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Abstract

Network Function Virtualization (NFV) virtualizes soft-
ware network functions to offer flexibility in their de-
sign, management and deployment. Although GPUs
have demonstrated their power in significantly acceler-
ating network functions, they have not been effectively
integrated into NFV systems for the following reasons.
First, GPUs are severely underutilized in NFV systems
with existing GPU virtualization approaches. Second,
data isolation in the GPU memory is not guaranteed.
Third, building an efficient network function on CPU-
GPU architectures demands huge development efforts.

In this paper, we propose G-NET, an NFV system
with a GPU virtualization scheme that supports spatial
GPU sharing, a service chain based GPU scheduler, and
a scheme to guarantee data isolation in the GPU. We
also develop an abstraction for building efficient network
functions on G-NET, which significantly reduces devel-
opment efforts. With our proposed design, G-NET en-
hances overall throughput by up to 70.8% and reduces
the latency by up to 44.3%, in comparison with existing
GPU virtualization solutions.

1 Introduction

Network Function Virtualization is a network architec-
ture for virtualizing the entire class of network functions
(NFs) on commodity off-the-shelf general-purpose hard-
ware. Studies show that NFs constitute 40–60% of the
appliances deployed in large-scale networks [36]. This
architecture revolutionized the deployment of middle-
boxes for its lower cost, higher flexibility, and higher
scalability. With the fast increasing data volume, the net-
working speed is also under rapid growth to meet the de-
mand for fast data transfer. Therefore, achieving high
performance is a critical requirement for NFV systems.

With the massive number of cores and high memory
bandwidth, GPUs are well known for the capability of

significantly accelerating NFs. Existing GPU-based NFs
include router [15], SSL proxy [20], SRTP proxy [47],
OpenFlow switch and IPsec gateway [15]. By form-
ing CPU and GPU processing in a pipeline, the het-
erogeneous architecture is capable of delivering a high
throughput in packet processing. Moreover, due to the
rise of deep learning and other data analytical applica-
tions, GPUs are widely deployed in data centers and
cloud services, e.g., Amazon EC2 GPU instance [2] and
Alibaba Cloud GPU server [1]. Therefore, GPUs serve
as a good candidate for building high-performance NFV
systems. However, GPUs still have not been widely and
effectively adopted in NFV systems. We identify the
main reasons as threefold.

GPU Underutilization: Although state-of-the-art GPU
virtualization techniques [39, 40, 45] enable multiple
VMs to utilize a GPU, a GPU can only be accessed by
a VM exclusively at a time, i.e., temporal sharing. Con-
sequently, VMs have to access the GPU in a round-robin
fashion. These virtualization approaches fit for GPU ker-
nels that can fully utilize the GPU, such as deep learn-
ing [46] and database queries [41]. In production sys-
tems such as cloud, the input network traffic volume of
an NF is generally much lower than the throughput that a
GPU can achieve. As a result, the workload of each ker-
nel in NFV systems is much lighter, which would result
in severe GPU underutilization. Batching more tasks can
be a feasible way to improve the GPU utilization, but it
would result in a much higher latency. This issue largely
blocks the adoption of GPUs in NFV systems as the over-
all throughput may be not enhanced or even degraded.

Lack of Support for Data Isolation: In a GPU-
accelerated NFV system, both packets and the data struc-
tures of NFs need to be transferred to the GPU memory
for GPU processing. When multiple NFs utilize a GPU
to accelerate packet processing, they may suffer from in-
formation leakage due to the vulnerabilities in current
GPU architectures [33]. As a result, a malicious NF may
eavesdrop the packets in the GPU memory or even ma-
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nipulate traffic of other NFs. As security is one of the
main requirements in NFV systems [16], the lack of the
system support for data isolation in the GPU memory
may cause concern for NFV users.

Demanding Significant Development Efforts: Build-
ing an efficient network function on heterogeneous CPU-
GPU architectures demands lots of development ef-
forts. First, the complex data flow in network process-
ing should be handled, including I/O operations, task
batching, and data transferring in the CPU-GPU pipeline.
Second, achieving the throughput and latency require-
ments needs to carefully adjust several parameters, such
as the GPU batch size and the number of CPU and GPU
threads. These parameters are highly relevant with the
hardware and workloads, which makes it hard for NF
deployment. All of the above efforts are repetitive and
time-consuming in NF development and deployment.

In this paper, we propose an NFV system called G-
NET to address the above issues and support efficient
executions of NFs on GPUs. The main idea of G-NET
is to spatially share a GPU among multiple NF instances
to enhance the overall system efficiency. To achieve this
goal, G-NET takes a holistic approach that encompasses
all aspects of GPU processing, including the CPU-GPU
processing pipeline, the GPU resource allocation, the
GPU kernel scheduling, and the GPU virtualization. The
proposed system not only achieves high efficiency but
also lightens the programming efforts. The main contri-
butions of this paper are as follows.

• A GPU-based NFV system, G-NET, that enables
NFs to effectively utilize GPUs with spatial sharing.

• A GPU scheduling scheme that aims at maximizing
the overall throughput of a service chain.

• A data isolation scheme to guarantee the data se-
curity in the GPU memory with both compile and
runtime check.

• An abstraction for building NFs, which significantly
reduces the development and deployment efforts.

Through experiments with a wide range of workloads,
we demonstrate that G-NET is capable of enhancing the
throughput of a service chain by up to 70.8% and reduc-
ing the latency by up to 44.3%, in comparison with the
temporal GPU sharing virtualization approach.

The roadmap of this paper is as follows. Section 2 in-
troduces the background of this research. Section 3 out-
lines the overall structure of G-NET. Section 4 describes
the virtualization scheme and data plane designs of G-
NET. Sections 5 and 6 describe the scheduling scheme
and the abstraction for NF development. Section 7 eval-
uates the prototype system, Section 8 discusses related
work, and Section 9 concludes the paper.

