while
another client is performing a multi-primary write,
the reader may obtain a blob from the selected pri-
mary replica whose metadata contains the WiP flag.
In this case, the client redirects its read to the main
primary replica who always holds the latest data.
Relaxed consistency reads, to either primary or sec-
ondary replicas, are unaffected by writes in progress.

5.3 CS Reconfiguration Operations

In this section, we only explain the implementation
of change_primary() and add_primary() since the
implementation details of adjusting a synchronization
period and adding/removing secondary replicas are
straightforward.

As we explained before, change_primary(sitei) is
the operation required for making sitei the solo pri-
mary. If a secondary replica does not exist in sitei,
the operation is performed in three steps. Otherwise,
the first step is skipped.

Step 1: The CS starts by creating a replica at sitei,
and synchronizing it with the primary replica.

Step 2: Before making sitei the new primary
replica, the CS synchronizes sitei with the exist-
ing primary replica. Because write operations can
run concurrently with a change_primary(sitei) oper-
ation, sitei might never be able to catch up with the
primary replica. To address this issue, the CS first
makes sitei a write_only replica by creating a new
temporary configuration. As its name suggests, write
operations are applied to both write_only replicas
and primary replicas (using the multi-primary write
protocol described previously).

The CS installs this configuration as follows:
(i) It writes the RiP flag to the configuration

blob’s metadata, and waits Δ seconds to force all
clients into slow mode.

(ii) Once all clients have entered the slow mode,
the CS breaks the lease on the configuration blob
and removes the lease-id from the metadata.

(iii) It then acquires a new lease on the blob and
waits for some safe threshold.

(iv) Once the threshold is passed, the CS safely
installs the temporary configuration, and removes
the RiP flag.

Consequently, clients again switch to fast mode
execution while the sitei replica catches up with the
primary replica.

Step 3: The final step is to make sitei the primary
replica, once sitei is completely up-to-date. The CS
follows the procedure explained in the previous step
to install a new configuration where the old primary
replica is downgraded to a secondary replica, and
the write_only replica is promoted to be the new
primary. Once the new configuration is installed,
sitei is the sole primary replica.

Note that write operations are blocked from the
time when the CS takes an exclusive lease on the
configuration blob until it installs the new configura-
tion in both steps 2 and 3. However, this duration
is short: a round trip latency from the CS to the
configuration blob plus the safe threshold.
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The add_primary() operation is implemented ex-
actly like change_primary() with one exception. In
the third step, instead of making sitei the solo pri-
mary, this site is added to the list of primary replicas.

5.4 Fault-Tolerance

Replica Failure. A replica being unavailable
should be a very rare occurrence since each of our
replication sites is a collection of three Azure servers
in independent fault domains. In any case, failed
replicas can easily be removed from the system
through reconfiguration. Failed secondary replicas
can be ignored by clients, while failed primary repli-
cas can be replaced using previously discussed recon-
figuration operations.

Client Failure. Most read and write operations
from clients are performed at a single replica and
maintain no locks or leases. The failure of one client
during such operations does not adversely affect oth-
ers. However, Tuba does need to deal explicitly with
client failures that may leave a multi-primary write
partially completed. In particular, a client may crash
before successfully writing to all primary replicas
or before removing the WiP flags on one or more
primary replicas.

When a client, through normal read and write
operations, finds that a write to a blob has been in
progress for an inordinate amount of time, it invokes a
recovery process to complete the write. The recovery
process knows that the main primary replica holds
the truth. It reads the blob from the main primary
and writes its data to the other primary replicas using
the multi-write protocol described earlier. Having
multiple recovery processes running simultaneously
is acceptable since they all will be attempting to
write the same data. The recovery process, after
successfully writing to every primary replica, clears
all of the WiP flags for the recovered blob.

