
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Deepview: Virtual Disk Failure Diagnosis
and Pattern Detection for Azure

Qiao Zhang, University of Washington; Guo Yu, Cornell University;
Chuanxiong Guo, Toutiao (Bytedance); Yingnong Dang, Nick Swanson,

Xinsheng Yang, Randolph Yao, and Murali Chintalapati, Microsoft;
Arvind Krishnamurthy and Thomas Anderson, University of Washington

https://www.usenix.org/conference/nsdi18/presentation/zhang-qiao

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Deepview: Virtual Disk Failure Diagnosis and Pattern Detection for Azure

Qiao Zhang1, Guo Yu2, Chuanxiong Guo3, Yingnong Dang4, Nick Swanson4, Xinsheng Yang4,
Randolph Yao4, Murali Chintalapati4, Arvind Krishnamurthy1, and Thomas Anderson1

1University of Washington, 2Cornell University, 3Toutiao (Bytedance), 4Microsoft

Abstract
In Infrastructure as a Service (IaaS), virtual machines
(VMs) use virtual hard disks (VHDs) provided by a re-
mote storage service via the network. Due to separation
of VMs and their VHDs, a new type of failure, called
VHD failure, which may be caused by various compo-
nents in the IaaS stack, becomes the dominating factor
that reduces VM availability. The current state-of-the-art
approaches fall short in localizing VHD failures because
they only look at individual components.

In this paper, we designed and implemented a system
called Deepview for VHD failure localization. Deepview
composes a global picture of the system by connecting
all the components together, using individual VHD fail-
ure events. It then uses a novel algorithm which inte-
grates Lasso regression and hypothesis testing for accu-
rate and timely failure localization.

We have deployed Deepview at Microsoft Azure, one
of the largest IaaS providers. Deepview reduced the
number of unclassified VHD failure events from tens of
thousands to several hundreds. It unveiled new patterns
including unplanned top-of-rack switch (ToR) reboots
and storage gray failures. Deepview reduced the time-
to-detection for incidents to under 10 minutes. Deepview
further helped us quantify the implications of some key
architectural decisions for the first time, including ToR
switches as a single-point-of-failure and the compute-
storage separation.

1 Introduction
Infrastructure-as-a-Service (IaaS) is one of the largest
cloud services today. Customers rent virtual machines
(VMs) hosted in large-scale datacenters, instead of man-
aging their own physical servers. VMs are hosted in
compute clusters, and mount OS and data VHDs (virtual
hard disks) from remote storage clusters via datacenter
networks. Resources can be scaled up and down elasti-
cally since compute and storage are separated by design.

Achieving high availability is arguably the most im-
portant goal for IaaS. Recently, large-scale system de-
sign [18, 33, 27], failure detection and mitigation tech-
niques [23, 43, 25, 7, 6, 29, 36], and better engineering
practices [10] have been applied to improve cloud system
availability. Yet, attaining the gold standard of five-nines
(99.999%) VM availability remains a challenge [32, 12].

At Microsoft Azure, there are on the order of thou-
sands of VM down events daily. The biggest category of
down events (52%) is what we call VHD failures. Due to
compute-storage separation, when a VM cannot access
its remote VHDs, the hypervisor has to crash the VM, re-
sulting in a VHD failure. Those VHD failures are caused
by various failures in the IaaS stack and constitute the
biggest obstacle towards attaining five-nines availability
for our IaaS 1.

Compute-storage separation brings unique challenges
to locating VHD failures. First, it is hard to find the
failing component in a timely fashion, among a large
number of interconnected components across compute,
storage, and network. The current practice of monitor-
ing individual components is not sufficient. The com-
plex dependencies and interactions among components
in our IaaS mean that a single root cause can have mul-
tiple symptoms at different places. A network or stor-
age failure may ripple through many other components
and affect many VMs and applications. It becomes hard
to distinguish causes from effects, resulting in a lengthy
troubleshooting process as the incidents get ping-ponged
among different teams.

Second, many component failures in the IaaS stack are
gray in nature and hard to detect [27]. For failures such as
intermittent packet drops and storage performance degra-
dation, some VHD requests that pass through the compo-
nent can fail but not others. The failure signals in these
cases are weak and sporadic in time and space, making
fast and accurate detection difficult.

1Azure has 34 regions and attains 99.9979% uptime in 2016. [41]

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 519

To address these challenges, we have designed and
deployed a system called Deepview. Deepview takes a
global view: it gathers VHD failure events as well as the
VHD paths between the VMs and their storage as inputs,
and constructs a model that connects the compute, stor-
age, and network components together. We further intro-
duce an algorithm which integrates Lasso regression [39]
and hypothesis testing [14] for principled and accurate
failure localization.

We implement the Deepview system for near-real-time
VHD failure localization on top of a high-performance
log analytics engine. To meet the near-real-time require-
ment, we add streaming support to the engine. Our im-
plementation can run the Deepview failure localization
algorithm in seconds, at the scale of thousands of com-
pute and storage clusters, tens of thousands of network
switches, and millions of servers and VMs.

Now in deployment at Azure, Deepview helped us
identify many new VHD failure root causes which were
previously unknown such as gray storage cluster failure
and unplanned Top of Rack switch (ToR) reboot. With
Deepview, unclassified VHD failure events dropped
from several thousands per day to less than 500, and the
Time to Detection (TTD) for incidents was reduced from
tens of minutes and sometimes hours to under 10 min-
utes.

Contributions. We identified VHD failures as the
biggest obstacle to five-nines VM availability for our
IaaS cloud, and proposed a system to quickly detect and
localize them. In particular, we
• Introduce a global-view-based algorithm that accu-

rately localizes VHD failures, even for gray failures.

• Build and deploy a near-real-time system that localizes
VHD failures in a timely manner.

• Quantify the implications of key IaaS architectural
design decisions, including ToR as a single-point-of-
failure and compute-storage separation (Section 7).

2 Background and Motivation

In this section, we first provide background on Azure’s
IaaS architecture. We explain how compute-storage sep-
aration can result in a new type of failure—VHD failures.
Then, we introduce the state-of-the-art industry practice
in localizing VHD failures and explain how it is slow and
inaccurate. Finally, we motivate the approach Deepview
takes and explain the challenges for putting the system
into production uses.

2.1 Compute-Storage Separation in IaaS
Figure 1 shows Azure’s IaaS architecture. A similar
architecture seems to be used at Amazon for instances

Compute Cluster Storage Cluster

T3

T2

T1

ToR

Frontend

Partition

Store

VM VM

Hypervisor

VHD Driver

Host

Figure 1: Azure’s IaaS architecture. A region has tens to
hundreds of compute/storage clusters. Each Tier2 (T2)
switch connects some subset of clusters, while Tier3 (T3)
switches connect the T2 switches. T3 switches are con-
nected by inter-region network (not drawn).

backed by the elastic block store [1]. Every VM has
one OS VHD and one or more data VHDs attached.
One key design decision is to separate compute and stor-
age physically—VMs and their VHDs are provisioned
from different physical clusters.

The main benefit of this separation is to keep customer
data available when their VMs become unavailable, e.g.,
due to a localized power failure. As a result, VM mi-
gration becomes easy as we only need to create a new
VM (possibly on a different host or cluster) and attach
the same VHDs.

In our datacenters, VHDs are provisioned and served
from a highly available, distributed storage service [13,
21]. Azure’s storage service is deployed in self-
contained units of clusters with their own Clos-like net-
work [5, 24, 13], software load balancers, frontend ma-
chines and disk/SSD-equipped servers. Similarly, VMs
are hosted on physical servers grouped in what we call
compute clusters. Each metro region typically has tens
to hundreds of compute clusters and storage clusters, in-
terconnected by a datacenter network.

Another benefit is load-balancing. A VM in a compute
cluster can remotely mount VHDs from many different
storage clusters. A compute cluster therefore uses VHDs
from multiple storage clusters, and a storage cluster can
serve many VMs from different compute clusters. As we
will see later in section 3, this many-to-many relationship
is leveraged by Deepview.