2 Background and Challenges

In this section, we review the background of adopting
GPUs in NFV systems and discuss the major challenges
in building a highly-efficient system.

2.1 Network Functions on Heterogeneous
CPU-GPU Architectures

GPUs are efficient at network processing because the
massive number of incoming packets offers sufficient
parallelism. Since CPUs and GPUs have different
architectural characteristics, they generally work in a
pipelined fashion to execute specific tasks for high ef-
ficiency [15, 48]. CPUs are usually in charge of per-
forming I/O operations, batching, and packet parsing.
The compute/memory-intensive tasks are offloaded to
GPUs for acceleration, such as cryptographic opera-
tions [20], deep packet inspection [19], and regular ex-
pression matching[42].

Take software router as an example, the data process-
ing flow is as follows. First, the CPU receives packets
from NICs, parses packet headers, extracts IP addresses,
and batches them in an input buffer. When a specified
batch size or a preset time limit is reached, the input
buffer is transferred to the GPU memory via PCIe, then a
GPU kernel is launched to lookup the IP addresses. Af-
ter the kernel completes processing, the GPU results, i.e.,
the NIC ports to be forwarded to, are transferred back to
the host memory. Based on the results, the CPU sends
out the packets in the batch.

A recent CPU optimization approach G-Opt [21]
achieves compatible performance with GPU-based im-
plementations. G-Opt utilizes group prefetching and
software pipelining to hide memory access latencies.
Comparing with GPU-based implementations, such opti-
mizations are time-consuming to apply, and they increase
the difficulty in reading and maintaining the code. More-
over, the optimizations have limited impact on compute-
intensive NFs [12], and the performance benefits may
depend on the degree of cache contention when running
concurrently with other processes.

In the following of this paper, we use NVIDIA CUDA
terminology in the GPU related techniques, which are
also applicable to OpenCL and GPUs from other ven-
dors.

2.2 GPU Virtualization in NFV Systems
We implement four NFs on CPU-GPU architectures,
including an L3 Router, a Firewall, a Network Intru-
sion Detection System (NIDS), and an IPsec gateway.
The implementation follows the state-of-the-art network
functions [19, 20, 15], where the GPU kernels are listed
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NF Kernel algorithm
Router DIR-24-8-BASIC [13]

Firewall Bit vector linear search [24] (188 rules)
NIDS Aho-Corasick algorithm [4] (147 rules)
IPsec AES-128 (CTR mode) and HMAC-SHA1

Table 1: GPU kernel algorithms of network functions.
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Figure 1: The throughputs of a CPU core and a GPU
when forming a pipeline in GPU-accerated NFs (512-
byte packet).

in Table 1. In the implementation of the Firewall, bit vec-
tor linear search is used to perform fast packet classifica-
tion with multiple packet fields. For each field, we use
trie [8] for IP address lookup, interval tree [7] for match-
ing port range, and hash table for the protocol lookup.
Based on the implementations, we conduct several ex-
periments to evaluate the network functions and make
the following observations. Please refer to Sect. 7.1 for
the hardware and system configurations.

GPU is underutilized: In Figure 1, we show the
throughput of the four GPU kernels, where a GPU
demonstrates 840 Mpps for the L3 router, 70 Mpps for
the Firewall, 64 Gbps for the NIDS, and 32 Gbps for
the IPsec gateway. In cloud or enterprise networks, how-
ever, the traffic volume of an NF instance can be signif-
icantly lower than the GPU throughput. Consequently,
such high performance can be overprovision for many
production systems. Figure 1 also makes a comparison
of the normalized throughput between a CPU core and
a GPU when they form a pipeline in the NFs, where
the CPU core performs packet I/O and batching, and the
GPU performs the corresponding operations in Table 1.
As shown in the figure, the throughput of a CPU core is
significantly lower (5×-65×) than that of the GPU. As a
result, being allocated with only limited number of CPU
cores, an NF is unable to fully utilize a GPU. For the
above reasons, a GPU can be severely underutilized in
cloud or enterprise networks.

Temporal sharing leads to high latency: When only
one NF runs on a server, the GPU is exclusively ac-
cessed by the NF. By overlapping the CPU processing
and the GPU processing, the GPU timeline is shown in
Figure 2(1). With the adoption of virtualization tech-
niques [39, 40, 45] that enable temporal GPU sharing,
NFs are able to access the GPU in a round-robin fash-
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Figure 2: GPU execution with exclusive access, temporal
sharing, and spatial sharing.
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Figure 3: GPU processing time with different number of
SMs (512-byte packet).

ion. To maintain the same throughput with exclusive ac-
cess, the GPU processing time of each NF should be re-
duced to allow multiple kernels utilizing the GPU. One
may expect to utilize more GPU resources to reduce the
GPU processing time. In Figure 3, we show that the GPU
processing time quickly converges with first few Stream-
ing Multiprocessors (SMs) allocated, and the reduction
is moderate or even unnoticeable with more SMs. This
is because that, with less than a certain number of jobs,
an SM has a relatively fixed processing time in handling
a specific task. As a result, although the batch size of an
SM becomes smaller by assigning more SMs, the over-
all processing time cannot be further reduced. Conse-
quently, temporal GPU sharing would not enhance the
throughput of NFs, but the longer batching time would
lead to a much higher latency. For instance, with another
two kernels B and C, the GPU timeline would be like
Figure 2(2), where the CPU batching time and the GPU
processing time become significantly longer.

2.3 Opportunities and Challenges of Spa-
tial GPU Sharing

With the lightweight kernels from multiple NFs, spa-
tial GPU sharing is promising in enhancing the GPU
efficiency. Spatial GPU sharing means multiple GPU
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kernels run on a GPU simultaneously (shown in Fig-
ure 2(3)), with each kernel occupying a portion of GPU
cores. This technique has been proved to gain a signifi-
cant performance improvement on simulated GPU archi-
tectures [3, 26]. A recently-introduced GPU hardware
feature, Hyper-Q, exploits spatial GPU sharing. Adopt-
ing Hyper-Q in NFV systems faces several challenges.