CS Failure. Importantly, the Tuba design does
not depend on an active CS in continuous operation.
The CS may run only occasionally to check whether
a reconfiguration is warranted. Since clients read the
latest configuration directly from the configuration
blob, and do not rely on responses from the CS,
they can stay in fast mode even when the CS is
not available as long as the configuration blob is
available (and the RiP flag is not set). Since the
configuration blob is replicated in MAS, it obtains
the high-availability guarantees provided by Azure.
If higher availability is desired, the configuration

blob could be replicated across sites using Tuba’s
own multi-primary write protocol.

The only troubling scenario is if the CS fails while
in the midst of a reconfiguration leaving the RiP
flag set on the configuration blob. This is not a
concern when the CS fails while adjusting a syn-
chronization period or adding/removing a secondary
replica. Likewise, a failure before the second step of
changing/adding a primary replica does not pose any
problem. Even if a CS failure leaves the RiP flag
set, clients can still perform reads and writes in slow
mode.

Recovery is easy if the CS fails during step 2 or
during step 3 of changing/adding a primary replica
(i.e., after setting the RiP flag and before clearing it).
When the CS wants to performs a reconfiguration,
it obtains an ETag upon setting the RiP flag. To
install a new configuration, the CS writes the new
configuration conditional on the obtained ETag.

A client clears the RiP flag upon waiting too
long in slow mode. Doing so will prevent the CS
from writing a new configuration blob and abort
any reconfiguration in progress in the unlikely event
that the CS had not crashed but was simply oper-
ating slowly. In other words, the CS cannot write
the new configuration if some client had impatiently
cleared the RiP flag and consequently changed the
configuration blob’s ETag.

Finally, if the CS fails after step 2 of adding/chang-
ing a primary replica, clients can still enter fast mode.
In case the CS was executing change_primary() be-
fore its crash, write operations will execute in multi-
primary mode. Thus, they will be slow until the CS
recovers and finishes step 3.

6 Evaluation

In this section, we present our evaluation results,
and show how Tuba improves the overall utility of
the system compared with a system that does not
perform automatic reconfiguration.

6.1 Setup and Benchmark
To evaluate Tuba, we used three storage accounts
located in the South US (SUS), West Europe (WEU),
and South East Asia (SEA). We modeled the num-
ber of active clients with a normal distribution, and
placed them in the US West Coast, West Europe,
and Hong Kong (Figure 6). This is to mimic the
workload of clients in different parts of the world
during working hours. The mean of the normal dis-
tribution is set to 12 o’clock local time, and the
variance is set to 8 hours. Considering the above
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SUS WEU SEA
US Clients 53 153 190
(West US)

Europe Clients 132 <1 277
(West Europe)

Asia Clients 204 296 36
(Hong Kong)

Figure 6: Client Distribution and Latencies (in ms)

Rank Consistency Latency(ms) Utility
1 Strong 100 1
2 RMW 100 0.7
3 Eventual 250 0.5

Figure 7: SLA for Evaluation

normal distribution, the number of online clients at
each hour is computed as a total number of clients
times the probability distribution at that hour. The
total number of clients at each site is 150 over a 24
hour period. Hence, each tablet is accessed by 450
distinct clients in one day.

We used the YCSB benchmark [6] with workload
B (95% Reads and 5% writes) to generate the load.
Each tablet contains 105 objects, and each object
has a 1KB payload. Figure 7 shows the SLA used in
our evaluation, which resembles one used by a social
networking application [15].

The initial setup places the primary replica in SEA
and a secondary replica in WEU. We set the geo-
replication factor to two, allowing the CS to replicate
a tablet in at most two datacenters. Moreover, we
disallowed multi-primary schemes during reconfigu-
rations.