VHD Access is Remote. Compute-storage separation
requires all VMs to access their VHDs over the network.
When a VM accesses its disks, it is unaware that they are
remotely mounted. The VHD driver in the host hyper-
visor provides the needed disk virtualization layer. The
driver intercepts VM disk accesses, and turns them into
VHD remote procedure call (RPC) requests to the remote
storage service. The VHD requests and responses tra-
verse over multiple system components (e.g., the VHD
driver and the remote storage stack) and through multi-
ple network hops (e.g., ToR/T1/T2/T3 switches).

520 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

VHD Failure SW Failure HW Failure Unknown

52% 41% 6% 1%

Table 1: Breakdown of the causes of VM downtime.
VHD failures cause the majority of VM downtime.

1

2

3

0 25 50 75
Day

N
o

rm
a
li
z
e
d

 D
a
il
y
 V

H
D

 F
a
il
u

re
s

Figure 2: Daily VHD failures normalized the by 3-month
average. Every day had at least one failure. On the worst
day there were 3.5x more failures than average.

2.2 A New Type of Failure: VHD Failure

Compute-storage separation causes a new type of fail-
ure. In our datacenter, whenever VHD accesses are too
slow to respond (the default timeout is 2 minutes), the
hypervisor crashes the guest OS. In order to protect data
integrity, when VHDs do not respond, the guest OS must
be paused. But the pause cannot be indefinite—an unre-
sponsive VM can cause customers to fail their own ap-
plication level SLAs. After some wait, one reasonable
option is to surface the underlying VHD access failure
to the customer by crashing the guest OS. We call this
VHD failure caused by Compute-Storage Separation
or VHD failure for short.

VHD failure is the biggest cause of unplanned VM
downtime. We analyzed an entire year’s of IaaS VM
down events, including their durations and causes (an in-
ternal team finds root causes for VM down events). Ta-
ble 1 shows that 52% of VM downtime is due to VHD
Failures, 41% due to Software Failures (data-plane soft-
ware and host OS), and 6% due to Hardware Failures,
and 1% due to unknown causes.

Figure 2 further shows the daily number of VHD fail-
ures normalized by the 3-month average across tens of
regions. VHD failures happen daily. Occassionally, they
are particularly numerous. The worst day over the 3-
month period saw a 3.5x spike in volume.

To minimize the impact of VHD failures and improve
VM availability, the most direct approach is to quickly
localize and mitigate these failures. Next, we explain the
prior VHD failure handling approach and its drawbacks.

C1

C2

C3

C4

S1

S2

S3

(a) Bipartite model

C1

C2

C3

C4

S1 S2 S3

(b) Matrix view

Figure 3: The bipartite model and the corresponding ma-
trix view of a downtime event.

2.3 State-of-the-Art: Component View

Our datacenter operators prioritize by the impact of each
incident. A large rise in VHD failure events would auto-
matically trigger incident tickets and set off an investiga-
tion.

The site reliability engineers (SREs) look at system
components individually and locally, to see if any local
component anomaly coincides in time with the VHD fail-
ure incident. The Compute team might look for missed
heartbeats to see if the impacted physical machines have
failed. The Storage team might look at performance
counters to see if the storage system is experiencing an
overload. The Network team might look at network la-
tency and link packet discard rates to determine if some
network devices/links could be at fault. Once the fail-
ure location is confirmed, the responsible team often has
standard procedures for quick mitigation.

Prior to Deepview, failure localization was slow. It
was common that we needed tens of minutes, sometimes
more than one hour, to localize and mitigate big inci-
dents, and hours to tens of hours to detect and localize
gray failures. When a big incident happened, often more
than one component had an anomaly because a single
root cause could cascade to other services. For example,
one big network incident caused as many as 363 related
incidents from different services! As a result, the inci-
dent ticket could get ping-ponged among the teams.

Further, localization for gray failures [27] was often
inaccurate and slow. For example, while we know ToR
uplink packet discards can cause VHD requests to fail, it
was unclear how severe the discard rate has to be. Setting
a threshold to catch those failures became an art: too low
generated too many false positives, while too high de-
layed diagnosis or missed the issue.

3 Our Approach: Global View

Our key insight is that rather than looking at the compo-
nents individually and locally, we should take a global
view. The intuition can be illustrated by the bipartite
model in Figure 3a. In this model, we put compute clus-
ters on the left side and storage clusters on the right. We

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 521

draw an edge from a compute cluster to a storage cluster
if it has VMs that mount VHDs from the storage cluster.
We also assign an edge weight equal to the fraction of
VMs that have experienced VHD failures.

For a compute cluster issue such as an unplanned ToR
reboot that causes all VMs under the ToR to crash regard-
less of what storage clusters they use, we see the edges
(highlighted in red) from the impacted compute cluster
with high VHD failure rates, as in Figure 3a. When a
storage cluster fails, causing all VMs using that storage
cluster to experience VHD failures, we see edges with
high VHD failure rates coming to the impacted storage
cluster.

If we put the compute clusters along the y-axis and the
storage clusters along the x-axis, we get a matrix view
as shown in Figure 3b. In this matrix view, a horizontal
pattern points the incident to the computer cluster, while
a vertical pattern points to the storage cluster.

Challenges. Though the bipartite model looks intuitive
and promising, there are several challenges to use that
insight in a production setting. First, since the bipar-
tite model cannot be easily extended to model the multi-
tier network layers, we cannot use it to diagnose fail-
ures in the network. Second, while we can use some
voting/scoring heuristics to automate the visual pattern
recognition, they work well only when the failures are
fail-stop. For gray failures [27], fewer VMs would crash
so the VHD failure signals are often weaker, and the
VHD failure patterns are less clear cut. Third, when big
incidents happen, many customers may feel the impact,
making timely failure localization imperative. Our sys-
tem must therefore operate in near-real-time.

Problem Statement. Our goal is to localize VHD fail-
ures for both fail-stop and gray failures to component
failures in compute, storage or network, at the finest
granularity possible (clusters, ToRs and network tiers),
all within a TTD target of 15 minutes, in line with our
availability objectives.

4 Deepview Algorithm

In this section, we explain how the Deepview algorithm
solves the first two challenges—handling network and
gray failures. We first describe our new model, a gen-
eralization of the bipartite model to include network de-
vices. Then, we introduce our inference algorithm with
two main techniques: 1) Lasso regression [39] to select
a small subset of components as candidates to blame; 2)
hypothesis testing [14] as a principled and interpretable
way to handle strong and weak signals and decide on the
components to flag to operators. There are other failure
localization algorithms that can be adapted for our prob-
lem. We compare Deepview with them in Section 6.2,

Compute Cluster Storage Cluster

Aggregated
T3

Aggregated
T2

Aggregated
T1
ToR

Fronted

Partition

Store

Figure 4: Transforming the Clos network to a tree. Not
shown: each aggregated T2 switch connects to many
compute/storage clusters and each aggregated T3 switch
connects to many aggregated T2 switches.

and show that our approach has better recall and preci-
sion.

4.1 Model
In Section 3, we introduced a bipartite model that takes
a global view of compute and storage clusters. Here we
generalize the model to include network devices.

In this new model, we have three types of components:
compute clusters, network devices and storage clusters.
Figure 1 shows that compute clusters and storage clusters
are interconnected by a number of Tier-2 (T2 for short)
and Tier-3 (T3) switches in a Clos topology. ToR and
Tier-1 (T1) switches are within the clusters, and are part
of the clusters. To model the network, we replace each
edge in the bipartite model with a path through the net-
work that connects a compute cluster to a storage cluster.
Here we describe the model at the level of clusters (which
we call Cluster View in Section 6). We have also ex-
tended the model to the granularity of ToRs inside com-
pute clusters (ToR View). For this work, we keep the
storage cluster as a blackbox due to its complexity. As
future work, we plan to apply our approach to the host
level and the storage clusters internals.

4.1.1 Simplify the Clos Network to a Tree

One complication in modeling the network is that each
compute/storage cluster pair is connected by many paths.
Due to Equal-Cost Multi-path (ECMP) routing [24, 38],
we do not know precisely which path a VHD request
takes, and therefore, we do not know which path to blame
when the request fails.

Our solution is to transform the Clos topology (Fig-
ure 1) to a tree topology (Figure 4) so that there is a
unique shortest path between each cluster pair. We start
from the bottom and go up for each cluster and aggregate
the network devices by tiers, and then use shortest path
routing to find the lowest overlap between each cluster
pair.