Challenge 1: GPU virtualization. To run concurrently
on a GPU with Hyper-Q, the kernels are required to have
the same GPU context. Kernels of NFs in different VMs,
however, are unable to utilize the feature for their dif-
ferent GPU contexts. Existing GPU virtualization ap-
proaches [9, 39, 40] are designed for the situation that
the GPU is monopolized by one kernel at any instant,
which do not adopt Hyper-Q. Utilizing Hyper-Q in NFV
systems, therefore, demands a redesign of the GPU vir-
tualization approach.

Challenge 2: Isolation. As NFs might come from dif-
ferent vendors, data isolation is essential for ensuring
data security. With the same GPU context when utiliz-
ing Hyper-Q, all GPU memory regions are in the same
virtual address space. As runtimes such as CUDA and
OpenCL do not provide isolation among kernels from
the same context, an NF is able to access memory re-
gions allocated by other NFs. Consequently, utilizing the
Hyper-Q hardware feature may lead to security issues.

Challenge 3: GPU scheduling. Virtualization makes
an NF unaware of other coexisting NFs that share the
same GPU, making them lack of the global view in re-
source usage. With spatial GPU sharing, if every NF
tries to maximize its performance by using more GPU re-
sources, the performance of the service chain can be sig-
nificantly degraded due to resource contention. Existing
GPU scheduling schemes [10, 22, 41] focus on sporadic
GPU tasks and temporal GPU sharing, which mismatch
the requirements and characteristics of NFV systems.

3 G-NET - An Overview

We propose G-NET, an NFV system that addresses the
above challenges and effectively shares GPUs among
NFs. In this section, we make an overview on the ma-
jor techniques adopted in G-NET.

3.1 The G-NET Approach

To efficiently and safely share a GPU in an NFV environ-
ment, G-NET adopts the following major approaches.

Utilizing Hyper-Q in GPU virtualization: To enable
spatial GPU sharing, G-NET utilizes the Hyper-Q feature
in GPUs. We place a GPU management proxy in the
hypervisor, which creates a common GPU context for all
NFs. By utilizing the context to perform data transfer and

User NF

Abstraction

GPU

ManagerSchedulerSwitch

User NF

Abstraction

NIC

…
FrameworkFramework

Figure 4: System architecture.

kernel operations, multiple kernels from different NFs
can simultaneously run on the GPU.

isoPointer for data isolation: We implement iso-
Pointer, a software memory access checking layer for
GPU kernels. In G-NET, the GPU memory is accessed
with isoPointer, which behaves like regular pointers but
is able to check if the accessed memory address is legal,
i.e., whether it belongs to the current kernel. isoPointer
ensures the data isolation of NFs in the GPU memory.

Service chain based GPU scheduling: G-NET devel-
ops a service chain based GPU scheduling scheme that
aims at maximizing the throughput of a service chain.
Based on the workload of each NF, Scheduler calculates
the corresponding GPU resources for each NF kernel to
optimize the performance of the entire service chain. The
scheduling algorithm is capable of dynamically adapting
to workload changes at runtime.

Abstraction: We propose an abstraction for develop-
ing NFs. By generalizing the CPU-GPU pipelining, data
transfer, and multithreading in a framework, NF develop-
ers only need to implement a few NF-specific functions.
With the abstraction, the implementation efforts of an NF
are significantly reduced.

3.2 The Architecture of G-NET
The architecture of G-NET is shown in Figure 4. There
are three major functional units in the hypervisor layer
of G-NET: Switch, Manager, and Scheduler. Switch is
a virtual switch that performs packet I/O and forwards
network packets among NFs. Manager is the proxy for
GPU virtualization, which receives GPU execution re-
quests from NFs and performs the corresponding GPU
operations. Scheduler allocates GPU resources to opti-
mize the overall performance of a service chain.

G-NET adopts a holistic approach in which the NF
and the hypervisor work together to achieve spatial GPU
sharing. A framework is proposed to handle the data
flows and control flows in NF executions. Based on the
programming interfaces of the framework, developers
only need to implement NF-specific operations, which
significantly reduces the development efforts. The pro-
cessing data flow of an NF is shown in Figure 4. An NF
receives packets from Switch, which can be from a NIC
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Figure 5: GPU virtualization in G-NET.

or other NFs. The NF batches jobs and utilizes Man-
ager to perform GPU data transfer, kernel launch, and
other operations. With the GPU processed results, the
NF sends packets out through Switch.

4 System Design and Implementation

This section presents the main techniques adopted in G-
NET, including the GPU virtualization approach, data
plane switching, and GPU memory isolation.

4.1 GPU Virtualization and Sharing

As a common GPU context is demanded for spatial GPU
sharing, GPU kernels launched in different VMs are un-
able to run simultaneously for their different contexts.
To address this issue, G-NET creates a GPU context in
the hypervisor and utilizes the context to execute GPU
operations for all NFs. In order to achieve the goal, we
virtualize at the GPU API level and adopt API remot-
ing [14, 37] in GPU virtualization. API remoting is a
virtualization scheme where device API calls in VMs are
forwarded to the hypervisor to perform the correspond-
ing operations. Figure 5 depicts our GPU virtualization
approach. Manager maintains a response queue for each
NF and a request queue that receives GPU requests from
all NFs. To perform a GPU operation, an NF sends a
message that includes the operation type and arguments
to Manager via the request queue. Manager receives
messages from NFs and performs the corresponding op-
erations in the common GPU context asynchronously, so
that it can serve other requests without waiting for their
completion. Each NF is mapped to a CUDA stream by
Manager, thus their operations run simultaneously in the
same GPU context.

