usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Efficient and Correct Test Scheduling for
Ensembles of Network Policies

Yifei Yuan, Sanjay Chandrasekaran, Limin Jia, and Vyas Sekar, Carnegie Mellon University

https://www.usenix.org/conference/nsdi18/presentation/yuan

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI "18).

April 9-11, 2018 « Renton, WA, USA
ISBN 978-1-939133-01-4

Open access to the Proceedings of
the 15th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by USENI

NRRRRARAER AN ”-. —

Efficient and Correct Test Scheduling for Ensembles of Network Policies

Yifei Yuan

Sanjay Chandrasekaran

Limin Jia Vyas Sekar

Carnegie Mellon University

Abstract

Testing whether network policies are correctly imple-
mented is critical to ensure a network’s safety, perfor-
mance and availability. Network operators need to test
ensembles of network policies using a combination of
native and third-party tools in practice, as indicated by
our survey. Unfortunately, existing approaches for run-
ning tests for ensembles of network policies on state-
ful networks face fundamental challenges with respect to
correctness and efficiency. Running all tests sequentially
is inefficient, while naively running tests in parallel may
lead to incorrect testing results. In this paper, we propose
Mikado, a principled scheduling framework for schedul-
ing tests generated by various (blackbox) tools for en-
sembles of policies. We make two key contributions: (1)
we develop a formal correctness criteria for running tests
for ensembles of policies; and (2) we design a provably
correct and efficient test scheduling algorithm, based on
detecting read-write test conflicts. Mikado is open source
and can support a range of policies and testing tools. We
show that Mikado can generate correct schedules in real-
world scenarios, achieve orders of magnitude reduction
on the test running time, and schedule tests for thousands
of network policies in large networks with 1000+ nodes
within minutes.

1 Introduction

Network policies, such as reachability (Can A talk to B?)
and dynamic service chaining [14], are implemented via
complex network configurations. Testing whether these
policies are correctly implemented is becoming increas-
ing important to ensure the security, performance and
availability of networks [13, 47, 42, 44, 29, 19].

In recent years, a number of testing techniques have
been developed which focus on a variety of network poli-
cies, such as ATPG [47], BUZZ [13] and Symnet [42].
Each of these tools can efficiently generate test traces
for a single network policy. Our survey indicates, how-
ever, that operators have a broad spectrum of policies

that the network must implement in practice and thus
they need efficient techniques for testing ensembles of
network policies. Testing such ensembles of policies
involves incorporating multiple third-party testing tools
(e.g., ATPG for reachability, Symnet for network func-
tion correctness, BUZZ for service chaining) as they may
offer complementary capabilities and tradeoffs. Looking
forward, with emerging trends such as intent-based net-
working [7, 28, 23], we expect that the policies and test-
ing tools will increase both in diversity and in number.'

Unfortunately, testing such ensembles raises funda-
mental conflicts with respect to efficiency and correct-
ness. Today, operators often run all tests sequentially in
the live network, as indicated by our survey. However,
this approach cannot scale up to large-size networks that
enforce hundreds or even thousands of network policies.
On the other hand, running all tests in parallel may pro-
duce incorrect testing results due to interference among
the tests. For instance, if a firewall enforces a policy A
based on connection state, then any test of another policy
B that changes the relevant connection state will induce
incorrect test results for A when executing the two tests
in parallel (See §2 for more examples).

To achieve both correctness and efficiency, we need a
principled framework for scheduling such ensembles of
test cases. In this respect, strawman solutions such as
avoiding specific middleboxes or randomizing the par-
allelization strategy lead to suboptimal and/or incorrect
results; and trivial exhaustive search for optimal sched-
ules may take exponential time. Thus, there are two key
challenges in realizing such a framework: 1) how to rea-
son about the correctness of a schedule for ensembles of
tests generated by a variety of testing tools; and 2) how to

TAn alternative to testing is to statically verify networks [37] or
synthesizing configurations from intents [43]. However, given the dy-
namic, stateful nature of processing, the large state space of possible
behaviors, testing will still be needed even with these advances to: (1)
check correctness for scenarios that cannot be statically verified and
(2) to diagnose possible disconnects between the models in the verifi-
cation/synthesis tools and the real network implementations.

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 437

&=

ed |polict
| Buzz | | ATPG | [SymNet |-
l Test TrafficlTraces
Mikado |

Logs P allelizédTest Traci: Injecfion

Figure 1: Mikado overview.
efficiently generate optimal schedules for large networks
with thousands of nodes and policies.

To this end, we design and implement Mikado, a
framework that offers a provably correct and efficient
scheduling for tests of ensembles of network policies.
As illustrated in Fig. 1, Mikado logically sits between
the test generation tools and the network (live or shadow)
and is agnostic to the testing tools. Given the test traces
for the intended policies, Mikado generates a test sched-
ule that can (near-optimally) reduce the test running time
needed to cover those test traces. We note that an al-
ternative design is to generate and schedule test cases in
one go. However, given the wide spectrum of network
policies, it is unlikely for a single testing tool to sup-
port all kinds of policies. Thus, we design Mikado with
a blackbox approach to support multiple test generation
tools specialized for various policies.

Mikado’s design makes two key contributions. First,
we develop a formal model for stateful network testing to
reason about the correctness of a schedule of test cases
(§4). Second, we use our formal model to detect read-
write interference among tests and use an efficient graph
coloring heuristic on an interference graph to generate
provably correct and near-optimal schedules (§5). We
also identify opportunities for optimizing the test running
time via a combination of random packet header fuzzing
and an iterative refinement technique that reduce the like-
lihood of interference among test traces (§6).

We evaluate Mikado based on both real and synthetic
network topologies and policies (§7). We show that: (1)
Mikado can generate correct schedules in real-world sce-
narios; (2) Mikado achieves orders of magnitude reduc-
tion on the test running time for thousands of policies on
real network topologies; (3) Mikado is scalable to net-
work with 1000+ switches and middlebox and thousands
of policies; (4) the proposed extension to reduce interfer-
ence is both effective and efficient.

2 Motivation

We first describe motivating examples to illustrate the
challenges of running tests in stateful networks today.
Then we describe our recent survey over network opera-
tors, which further confirms these challenges in practice.

2.1 Motivating Examples

Multi-stage IPS: Fig. 2 shows a multi-stage intrusion
prevention deployment which consists of a light-weight
IPS (IPS1) and a heavy-weight IPS (IPS2). The network
operator wants to enforce a set of policies for each de-
partment, where traffic from all departments should be
sent to IPS1 but traffic from suspicious hosts labeled by
IPS1 (e.g., generating 10 bad connections) is sent to IPS2
for payload signature analysis. The topology of the net-
work is at the bottom of Fig. 2 and the policy ensemble
is illustrated on top of Fig. 2, which we call policy graph.

Bad signature

All departments’s traffi

> 1psi
L= 1

otherwise

Figure 2: Multi-stage IPS.

To test the intended policies in a live network, a testing
tool may generate three test traces for a department, each
of which corresponds to a path in the policy graph. For
instance, to test the policy ensemble for traffic from the
CS department, the tool may generate three test traces
from a host H, one containing 6 bad connections and the
other two containing 11 bad connections. Further, the
second test trace only includes good signatures and the
last test trace includes bad signatures. We write trace$,
to denote the first test trace, trace},‘ for the second, and

trace’ ,1_11 for the third. If the policies are correctly imple-
mented, by injecting the test traces into the network, the
network operator would expect to see that packets in the
first two traces are successfully forwarded to the Internet
and only the latter is directed to IPS2, while trac'e’},l is
directed to IPS2 and blocked.

Today, operators often need to inject a trace, obtain
the results, and then repeat for the next trace. However,
such a sequential approach may generate incorrect test-
ing results due to the local state maintained by IPS1. For
example, injecting trace$, after trace}} will cause trace,
to be (mistakenly) directed to IPS2, because of IPS1’s
stale counter value. An improved sequential testing may
wait for a sufficient time 7;, for the state to expire be-
tween each two injections. However, this scheduling can
be very inefficient: suppose the time of injecting a trace
and waiting for timeout is 30 seconds, running tests for
1,000 policies would take 8 hours!