The detailed procedure is as follows. First, we start
with ToR switches in a cluster and find the T1 switches

522 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

they connect to. Then, we group those T1 switches as
an aggregated T1 group for that cluster. Similarly, we
can find the connected T2 switches for those T1 switches
and group them as an aggregated T2 group for that clus-
ter. We repeat this procedure to find the aggregated T3
groups. At the end of the aggregation, we have deter-
mined the aggregated T1, T2, T3 groups for each cluster
in a region. The next step is to find the shortest path for
each compute-storage pair . If the aggregated T2 groups
of a cluster pair overlap, the midpoint is that overlapped
aggregated T2 group; if their aggregated T2 groups do
not overlap but their aggregated T3 groups do, the mid-
point is the T3 group.

Due to the simplification, we cannot pinpoint to a spe-
cific network device, but only to within a network tier. In
practice, Deepview is mainly used to decide which SRE
teams to notify when VMs crash. Upon notification, net-
work teams have other tools (e.g. Traceroute) to further
narrow down to a device for mitigation.

4.1.2 From Paths to Components

Next, we use our observations of VHD failure occur-
rences to pinpoint which component has failed. We
assume that components fail independently, which is a
practical and reasonable approximation of the real world.
For example, a compute cluster failure is unlikely to be
correlated with a storage cluster failure. We can write
down a simple probabilistic equation for a path consist-
ing of compute, storage and network components:

P(path i is fine) = ∏
j∈path(i)

P(component j is fine) (1)

We approximate 1−P(path i is fine) using the rate of
VHD failures observed for that path:

ni− ei

ni
≈ ∏

j∈path(i)
p j (2)

where ni is the total number of VMs, ei is the number of
VMs that have VHD failures for a given time window,
and p j is the probability that component j is fine. We get
a system of equations by writing down (2) for every path.
Next, we infer the values of p j for all components.

We know there is noise in our measurement, so we
cannot directly solve the system of equations and would
need to explicitly model the noise. Specifically, after tak-
ing log on both sides of equation (2) and adding a noise
term εi, we get a set of linear models:

yi =
N

∑
j=1

β jxi j + εi, εi
i.i.d.∼ N(0,σ2) (3)

where yi = log
(

ni−ei
ni

)
, β j = log p j, and the binary vari-

able xi j = 1 iff i-th path goes through the j-th component.

Net

C1 C2 S1 S2

Figure 5: Example where multiple solutions may exist.

Interpretation of β j: Once we get estimates for β j, the
probability that component j is fine can be computed
from β j because p j := exp(β j). If β j is close to 0, we
can clear component j from blame. Otherwise, if β j is
unusually negative, we have strong evidence to blame
component j (see Section 4.3). We would ensure β ≤ 0.

Next, we answer the following two questions: (1) how
to get fast, accurate, and interpretable estimates for β j;
(2) given the estimates, how to decide which component
to blame in a principled and interpretable manner?

4.2 Prefer Simpler Explanation
In practice, the number of unknown variables (β ’s) can
be larger than the number of equations. We illustrate this
in a simple example shown in Figure 5. We can list 4
equations with 5 free variables (the β s):

y1 = βc1 +βnet +βs1 + ε1

y2 = βc1 +βnet +βs2 + ε2

y3 = βc2 +βnet +βs1 + ε3

y4 = βc2 +βnet +βs2 + ε4. (4)

Suppose all four paths saw equal probability of VHD
failures. The blame can be pushed to the compute clus-
ters C1 and C2, or the storage clusters S1 and S2, or the
network, or a mix of those. Traditional least-square re-
gression cannot give a solution in this case. But our ex-
perience tells us that multiple simultaneous failures are
rare for a short window of time (e.g., 1 hour) because
individual incidents are rare and failures are (mostly) in-
dependent. How do we encode this domain knowledge
into our model to help us identify the most likely solu-
tion?

To prefer a small number of failures is mathematically
equivalent to prefer the estimates β = (β1, · · · ,βN) to be
sparse (mostly zeros). We express this preference by im-
posing a constraint on model parameters β . By asking
the sum of absolute values of β , i.e., ‖β‖1 to be small,
we can force most of the components of β to zero, leav-
ing only a small number of components of β remain-
ing. This technique of adding a L1-norm constraint is
known as Lasso [39], a computationally efficient tech-
nique widely used when sparse solutions are needed. We
also ensure β ≤ 0 to get valid probabilities. The esti-
mate procedure that encodes all our beliefs in our model
is thus the following convex program,

β̂ = argmin
β∈RN ,β≤0

‖y−Xβ‖2
2 +λ ‖β‖1 . (5)

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 523

Simplicity vs. Goodness-of-fit via λ : This loss function
tries to strike a balance between goodness-of-fit in the
first term (i.e., how well the model explains the observa-
tion) and sparsity in the second term (i.e., fewer failing
components are more likely). The regularization param-
eter λ is the knob. Larger λ prefers fewer components
to be blamed at potentially worse goodness-of-fit. The
optimal value of λ is set by an automatic (data-adaptive)
cross-validation procedure [26].

4.3 Decide Who To Blame
While big incidents are relatively easy to localize with a
fixed threshold, it is much harder to find a threshold that
can discriminate gray failures from normal components
when there are random measurement errors. The esti-
mated failure probabilities for gray failures can be very
close to zero (see Section 6.1). The challenge then be-
comes how big an estimated failure probability is for a
gray failure versus just measurement error. Setting such
a threshold manually requires laborious data-fitting and
is often based on some vague notions of anomaly. In
practice, it can be difficult and fragile.

Can we use data to find the decision threshold in a
principled and automatic way? Intuitively, the larger the
magnitude a (negative) Lasso estimate has, the higher its
estimated failure probability, and correspondingly more
likely the component has failed. We had a painful experi-
ence manually tuning the threshold, but the process gave
us some experience in distinguishing true failures (big
incidents and gray failures) from measurement noise.
We found that if a component’s Lasso estimate is much
worse than the average, then it is likely a real failure and
should be flagged. The further from average, the more
confident we are that the component has failed.

This decision can be automated in a hypothesis testing
framework. Consider the following one-sided test:

H0(j) : β j = β̄ v.s. HA(j) : β j < β̄ (6)

The null hypothesis H0(j) says the true probability that
component j is fine is no different from the grand average
of all components. We then use the data to tell us if we
can reject H0(j) or not. If the data allow us to reject
H0(j) in favor of the alternative hypothesis HA(j), then
we can blame component j. Otherwise, we do not blame
component j. The hypothesis test has three steps.

Step 1: Compute Test Statistic. Given Lasso estimates
for components in a region, we find the mean ¯̂

β and stan-
dard deviation σ

β̂
. Then we compute a modified Z-score

for each component j,

z j =
β̂ j− ¯̂

β

σ
β̂
/
√

N
. (7)

Under the assumptions that the measurement error is
Gaussian, and other caveats,2 we approximate the dis-
tribution of z j as a Gaussian distribution with mean zero
(under H0(j)) and certain variance.

Step 2: Compute p-value. We then compute the p-
value [14] for each component j. The p-value is the prob-
ability of seeing a failure probability for component j as
extreme as currently observed simply by chance assum-
ing that it is no different from the average. If the p-value
is really small, then we do not believe the failure prob-
ability for component j is just about average. See the
Appendix for more discussion on p-value.

Step 3: Make a Decision. Finally, we apply a standard
threshold of 1% on p-value.3 It expresses our tolerance
for false positive rate. For example, if the p-value for
component j is less 1%, we blame the component with at
most 1% false positive rate. Otherwise, we have insuffi-
cient evidence to blame component j.

Avoid the Pitfalls in Multiple Testing. We test every
component in a region and flag them based on p-values.
For every test, we may falsely blame a normal compo-
nent with a small chance. But with a large number of
components in every region, we are bound to commit an
actual false positive if not careful. This is called the mul-
tiple testing problem. We use the Benjamini-Hochberg
procedure [9] to control the False Discovery Rate. See
Appendix for details.

5 Deepview Design and Implementation

We have two main system requirements:

• Near-real-time (NRT) processing: VHD failures re-
sult in customer VM downtime, so failure localization
must be speedy and accurate. We have the requirement
that the time-to-detection (TTD) be within 15 minutes.