6.2 Macroscopic View
Figure 8 compares the overall utility for read op-
erations when reconfiguration happens every 2, 4,
and 6 hours over a 24 hour period, and when no
reconfiguration happens. We note that without re-

Reconf. Every
6h 4h 2h

AOU 0.76 0.81 0.85
AOU Impr. over No Reconf. 5% 12% 18%
AOU Impr. over Max. Ach. 20% 45% 65%

AOU: Averaged Overall Utility in 24 hours;
No Reconf. AOU: 0.72; Max. Ach. AOU: 0.92

Figure 8: Utility improvement with different recon-
figuration rates

configuration Tuba performs exactly as Pileus. The
average overall utility (AOU) is computed as the
average utility delivered for all read operations from
all clients. The average utility improvement depends
on how frequently the CS performs reconfigurations.
When no reconfiguration happens in the system, the
AOU in the 24 hour period is 0.72. Observe that
without constraints, the maximum achievable AOU
would have been 1. However, limiting replication to
two datacenters and a single primary decreases the
maximum achievable AOU to 0.92.

Performing a reconfiguration every 6 hours im-
proves the overall utility for almost 12 hours, and
degrades it for 8 hours. This results in a 5 percent
AOU improvement. When reconfiguration happens
every 4 hours, the overall utility improves for 16
hours. This leads to a 12 percent AOU improvement.
Finally, with 2 hour reconfigurations, AOU is im-
proved 18 percent. Note that this improvement is 65
percent of the maximum possible improvement.

Interestingly, when no reconfiguration happens,
the overall utility is better than other configurations
around UTC midnight. The reason behind this phe-
nomena is that at UTC midnight, the original replica
placement is well suited for the client distribution at
that time.

Figure 9 shows the hit percentages of different
subSLAs. With no reconfiguration, 34% of client
reads return eventually consistent data (i.e., hit the
third subSLA). With 2 hour reconfigurations, Tuba
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Figure 9: Hit Percentage of subSLAs

reduces this to 11% (a 67% improvement). Likewise,
the percentage of reads returning strongly consistent
data increases by around 63%.

Although the computed AOU depends heavily on
the utility values specified in the SLA, we believe
that the qualitative comparisons in this study are
insensitive to the specific values. Certainly, the hit
percentages in Figure 9 would be unaffected by vary-
ing utilities as long as the rank order of the subSLAs
is unchanged.

In addition to reduced utility, systems without sup-
port for automatic reconfiguration have additional
drawbacks stemming from the way they are manually
reconfigured. A system administrator must stop the
system (at least for certain types of configuration
changes), install the new configuration, inform clients
of the new configuration, and then restart the system.
Such systems are unable to perform frequent reconfig-
urations. Moreover, the effect of a reconfiguration on
throughput can be substantial since all client activity
ceases while the reconfiguration is in progress.

6.3 Microscopic View
Figure 10 shows how Tuba adapts the system con-
figuration in our experiment where reconfiguration
happens every 4 hours. The first five reconfigura-
tions are labeled on the plot. Initially, the primary
replica is located in SEA, and the secondary replica
is located in WEU. Upon the first reconfiguration,
the CS decides to make WEU the primary replica.
Though the number of clients in Asia is decreasing

Ep Configuration Reconfiguration
och Pri. Sec. Operation
0 SEA WEU change_primary(WEU )
1 WEU SEA add_secondary(SUS)

remove_secondary(SEA)
2 WEU SUS change_primary(SUS)
3 SUS WEU add_secondary(SEA)

remove_secondary(WEU )
4 SUS SEA change_primary(SEA)
5 SEA SUS

Figure 10: Tuba with Reconfigurations Every 4 hour

at this time, the overall utility stays above 0.90 for
two hours before starting to degrade.