Injecting all test traces in parallel can reduce the test-
ing time, however, such scheduling could generate in-
correct testing results: e.g., injecting trace?{ and trace},l
together may cause both traces to be directed to IPS2 as

438 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Conn. is setup
Traffic from extemal Stateful

firewall

otherwise

Network E} = Stateful
I I NAT gkewall

Department —@4‘—
S1 S2

Figure 3: Stateful firewall.

Cache miss to edu Allow
Web traffic
—»| Proxy Monitor
Policy otherwise (Block
Network
Monitor

.
S1 S2
Figure 4: Web monitoring.

the IPS1’s counter value reflects the collective connec-
tion counts of the traces, not individual ones.

Stateful Firewall: In practice, operators use multiple
tools to test different policies. We show that running
multiple tools may also lead to incorrect results. Con-
sider the stateful firewall example Fig. 3, where the in-
tended policies are to 1) allow an external IP to access
internal network after an internal host is connected to that
IP, and 2) block external traffic otherwise.

A tester (e.g., BUZZ [13]) aimed at stateful policies
may generate a test trace tracepyzz that contains a con-
nection from an internal client C; to an external server
S followed by packets from S to C;. Meanwhile, a net-
work operator may also use tools like ATPG [47] to test
basic reachability. ATPG may generate a test traffic trace
tracesrpg from S to a client C;. However, running the
two traces in parallel may produce incorrect testing re-
sults: if tracearpg reaches the firewall after the connec-
tion has been set up between C; and S by tracepyzz,
tracesrpg would go through the firewall while it should
have been blocked if it was injected alone. This example
demonstrates that simple composition of multiple testing
tools may not be safe even if one (ATPG in this example)
is aimed at stateless policies such as basic reachability.
Traffic monitoring: Running multiple tests not only
raises false alarms, but can also mask configuration bugs
in the network. In Fig. 4, a proxy is used to improve the
web performance, and a monitoring system is configured
to monitor web traffic. The intended policy is to allow
. edu web traffic for all internal hosts. However, switch
S, is mistakenly configured to block traffic from H>.

To test the intended policy, one may run tests that re-
quest xy z . edu from all hosts. Running the tests in arbi-
trary order may not uncover the misconfiguration on S,.
For example, consider a test trace containing requests to
xyz.edu from host Hj, and a second trace containing
requests to xyz.edu from host H,. The second trace

Policies %
<10 19.23% % 35?
10-100 | 57.69% 10 SOO/Z
100-1000 | 11.54% 0T 5%
>1k 11.54%

Table 1: Number of policies and testing tools.

can uncover the misconfiguration when injected alone to
the network, as the request will be blocked by S,. How-
ever, when injected together with the first trace (or imme-
diately after it), the request from H, may get a response
from the proxy, which caches the content from the first
test trace, and the bug is not revealed.

Summary: We observe key correctness and efficiency
challenges in testing an ensemble of policies, and natural
strawman solutions face one or both of the challenges.
For example, simple isolation heuristics, such as avoid-
ing running tests that access the same middleboxes, will
run tests for EE and CS separately for the example in
Fig. 2. However, an optimal scheduling can safely run
tests from EE and CS together even if they all access
IPS1. Exhaustively searching for optimal schedules is
not applicable as it takes exponential time and thus in-
curs prohibitive overhead to the testing workflow.

2.2 Survey on Network Testing

To understand the reality of the aforementioned chal-
lenges in network testing today, we conducted a survey
in Sept. 2017 among subscribers to the North Ameri-
can Network Operators Group. Among all 30 respon-
dents, 4 manage small networks (< 1k hosts), 6 medium
networks (1k-10k hosts), 11 large networks (10k-100k
hosts), and 9 very large networks (> 100k hosts). Ques-
tions and responses can be found in the link [3]. Here we
highlight a few key observations.

Sequential live testing is the dominant testing
methodology: When asked the ways of running network
tests, 72.97% report running testing on live networks,
which is significantly higher than other methodologies
(24.32% for emulated network based testing and 2.7%
for others). Among those who responded live testing,
86.21% run tests in a sequential way (i.e. run each test
case one by one).

Ensembles of policies need to be tested: Table 1 shows
that network operators need to test varied number of net-
work policies. While the majority (57.68%) reports pol-
icy numbers ranging from 10-100, a significant portion
(accounts for 12%) reports the number to be several thou-
sands. A large variety of policies are also reported, rang-
ing from reachability, service chaining, access control,
routing, latency/throughput among others.

Multiple tools are used: When asked the number of
tools used in testing, all responses report at least 2 dif-
ferent tools. As shown on the right of Table 1, 50% re-

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 439

Concerns %
Test cases may not match the policy intent | 30.23%
Testing result maybe incorrect 27.91%
Testing traffic may conflict 25.58%
Testing is slow 16.28%

Table 2: Concerns when running tests

spondents use 5-10 tools for network testing, while some
use 10+ tools. While ping, traceroute, iperf are still pop-
ular testing tools, we also see responses on using expert-
crafted scripts, third-party tools, and custom tools.

Top concerns: Given the large variety and number of
policies and testing tools, we hypothesize that correct-
ness of testing results and test conflicts may be one of the
concerns for running tests. This is confirmed by our sur-
vey. Table 2 lists the concerns network operators report
for running network tests under a multi-choice question.
A large number (53%) of responses report correctness of
testing results and test conflicts as their concerns.

3 Overview

Our goal is to schedule an ensemble of test traces effi-
cient while guaranteeing the correctness of the tests. In
other words, we seek to inject as many test traces as pos-
sible in parallel such that these traces do not interfere
with each other. To this end, we need: (1) a systematic
way to reason about the potential for interference of test
cases and (2) efficient techniques to identify and sched-
ule non-interfering test cases.

Figure 5 depicts the workflow of our tool Mikado,
zoomed in view of Figure 1. The input to Mikado is a set
of test traffic traces that are generated from any testing
tools (e.g., Symnet, ATPG, Buzz), and Mikado outputs
an efficient and correct test scheduling plan. To realize
the requirements discussed above, Mikado consists of the
following components (the dashed are extensions).

Interference Checker: To reason about the potential
for interference, we develop a formal model to capture
the behavior of the stateful networks (§4). Using this
model, Mikado first checks the potential source of in-
terference among the test traces. This offers a provable
guarantee that scheduling non-interfering test traces in
parallel preserves the testing results as if each test trace
was injected on a separate or isolated network.

Trace Scheduler: Base on the pairwise interference
relations, Mikado builds an interference graph, where
each node in the graph corresponds to a test trace, and
an edge connects two interfering traces. Mikado then
uses a graph coloring algorithm to generate an optimal
scheduling of the test traces by assigning each node in
the interference graph a color such that two end nodes of
an edge are assigned different colors.

Given a colored interference graph, Mikado runs all
tests in k rounds, where k is the number of colors on
the interference graph. In the i-th round, Mikado injects

Test Traffic Traces

Network
Interference Checker Model

Test Trace Scheduler

Refined Test
Traffic Traces

Efficient and Safe Test Traffic Injection
Figure 5: Mikado architecture.
all test traces with the i-th color and reports the execut-
ing results to the testing tools. Between two consecutive
rounds, Mikado waits for a sufficient amount of time in
order for all state to reset.

Preprocessor and Trace Refiner: Optionally,
Mikado can further improve the scheduling by random
packet fuzzing and test traces refinement.

Before checking interference, Mikado can run
heuristic-based preprocessing to reduce the chance of in-
terference among test traces. This process rewrites the
test traces using randomly selected values for given fields
according to the policy being tested.

After obtaining a correct schedule, Mikado can fur-
ther refine the test traces to reduce the number of edges
in the interference graph, and thus reduce the number of
colors to color the refined interference graph. In partic-
ular, given a trace that is interfering with a set of traces,
Mikado reruns the testing tool for that trace to generate
another test trace which is not interfering with the set of
traces. For this purpose, Mikado automatically generates
a configuration file for the testing tool, without modify-
ing the internal logic of the testing tool.