• Speedy iteration: VHD failures are the biggest obsta-
cle to higher VM availability, so there is an immediate
need by the operations team for better diagnosis. Our
system is designed for quick iteration.

Our system requires two types of input data: non-real-
time structural data and real-time event data. The former
include the compute and storage clusters information,
all the VMs and their VHD storage account information
and related context, the paths for all the compute-storage
pairs, and the network topology. Taking periodic snap-
shots of those every few hours suffices for our purposes.

2Testing on Lasso estimates is an active research area. We fit a
Lasso model to obtain a set of nonzero variables, and refit these vari-
ables with least squares. See [46].

3Another common threshold is 5%, but it generates too many false
positives for testing multiple hypotheses in our setting. See Appendix.

524 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Deepview
algorithm

NRT
Scheduler

VHD
Failure
Table

VM Info
Table

Storage
Account

Table

Network
Topo
Table

Real-time
Path

Kusto

Alert

Non-real-time
Path

Visualization

FailurePattern
Table

VHD failure events from servers Non-real-time structural data

VMsPerPath
Table

ClusterRawData
TorRawData

Tables

Ingestion Pipelines

Figure 6: Deepview system architecture. Data schema is
given in Table 2.

The latter are the VHD failure signals from servers. To
meet near-real-time requirements, our algorithm needs to
see VHD failure signals within minutes, ideally through
a streaming system.

We need to scale to thousands of compute and storage
clusters, tens of thousands of VHD failures per day, tens
of thousands of network switches, hundreds of thousands
paths, and millions of VMs.

The non-real-time information is either already in our
in-house log analytics engine called Azure Kusto [3, 2],
or can be generated and ingested into Kusto. Kusto stores
data as tables but the tables are append-only, and it sup-
ports a SQL-like declarative query language. Kusto is
backed by reliable persistent storage from a distributed
storage service, using memory and SSD for a read-only
cache. By default, it builds indices for all columns to
improve query speed.

VHD failure events are generated by hypervisors.
They are collected by a real-time pipeline. Since most of
our data is already in Kusto, and Kusto provides highly
expressive declarative language and fast data analysis,
we ingest the VHD failure events into Kusto and build
Deepview system on top of it.

System Architecture: The resulting system architecture
is shown in Figure 6. It has four components. The real-
time path and non-real-time path are for the input data in-
gestion for the Deepview algorithm. The Kusto platform
provides both data analysis and storage for input, inter-
mediate, and output data. The visualization and alert are
tools for the consumption of Deepview results. The NRT
scheduler is what we build on top of Kusto to support
stream processing for the Deepview algorithm.

5.1 Stream Processing

We build our own stream processing system on top of
Kusto because most of our data are already there; a few

Table Name Schema

VHDFailure (ts, vm id, vhd, str account)
VMInfo (ts, vm id, comp cluster, tor)
StorageAccount (ts, str account, str cluster)
NetworkTopo (ts, cluster, tor list, t1 list,

t2 list, t3 list)
VMsPerPath (tstart, tend, num vms)
ClusterRawData (tstart, tend, comp cluster,

str cluster, num vms,
num failed vms)

TorRawData (tstart, tend, comp cluser,
tor, str cluster, num vms,
num failed vms)

FailurePattern (tstart, tend, region, type, loc,
pval, visual url)

Table 2: Kusto schemas for the Deepview data.

additions to satisfy our needs. We do not claim novelty
compared to existing research and commercial streaming
systems [44, 8, 4].

To support stream processing on top of Kusto tables,
we use two abstractions:

• A computation directed-acyclic-graph (DAG) de-
clared as a set of SQL-like queries with their output
tables.

• A scheduler that runs each query at a given frequency.

We store the DAG and its scheduling policy as tables,
since tables are Kusto’s only supported data structure.

Computation DAG. The computation DAG consists of a
set of queries that read from input tables and produce one
or multiple output tables. The queries are the “edges”
and the input/output tables are the “nodes”. To maintain
the DAG in Kusto, we give each query a name and store
the query definition and the query output table name in
yet another table.

NRT Scheduler. To provide a streaming window ab-
straction, we use a schedule to describe when each query
in the DAG should be executed. The schedule describes
how often it should run and how many times to retry. To
meet availability requirements, we use a one-hour sliding
window that moves forward every 5 minutes.

5.2 Algorithm Implementation
The algorithm implementation has three parts: first, con-
struct the model—instantiate the design matrix xi j and
observation yi based on the Deepview raw data tables,
then run Lasso regression to infer β , and finally carry
out hypothesis testing to pinpoint the failures.

Sparse Matrix and Region Filtering. The scale of our
data poses some challenges for algorithm running time

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 525

and memory footprint. Constructing a full design matrix
requires filling in entries for every path and every com-
ponent with either zero or one. This can be slow and
has high memory usage. However, xi j are mostly zeros
since each path has at most tens of components, so we
only need to store the non-zero entries. Another simple
technique is to only get data from Kusto for regions with
non-zero VHD failure occurrences. Since simultaneous
failures are rare, region filtering can avoid running the
algorithm for some regions without hurting accuracy.

Coordinate Descent. Lasso regression has no closed
form solution. Coordinate descent [22] is one of the
fastest algorithms to solve the Lasso regression. We min-
imize the loss function as in Equation 5 with respect to
each coordinate β j while holding all others constant. We
cycle among the coordinates until all coefficients stabi-
lize. In practice, with warm start, we found that coor-
dinate descent almost always converges in only a few
rounds.

Cross-Validation with Warm Start to Set λ . We set
the regularization parameter λ for Lasso using a data-
adaptive method, i.e., cross-validation [26]. We use 5-
fold cross validation where we split the data by paths into
5 partitions, and use any four of them to fit β for a given
choice of λ and then compute the mean squared error
(MSE) on the holdout partition using the fitted β . The
optimal λ is the one that minimizes the average MSE.
We speed up cross validation using a warm start tech-
nique [22]. Recall that a larger λ meant fewer non-zero
β j. We start with the smallest λ that turns off all β j, and
then we gradually decrease λ . Since β tends to change
only slightly for a small change in λ , we reduce the num-
ber of rounds for coordinate descent by reusing β (λk−1)
as the initial values for β (λk).

6 Evaluation
We have deployed Deepview in production at Azure.
Here, we first evaluate how well Deepview localizes
VHD failures using production case studies. Then, we
compare Deepview’s accuracy with other algorithms.
Next, we analyze various techniques proposed for Deep-
view and ask how useful each is. Finally, we evaluate
how Deepview’s runtime efficiency.

6.1 Deepview Case Studies
In this subsection, we ask how effective Deepview is at
detecting and diagnosing incidents in production use.

6.1.1 Statistics

We examined the Deepview results for one month. The
number of VHD failures generated per day can be up to
tens of thousands. For this month, Deepview detected
100 patterns, and reduced the number of unclassified

ToR_11

ToR_12

ToR_13

ToR_14

ToR_15

ST
R
_0
1

ST
R
_0
2

ST
R
_0
3

ST
R
_0
4

ST
R
_0
5

ST
R
_0
6

ST
R
_0
7

Figure 7: Deepview pattern for an unplanned ToR reboot.

VHD failure events to less than 500 per day. We also
tried to associate the detected patterns with incident tick-
ets: 70 of the patterns were directly associated with in-
cident tickets. The other 30 patterns were not associated
with tickets. These 30 patterns turned out to be gener-
ated by weak VHD failure signals. They were all real
underlying component failures that escaped the previous
alerting system, either because of their smaller impact
(e.g., unplanned ToR reboot) or their gray failure nature
(e.g., gray storage failure).

Next we examine some of the representative patterns
we found and discuss the insight we learn from them.

6.1.2 Unplanned ToR Reboot

From time to time, ToRs undergo scheduled downtime
for firmware upgrade or other maintenance operations.
Impacted customers are notified in advance, with their
VMs safely migrated to other places. However, occa-
sionally, a ToR may experience an unplanned reboot due
to a hardware or software bug. Since each server con-
nects to only one ToR, the VMs under the ToR will not
be able to access their VHDs. We get VHD failures as a
result. To detect unplanned ToR reboots, Deepview first
estimates the failure probability and p-value for the ToR,
and then checks the following conditions for confirma-
tion: all the VMs under the ToR get VHD failures, the
ToR OS boot time matches the failure time detected by
Deepview, and the neighboring ToRs are working fine.