The second reconfiguration happens around 2PM
(UTC time) when the overall utility is decreased
by 10%. At this time, the CS detects poor utility
for users located in the US, and decides to move
the secondary replica from SEA to SUS. Since the
geo-replication factor is set to 2, the CS necessar-
ily removes the secondary replica in SEA to comply
with the constraint. At 6PM, the third reconfigura-
tion happens, and SUS becomes the primary replica.
This reconfiguration improves the AOU to more than
0.90. In the fourth reconfiguration, the CS decides
to create a secondary replica again in the SEA re-
gion. Like the second reconfiguration, in order to
respect the geo-replication constraint, the secondary
replica in WEU is removed. Note that the fourth
reconfiguration is suboptimal since the CS does not
predict clients’ future behavior and solely focuses on
their past behavior. A better reconfiguration would
have been to make SEA the primary replica rather
than the secondary replica. After 4 hours, the CS
performs another reconfiguration and again is able
to boost the overall utility of the system.

Although the CS performs adjust_sync_period()
with two hour reconfiguration intervals, this opera-
tion is never selected by the CS when reconfigurations
happen every 4 hours. This is because changing
the primary or secondary replica boosts the util-
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Fast Mode Slow Mode
Read Write Read Write

Client in Europe 54 143 270 785
Client in Asia 297 899 533 1598

Figure 11: Average Latency (in ms) of Read/Write
Operations in Fast and Slow Modes

ity enough that reducing the synchronization period
would result in little additional benefit.

6.4 Fast Mode vs. Slow Mode

In this experiment, we compare the latency of read
and write executions in fast and slow modes. Since
the latency of read operations with any consistency
other than strong does not change in fast and slow
modes, we solely focus on the latency of executing
read operations with strong consistency and write
operations. We placed the configuration blob in the
West US (WUS) datacenter, a data tablet in West
Europe (WEU), and clients in Central Europe and
East Asia. The latency (in ms) between the two
clients and the two storage sites are as follows:

WEU WUS
Client in Europe 54 210

Client in Asia 296 230

Figure 11 compares the average latencies of read
and write operations in slow and fast modes. Execut-
ing strongly consistent read operations in slow mode
requires also reading the configuration blob to ensure
that the primary replica has not changed. Therefore,
the latency of a read operation in slow mode is more
than 200 ms longer than in fast mode.

Executing write operations in slow mode requires
three additional RPC calls to the US (where the con-
figuration blob is stored) in the case where no client
has written a lease-id to the configuration’s meta-
data (as in this experiment). Specifically, slow mode
writes involve reading the latest configuration, taking
a non-exclusive lease on the configuration blob, and
writing the lease-id to the configuration’s metadata.
If a lease-id is already set in the configuration’s meta-
data, the last phase is not needed, and two RPC calls
are enough. We note that, with additional support
from the storage servers, the overhead of write oper-
ations in slow mode could be trimmed to only one
additional RPC call. This is achievable by taking or
renewing the lease in one RPC call to the server that
stores the configuration.

Figure 12: Scalability of the CS

6.5 Scalability of the CS

As we explained in Section 3.3, the CS considers a
potentially large number of candidates when select-
ing a new configuration. To better understand the
limitations of the selection algorithm used by our
CS, we studied its scalability in practice. We put
clients at four sites: East US, West US, West Europe,
and Southeast Asia. Each client’s SLA has three
subSLAs, and all SLAs are distinct; thus, no ratio
aggregation is possible. Initially, the East US site
is chosen as the primary replica, and no secondary
replica is deployed. We also impose the following
three constraints: (i) Do not replicate in East US,
(ii) Replicate in at least two sites, and (iii) Replicate
in a maximum of three sites. We ran the CS on a
dual-core 2.20 GHz machine with 3.5GB of memory.

Figure 12 plots the latency of computing a new
configuration with 3, 5, and 7 available storage sites
when the CS performs an exhaustive search of all
possible configurations. With one hundred clients, it
takes less than 3 seconds to compute the expected
utility gain for every configuration and to select the
best one. With one thousand clients, the computa-
tion time for 3 available storage sites is still less than
3 seconds, while it reaches 3.8 seconds for 7 sites.
When the number of clients reaches ten thousand,
the CS computes a new configuration for 3 available
storage sites in 20 seconds, and for 7 available storage
sites in 170 seconds.