Illustrative Example: We use the multi-stage IPS ex-
ample from §2 to illustrate the end-to-end workflow. For
brevity, we do not discuss the preprocessing here and
only consider the testing of two policies for each depart-
ment. Suppose tracez and tmce}q1 are the two traces gen-
erated for the CS department and rrace®, and trace}}, are
the two traces for the EE department. First, the interfer-
ence checker automatically detects the interferences, and
builds the interference graph as shown in the left sub-
figure in Figure 6, where circular nodes correspond to
trace% and trace};}, and rectangular nodes correspond to
test traces for the EE department. As discussed in §2,
trace$; and trace)} cannot be injected together, and thus
there is an edge in the interference graph between them.
Second, the trace scheduler colors each node with the
goal to minimize the number of colors. An example col-
oring is shown in the middle subfigure. Based on this
colored interference graph, Mikado can safely inject blue
traces (i.e., trace?{ and traceg,) in the first round, and
then inject the red traces (i.c., frace}; and tracey,,) in the
second round. Additionally, the trace refiner can be used
to refine a test trace to further reduce the interference.

440 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Cs EE

trace®

1
Colored Interference 1 Refined Interference
graph ' Graph

1
1

1

1

1

11 !
trace |

1
1
1
1
1
1
1
1
Interference graph 1
'

Figure 6: Example run of Mikado on multi-stage IPS.

For instance, to reduce the interference between the two
circular nodes, the refiner generates a configuration file
that asks the testing tool to generate another test trace that
is not from H to refine the trace trace}; . If the testing tool
succeeds in doing so, the old node will be replaced with
the newly generated trace in the interference graph, and
edges from the old nodes are removed. The right sub-
figure illustrates the final results, where the nodes with
dashed line are the refined traces. After the refinement,
all test traces can be safely injected in a single round.

4 Problem Formalization

Before we design any tool for scheduling, first we need
a formal basis for reasoning about the correctness of a
schedule. To this end, we develop a formal notion of
correctness and define the test scheduling problem.

4.1 Stateful Network Model

We extend prior work on formal network modeling used
in defining stateless networks (c.f. [22, 40]) to model the
stateful behaviors we encountered in §2. This model pro-
vides a necessary building block for our test correctness
definition and proofs for our scheduling algorithm. Our
model may also be used in providing semantics to other
network testing and verification problems. Note that this
model abstracts concrete network functions and thus sub-
sumes models in BUZZ [13] and Symnet [42]. We cur-
rently do not model multicast and time.

Syntax. The syntactic constructs used for our model are
summarized in Figure 7. We write pkt to denote network
packets, which are bitstrings. We model locations in the
network as ports, denoted p. We use natural numbers n to
represent concrete network locations. A special port exit
models all locations outside the network of concern. To
model dropped packets we include a special port drop.
A located packet, denoted Ip, is a pair of a port and a
packet. (p,pkt) means that the packet pkt is at port p
waiting to be processed. Packets at port exit are the ones
that have left the network. All dropped packets are at
port drop. Multiple packets can co-locate at one port. A
packet queue, denoted Q, maps each port p to a list of
packets located at p.

Each state in a stateful network (e.g., connection state
remembered by a firewall) is labelled with a unique state
location, denoted s. We assume s is drawn from a fi-
nite set of location symbols X. A state map, denoted

Packet pkt = [by...b]

Port p u= n|exit|drop

Located Packet Ip = (p,pkt)

Port Queue (0] € Port — Packet list

State. Loc. s € X

State Map M € StateLoc — Value

Network Env. E = (Q,M)

Topo. Func. p € Port — Port

Trans. Func. 1) € StateMap x LocatedPkt
— StateMap x LocatedPkt

Configuration C w= (p,9)

Network State S w= (E,C)

Network run r = K %C - Ep

Observation 0 = [Ipy/lp1s---0p,/1ph)
Figure 7: Stateful network model: syntax
M, maps each state location to a value, drawn from a
finite set of values Value. Intuitively, the state locations
represent the variables and data structures that are inter-
nally maintained by stateful middleboxes and SDN con-
trollers. We write E to denote network environments,
which are pairs of the packet queue and the state map.
We write M,;; to denote the initial state map. M;,;; maps
each state location to its pre-defined initial value. The
initial port queue, Q;nir, maps each port to an empty list.
We call (Qjnir, Minit) an initial environment. A terminat-
ing environment is one where the port queue is empty for
all port p s.t. p ¢ {exit,drop}.

The topology of the network is determined by connec-
tions between ports. We use a function p to map a port
p to another port p’, where packets at p are sent to. The
process of transforming and forwarding packets are mod-
eled as transfer functions, denoted 6. A transfer function
takes as arguments a pair of a state map and a located
packet and returns a pair of a new state map and a new
located packet. A configuration of the network is a pair
(p,6), which include the topology and transfer function
of the network. A network state S is a pair of the envi-
ronment E the configuration C.

Operational semantics. As packets are processed and
traverse the network, network states change and affect
the processing of future packets. We define small-step
operational semantics to model the transitions of net-

work states. We write E Mc E’ to denote the tran-
sition from E to E’ using configuration C. Here, Ip
and Ip’ above the arrow denote the located packet pro-
cessed at the transition and the resulting located packet
respectively. We assume that the configuration C does
not change during the testing of policies in the network.

The only transition rule NET-TRANS (shown below)
states that if the first packet at port p is pkt, the transition
function changes the located packet (p,pkt) to (p',pkt")
and the state map from M to M’, and p’ is connect to p”,
then after pkz at p is processed, the state map is M’, and
the port queue is updated to reflect that pkt is no longer

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 441

at p and pkt’ is added to port p”.

NET-TRANS
pkt = head(Q(p))
8(M, (p,pkt)) = (M',(p',pki')) p(p')=p"
0 =0[p" — (O(p") ++Ipkt')][p = 1ail (Q(p))]
(0, M) (p.pkt)/(p' pkt’) 06 (Q’,M’)

We call a sequence of network transitions a run, de-
noted r. All transitions in a run r from the state (E,C) use
C as the configuration. A complete run is a run, whose
last environment is a terminating one. Given a network
state (E,C), we write Z(E,C) to denote the set of com-
plete runs starting from (E,C). We sometimes omit the
configuration C from runs as it never changes during the
testing and is often clear from the context.

4.2 Correctness of Network Tests

We formalize the correctness criteria for network testing
and define the test scheduling problem.
Network testing via packet trace. When testing poli-
cies, a network operator first generates a sequence of lo-
cated packets (using existing test generation tools), then
injects the packets into the network, and finally makes a
judgement of whether the policy is violated based on ob-
servations derived from a complete run of the network.

We call the sequence of located packets (Ipy,...,Ip,,)
generated by the testing generation tools a fest trace,
denoted 7. Injecting a trace ¢ into a network state
with port queue Q results in a new port queue where
each located packet in ¢ is enqueued at the appropriate
port. A test always runs from an initial environment,
so we write queue(t) to denote the port queue resulted
from injecting ¢ to Q;,;;. Executing the test trace cor-
responds to generating a complete run from the envi-
ronment (queue(t),Min;;). One subtlety is that the or-
der in which packets in ¢ are processed matters (e.g., re-
ply to a request can only happen after the request). Our
model takes care of this by defining valid runs that com-
ply with the injection order requirement. Given a run r in
X (queue(t), M), we say r is a valid test run w.r.t. f and
an ordering requirement ¢(t), r satisfies @(¢). Different
test traces have different ordering requirements based on
protocol conventions. We assume that such requirements
are given as input; our approach and algorithm is agnos-
tic to the specific type of ordering requirement.

We define the observation of a run, written &(r), as the
sequence of pairs of located packets. Given a run r where

r=2Sp i/ Ipo: cSi--- it/ !Pok ¢ Sk, the observation &'(r)
is simply [Ip;;/Ip,15- 3 Ipik/Ipox)- This corresponds to
the trace routes that the network operator sees.

Correct network test. Given a set of test traces
{t1,...,t; } for an ensemble of policies (pol, ..., pol;), we
have shown in §2 that test traces may interfere with each

other if they are allowed to execute concurrently. We pro-
vide a strong correctness definition of running multiple
tests based on a tester’s observation of each test.

Intuitively, if it is correct to concurrently run a set of
test traces, the observation of each test trace should be
the same as the test trace running alone. For the IPS
example in §2, the observation of injecting tmceH and
trace}] together for trace$, may be different from that of
injecting traceH alone. In the former case, packets in
traceg may be sent to IPS2, while in the latter case all
the packets in the trace land in the exit port.