Figure 7 shows one such unplanned ToR reboot de-
tected by Deepview in a small region.4 It shows a por-
tion of the Deepview UI, which we call ToR view. It
clearly shows a horizontal pattern. The ToR switches in
the compute cluster are listed on the y-axis and the stor-
age clusters are listed on the x-axis. Each cell in the fig-
ure shows the status of the ToR and storage cluster pair.
Gray means the VMs under the ToR do not use the cor-
responding storage cluster; green means the VMs do not
have VHD failures; red means the VMs are experiencing
VHD failures.

Deepview blamed the right ToR among 288 compo-
nents in the region (ToRs, T1/T2/T3 switch groups and

4Readers may wonder how VHD failure events can be identified
when the ToRs are single point of failure. They are in fact stored locally
in the servers and are retrieved once network connectivity is restored
(typically within 10 minutes for software failures).

526 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

10

20

0 20 40 60

Hour

N
u

m
b

e
r

o
f

V
M

s
 w

it
h

 V

H
D

 F
a

ilu
re

s
 p

e
r

H
o

u
r

Figure 8: The number of VMs with VHD failures per
hour during a storage cluster gray failure.

compute/storage clusters). Deepview estimated the fail-
ure probability for the failed ToR to be 100% with a p-
value of 1.84E−64, which is much less than 0.01.

Deepview therefore makes it possible to study how of-
ten ToRs cause downtime. We discuss this in detail in
Section 7.1.

6.1.3 Storage Cluster Gray Failure

Our storage cluster runs a full storage stack including
load balancer/frontend, meta-data management, storage
layer, etc. VHD failures can happen due to a variety of
failure modes in the storage stack. When storage cluster
failures are non-fail-stop, the VHD signals can be weak
and noisy. For example, the load balancer could discard
VHD requests to shed load, and in other cases, software
bugs could cause some VHDs to become unavailable,
impacting only a subset of VMs.

We next discuss such a storage gray failure case. A
new storage cluster was brought online, but with a mis-
configuration that allowed a test feature in the caching
subsystem to be enabled. This bug mistakenly put some
VHDs in negative cache (denoting deletion), rendering
them “invisible” and unavailable for VM access.

Based on the VHD failure events at hour 0 in Figure 8,
Deepview found three non-zero failure probability enti-
ties in the region, 0.34 for storage cluster S0, 0.002 and
0.047 for compute clusters C0 and C1. Notice that be-
cause this storage cluster failure only affected a small
number of VMs, we did not get a failure probability of
1 for S0. Further, the two compute clusters saw non-
zero failure probabilities because they also saw VHD
failure events. However, despite the weak signal, our al-
gorithm was able to correctly pinpoint the failure to S0.
Our hypothesis testing procedure computed a p-value of
3.9E−34 for S0, identifying it as a failed cluster with
very high confidence. On the other hand, C0 and C1
had p-values 0.51 and 0.54, respectively, and signifying
a lack of evidence. Using our prior threshold method
for detection, we would have delayed the detection by
22 hours. As shown in Figure 8, the signal is weak: the
number of VMs affected per hour in the beginning was

Figure 9: Deepview pattern for a network incident.

only around 10, and the peak number was only 28.

6.1.4 Network Failure

In our datacenter, switches other than ToRs have repli-
cas. Single switch failures thus seldom lead to wide im-
pact outages. However, in rare cases, a combination of
capacity loss and traffic surge can cause network failures.

In one region, we have over 100 compute clusters and
50 storage clusters. They are connected by four T2 ag-
gregated switches (numbered T2 0 to T2 3) with a T3
aggregated switch (T3 0) on top, as annotated along the
axes in Figure 9. Each aggregated switch contains multi-
ple switches. One day, a T3 0 switch underwent a major
maintenance event, which triggered some T2 switches in
T2 0 to mistakenly detect Frame Check Sequence (FCS)
errors on the links to T3 0. Our automatic network ser-
vice then kicked in and shut down most of links between
the T3 0 switch and T2 0 except for three links saved by
a built-in safety mechanism.

This loss in capacity together with a surge in storage
replication traffic caused significant congestion between
T2 0 and T3 0. As a consequence, we saw a significant
increase in VHD failures experienced by customer VMs.

Figure 9 shows the pattern in the Deepview UI (partial
Cluster View) with compute clusters on the y-axis and
storage clusters on the x-axis. The switch aggregated per
cluster is annotated on each axis. Yellow cells have a
VHD failure rate at most 5%. The VHD failure rates
are moderate because the VHD failures in this case were
caused by network congestion; most of the time network
connectivity was still working.

Deepview identified three aggregated switches with
non-zero failure probabilities: 0.21%, 0.11%, 0.03% for
T3 0, T2 0, and T2 2, respectively. Their corresponding
p-values are 9.91E−12, 4.25E−04, 0.221. We point to
T3 0 and T2 0 as the faulty network layers. The failure
location is correct, as the root cause is the link conges-

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 527

tion between these two network layers. We note Deep-
view gave small failure probabilities because the VHD
failure signals are weak: only a very small percentage of
affected VMs crashed. But since T3 0 and T2 0 are high
in the network hierarchy, they impact a large number of
VMs.

We also experienced network incidents where network
connectivity for many VMs were lost. They were easy
for Deepview to detect and localize, as the signals were
strong: many VMs died at the same time. We present
this gray failure case to show the strength of Deepview.

To summarize, we have shown that Deepview can lo-
calize various incidents in which the signals can be weak
or strong. Deepview has also deepened our understand-
ing of VHD failures by identifying various patterns in-
cluding horizontal patterns caused by incidents including
unplanned ToR reboot, vertical patterns caused by stor-
age outages, and network failure patterns.

6.2 Algorithm Comparison
Several algorithms that have been previously used to lo-
calize failures in the network can be extended to localize
VHD failures. We compare with two tomography algo-
rithms and a Bayesian network algorithm:

• Boolean-Tomo [20, 19]: Classify paths into good and
bad paths based on a threshold (bad if at least γ VHD
failures). Iteratively find the component on the largest
number of unexplained bad paths, as the top suspect
until all bad paths are explained. For the threshold γ ,
we tried γ = 1,2,3,4,5, and picked γ = 1 to maximize
its recall and then precision.

• SCORE [31]: Classify paths into good and bad paths
based on a threshold (γ). Iteratively compute for each
component its hit ratio numBadPaths(c)

numPaths(c) and coverage ra-

tio numUnexplainedBadPaths(c)
totalNumUnexplainedBadPaths . Only consider compo-

nents above a hit ratio threshold (η). Take the compo-
nent with the highest coverage ratio as the top suspect.
For the threshold γ and η , we tried γ = 1,2,3,4,5 and
η = 0.001,0.01,0.1, and picked γ = 1 and η = 0.01
to maximize its recall and then precision.

• Approximate Bayesian Network [35]: The runtime
to compute exact Bayesian network is exponential in
the number of components, and thus is infeasible for
us. We tried an approximation [35]. It uses mean-
field variational inference to approximate the Bayesian
network with a Noisy-OR model, and estimates the
component j’s failure rate as the posterior mean of a
Beta distribution B(α j,β j). A component is blamed if

α̂ j

α̂ j+β̂ j
is above certain threshold. We do not include

its accuracy numbers, because we are unable to make
it give meaningful results on our data. The estimated

Boolean-Tomo SCORE Deepview
0

0.2

0.4

0.6

0.8

1

0.6

0.3

0.9

0.67

0.88
1

Pr
ec

is
io

n/
R

ec
al

l

Precision Recall

Figure 10: Precision/Recall comparison.

Compute Storage Net ToR

Precision 0.85 0.875 1.0 1.0
Recall 1.0 1.0 1.0 1.0

Table 3: Precision/Recall by failure type for Deepview.

posterior means of component failure rate allows us to
apply a threshold. The computation takes 10 minutes
for a single region, so this approach is not fast enough
for our problem.