G-NET adjusts the number of thread blocks and the
batch size of a kernel to achieve predictable performance
(details in Sect. 5). In G-NET, the NF framework and the
hypervisor work together to set these parameters. Upon
receiving a kernel launch request, Manager uses the
number of thread blocks that is calculated by Scheduler
to launch the corresponding kernel. If the resource allo-
cation scheme has been updated by Scheduler, Manager
sends the batch size information to the NF via the re-

Data Plane

Packets

NIC

Switch

NF1 NFn

Shared packet buffer

R T R T

Hypervisor

Figure 6: Data plane switching.

sponse queue after the kernel completes execution. Then
the framework in the NF uses the updated batch size to
launch subsequent kernels.

There are several challenges for Manager to share the
GPU. First, GPU kernels are located in VMs, which can-
not be directly called by Manager. Second, the argu-
ments should be set for launching a GPU kernel, but
user-defined types cannot be known in the hypervisor.
We utilize the CUDA driver API to address these is-
sues. Each NF passes the source file and the name of
its GPU kernel to Manager via a shared directory be-
tween the VM and the hypervisor. The hypervisor loads
the kernel with CUDA driver APIs cuModuleLoad and
cuModuleGetFunction and launches the kernel with cu-
LaunchKernel. Kernel arguments are stored in a shared
host memory region by NFs, whose pointer can be di-
rectly passed to the kernel in cuLaunchKernel. In this
way, Manager launches GPU kernels disregarding the
specific argument details, which will be parsed automat-
ically by the kernel itself.

For GPU operations such as kernel launch and PCIe
data transfer, data is frequently transferred between a
VM and the hypervisor. In G-NET, we develop a set of
schemes to eliminate the overheads. When an NF re-
quests to allocate a host memory region, Manager cre-
ates a shared memory region (shown in Figure 5) for each
NF to transfer data by only passing pointers. For the al-
location of the GPU memory, Manager directly passes
the GPU memory pointer back to the NF, which would
be passed back to perform PCIe data transfer or launch
GPU kernels.

4.2 Data Plane Switching

Figure 6 shows the data plane switching in G-NET.
Memory copy is known to have a huge overhead in high-
speed network processing. To enhance the overall per-
formance, we apply zero-copy principle in Switch to re-
duce the data transfer overhead of VM-to-NIC and VM-
to-VM. Two communication channels are employed to
move packets. One channel is a large shared memory
region that stores packets. Packets are directly written
into this memory region from NICs, allowing VMs to
read and write packets directly. The other channel is two
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queues to pass packet pointers. Each VM has an input
queue to receive packets and an output queue to send
packets. As only packet pointers are transferred between
VMs, the data transfer overhead is significantly allevi-
ated.

There are two types of threads in Switch, which are
called as RX thread and TX thread. RX threads receive
packets from NICs. After analyzing packet headers, RX
threads distribute packets to corresponding NFs through
their input queues. An NF sends out packets by enqueue-
ing packet pointers in its output queue. A TX thread in
Switch is in charge of forwarding packets of one or sev-
eral output queues. Based on the service chain informa-
tion, a TX thread sends the dequeued packets out through
NICs or to the following NFs for further processing.

4.3 Isolation
To address the data security issue in GPUs, we develop
isoPointer, a mechanism to guarantee the data isolation
in the GPU device memory. isoPointer acts as a soft-
ware memory access checking layer that guarantees the
read and write operations in the GPU memory do not sur-
pass the bound of the legal memory space of an NF. An
isoPointer is implemented as a C++ class, which over-
loads the pointer operators, including dereference, pre-
increment, and post-increment. Each isoPointer instance
is associated with the base address and the size of a mem-
ory region. At runtime, dynamic checking is enforced to
ensure that the accessed memory address of an isoPointer
is within its memory region, i.e., [base, base+size].

Despite dynamic checking, we ensure that all mem-
ory accesses in an NF are based on isoPointer with static
checking. Static checking is performed on the source
code of each NF, which needs to guarantee two aspects.
First, an isoPointer can only be returned from system
interfaces or passed as arguments, and no isoPointer is
initiated or modified by users. Second, the types of all
pointers in the GPU source code are isoPointer. This
is performed with type checking, a mature technique in
compiler. With both static and dynamic checking, G-
NET guarantees data isolation in the GPU memory.

5 Resource Allocation and Scheduling

In this section, we introduce our GPU resource allocation
and scheduling schemes. The main goal of the schedul-
ing scheme is to maximize the throughput of a service
chain while meeting the latency requirement.

5.1 Resource Allocation
Unlike CPUs, GPUs behave as black boxes, which pro-
vide no hardware support for allocating cores to applica-

tions. Threads are frequently switched on and off GPU
cores when blocked by operations such as memory ac-
cess or synchronization. As a result, it is unable to pre-
cisely allocate a GPU core to a GPU thread. Moreover,
whether kernels can take advantage of Hyper-Q to spa-
tially share the GPU depends on the availability of the
GPU resources, including the registers and the shared
memory. When the resources to be taken by a ker-
nel exceed current available resources, the kernel would
be queued up to wait for the resources becoming avail-
able. Consequently, an improper GPU resource alloca-
tion scheme is detrimental to the overall performance.

G-NET uses SM as the basic unit in the allocation of
GPU computational resources. A thread block is a set
of threads that can only run on one SM. Modern GPUs
balance the number of thread blocks on SMs, where two
thread blocks are not supposed to be scheduled to run
on the same SM when there still exists available ones.
We utilize this feature and allow the same or a smaller
number of thread blocks as that of SMs to run on a GPU
simultaneously, so that each thread block executes exclu-
sively on one SM. By specifying the number of thread
blocks of a GPU kernel, an NF is allocated with an exact
number of SMs, and multiple GPU kernels can co-run
simultaneously.