To formalize this intuition, we define a projection of a
run given a packet trace, written r |;, as the observation
containing only the located packets that are related to ¢,
that is, either it is in ¢, or it is (transitively) transformed
from a located packet in t. The projection of a run r from
(queue(t),Min;;) given ¢t is €(r). Then the correctness
definition can be formalized below:

Definition 1 (Correctness) Given a set T = {t1,--- ,t,}
of test traces, we say that it is correct to schedule T (T
is correct for short) if Vr € % (queue(U!_t;), M) s.t.
r is valid w.rt. each @;j(t;j) where j € [1,n], Vi € [1,n],
Vr' € % (queue(t;),Minir), r L= O(F').

Test scheduling problem. Given an ensemble of test
traces, a natural scheduling is to run all tests in sequential
rounds. In each round, we want to run as many tests in
parallel as possible, in order to reduce the total runtime
of testing. Between two rounds, we can wait sufficiently
long for the network state to reset so the execution of
each round starts from a clean (the initial) state.

Definition 2 (Correct scheduling) Given a set of test
traces T generated for ensembles of policies by a set
of testing tools, a correct schedule of T is a partition
{N,..,T} of T, such that running each T; is correct.

We assume that a round of testing takes roughly the
same time which is much less than the waiting time be-
tween rounds. Therefore, our goal is to correctly mini-
mize the number of rounds and the test traces scheduling
problem is defined as follows. That is, given a set of test
traces T, the test trace scheduling problem seeks a cor-
rect schedule with minimal number of rounds.

5 Test Traffic Scheduling

A naive solution to the test trace scheduling problem
is enumerating all possible partitions and then checking
whether each set of traces in the partition is correct us-
ing Definition 1. However, this is extremely inefficient.
First, the number of partitions is exponential to the num-
ber of test traces in the set. Second, checking whether
a set of test traces is correct directly by comparing pro-
jections of every possible run of the composed test traces
is also prohibitively expensive. For instance, there are

442 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

(572, possible complete runs of a one-port network and

two test traces of size m; and n! runs for a one-port net-
work and n traces of size 1.

Next, we outline our key insights (§5.1) and then
present our algorithm and discuss the algorithm’s time
complexity and correctness guarantees (§5.2).

5.1 Key Insights

Even though checking correctness directly may be com-
plex, we can solve an approximation of the problem
much more efficiently. For our three examples from §2,
it is not too hard to see why test traces may interfere with
each other. The main cause of the problem is that con-
currently executing test traces do not preserve the values
of each other’s state locations that determine their behav-
ior. If we are able to identify the conditions under which
test traces may interfere with each other, we can solve
the scheduling problem by selecting test traces that do
not interfere with each other to be scheduled together.
First, we observe that by examining a run of a test
trace, we can identify the fragment of the state map that
is key to decide how packets are processed by the net-
work. (Recall from §4.1, a state map M maps each state
in the network to a value.) For instance, the value of
the bad connection counter of IPS1 (denoted sy) decides
how packets in trace% are processed. Changing the value
of sy changes the observation of the test trace and, more
importantly, changing the value of other state locations
(e.g., the bad connection counter for host Hy) in the state
map will not affect how packets in traceg are processed.
A natural corollary of this observation is that given two
test traces, we can determine whether they interfere with
each other by examining the state maps that decide the
behavior of each trace from independent runs of the test
trace. For the IPS example, let trace$;, be the test trace
containing 6 bad connections from host HI and trace}},
be the test trace containing 11 bad connections from host
H?2. They modify and depend on two different state loca-
tions in IPS1 and thus, don’t interfere with each other.
Finally, we observe that instead of considering arbi-
trary partitions, we can construct a correct schedule from
pair-wise noninterfering test traces as none of the test
traces interfere with each others’ key state maps. Those
state maps remain the same as an independent run of a
test trace, and therefore, result in the same observation.
Given these observations, we can encode the correct
scheduling problem as a graph coloring problem where
the nodes correspond to test traces and the edges con-
nect interfering test traces (the lack of edges between
two nodes implies compatibility between the two traces).
Then, we can use an efficient graph coloring algorithm to
generate a near-optimal coloring of the graph, which cor-
responds to a near-optimal correct schedule: nodes of the
same color can be scheduled together.

Algorithm 1 Correct scheduling

1: function GEN_INTF_GRAPH(T, C, M;,;;)

2 G+ {}

3 (p,8)«C

4: for each trace t; € T do

5 create a node v, for ¢; in graph G

6 r; < arun from (Q{"'},Mmi,) under C
7 for each pair of traces ¢, € T do

g: (s} 20y 1”0/ ..lpk/ 58l e

9: ($3 == LN lpl/ — 58 n
10: let M} be the state map for S},
11: if there exist i € [1,. k+ 1],j €[0,...,]]

and s, such that s € dtMap(B, j,lpj),
M3 (s), and M} (s) # M/ (s) then

il (s) #

12: G+ GU(w,v,)

13: return G

14:

15: function SCHEDULE(T, C, M;,;;)

16: G < GEN_INTF_GRAPH(T, C, M;;;)
17: G, < GRAPH_COLORING(G)

18: for each color i in G. do

19: T; < nodes in G, of color i

20: return (77,---,Tj)

5.2 Algorithm

The main function of our algorithm (Alg. 1) is SCHED-
ULE (lines 15-20), which takes a set of test traces T, a
network configuration C, and the initial state map M as
input and returns a partition of 7. The SCHEDULE func-
tion calls GEN_INTF_GRAPH to generate the interference
graph of 7 and GRAPH_COLORING to color the graph.
The latter can be any efficient coloring algorithm, which
we omit. The output partition corresponds to a schedule
of the test traces (line 20).

The GEN_INTF_GRAPH function creates a node in the
graph for all traces in T (line 5). The edges are sup-
posed to connect two nodes representing test traces
that interfere with each other. The key is to decide
whether two test traces interfere (not compatible) with
each other, which relies on the following two func-
tions: dtMap(5,M,Ip) and upd(8,M,Ip). At a highlevel,
dtMap(8,M ,Ip) returns a state map M’ containing a sub-
set of the mappings in M that determines the result of
8(M,Ip). upd(8,M,Ip) returns a state map M’ that maps
the subset of state locations in the domain M that are up-
dated by the transition 8 (M, Ip) to new values.

For each concrete transition function 9, it is straight-
forward to define dtMap(8,M,Ip). Using the stateful
firewall example from §2, the state map remembering
whether there exists a prior connection from a host within

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 443

the department should be returned by this function. We
require that all instances of dtMap(5,M,Ip) return the
determinant state map of the transition from M and Ip
under &, formally defined below. Intuitively, state loca-
tions that are in the determinant state map uniquely de-
termines the result of 6(M,lIp); state locations that are
not in the determinant state map are allowed to be al-
tered by other test traces without changing the behavior
of the current test trace. Use the stateful firewall example
again, other state locations such as the state of TCP con-
nections are not in the determinant state map and can be
altered by other test traces while keeping the observation
of the current test trace the same.

We write diff (M, M) to denote the set of state loca-
tions that are in the domain of M; and M, and mapped
to different values by M| and M,. The determinant state
map of the transition from M and Ip under 6 is M if we
construct another state map M’ by changing the values
that state locations in M but not in M, are mapped to,
the transition from M’ and Ip generates the same located
packet (Ip; = Ip,), and the resulting state maps M; and
M, only differ at state locations that are not updated by
the transition and not in the determinant state map. The
last condition essentially forces updates to the state maps
to be determined by M, as well.

Definition 3 (Determinant state map) We say a state
map My determines (is the determinant state map of)
the transition from M and Ip under 6 if M = (My,M,,)
and for all M), s.t. dom(M,) = dom(M,), let M' =
(My,My), (My,Ip,) = 8(M,Ip), (My,Ipy) = 8(M',Ip), it
is the case that Ip; = Ip, and diff (M1,M;) C dom(M’) \
dom(upd(8,M,Ip) Uupd(8,M',Ip)).

To build the interference graph, the algorithm executes
each test trace #; independently and stores the run (lines
4-6). Only one run is needed and we pick the one where
a located packet in ¢; is only processed when the located
packet before it has left the network. We call such a run
a sequential run, written Rye,(queue(t;),M). The if con-
dition on line 11 checks whether a run r; contains a state
location s that determines the execution and run r, writes
to s with a different value from the one that determines
the transition in r;. If so, then r; and r, interfere with
each other. This is because the modification by r, could
change the behavior of r;. This is a conservative check.