Dataset. As we cannot run the other algorithms in pro-
duction, we use trace data to compare algorithms. We
had already hand-curated 42 incidents from a detailed
study of tickets, so we use trace data from those inci-
dents. They consist of 16 compute cluster issues (not
ToR-related), 14 storage cluster issues, 10 unplanned
ToR reboots, and 2 network issues. Only time periods
when there is an incident are considered because a ran-
dom sample is too sparse. Thus, we may overestimate
the precision. But our comparison is fair since all algo-
rithms use the same baseline ground truth.

Metrics. We compare each algorithm on recall and pre-
cision. Recall is the percentage of true failures that have
been localized and precision is the percentage of local-
izations that are correct. In other words, high recall
means we can localize most real failures, while high pre-
cision means we have few false positives.

Figure 10 summarizes the precision and recall for the
42 incidents. SCORE achieves a recall of 0.88, beating
Boolean-Tomo, but it gives many false positives. Deep-
view, achieves both a high precision of 0.90 and a high
recall of 1.0, beating both alternatives. Table 3 shows
a breakdown of the precision and recall by failure types
for Deepview. Overall, Deepview handles cases with a
strong failure signal (Compute/ToR) and those with a
weak failure signal (Storage/Network) well. Deepview
also does well for unplanned ToR reboots and Network
incidents. However, there were fewer of these incidents,
so the estimates are to be taken with a grain of salt.

The other advantage of Deepview is that its param-
eters needs no manual tuning. Parameters are set by
cross-validation (for λ) or using a standard interpretable
criterion (false positive tolerance of 1% for p-value).

528 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Boolean-Tomo and SCORE, instead, need careful tun-
ing of their thresholds. In fact, we find that their preci-
sion and recall are sensitive to the thresholds. We picked
those that maximize recall (as recall is typically more im-
portant than precision in production), while keeping pre-
cision as high as possible. We note that Deepview beats
the performance of Boolean-Tomo and SCORE for all
combinations of thresholds (omitted for lack of space).

6.3 Deepview Algorithm Analysis

We have introduced a set of techniques for our algorithm.
Here, we analyze how useful each technique is.

Cross-validation and λ in Lasso Regression. The regu-
larization parameter λ is set by cross-validation for each
region. The optimal values found for incidents in Sec-
tion 6.2 span three orders of magnitude with a minimum
of 0.00012 and a maximum of 0.48. In fact, it is well
known in statistical literature that choosing a universally
optimal λ for all problems is impossible. The theoretical
optimal [11] depends on the number of paths, the num-
ber of components, the structure of the network, and the
error variance (i.e., how stable are VHD failures among
different paths). When cross-validation is fast, it is pre-
ferred to a manual threshold.

Hypothesis Testing and Gray Failures. We use hypoth-
esis testing to find a decision threshold to localize both
big incidents and gray failures in the presence of ran-
dom noise. The gray failure case studies in Section 6.1
show that hypothesis testing is essential. For the storage
case, the failure probabilities are 0.34 for the truly failed
storage cluster S0, and 0.002 and 0.047 for two normal
compute clusters. Their p-values 3.9E−34 and 0.51 and
0.54 are needed to accentuate the difference and allow us
to pick only S0. Similarly, for the network case, looking
at p-values allow us to filter out T2 2.

6.4 Deepview Running Time

Algorithm Running Time. We measure the running
time for Deepview algorithm in production. The worst-
case running time is 18.3 seconds on a single server. It
includes the time to read input data from Kusto, execute
the algorithm and write the output data to Kusto.

Time to Detection (TTD) TTD is defined as the time
between when an incident happens and when the fail-
ure is localized. The average time from a VHD failure
event to its appearance in Kusto is 3.5 minutes. Adding
the 5 minutes windowing time and the processing time,
Kusto achieves a TTD under 10 minutes. This is a sig-
nificant improvement over the previous TTD which typ-
ically lasted from tens of minutes to hours.

7 Discussion

Several architectural decisions were made when our IaaS
was built. One is that a server connects to only a single
ToR via a single NIC. While this makes ToR a single-
point-of-failure (SPOF), the decision dramatically re-
duces networking cost. Another decision is that a VM
can host its VHDs in any storage cluster in the same
region. This makes load-balancing for storage clusters
easy, but with potentially higher network latency and
lower throughput. Further, both decisions may adversely
impact VM availability. Using the data collected from
Deepview, we can now study the impact of these deci-
sions quantitatively.

7.1 ToR as a Single-Point-of-Failure

As we have described in Section 6.1, Deepview can de-
tect unplanned ToR reboots. From the failure patterns,
we find that there are two types of ToR failures: soft fail-
ures and hard failures. Soft failures can be recovered by
rebooting the ToR, while hard failures cannot.

Our data shows that: (1) less than 0.1% switches expe-
rience unplanned reboots in a month; (2) 90% of the fail-
ures are soft failures, with the rest hard failures. The hard
failure rate agrees with our ToR Return Merchandise
Authorization (RMA) rate, which indicates that 0.1%
switches need to be RMAed in one year. These numbers
are obtained from a fleet of tens of thousands of ToRs.

The impact of a soft failure typically lasts for less than
20 minutes: 10 minutes for the ToRs to come up and 10
minutes for the VMs to recover. The impact of a hard
failure lasts longer as the failed switch needs to be physi-
cally replaced. The impact to VMs can be shorter though
as the VMs can be migrated to other hosts due to the sep-
aration of compute and storage. We conservatively use 2
hours as the impact period for hard failures.

If the ToR is the only failure source for VMs on that
rack, the availability of our IaaS is no better than

1− 0.9×20+0.1×120
1000×30×24×60

= 99.99993%

Even with ToR as the single point of failure, the ser-
vice can achieve six-nines. This meets the rule of thumb
that critical dependencies need to offer one additional 9
relative to the target service [40].

Thanks to Deepview data, for the first time, we are
able to show that ToR as a single point of failure is an ac-
ceptable design choice for IaaS as it is not on the critical
path for five-nines availability.

Note that simply examining ToR logs would not
have given us these numbers, as many ToR reboots are
planned, with no impact on VM availability.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 529

0

100

200

300

0 25 50 75

Day

P
e

rc
e

n
ta

g
e

 I
n

c
re

a
s
e

 o

f
V

H
D

 F
a

ilu
re

 R
a

te

Figure 11: Daily percentage increase in VHD failure rate
for VMs crossing T3 and above compared to those that
only cross T2 for a 3-month period.

7.2 Co-locate or Disaggregate?
A VM can use VHDs from any storage cluster in the
same region, due to the separation of compute and stor-
age. We look at the network distance between VMs and
the storage clusters for their VHDs. We find that some
51.8% of VHD paths go through T2, 41.0% need to go
through T3 and the rest go above T3 in Azure.

A longer network path may result in higher network
latency and packet drop rate. However, it is not clear
whether it will also negatively affect VM availability.

Here we use the Deepview data to answer this quanti-
tatively. We look at our data for three months. For each
day, we first compute the VHD failure rates r0 and r1
for VMs crossing T2 only and VMs crossing T3 and
above, respectively. Then, we find the percentage in-
crease (r1− r0)/r0.

Figure 11 shows the daily percentage increase over a
3-month period. VMs whose network paths cross T3 net-
work layer or above see a higher VHD failure rate than
those that only need to cross T2 on most days. There is a
11.4% increase ((r1− r0)/r0) in the VHD failure rate if
the VHD access needs to cross T3 or above.

One possible explanation is that as VHD requests go
up the network tiers, they traverse more switches which
may become oversubscribed. Thus VHD requests may
become more likely to fail when network path lengths
get longer. An implication of this study is that there
is some benefit to colocating VMs and their VHDs in
nearby clusters for availability.

8 Related Work
Machine Learning. Machine learning techniques have
been used for failure localization, such as decision
trees [6, 17], Naive Bayes [45], SVM [42], correla-
tions [43], clustering [16], and outlier detection [36].
They allow domain knowledge to be encoded as features,
but in general require a rich set of signals to discrimi-
nate different failure cases and may rely on assumptions
about traffic that are not generally applicable. The most
relevant work is NetPoirot [6], which targets a similar

scenario as ours, but with a very different approach. Net-
Poirot is a single node solution where end-hosts indepen-
dently run pre-trained classification models on local TCP
statistics to infer failure locations. We believe NetPoirot
and Deepview are complementary—TCP metrics from
IaaS VMs may provide a useful signal to Deepview.