We propose a GPU resource allocation scheme that
uses two parameters to achieve predictable performance:
the batch size and the number of SMs. The scheme is
based on a critical observation: there is only marginal
performance impact (< 7% in our experiments) from
thread blocks running on different SMs. When utilizing
more SMs with each SM being assigned with the same
load, the overall kernel execution time (w/o PCIe data
transfer) stays relatively stable. The main reasons for this
phenomenon are twofold. First, the memory bandwidth
of current GPUs is high (480 GB/s on NVIDIA Titan X
Pascal), which is sufficient for co-running several NFs
on 10 Gbps network. Second, SMs do not need to com-
pete for other resources such as register file or cache, as
each SM has its independent resources. Therefore, the
batch size of an SM controls its throughput and process-
ing time, while allocating more SMs can reap a near-
linear throughput improvement.

5.2 Performance Modeling

To achieve predictable performance by controlling the
batch size of an SM, we model the relationship between
the performance of an SM and the batch size with our
evaluation results. Figure 7 shows the GPU kernel exe-
cution time on one SM, the PCIe data transfer time, and
the corresponding throughputs of four NFs.

As shown in the figure, the throughput of GPU ker-
nels have different patterns, where the throughputs of
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Figure 7: GPU processing time and throughput on one
SM (Packet size: 512-byte; Thread block size: 1024).

NIDS and IPsec gateway increase and then drop in steps
with the increase of batch size. As the kernels reach the
highest throughputs before the first performance degra-
dation, we use the batch size in the first step to adjust the
SM throughput. The kernel execution time and the PCIe
data transfer time form a near-linear relationship with the
batch size (within the first step). Therefore, we adopt lin-
ear regression in the model. We use Lk = k1 ·B+ b1 to
describe the relationship between the batch size (B) and
the GPU kernel execution time (Lk), and Lm = k2 ·B+b2
is used to describe the relationship between the batch size
(B) and the PCIe data transfer time (Lm). As the kernel
execution time stays stable with different number of SMs
when the batch size assigned to each SM stays the same,
we can get the overall GPU execution time of a kernel as

L = Lk +Lm = k1 ·B0 +b1 + k2 ·B0 ·N +b2 (1)

, where N denotes the number of SMs, and B0 denotes the
batch size of each SM. The throughput can be derived as

T = N ·B0/L (2)

The parameters of the linear equations are relative
with hardware platform, number of rules installed (e.g.,
NIDS and Firewall), and packet size. In system deploy-
ment, we develop a tool called nBench to measure the
PCIe data transfer time and the kernel execution time
to derive the corresponding linear equations with locally
generated packets. With nBench, our system can be
quickly deployed on servers with different hardware and
software configurations by only profiling each NF once.

We have implemented several GPU-based NFs, and
we find that NFs can be classified into two main groups.
1) For NFs that inspect packet payloads, the performance

has a similar pattern with NIDS and IPsec gateway. The
length of the performance fluctuation step equals to the
thread block size of the GPU kernel (1024 in our eval-
uation). 2) For NFs that only inspect packet headers,
the performance exhibits the same pattern with Router
and Firewall. Therefore, this simple but effective perfor-
mance model can be applied to other NFs. Moreover,
in the G-NET implementation, our scheduling scheme
considers the potential model deviations (denote as C
in Sect. 5.3) in the resource allocation, making our ap-
proach more adaptive in practice.

5.3 Service Chain Based GPU Scheduling

The GPU scheduling in NFV systems has the follow-
ing specific aspects. (1) The packet arrival rate and the
packet processing cost of each NF are dramatically dif-
ferent. If each NF is allocated with the same amount of
resources, the NF with the heaviest load would degrade
the overall throughput [23]. (2) The workload of an NFV
system can be dynamically changing over time. For in-
stance, under malicious attack, the throughput of NIDS
should be immediately enhanced.

Based on the performance model, we propose a
scheduling scheme that aims at maximizing the through-
put of an entire service chain while meeting the latency
requirements of NFs. Different with the modeling en-
vironment, the scheduling scheme needs to consider the
costs brought by the implementation and hardware. First,
there is overhead in the communication between NFs
and Manager in performing GPU operations. Second, as
there are only one host-to-device (HtoD) and one device-
to-host (DtoH) DMA engine in current GPUs, the data
transfer of an NF has to be postponed if the required
DMA engine is occupied by other NFs. Third, the model
may have deviations. Our scheduling scheme takes these
overheads into consideration (denote by C), which works
as follows.

At runtime, Scheduler monitors the throughput of each
NF and progressively allocates GPU resources. We first
find the NF that achieves the lowest throughput (de-
note by T ′) in the service chain, then allocate all NFs
with enough GPU resources to meet the throughput T =
T ′ · (1+P), where P ∈ (0,1). If there are branches in
the service chain, we first allocate resources for NFs in
each branch. Then the sum of the throughputs of the
child branches is used as the throughput for their father
branch in resource allocation. This procedure repeats
until GPU resources are exhausted, which improves the
overall throughput by P in each round.

In each round, Scheduler calculates the minimum
number of SMs and the batch size to meet the latency and
throughput requirements of each NF. Starting from as-
signing one SM, the scheme checks if the current number
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Figure 8: The framework of a network function.

of SMs (denoted as N) is able to meet the schedulability
condition of an NF, i.e., achieving a latency lower than
the user-specified latency requirement L and a through-
put higher than the input speed T . According to Eq. 2, by
substituting N ·B0/T for L into Eq. 1, the minimum batch
size demanded to achieve the throughput T is derived as

B0 = dT · (b1 +b2 +C)/(N−T · (k1 + k2 ·N))e (3)

Then, the overall processing time can be calculated as

L0 = k1 ·B0 +b1 + k2 ·B0 ·N +b2 +C (4)

If L0 ≤ L, it means the NF can meet both its latency and
throughput requirements with N SMs and a batch size of
B0 ·N. If L0 > L, one more SM is allocated and the above
procedure is performed again. The procedure repeats un-
til no available SMs left in the GPU.

In G-NET, the scheduling scheme runs when the traffic
of an NF changes for more than 10%.