Let us revisit the example shown in Figure 6. We
explain how our algorithm detects the interference be-
tween trace$; and trace}}. The middlebox TPS1 main-
tains a state of the number of bad connections for each
host. Consider both traces, the determinant state map
dtMap(6,M,Ip) and upd(8,M,Ip) are both the bad con-
nection counter for H. We write sy to denote this state
location. For the run of trace?,, the determinant state
maps are sy — 0, to sy — 6. The update state maps for

the run of trace}} are sy — 0, to sy — 11. Obviously, the

updates by the second trace don’t always agree with the
determinant state maps of the first trace. Condition on
line 11 of Algorithm 1 is true. Therefore, the two traces
are interfering with each other.

We prove that Algorithm 1 is correct (Theorem 1), and
detailed proofs can be found in Appendix.

Theorem 1 (Correctness)
SCHEDULE(T, C,M,;;) is a correct schedule.

6 Extensions to Basic Algorithm

So far, we have discussed how to schedule the test given
a set of test traces for ensembles of policies. As we see
in previous examples, testing tools may generate inter-
fering test traces for ensembles of policies. However, it
is possible that the cause is not that the policies conflict,
but the optimization heuristics that the testing tools em-
ploy to improve the efficiency of test trace generation.
For instance, BUZZ attempts to pick concrete field val-
ues (same values across policies) for test traces to reduce
the number of symbolic variables. In this section, we in-
vestigate the opportunities to guide test trace generation
to further improve scheduling efficiency.

6.1 High-level Idea

Recall the multi-stage IPS example in §2. The three test
traces (trace$;, trace}}, and trace}}! for each policy path)
interfere since they share the same counter on IPS1 for
the source H. Intuitively, by altering the source of each
test trace, we can obtain test traces for each policy path
while avoiding the interference. For example, trace%l,
trace}},, and trace}}} are three test traces for each policy
path and can be safely injected in parallel.

To generalize this intuition, we identify a set of influ-
encing fields for a located packet Ip (in a test trace t;)
given a test trace 7, (denoted /j,(1;)). The property of
Ijp(12) is that by altering values for some fields in it, it
could be possible to avoid the interference between #; and
1, related to Ip. For instance, the set of influencing fields
for packets in trace?i includes the source, since changing
the sources in traceg from H to HI, interference with
other test traces are avoided.

The precise fields in 7}, (f) may require involved static
analysis of the model and the test trace. Here, we propose
two heuristics for identifying I;,(¢) and new field values:
one is to fix the set to commonly used fields such as the 5-
tuples and randomly select the value of them; the other is
to leverage results learned from the interference analysis
(Alg. 1). We discuss each in detail next.

6.2 Random Packet Fuzzing

For flow-based policy testing (e.g., flow-based service
chaining [39, 13]), Mikado employs a light-weight pre-
processing for the test traces to reduce the chance of

444 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

interferences. This preprocessing picks random values
from the flow space specified in the policy and rewrites
the S-tuple of each packet in the test trace using these
random values. In addition, to preserve the flow seman-
tics, this preprocessing ensures that fields with the same
original values will be substituted with the same values.

This heuristic does not ensure the coherence of the test
trace and the policy to be tested in general, as it may pick
wrong fields and field values. However, as we will see in
§7, this heuristic works reasonably well in practice for
the targeted policies.

6.3 Test Trace Refinement

Mikado also employs a more rigorous analysis to refine
test traces using information obtained from the initial
scheduling process. The refinement process uses con-
crete runs of test traces to guide the selection of Ij, ()
and the new values for fields in I, (¢). This process aims
to tell the test generation tool not to use values that are
known to cause interference from previous analysis.

In the rest of this section, we first describe how to re-
fine ¢ to be non-interfering with all traces in 7', followed
by the algorithm that refines given correct schedules.
Test Generation with Configurations. Given a testing
tool A, let GenTest(pol, N, Config) denote the test traces
generated by A for policy pol and network N under the
tool configuration Config. Different tools can be tuned
differently. One can treat Config as constraints on packet
header fields for the test traces to be generated. Given
the sequential run r; and r, obtained from the schedul-
ing process for test trace t; and #, respectively, we first
apply an analysis to identify 7}, (r2) for all Ip € t;, which
are essentially the fields in Ip that are used as meaning-
ful input in the transition function 6. For instance, the
source address in the multi-stage IPS example. This is
more precise than fixing a set of fields a priori.

Next, given the set of influencing fields /,(t,) for all
Ip € 11, we generate the following constraint CS(,1):
Nipyer, V ety (o) Pi(f) # Ipi(f). That is, every packet
Ip} in the refined trace by A should not have values ex-
actly the same for fields in Ij, (t2). This constraint will
be translated to suitable configuration files that the test
generation tool understands (see §7). Similarly, to re-
fine a trace ¢ for a set of traces T, the configuration is
the constraint CS(t1,7) = A\,,er CS(t1,12). For instance,
for the multi-stage IPS example, if we refine trace},1 , the
constraint is A\; s7c; # H, where src; is the source address
of the i-th packet in the refined trace.

With the above settings, we use Algorithm 2 to refine
a trace ¢ for a policy P, such that the refined trace is non-
interfering with all traces in 7. In the algorithm, we try
to refine ¢ for at most max_num_try times. In each try, we
invoke GenTest, to generate a possible trace ’. We return
¢’ if it is non-interfering with all traces in T, otherwise,

Algorithm 2 refineTrace(?, T')
1. CS=CS(t,T))
2: for i =1 to max_num_try do

3 if GenTestya(P,N,CS) generates a new trace 1’
then

if ¢’ is non-interfering with 7 then return ¢/
else CS = CSA{t" £’} /11" is the next gen-
erated trace
6: else return FAIL
7. return FAIL

we invoke GenTest, again for another trace that is not 7'.

Refinement Algorithm. Given a correct schedule for
a set of policies {17, .., T; } as input, our refinement algo-
rithm outputs a refined correct schedule for the policies
with potentially a smaller number of injection rounds.
At a highlevel, our refinement algorithm takes a greedy
heuristic and iterates all rounds 7;, starting from the
round with least number of traces. Then it attempts to re-
fine all traces in 7; using the algorithm described above.
If all traces in T; can be refined, we remove 7; and obtain
a correct schedule with fewer injection rounds. We omit
the details of the algorithm in interest of brevity.

7 Evaluation

We evaluate Mikado via a testbed-based emulation and
large-scale simulations and show that Mikado: (1) is able
to detect test interferences in a range of scenarios and
generate correct schedule; (2) achieves orders of mag-
nitude reduction in the test running time compared with
alternative test scheduling mechanisms; (3) is scalable
to networks with 1000+ switches/middleboxes and thou-
sands of policies.

Implementation: We implement a prototype of Mikado
in Python. We consider four testing tools in our frame-
work, namely ATPG [47], BUZZ [13], Pingmesh [19],
and Symnet [42]. For ATPG and BUZZ, we reuse their
constructs for routing tables and middleboxes; and for
Symnet, we manually encoded the middleboxes that are
not in the code repository in their language SEFL. To
support the refinement extension, we also implement a
light-weight helper function (=100 LoC each tool) that
translates the generated constraints to each tool’s config-
uration (e.g., Z3 [9] formulas for Symnet). All experi-
ments are conducted on a server with 20 cores (2.8Ghz)
and 128GB RAM.

7.1 Validation

End-to-end correctness. We first validate Mikado’s cor-
rectness in a variety of use cases. On our testbed, we
emulate hosts and (software) middleboxes as separate
KVM-based virtual NFs, connected with OpenV Switch.