Tomography. There has been a large body work in net-
work tomography (see [15] for a survey), and specifically
binary tomography and its variants [20, 19, 31] for net-
work failure localization. Typically, greedy heuristics are
used to select among multiple solutions that all explain
the observations. Various thresholds are often needed to
tradeoff between precision and recall ratios. Compared
with those approaches, Deepview avoids manual thresh-
old tuning and achieves both higher recall and precision
as shown in section 6.2.

Bayesian Network. Bayesian network [34] is a prin-
cipled probabilistic approach to failure localization. It
can model complex system behaviors [7] and handle
measurement errors [28]. While exact inference is in-
tractable [30], there are various approximation tech-
niques such as using noisy-or to simplify conditional
probability calculation [35, 7, 37], considering k-subset
root-causes to shortcut marginalization [28, 7], using a
simple factored form for joint posterior [35], or using
message passing for faster inference [37]. For our prob-
lem, we find that using a combination of approxima-
tion techniques (we tried two [35]) was essential. It is
future work to compare Deepview with some practical
Bayesian network approach.

9 Conclusion

We identified VHD failures caused by compute-storage-
separation as the main factor that reduces VM availabil-
ity at our IaaS cloud. We introduced Deepview, a sys-
tem that quickly localizes failures from a global view of
different system components and a novel algorithm in-
tegrating Lasso regression and hypothesis testing. Data
from production allowed us to quantitatively evaluate
precision and recall across many failure events. We also
used Deepview data to evaluate the impact of system ar-
chitecture on VM availability.

Acknowledgement
We thank our Azure colleagues Brent Jensen, Girish
Bablani, Dongming Bi, Rituparna Paul, Abhishek
Mishra, Dong Xiang for their valuable discussions and
support. We thank our MSR colleagues Pu Zhang,
Myeongjae Jeon and Lidong Zhou, and intern Jin Ze for
their contributions to an early prototype of Deepview.
We thank our shepherd Mike Freedman and the anony-
mous reviewers for their feedback. This work was par-
tially supported by the NSF (CNS-1616774).

530 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] Amazon EC2 Root Device Volume. http://

docs.aws.amazon.com/AWSEC2/latest/UserGuide/
RootDeviceStorage.html#RootDeviceStorageConcepts.

[2] Azure Kusto (Preview). https://docs.microsoft.com/en-
us/connectors/kusto/.

[3] Introducing Application Insights Analytics. https:

//blogs.msdn.microsoft.com/bharry/2016/03/28/
introducing-application-analytics/.

[4] ABADI, D. J., CARNEY, D., ETINTEMEL, U., CHERNIACK, M.,
CONVEY, C., LEE, S., STONEBRAKER, M., TATBUL, N., AND
ZDONIK, S. B. Aurora: a New Model and Architecture for Data
Stream Management. The VLDB Journal 12 (2003), 120–139.

[5] AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scalable,
Commodity Data Center Network Architecture. In SIGCOMM
(2008).

[6] ARZANI, B., CIRACI, S., LOO, B. T., SCHUSTER, A., AND
OUTHRED, G. Taking the Blame Game Out of Data Centers
Operations with NetPoirot. In SIGCOMM (2016).

[7] BAHL, P., CHANDRA, R., GREENBERG, A., KANDULA, S.,
MALTZ, D. A., AND ZHANG, M. Towards Highly Reliable En-
terprise Network Services via Inference of Multi-level Dependen-
cies. In SIGCOMM (2007).

[8] BALAZINSKA, M., BALAKRISHNAN, H., MADDEN, S., AND
STONEBRAKER, M. Fault-tolerance in the Borealis Distributed
Stream Processing System. In SIGMOD Conference (2005).

[9] BENJAMINI, Y., AND HOCHBERG, Y. Controlling the False Dis-
covery Rate: a Practical and Powerful Approach to Multiple Test-
ing. Journal of the Royal Statistical Society. Series B (Method-
ological) (1995), 289–300.

[10] BEYER, B., JONES, C., PETOFF, J., AND MURPHY, N. R. Site
Reliability Engineering: How Google Runs Production Systems.
O’Reilly Media, 2016.

[11] BICKEL, P. J., RITOV, Y., AND TSYBAKOV, A. B. Simultaneous
Analysis of Lasso and Dantzig Selector. The Annals of Statistics
(2009), 1705–1732.

[12] BISHOP, T. Microsoft Says Google’s Cloud Reliability Claim
vs. Azure and Amazon Web Services Does Not Compute, 2017.
https://www.geekwire.com/2017/microsoft-says-
googles-cloud-reliability-claim-vs-azure-amazon-

web-services-not-compute.

[13] CALDER, B., ET AL. Windows Azure Storage: a Highly Avail-
able Cloud Storage Service with Strong Consistency. In SOSP
(2011).

[14] CASELLA, G., AND BERGER, R. L. Statistical Inference, vol. 2.
Duxbury Pacific Grove, CA, 2002.

[15] CASTRO, R., COATES, M., LIANG, G., NOWAK, R., AND YU,
B. Network Tomography: Recent Developments.

[16] CHEN, M. Y. ., KICIMAN, E., FRATKIN, E., FOX, A., AND
BREWER, E. Pinpoint: Problem Determination in Large, Dy-
namic Internet Services. In DSN (2002).

[17] CHEN, M. Y., ZHENG, A. X., LLOYD, J., JORDAN, M. I., AND
BREWER, E. A. Failure Diagnosis Using Decision Trees. In
ICAC (2004).

[18] DEAN, J. Designs, Lessons and Advice From Building Large
Distributed Systems. Keynote from LADIS 1 (2009).

[19] DHAMDHERE, A., TEIXEIRA, R., DOVROLIS, C., AND DIOT,
C. NetDiagnoser: Troubleshooting Network Unreachabilities
Using End-to-end Probes and Routing Data. In CoNEXT (2007).

[20] DUFFIELD, N. Network Tomography of Binary Network Perfor-
mance Characteristics. IEEE Transactions on Information Theory
52.

[21] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M.,
TRUONG, V.-A., BARROSO, L., GRIMES, C., AND QUINLAN,
S. Availability in Globally Distributed Storage Systems. In OSDI
(2010).

[22] FRIEDMAN, J., HASTIE, T., AND TIBSHIRANI, R. Regular-
ization Paths for Generalized Linear Models via Coordinate De-
scent. Journal of statistical software 33, 1 (2010), 1.

[23] GOVINDAN, R., MINEI, I., KALLAHALLA, M., KOLEY, B.,
AND VAHDAT, A. Evolve or Die: High-Availability Design Prin-
ciples Drawn From Googles Network Infrastructure. In SIG-
COMM (2016).

[24] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. VL2: A Scalable and Flexible Data Center Network.
In SIGCOMM (2009).

[25] GUO, C., ET AL. Pingmesh: A Large-Scale System for Data Cen-
ter Network Latency Measurement and Analysis. In SIGCOMM
(2015).

[26] HASTIE, T. J., TIBSHIRANI, R., AND FRIEDMAN, J. H. The
elements of statistical learning: data mining, inference, and pre-
diction, 2nd Edition. In Springer series in statistics (2009).

[27] HUANG, P., GUO, C., ZHOU, L., LORCH, J. R., DANG, Y.,
CHINTALAPATI, M., AND YAO, R. Gray Failure: The Achilles’
Heel of Cloud-Scale Systems. In HotOS (2017).

[28] KANDULA, S., KATABI, D., AND VASSEUR, J.-P. Shrink: a
Tool for Failure Diagnosis in IP Networks. In MineNet (2005).

[29] KANDULA, S., MAHAJAN, R., VERKAIK, P., AGARWAL, S.,
PADHYE, J., AND BAHL, P. Detailed Diagnosis in Enterprise
Networks. In SIGCOMM (2009).

[30] KOLLER, D., AND FRIEDMAN, N. Probabilistic Graphical Mod-
els - Principles and Techniques.

[31] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNO-
EREN, A. C. IP Fault Localization via Risk Modeling. In NSDI
(2005).