6 Abstraction and Framework for NFs

The implementation of NFs on CPU-GPU architectures
should be efficient and easy to scale up. In G-NET, we
propose an abstraction for NFs to reduce the develop-
ment efforts.

6.1 Framework
We generalize the CPU-GPU pipeline of network func-
tions as three main stages, namely Pre-processing, GPU
processing, and Post-processing. Figure 8 shows our
framework. The CPU is in charge of batching and packet
I/O in Pre-processing and Post-processing stages, and
the GPU is in charge of compute/memory-intensive op-
erations in the GPU processing stage. Our main design
choices are as follows.

Thread model in CPU-GPU pipelining: There are
two types of CPU threads in the pipeline. Worker
threads perform packet processing in Pre-processing and
Post-processing stages. To communicate with Manager
for GPU execution, a specific thread called launcher

is implemented to manage GPU operations including
data transfer and kernel execution. This avoids worker
threads waiting for the GPU operations and makes them
focus on processing continuously coming packets.

Buffer transfer among pipeline stages: We develop a
buffer transfer mechanism to prevent workers from be-
ing stalled when transferring data to the GPU. There are
three buffers in each pipeline. The launcher thread auto-
matically switches the buffer of the Pre-processing stage
when the Scheduler-specified batch size is reached. The
following two stages pass their buffers to the next stages
circularly after they complete their tasks.

Scale up: We scale up a network function when the
CPU becomes its bottleneck, i.e., launching more worker
threads to enhance the data processing capability. When
executing a GPU operation, the launcher passes the
thread id to Manager, which is mapped with a CUDA
stream for independent execution. With an independent
input and output queue for each worker, the design sim-
plifies NF management and enhances throughput.

6.2 Abstraction

Based on our framework, we propose an abstrac-
tion to mitigate the NF development efforts. The
abstraction mainly consists of five basic operations,
i.e., pre pkt handler, mem htod, set args, mem dtoh,
post pkt handler. Called by the framework in the Pre-
processing stage, pre pkt handler performs operations
including packet parsing and batching. The framework
manages the number of jobs in the batch, and develop-
ers only need to batch a job in the position of batch-
>job num in the buffer. Before the framework launches
the GPU kernel for a batch, mem htod and set args are
called to transfer data from the host memory to the GPU
memory and set arguments for the GPU kernel. Please
note that the order of the arguments should be consis-
tent with the GPU kernel function in set args. Then
the framework sends requests to Manager to launch the
specified GPU kernel. After kernel completes execution,
mem dtoh is called to transfer data from the GPU mem-
ory to the host memory. post pkt handler is called for
every packet after GPU processing.

As an example, Figure 9 demonstrates the major parts
of a router implemented with our abstraction. First, the
developer defines the specific batch structure (lines 1-
7). In a router, it includes the number of jobs in a
batch and the input and output buffers in the host and
the GPU memory. Each worker thread is allocated with a
batch structure for independent processing. With the ker-
nel init function (lines 8-11), developers install its kernel
by specifying its .cu kernel file and the kernel function
name (”iplookup”). Developers can also perform other
initialization operations in kernel init, such as building
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1 struct my_batch {
2 uint64_t job_num;
3 isoPtr<uint32_t> host_ip;
4 isoPtr<uint32_t> dev_ip;
5 isoPtr<uint8_t> host_port;
6 isoPtr<uint8_t> dev_port;
7 }
8 void kernel_init(void) {
9 gInstallKernel("/pathto/router.cu", "iplookup");
10 build_routing_table();
11 }
12 void pre_pkt_handler(batch, pkt) {
13 batch->host_ip[batch->job_num] = dest_ip(pkt);
14 }
15 void memcpy_htod(batch) {
16 gMemcpyHtoD(batch->dev_ip, batch->host_ip,
17 batch->job_num * IP_SIZE);
18 }
19 void set_args(batch) {
20 gInstallArgNum(4);
21 gInstallArg(batch->dev_ip);
22 gInstallArg(batch->dev_port);
23 gInstallArg(batch->job_num);
24 gInstallArg(dev_lookup_table);
25 }
26 void memcpy_dtoh(batch) {
27 gMemcpyDtoH(batch->host_port, batch->dev_port,
28 batch->job_num * PORT_SIZE);
29 }
30 void post_pkt_handler(batch, pkt, pkt_idx) {
31 pkt->port = batch->host_port[pkt_idx];
32 }

Figure 9: The major parts of a router implemented with
G-NET APIs.

the routing table. The pre pkt handler (lines 12-14) of
the router extracts the destination IP address of a packet
and batches it in the host buffer. Functions mem htod
and mem dtoh transfer the ip address buffer into the GPU
memory and the port buffer into the host memory, respec-
tively. post pkt handler (lines 30-32) records the port
number which will be used by the framework to send the
packet out. With the abstraction, developers only need to
focus on the implementation of specific tasks of an NF,
reducing thousands of lines of development efforts.

Based on our abstraction, NFs can be developed by
different vendors, where the GPU kernel source code
should be provided so that the kernels can be loaded by
the Manager. If vendors that do not want to leak their
source code, they may have to deploy a whole package
of the G-NET system, including the NFs and the func-
tionalities in the hypervisor. A secure channel with cryp-
tographic operations can be built between NFs and the
Manager to pass the source code.

7 Experiment

7.1 Experimental Methodology
Experiment Platform: We conduct experiments on a
PC equipped with an Intel Xeon E5-2650 v4 processor
running at 2.2 GHz. The processor contains 12 physical
cores with hyper-threading enabled. The processor has
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Figure 10: System throughput of G-NET.

an integrated memory controller installed with 4×16 GB
2400 MHz DDR4 memory. An NVIDIA Titan X Pas-
cal GPU is deployed, which has 28 streaming multipro-
cessors and a total of 3584 cores. An Intel XL710 dual
port 40 GbE NIC is used for network I/O, and DPDK
17.02.1 is used as the driver. The operating system is 64-
bit CentOS 7.3.1611 with Linux kernel 3.8.0-30. Docker
17.03.0-ce is used as our virtualization platform. Each
NF runs in a Docker instance, while Manager, Switch,
and Scheduler run on the host.