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 445

We use OpenDayLight [33] as the controller for all emu-
lated networks.

e To emulate the multi-IPS scenario in Fig. 2, we use
Snort as both IPS1 and IPS2, and use three hosts to emu-
late the departments and the Internet. We configure IPS1
to enforce two policies: 1) forwarding a host’s traffic
to IPS2 if the host issues more than 5 connections in a
minute; 2) otherwise the traffic is sent to the Internet.
We run BUZZ to test the two policies in parallel, and
log the traffic at the interface of IPS2 to check the test-
ing results. We run the experiment 100 runs, and BUZZ
reports violation of policy 1) in 80 runs. All reported pol-
icy violations are validated to be false positives: the root
cause is that BUZZ injects traffic from a single host for
two policies, and causes conflicts.

e For the scenario in Fig. 3, we use iptables as both the
NAT and the stateful firewall, and use Symnet and ATPG
to test the connectivity between the Internet and the de-
partment in parallel. In all 100 runs, the security policy
on the stateful firewall was reported violated. However,
we verify that the testing results are false positives: test
cases interfere on the stateful firewall.

e We use a simple “blue team-red team” test to simulate
the scenario in Fig. 4. We use Squid as the proxy and
Snort as the monitor device to emulate the network. To
bind proxy’s requests with the origin hosts, we use Flow-
Tag [14] to configure the network. One student (“red”)
intentionally misconfigures the switch to drop web re-
quests from H2, and the other student (“blue”) use BUZZ
to test HTTP connectivity of each host. Of 10 times of
this experiment, the blue team could only uncover the
bug in 5 times.

In all three scenarios, Mikado can successfully detect

the interference among the generated tests, and correctly
schedule the tests in separate runs. We repeat the three
experiments with the schedule from Mikado, and no false
positives or negatives are produced.
Interference detection. Next, we evaluate Mikado’s
capability to detect test interference in practice. We
consider two popular types of network policies in our
survey: reachability and service chaining policies. To
collect real-world service chaining policies, we con-
duct a survey from a set of industrial and academic
sources [38, 14, 13, 44, 20, 1, 2, 27, 30], and build a li-
brary of 38 service chaining policy templates. The num-
ber of network functions on each service chain ranges
from 1 to 5, and the library involves 14 types of network
functions in total. Our library is a superset of what has
been considered in the prior work in this space.

Table 3 summarizes the key metrics for five differ-
ent topologies we consider. For each network, we as-
sign hosts into a number of policy groups and enforce
1000 service chaining policies using our library of ser-
vice chaining templates for randomly selected pairs of

Switches # Middleboxes # Links
Internet2 9 9 37
Stanford 16 16 37
Sprint 11 10 28
Oxford 20 20 46
Chinanet 42 39 105

Table 3: Summary of the dataset.

policy groups. We use BUZZ and Symnet to generate
test cases for each policy (500 policies for each tool).
For reachability policies, we consider basic reachability
policies using ATPG? and TCP reachabilities inspired by
Pingmesh [19]. Figure 8 shows the number of test inter-
ferences with the number of policies under test.

10° T T T

4 f[=de= Sprint

103 Fl4 stanford /"‘._ P ‘_'i-'-;

10" B inernet2 aE LS 5
2 W

10°H-F chinanet N -

10" # Oxord [*

10° I L L L
0 500 1000 1500 2000 2500

Network policies
Figure 8: Number of potential interferences.

g

L 1]
L 11

Interferences

E

As expected, as the number of policies increases,
Mikado detects an increasing number of interferences
among policy tests. Further analysis confirms that in-
terferences are caused mostly by multiple tools. For ex-
ample, when testing all service chaining and TCP reach-
ability policies on Internet2, 3504 interferences are de-
tected and 77% of them happen across different tools.
The results further confirm that simply randomizing the
parallelization is not likely to generate correct schedules.

7.2 Test Time Reduction

We evaluate the test time reduction using Mikado’s
scheduling based on the same setup as above. Figure 9
shows the (average) number of runs to complete the tests
for different number of policies under test. Recall that all
test traffic in each run can be injected in parallel, while
multiple runs have to be conducted in sequential. There-
fore, the number of runs serves as a reasonable proxy for
the test running time. For comparison, we consider two
alternative approaches: BASELINE is the basic schedul-
ing approach that runs tests sequentially; MB-based is
the heuristic which schedules test traces that do not tra-
verse the same middleboxes together; and Mikado is the
proposed scheduling approach (we build a checker that
validates the correctness of the schedule). Each data
point on the figure is obtained by repeating 100 times.
First, we observe that Mikado significantly reduces
the testing running time across all networks (Sprint and
Oxford in Appendix) compared to both alternative ap-
proaches. For example, when testing 2560 service chain-
ing and TCP reachability policies in Internet2, Mikado

2Since ATPG’s source code only supports Internet2 and Stanford
networks, we only apply ATPG to the two networks.

446 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

10* - - - 10*

T T 10*

-@- Bascline

~@- Bascline 3
107 H A MB-based H—_._._.'_:’ 10" K <A MB-based
] - A-k& -k A" g
& 102 [{Hll Mikado] & 102 | .‘l\ﬂikado
* *

10" m-m -F - B 10"k

g -5 E-
L

10° 10° - -

a- A=A -k oAm A
._._....l---l--.—'l,

-8 Baselne _._I_‘.__;__._I,_‘
E=A MB-based 3
107 [| 4 Mikado | \ _ 4 = & =A —A= A]

4 10°

Runs

10' | ._—.--.-.—._.--.-.3

I 10° | |

! ! !
1000 1500 2000

Network policies

(a) Internet2

0 500 2500 0 500 1000

Network policies

(b) Stanford

I I
2500 0 500 1000 1500 2000

Network policies
(c) Chinanet.

1
1500 2000 2500

Figure 9: Test running time.

can complete all tests in 13 runs by parallelizing most
non-interfering traces. In contrast, BASELINE has to
inject each trace in a single round (i.e. 2560 runs in
total), and MB-based approaches can only complete all
test in 663 runs. Both approaches take orders of magni-
tude more time than Mikado. Putting this result in per-
spective, if a single run can be complete in 30 seconds,
Mikado can effectively reduce the test running time from
21 hours (sequential) to 10 minutes. We also note that
the overhead of Mikado’s scheduling algorithm is negli-
gible compared with the test generation time: generating
all test cases for Internet2 takes 14 hours, while Mikado
only takes 2 minutes to generate the test schedule.

Second, Mikado’s extensions are effective in further
reducing the testing time. Fig. 10 shows the testing run-
ning time for the Internet2 network with Mikado’s exten-
sions. In general, we observe that our refinement tech-
nique achieves greater reduction compared to the random
fuzzing heuristic. This is because that the refinement can
systematically explore available field values by incorpo-
rating with testing tools via simple configurations. With
the extensions, the number of runs in Internet2 can be
reduced from 13 to 7.

Runs
oN A~ O ® O

@~ Fuzzing
A Refine =

! ! !
1000 1500 2000

Network policies

!
0 500 2500

Figure 10: Test running time with Mikado extensions.

Sensitivity to topologies. To evaluate how sensitive
Mikado is w.r.t. the network topology, we run our
scheduling algorithm on 20 different topologies from
TopologyZoo [26]. Figure 11 shows the CDF of the test
running time reduction for 200 test traces on each topol-
ogy. Here, we consider the testing time reduction as the
ratio between the test running time using Mikado’s cor-
rect schedule and that of the sequential testing.

We observe that our scheduling algorithm achieves
high reduction for most cases. In particular, for more
than half of the topologies, our basic scheduling algo-
rithm achieves at least 87% reduction, while it has 96%+
reduction with the refinement technique.

1.0

08 == Basic scheduling
" [|= Scheduling+extensions

0.6 -

e

CDF

0.4 |-

b il B}

0.2

0.0
0.4 0.5 0.6 0.7 0.8 0.9 1.0

End-to-end time reduction

Figure 11: Test running time reduction CDF

7.3 Scalability

Next, we evaluate the scalability of Mikado with respect
to the network size, the number and the complexity of
policies. Specifically, we evaluate the running time of
our scheduling algorithm, including the time of the inter-
ference graph generation and graph coloring?.

With network size. We generate Fattree topologies [4]
with varying sizes and augment the topology by adding
a middlebox to every switch. We define the network size
as the number of switches in it. We run Mikado on each
topology with 5000 randomly generated test traces, and
each test trace traverses two middleboxes.

Figure 12a plots the running time of each component
of our scheduling algorithm vs. network size. Both the
interference graph generation and the graph coloring al-
gorithm can scale up to 1000 switches with negligible
increase in the running time. This is expected as the run-
ning of both algorithms are dominated by the number
of test traces, as shown in §5. We also observe that the
running time of the interference graph generation algo-
rithm slightly decreases as the network size increments.
This is because on larger networks the chance that two
test traces interfere with each other is lower, and leads to
faster interference checking.

With the number of test traces. We further run our
algorithm on the Fattree topology with 500 switches, and
vary the number of test traces from 1000 to 10000.