[32] LEOPOLD, G. AWS Rates Highest on Cloud Reliabil-
ity, 2015. https://www.enterprisetech.com/2015/01/06/
aws-rates-highest-cloud-reliability.

[33] MOGUL, J. C., ISAACS, R., AND WELCH, B. Thinking About
Availability in Large Service Infrastructures. In HotOS (2017).

[34] PEARL, J. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. 1988.

[35] PLATT, J. C., KICIMAN, E., AND MALTZ, D. A. Fast Vari-
ational Inference for Large-scale Internet Diagnosis. In NIPS
(2007).

[36] ROY, A., ZENG, H., BAGGA, J., AND SNOEREN, A. C. Passive
Realtime Datacenter Fault Detection and Localization. In NSDI
(2017).

[37] STEINDER, M., AND SETHI, A. S. End-to-end Service Failure
Diagnosis using Belief Networks. In NOMS (2002).

[38] THALER, D., AND HOPPS, C. Multipath Issues in Unicast and
Multicast Next-Hop Selection, 2000. IETF RFC 2991.

[39] TIBSHIRANI, R. Regression Shrinkage and Selection via the
Lasso. Journal of the Royal Statistical Society. Series B (Method-
ological) (1996), 267–288.

[40] TREYNOR, B., DAHLIN, M., RAU, V., AND BEYER, B. The
Calculus of Service Availability. ACM Queue 15 (2017).

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 531

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/RootDeviceStorage.html#RootDeviceStorageConcepts
https://docs.microsoft.com/en-us/connectors/kusto/
https://docs.microsoft.com/en-us/connectors/kusto/
https://blogs.msdn.microsoft.com/bharry/2016/03/28/introducing-application-analytics/
https://blogs.msdn.microsoft.com/bharry/2016/03/28/introducing-application-analytics/
https://blogs.msdn.microsoft.com/bharry/2016/03/28/introducing-application-analytics/
https://www.geekwire.com/2017/microsoft-says-googles-cloud-reliability-claim-vs-azure-amazon-web-services-not-compute
https://www.geekwire.com/2017/microsoft-says-googles-cloud-reliability-claim-vs-azure-amazon-web-services-not-compute
https://www.geekwire.com/2017/microsoft-says-googles-cloud-reliability-claim-vs-azure-amazon-web-services-not-compute
https://www.enterprisetech.com/2015/01/06/aws-rates-highest-cloud-reliability
https://www.enterprisetech.com/2015/01/06/aws-rates-highest-cloud-reliability

[41] VISWAV, P. Microsoft Dismisses Google’s Cloud Reliabil-
ity Claim, 2017. https://mspoweruser.com/microsoft-
dismisses-googles-cloud-reliability-claim.

[42] WIDANAPATHIRANA, C., LI, J. C., SEKERCIOGLU, Y. A.,
IVANOVICH, M. V., AND FITZPATRICK, P. G. Intelligent Auto-
mated Diagnosis of Client Device Bottlenecks in Private Clouds.
2011 Fourth IEEE International Conference on Utility and Cloud
Computing (2011), 261–266.

[43] YU, M., GREENBERG, A. G., MALTZ, D. A., REXFORD, J.,
YUAN, L., KANDULA, S., AND KIM, C. Profiling Network
Performance for Multi-tier Data Center Applications. In NSDI
(2011).

[44] ZAHARIA, M., DAS, T., LI, H., HUNTER, T., SHENKER, S.,
AND STOICA, I. Discretized Streams: Fault-tolerant Streaming
Computation at Scale. In SOSP (2013).

[45] ZHANG, S., COHEN, I., GOLDSZMIDT, M., SYMONS, J., AND
FOX, A. Ensembles of Models for Automated Diagnosis of Sys-
tem Performance Problems. In DSN (2005).

[46] ZHAO, S., SHOJAIE, A., AND WITTEN, D. In Defense of the
Indefensible: A Very Naive Approach to High-Dimensional In-
ference. arXiv preprint arXiv:1705.05543 (2017).

A P-value Correction for Multiple Testing

To decide if a component has failed, we could make a
decision based on a threshold for the estimated failure
probability for that component. But we can make a more
principled decision by conducting a hypothesis test for
each component as specified in (6). In this appendix, we
explain the details in doing this testing. We explain our
p-value, and motivate and explain how we do multiple
testing.

A.1 Interpretation of p-values

To conduct the test for each component, we construct the
test statistics as in (7) for each of the N components. We
then compute the p-value for each test to decide whether
to reject the null hypothesis. The p-value is defined as,
the probability, assuming the null hypothesis is true, of
the sampling test statistic having a value at least as ex-
treme as observed. If the null hypothesis is true, we
should expect a moderate p-value. However, if the com-
puted p-value is small, we have evidence to believe that
the null hypothesis is false. In fact, when the p-value is
too small (e.g., below the conventional 1%, 5%, and 10%
significance level), we should reject the null hypothesis
H0(j), since it is highly unlikely that it can explain the
values we have observed.

If the p-value is greater than the significance level,
then the test is inconclusive. However, we give extra
attention to borderline cases to decrease the false neg-
ative rate. For example, we produce warnings with lower
priority for those components whose p-values are only
slightly greater than the significance level.

A.2 Choice of Significance Level
How to choose an appropriate significance level? For
testing a single hypothesis, conventional choices of sig-
nificance level include 1%, 5%, and 10%.

However, when testing multiple hypotheses, we need
to be more careful about false positives. Suppose we
are testing 100 null hypotheses, all of which are true.
If we use 5% as the significance level, then there is
roughly 5% probability that we incorrectly reject the
null hypothesis—committing a false positive. Further,
if these 100 tests are independent, then we are almost
certain to make at least one false positive:

P(at least one false positive) = 1−P(no false positive)

= 1−0.95100 = 0.994.
(8)

Intuitively, the more hypotheses we test simultaneously,
the more likely we are to make a mistake.

To reduce the tendency of making mistakes when test-
ing multiple hypotheses, we need to provide a stricter
significance level than a single test. This is called the
multiple testing correction.

A.3 Multiple Testing Correction
There are two approaches to multiple testing correction:
family-wise error rate (FWER) control correction or false
discovery rate (FDR) control correction. We use FDR
control in Deepview algorithm since it is the more pow-
erful alternative.

Let V be the number of false positives (the healthy
components that we falsely blame), and R be the num-
ber of rejected hypotheses (the total number of compo-
nents we blame). Then the false discovery rate (FDR) is
defined as

FDR := E[Q] := E [V/R] (9)

The Benjamini-Hochberg procedure [9] is the most
popular FDR control procedure due to its simplicity and
effectiveness. The procedure is as follows:

1. Do N individual tests and get their p-values P1,
P2, . . . , PN corresponding to null hypothesis H0(1),
H0(2), . . . , H0(N).

2. Sort these p-values in ascending order and denote
them by P(1),P(2), · · · ,P(N).

3. For a given threshold on FDR α , find the largest K
such that P(K) ≤ K

N α .

4. Reject all null hypotheses for which their p-values
are smaller than or equal to P(K).

This procedure controls the FDR under α .

532 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://mspoweruser.com/microsoft-dismisses-googles-cloud-reliability-claim
https://mspoweruser.com/microsoft-dismisses-googles-cloud-reliability-claim

	Introduction
	Background and Motivation
	Compute-Storage Separation in IaaS
	A New Type of Failure: VHD Failure
	State-of-the-Art: Component View

	Our Approach: Global View
	Deepview Algorithm
	Model
	Simplify the Clos Network to a Tree
	From Paths to Components

	Prefer Simpler Explanation
	Decide Who To Blame

	Deepview Design and Implementation
	Stream Processing
	Algorithm Implementation

	Evaluation
	Deepview Case Studies
	Statistics
	Unplanned ToR Reboot
	Storage Cluster Gray Failure
	Network Failure

	Algorithm Comparison
	Deepview Algorithm Analysis
	Deepview Running Time

	Discussion
	ToR as a Single-Point-of-Failure
	Co-locate or Disaggregate?

	Related Work
	Conclusion
	P-value Correction for Multiple Testing
	Interpretation of p-values
	Choice of Significance Level
	Multiple Testing Correction