Service Chains: We implement four network func-
tions on G-NET, i.e., Router, Firewall, NIDS, IPsec gate-
way, as listed in Table 1. Composed by the NFs, four
service chains are used to evaluate the performance of G-
NET: (Sa) IPsec + NIDS; (Sb) Firewall + IPsec + NIDS;
(Sc) IPsec + NIDS + Router; (Sd) Firewall + IPsec +
NIDS + Router.

7.2 System Throughput

Figure 10 shows the throughput of G-NET for the four
service chains. We set one millisecond as the latency
requirement for the GPU execution of each NF, as we
aim at evaluating the maximum throughput of G-NET.
With the service chain Sa that has two NFs, the system
throughput reaches up to 11.8 Gbps with the maximum
ethernet frame size 1518-byte. For the service chain Sd
with four NFs, the system achieves a throughput of 9.1
Gbps.

As depicted in the figure, the system throughput in-
creases with the size of packet. When the packet size is
small, the input data volume of service chains is limited
by the nontrivial per-packet processing overhead, includ-
ing switching, batching, and packet header parsing. The
main overhead comes from packet switching. Switching
a packet between two NFs includes at least two enqueue
and dequeue operations, and the packet header should be
inspected to determine its destination, which is known
to have severe performance issues [17, 27, 32, 34]. In
an NFV system with a service chain of multiple NFs,
the problem gets more pronounced as a packet needs to
be forwarded multiple times in the service chain. More-
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Figure 11: Throughput comparison between G-NET and
TemporalShare. Performance is normalized to Temporal-
Share.

over, as the NFs in the system demand CPU cores for
packet processing, leaving Switch limited resources for
packet forwarding. Assigning the Switch with more
threads, however, would deprive the cores allocated for
the worker threads in NFs, resulting in overall perfor-
mance degradation.

7.3 Performance Improvement From Spa-
tial GPU Sharing

To evaluate the performance improvement with spatial
GPU sharing, we implement a TemporalShare mode in
G-NET for comparison. The TemporalShare mode repre-
sents existing GPU virtualization approaches, where ker-
nels from NFs access the GPU serially instead of being
executed simultaneously.

Figure 11 compares the throughput of G-NET and
TemporalShare. As shown in the figure, the spatial
GPU sharing in G-NET significantly enhances the over-
all throughput. For the four service chains, the through-
put improvements reach up to 23.8%, 25.9%, 21.5%, and
70.8%, respectively. The throughput improvements for
the service chain with four NFs are higher than that of
service chains with less NFs. For a small number of
NFs, a fraction of the GPU kernels and PCIe data trans-
fer could overlap with TemporalShare, leading to less re-
source contention. When there are more NFs co-running
in the system, they can reap more benefits of spatial GPU
sharing for the fierce resource competition.

There are two main aspects that limit the performance
improvement by spatial GPU sharing. First, although

Figure 12: Data transfer conflicts in G-NET.

GPU kernels are able to utilize Hyper-Q to co-run on
a GPU, their PCIe data transfer have to be sequentially
performed. This is due to the limited number of DMA
engines. Figure 12 plots the trace of G-NET with IPsec
gateway and NIDS, which demonstrates the concur-
rent kernel executions with spatial GPU sharing and the
DMA data transfer conflicts. The delays in NFs caused
by the data transfer conflicts are marked as bold black
lines in the figure. As shown in the figure, NFs spend a
significant amount of time in waiting for the HtoD DMA
engine when it is occupied by other NFs. The system
performance could be further unleashed when hardware
vendors equip GPUs with more DMA engines for par-
allel data transfer. Second, the bottleneck of G-NET on
current evaluation platform lies in the CPU. Our GPU
provides abundant computational resources, which is un-
able to be matched by the CPU. For instance, with four
NFs, each NF can only be assigned with two physical
cores, resulting in low packet processing capability. For
workloads with large packets, the batching operations
that perform memcpy on packet payloads limit the overall
performance. Instead, the switching overhead becomes
the main factor that affects the overall performance for
workloads with small packets. It is our future work to
investigate how to further reduce this overhead.

7.4 Evaluation of Scheduling Schemes
To evaluate the effectiveness of the GPU scheduling in
G-NET, we use two other scheduling schemes for com-
parison, i.e., FairShare and Uncohare. Different with the
scheduling scheme of G-NET, the SMs are evenly parti-
tioned among all NFs in the FairShare mode. In the Un-
coShare mode, Scheduler is disabled, and each NF tries
to use as many GPU resources as possible.

The throughput improvements of G-NET over Fair-
Share and UncoShare are shown in Figure 13 and Fig-
ure 14, respectively. For the four service chains, the aver-
age throughput improvements of G-NET are 16.7-34.0%
over FairShare and 50.8-130.1% over UncoShare. The
throughput improvements over UncoShare are higher
than that of FairShare for the following reasons. In the
FairShare mode, although the GPU resources are parti-
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Figure 14: Throughput improvements in G-NET over
UncoShare GPU scheduling.

tioned among the NFs, they are still able to co-run their
GPU kernels simultaneously. In the UncoShare mode,
however, each NF tries to use as many resources (SMs)
as possible. This may exhaust the GPU resources, mak-
ing part of the GPU kernels cannot run together. More-
over, the performance of a kernel can be degraded due
to the interference of kernels running on the same SMs.
To conclude, our scheduling scheme demonstrates very
high efficiency in enhancing the performance of the ser-
vice chains.

7.5 The Overhead of IsoPointer

To guarantee the isolation of different NFs, G-NET uses
IsoPointer to check, validate, and restrict GPU memory
accesses. These management activities may add some
runtime overhead to NF executions.