Figure 12b shows the running time of each algorithm
with the number of test traces. As we show in §5, both al-
gorithms run quadratically with the number of test traces;
and for 10 thousand test traces, it takes less than 10 min-
utes for both algorithms to generate a correct schedule.

To put the above results in perspective, we fur-
ther compare our scheduling algorithm with the naive
scheduling approach discussed in §5. Recall that the

3We do not consider the refinement heuristic since it relies on other
testing tools and not Mikado per se

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation

447

200 600

! =@~ Inter-graph generation 500 10% - -
s 150 4l Test trace scheduling = 400
= hd d = 3 10?
z 100 4 g 300 @
£ = 200 E 1o
50 . ------ m 100 -
. O B 10°
0 200 400 600 800 10001200 1400 12 3 4 5 6 7 8 9 10 3 5 7

Network size

(a) Network size.

Number of test traces (thousand)

(b) Number of test traces.

Policy complexity

(c) Policy complexity.

Figure 12: Mikado scalability.

naive scheduling approach needs to consider all possible
partitions of the test traces, and for each partition it needs
to check for all possible runs due to the concurrent injec-
tion of all the traces in the partition. The naive approach
takes more than 8 hours just for checking compatibility
for 10 test traces on one switch.

With policy complexity. We define the policy complex-
ity as the number of middleboxes appeared on the ser-
vice chain of each policy. We run our algorithm on 2000
test traces, and vary the number of middleboxes each test
trace must traverse. Figure 12c¢ shows that both algo-
rithms scales well w.r.t. policy complexity. Even in the
case where each test case traverses 7 middleboxes, gen-
erating the interference graph takes 13 minutes, while the
scheduling algorithm only takes 8 seconds.

8 Related Work

Our work draws ideas from several related areas includ-
ing network testing, software testing, and formal model-
ing. We discuss related work in those areas.

Network testing and verification. The high-level goals
of network testing [47, 13, 42] and network verifica-
tion [22, 24, 21, 31, 32, 46, 6, 37, 12, 8, 6, 10, 44] are
similar: check whether networks have implemented in-
tended policies correctly. Different from network veri-
fication, network testing is better suited for bug finding
and in general does not provide guarantees that policies
are correctly implemented.

Our work builds upon existing work on network
testing and focuses on generating correct and efficient
scheduling of test cases. Even though we tested our
framework on four existing testing tools, it can be ex-
tended as new testing tools are proposed.

Network modeling and abstractions. Formal models of
networks are necessary building blocks for formal analy-
sis of the network. There have been a number of existing
formal network models (c.f [22, 40, 15, 34, 35, 5, 25,
36]). Some model stateless dataplanes, some model SDN
control and dataplanes, and some like ours, model state-
ful dataplanes. All of the models are defined to facilitate
analysis or verification methods that rely on the model.
Ours is no exception. Our model, even though straight-
forward, serves the purpose of providing the basic con-
structs for defining the correct test ensemble scheduling
problem, a key contribution of this work.

Service-chaining policies. The majority of the policies

that we use to test Mikado are service-chaining poli-
cies. Recently, much work has been done surround-
ing enforcing service-chaining policies. For example,
Simple [39] proposes a static service chain enforcement;
FlowTag [14] uses tag bits in packet to implement dy-
namic service chaining; and [38] offers a composition
for service-chaining policies. Rather than enforcement
or composition of policies, our work stays at the level of
scheduling test cases for those policies and is comple-
mentary to the above mentioned projects; Mikado can be
used to perform extensive tests of networks that aim to
enforce those policies.

Software testing. Our randomized packet fuzzing is bor-
rowed from the software testing literature. Similar to
software fuzzing, we also aim to achieve good coverage
of the input space, but we do not really care about the
coverage of the portions of the network tested. Testing
network models is very similar to testing [18, 17, 41, 45,
11, 16], where network model is encoded as a program.
However, the type of network testing that we are inter-
ested in are live tests (i.e., inject test while into the live
network). This provides a set of unique challenges. To
carry out an ensemble of tests on software, one can sim-
ply perform each test on a copy of the software in paral-
lel. This is not possible for live network tests, since live
networks cannot be easily duplicated.

9 Conclusions

We present Mikado, a framework that generates efficient
and correct scheduling of test traces for ensembles of
network policies. Using a formal model for stateful net-
works, we develop rigorous definitions of correctness for
safely injecting test traces in parallel. We develop an ef-
ficient and provably correct algorithm for the test trace
scheduling problem. Mikado employs additional heuris-
tics to further improve the testing time reduction. We
validate Mikado in a variety of scenarios, and show that
Mikado can easily handle large networks with thousands
of test traces.

Acknowledgment

We thank all anonymous reviewers and our shepherd
Timothy Roscoe for their helpful suggestions and com-
ments. This work is partially supported by NSF CNS-
1513961, CNS-1552481, and Intel Labs University Re-
search Office.

448 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

[1]

[2]

[3]

[5

=

[6

=

[7]

[8

[t}

[9]

[10]

[11]

[12]

[13]

[14]

Cisco NSH Service Chaining Configuration
Guide. https://www.cisco.com/c/en/us/td/docs/ios-
xml/ios/wan_nsh/configuration/xe-16/wan-nsh-xe-16-book.html.
ODL.: Service Function Chaining.
http://events.linuxfoundation.org/sites/events/files
/slides/odl%20summit%20sfc%20v5.pdf .

Survey on Network Testing.

http://www.andrew.cmu.edu/user/yifeiy2/mikado/survey.pdf .

AL-FARES, M., LOUKISSAS, A., AND VAHDAT, A. A Scalable,
Commodity Data Center Network Architecture. In Proceedings
of the ACM SIGCOMM 2008 Conference on Data Communica-
tion (New York, NY, USA, 2008), SIGCOMM ’08, ACM, pp. 63—
74.

ANDERSON, C. J., FOSTER, N., GUHA, A., JEANNIN, J.-B.,
KOZEN, D., SCHLESINGER, C., AND WALKER, D. NetKAT:
Semantic foundations for networks. In Proceedings of the 41st
annual ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages (2014), ACM, pp. 113-126.

BALL, T., BIORNER, N., GEMBER, A., ITZHAKY, S., KARBY-
SHEV, A., SAGIV, M., SCHAPIRA, M., AND VALADARSKY, A.
VeriCon: Towards Verifying Controller Programs in Software-
defined Networks. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion (2014), ACM, p. 31.

BUTLER, B. What is intent-based networking?
https://www.networkworld.com/article/3202699/lan-wan/what-
is-intent-based-networking.html.

CANINI, M., VENZANO, D., PERESINI, P., KoSTIC, D., REX-
FORD, J., ET AL. A NICE Way to Test OpenFlow Applications.
In NSDI (2012), pp. 127-140.

DE MOURA, L., AND BI@GRNER, N. Z3: An Efficient SMT
Solver. In Proceedings of the Theory and Practice of Software,
14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (Berlin, Heidelberg, 2008),
TACAS’08/ETAPS’08, Springer-Verlag, pp. 337-340.

DOBRESCU, M., AND ARGYRAKI, K. Software Dataplane
Verification. In /1th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 14) (Seattle, WA, 2014),
USENIX Association, pp. 101-114.

EMMI, M., MAJUMDAR, R., AND SEN, K. Dynamic Test In-
put Generation for Database Applications. In Proceedings of the
2007 International Symposium on Software Testing and Analysis
(New York, NY, USA, 2007), ISSTA *07, ACM, pp. 151-162.

FAYAZ, S. K., SHARMA, T., FOGEL, A., MAHAJAN, R., MILL-
STEIN, T., SEKAR, V., AND VARGHESE, G. Efficient Network
Reachability Analysis Using a Succinct Control Plane Represen-
tation. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16) (GA, 2016), USENIX Associa-
tion, pp. 217-232.

FaYaz, S. K., YU, T., TOBIOKA, Y., CHAKI, S., AND SEKAR,
V. BUZZ: Testing Context-Dependent Policies in Stateful Net-
works. In 13th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 16) (Santa Clara, CA, 2016),
USENIX Association, pp. 275-289.