This performance is acceptable for many systems
since typically the set of cloud storage sites (i.e., the
datacenters in which data can be stored) is small
and reconfigurations are infrequent. For systems
with very large numbers of clients and a large list
of possible storage sites, heuristics for pruning the
search space could yield substantial improvements
and other techniques like ILP or constraint program-
ming should be explored.
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7 Related Work

Lots of previous work has focused on data placement
and adaptive replication algorithms in LAN envi-
ronments (e.g., [2, 8, 11–13, 18]). These techniques
are not applicable for WAN environments mainly
because: (i) intra-datacenter transfer costs are neg-
ligible compared to inter-datacenter costs, (ii) data
should be placed in the datacenters that are closest
to users, and (iii) the system should react to users’
mobility around the globe. Therefore, in the remain-
ing of this section, we only review solutions tailored
specifically for WAN environments.

Kadambi et al. [9] introduce a mechanism for se-
lectively replicating large databases globally. Their
main goal is to minimize the bandwidth required to
send updates and the bandwidth required to forward
reads to remote datacenters while respecting policy
constraints. They extend Yahoo! PNUTs [5] with a
per-record selective replication policy. Their dynamic
placement algorithm is based on work by Wolfson
et al. [18] and responds to changes in access patterns
by creating and removing replicas. They replicate
all records in all locations either as a full copy or as
a stub. The full replica is a normal copy of the data
while the stub contains only the primary-key and
some metadata. Instead of recording access patterns
as in Tuba, they rely on a simple approach: a stub
replica becomes full when a read operation is deliv-
ered at its location, and a full replica demotes when
a write operation is observed in another location or if
there has not been any read at that location for some
period. Unlike Tuba, changing the primary replica
is not studied in this work. Moreover, once data
is inserted into a tablet, policy constraints cannot
be changed. In contrast, Tuba allows modifying or
adding new constraints, and the current set of con-
straints will be respected in the next reconfiguration
cycle.

Tran et al. [16] introduce a key-value store called
Nomad that allows migrating of data between data-
centers. They propose and implement an abstraction
called overlays. These overlays are responsible for
caching and migrating object containers across data-
centers. Nomad considers the following three migra-
tion policies: (i) count, (ii) time, and (iii) rate. Users
can specify the number of times, a certain period,
and the rate that data is accessed from the same
remote location. In comparison, Tuba focuses on
maximizing the overall utility of the storage system
and respecting replication constraints.

Volley [1] relies on access logs to determine data
locations. Their goal is to improve datacenter capac-
ity skew, inter-datacenter traffic, and client latency.

In each round, Volley computes the data placement
for all data items, while the granularity in Tuba is
a tablet. Unlike Tuba, Volley does not take into
account the configuration costs or constraints. More-
over, the Volley paper does not suggest any migration
mechanisms.

Venkataramani et al. [17] propose a bandwidth-
constrained placement algorithm for WAN environ-
ments. Their main goal is to place copies of objects
at a collection of caches to minimize access time.
However, complex coordination between distributed
nodes and the assumption of a fixed size for all objects
makes this scheme less practical than the techniques
presented in this paper.

8 Conclusion

Tuba is a replicated key-value store that, like Pileus,
allows applications to specify their desired consis-
tency and dynamically selects replicas in order to
maximize the utility delivered to read operations.
Additionally, Tuba automatically reconfigures itself
while respecting user defined constraints so that
it adapts to changes in users locations or request
rates. The system is built on Microsoft Azure Stor-
age (MAS), and extends MAS with broad consis-
tency choices, consistency-based SLAs, and explicit
geo-replication configurations.

Our experiments with clients distributed in differ-
ent datacenters around the world show that Tuba
with two hour reconfiguration intervals increases the
reads that return strongly consistent data by 63% and
improves average utility up to 18%. This confirms
that automatic reconfiguration can yield substantial
benefits which are realizable in practice.
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