We measure the overhead by comparing the perfor-
mance of G-NET with and without IsoPointer under two
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Figure 17: Latency comparison with TemporalShare.

groups of workloads. The first group consists of the solo
executions of the NFs, and the second group comprises
service chains with 2-4 NFs. The results are presented
in Figure 15, where SC-k denotes a service chain with k
NFs. We report the performance of service chain Sb for
SC-3, as the measured overheads of Sb and Sc are sim-
ilar. As shown in the figure, the overhead of IsoPointer
ranges from 2.8% to 4.5%, which is negligibly low.

7.6 Latency

We evaluate system processing latency by measuring the
time elapsed from sending a packet to the NFV system
to receiving the processed packet. The client keeps send-
ing packets with source IP address increasing by one for
each packet. By sample logging the sending/receiving
time and the IP address, the round trip latency can be
calculated as the time elapsed between the queries and
responses with matched IP addresses.

Figure 16 shows the Cumulative Distribution Function
(CDF) of the packet round trip latency with four service
chains. The latency is measured by setting the maximum
GPU execution time of each NF as one millisecond, as
it demonstrates the system latency with the maximum
throughput. As shown in the figure, the latency of one
NF is low and stable. With two to four NFs, the service
chains show piecewise CDFs, where latencies are clus-
tered into three or more areas. The main reason for this
phenomenon is the PCIe data transfer conflict. As there
are only one HtoD and one DtoH DMA engine in cur-
rent GPUs, a kernel would be postponed for execution
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if other NFs are utilizing the engine, leading to higher
processing latency. If data is transferred while other NFs
are running GPU kernels, they will overlap with no per-
formance loss. Therefore, different degrees of resource
competition in NF executions lead to the several clus-
ters of latency distribution in the CDF. The latency in
G-NET mainly comes from three parts, i.e., GPU pro-
cessing, batching, and packet switching. With a lower
input network speed, the latency would decrease for the
lower batching time and GPU processing time.

Figure 17 compares the latency of G-NET with Tem-
poralShare. With temporal GPU sharing, the 50th per-
centile latency is around 20% higher than that of G-NET,
and the 95th percentile latency is 25.5%-44.3% higher
than that of G-NET. It is worth noting that the through-
put of TemporalShare is lower than G-NET (shown in
Figure 11). Without spatial GPU sharing, both the ker-
nel execution and the PCIe data transfer are serialized,
resulting in low throughputs and high latencies.

8 Related Work

GPU Accelerated Network Functions: There are a
class of work that utilize GPUs in accelerating network
functions, including router [15], SSL reverse proxy [20],
NIDS [19], and NDN system [42]. APUnet [12] studies
NF performance on several architectures, which demon-
strates the capability of GPUs in efficient packet process-
ing and identifies the overhead in PCIe data transfer.

Network Function Virtualization: Recent NFV sys-
tems that are built with high performance data plane in-
clude NetVM [18] and ClickNP [25]. NetVM is a CPU-
based NFV framework that implements zero-copy data
transfer among VMs, which inspires the design of Switch
in G-NET. NFVnice [23] is an NF scheduling framework
that maximizes the performance of a service chain by al-
locating CPU time to NFs based on their packet arrival
rate and the required computational cost. The goal of the
CPU resource allocation in NFVnice is the same with
that of the GPU resource allocation in G-NET. ClickNP
and Emu [28] accelerate the data plane of network func-
tions with FPGA. Same with G-NET, they also provide
high-level languages to mitigate the development efforts.
NFP [38] is a CPU-based NFV framework that exploits
the opportunity of NF parallel execution to improve NFV
performance. On the control plane, there is a class of
work [6, 11, 29] focus on flexible and easy NF deploy-
ment including automatic NF placement, dynamic scal-
ing, and NF migration.

GPU Virtualization: GPU virtualization approaches
are generally classified into three major classes, namely,
I/O pass-through [2], API remoting [14, 37], and hy-
brid [9]. Recent work includes alleviating the overhead
of GPU virtualization [39, 40] and resolving the memory

capacity limitation [45]. These systems do not explore
the spatial GPU sharing, as most of them assume a ker-
nel would saturate GPU resources.

GPU Sharing: Recent work on GPU multitasking
studies spatial GPU sharing [3] and simultaneous mul-
tikernel [43, 44] with simulation. [31] shows that spa-
tial GPU sharing has better performance when there is
resource contention among kernels. Instead, simultane-
ous multikernel, which allows kernels to run on the same
SM, has advantage for kernels with complimentary re-
source demands [31]. NF kernels have similar opera-
tions in packet processing, making spatial sharing a bet-
ter choice.

Isolation: For the implementation of IsoPointer, G-
NET adopts a similar technique with ActivePointer [35],
which intercepts GPU memory accesses for address
translation. Paradice [5] proposes a data isolation
scheme in paravirtualization, which guarantees that the
CPU code of a VM can only access its own host and
device memory. Different with G-NET, Paradice is un-
able to prohibit malicious GPU code from accessing il-
legal GPU memory regions. Instead of virtualization,
NetBricks [30] utilizes type checking and safe runtimes
to provide data isolation for CPU-based NFs. This ap-
proach discards the flexibility brought by virtualization,
such as NF migration and the ability to run on different
software/hardware platforms. Moreover, we find the per-
formance penalties caused by virtualization is negligibly
low in G-NET (only around 4%).

9 Conclusion

We propose G-NET, an NFV system that exploits spatial
GPU sharing. With a service chain based GPU schedul-
ing scheme to optimize the overall throughput, a data
isolation scheme to guarantee data security in the GPU
memory, and an abstraction to significantly reduce de-
velopment efforts, G-NET enables effective and efficient
adoption of GPUs in NFV systems. Through extensive
experiments, G-NET significantly enhances the through-
put by up to 70.8% and reduces latency by up to 44.3%
for GPU-based NFV systems.
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[27] MOLNÁR, L., PONGRÁCZ, G., ENYEDI, G., KIS, Z. L.,
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