FAYAZBAKHSH, S. K., CHIANG, L., SEKAR, V., YU, M., AND
MoGUL, J. C. Enforcing Network-wide Policies in the Presence
of Dynamic Middlebox Actions Using Flowtags. In Proceed-
ings of the 11th USENIX Conference on Networked Systems De-
sign and Implementation (Berkeley, CA, USA, 2014), NSDI" 14,
USENIX Association, pp. 533-546.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

FOSTER, N., HARRISON, R., FREEDMAN, M. J., MONSANTO,
C., REXFORD, J., STORY, A., AND WALKER, D. Frenetic:
A network programming language. In ACM SIGPLAN Notices
(2011), vol. 46, ACM, pp. 279-291.

GODEFROID, P. Compositional Dynamic Test Generation. In
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (New York, NY,
USA, 2007), POPL ’07, ACM, pp. 47-54.

GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected Automated Random Testing. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design
and Implementation (New York, NY, USA, 2005), PLDI ’05,
ACM, pp. 213-223.

GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated
Whitebox Fuzz Testing. In Proceedings of Network and Dis-
tributed Systems Security (NDSS 2008) (November 2008).

Guo, C., YUAN, L., XIANG, D., DANG, Y., HUANG, R.,
MaLtz, D., LU, Z., WANG, V., PANG, B., CHEN, H., LIN, Z.-
W., AND KURIEN, V. Pingmesh: A Large-Scale System for Data
Center Network Latency Measurement and Analysis. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on
Data Communication (New York, NY, USA, 2015), SIGCOMM
’15, ACM, pp. 139-152.

JOSEPH, D. A., TAVAKOLI, A., AND STOICA, I. A policy-aware
switching layer for data centers. In ACM SIGCOMM Computer
Communication Review (2008), vol. 38, ACM, pp. 51-62.

KAZEMIAN, P., CHANG, M., ZENG, H., VARGHESE, G.,
MCKEOWN, N., AND WHYTE, S. Real Time Network Policy
Checking Using Header Space Analysis. In Presented as part
of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13) (Lombard, IL, 2013), USENIX,
pp. 99-111.

KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Header
Space Analysis: Static Checking for Networks. In Presented
as part of the 9th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 12) (San Jose, CA, 2012),
USENIX, pp. 113-126.

KHAN, F. Intent-based Networking - A Must for SDN.
http://resources.solarwinds.com/intent-based-networking-not-
an-option-but-a-must-for-sdn/.

KHURSHID, A., Z0U, X., ZHOU, W., CAESAR, M., AND GOD-
FREY, P. B. VeriFlow: Verifying Network-Wide Invariants in
Real Time. In Presented as part of the 10th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
13) (Lombard, IL, 2013), USENIX, pp. 15-27.

KiMm, H., REICH, J., GUPTA, A., SHAHBAZ, M., FEAMSTER,
N., AND CLARK, R. Kinetic: Verifiable Dynamic Network Con-
trol. In 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15) (Oakland, CA, 2015), USENIX
Association, pp. 59-72.

KNIGHT, S., NGUYEN, H., FALKNER, N., BOWDEN, R., AND
ROUGHAN, M. The Internet Topology Zoo. Selected Areas in
Communications, IEEE Journal on 29, 9 (october 2011), 1765
-1775.

KUMAR, S., TUFAIL, M., MAIJEE, S., CAPTARI, C., AND
S, H. Service Function Chaining Use Cases In Data Centers.
https://tools.ietf.org/html/draft-ietf-sfc-dc-use-cases-06 (2014).

LERNER, A. Intent-based Networking.

http://blogs.gartner.com/andrew-lerner/2017/02/07/intent-
based-networking/ .

Liu, H. H., ZHU, Y., PADHYE, J., CAO, J., TALLAPRAGADA,
S., LOPES, N. P., RYBALCHENKO, A., LU, G., AND YUAN, L.
MirrorNet: Faithfully Emulating Large Production Networks. In

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation

449

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Proceedings of the 26th Symposium on Operating Systems Prin-
ciples (New York, NY, USA, 2013), SOSP 17, ACM.

Liu, W., L1, H., HUANG, O., BOUCADAIR, M., LEYMANN,
N., CAo, Z., AND HuU, J. Service Function Chaining (SFC)
Use Cases. https://tools.ietf.org/html/draft-liu-sfc-use-cases-01
(2014).

LoPES, N. P., BIGRNER, N., GODEFROID, P., JAYARAMAN,
K., AND VARGHESE, G. Checking Beliefs in Dynamic Net-
works. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15) (Oakland, CA, 2015),
USENIX Association, pp. 499-512.

MAI H., KHURSHID, A., AGARWAL, R., CAESAR, M., GOD-
FREY, P. B., AND KING, S. T. Debugging the Data Plane with
Anteater. In Proceedings of the ACM SIGCOMM 2011 Con-
ference (New York, NY, USA, 2011), SIGCOMM 11, ACM,
pp- 290-301.

MEDVED, J., VARGA, R., TKACIK, A., AND GRAY, K. Open-
daylight: Towards a model-driven sdn controller architecture.
In World of Wireless, Mobile and Multimedia Networks (WoW-
MoM), 2014 IEEE 15th International Symposium on a (2014),
IEEE, pp. 1-6.

MONSANTO, C., FOSTER, N., HARRISON, R., AND WALKER,
D. A compiler and run-time system for network programming
languages. ACM SIGPLAN Notices 47, 1 (2012), 217-230.

MONSANTO, C., REICH, J., FOSTER, N., REXFORD, J., AND
WALKER, D. Composing Software Defined Networks. In 10th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13) (Lombard, IL, 2013), USENIX Association,

pp. 1-13.

NELSON, T., FERGUSON, A. D., SCHEER, M. J., AND KR-
ISHNAMURTHI, S. Tierless programming and reasoning for
software-defined networks. NSDI, Apr (2014).

PANDA, A., LAHAV, O., ARGYRAKI, K., SAGIV, M., AND
SHENKER, S. Verifying Reachability in Networks with Muta-
ble Datapaths.

PRAKASH, C., LEE, J., TURNER, Y., KANG, J.-M., AKELLA,
A., BANERIJEE, S., CLARK, C., MA, Y., SHARMA, P., AND
ZHANG, Y. PGA: Using Graphs to Express and Automatically
Reconcile Network Policies. In Proceedings of the 2015 ACM
Conference on Special Interest Group on Data Communication
(New York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 29-42.

QAzi, Z. A., Tu, C.-C., CHIANG, L., MIAO, R., SEKAR, V.,
AND YU, M. SIMPLE-fying Middlebox Policy Enforcement Us-
ing SDN. In Proceedings of the ACM SIGCOMM 2013 Confer-
ence on SIGCOMM (New York, NY, USA, 2013), SIGCOMM
13, ACM, pp. 27-38.

REITBLATT, M., FOSTER, N., REXFORD, J., SCHLESINGER,
C., AND WALKER, D. Abstractions for Network Update. In
Proceedings of the ACM SIGCOMM 2012 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer
Communication (New York, NY, USA, 2012), SIGCOMM ’12,
ACM, pp. 323-334.

SEN, K., MARINOV, D., AND AGHA, G. CUTE: A Concolic
Unit Testing Engine for C. In Proceedings of the 10th European
Software Engineering Conference Held Jointly with 13th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (New York, NY, USA, 2005), ESEC/FSE-13, ACM,
pp. 263-272.

STOENESCU, R., Poprovici, M., NEGREANU, L., AND
RaAIcIiu, C. SymNet: Scalable Symbolic Execution for Mod-
ern Networks. In Proceedings of the 2016 Conference on ACM
SIGCOMM 2016 Conference (New York, NY, USA, 2016), SIG-
COMM ’16, ACM, pp. 314-327.

[43]

[44]

[45]

[46]

[47]

SUBRAMANIAN, K., D’ANTONI, L., AND AKELLA, A. Gene-
sis: synthesizing forwarding tables in multi-tenant networks. In
POPL (2017), pp. 572-585.

TSCHAEN, B., ZHANG, Y., BENSON, T., BENERJEE, S., LEE,
J., AND KANG, J.-M. SFC-Checker: Checking the Correct For-
warding Behavior of Service Function Chaining. In /IEEE SDN-
NFV Conference (2016).

VISSER, W., PASAREANU, C. S., AND KHURSHID, S. Test
Input Generation with Java PathFinder. In Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (New York, NY, USA, 2004), ISSTA *04, ACM,
pp. 97-107.

XIE, G. G., ZHAN, J., MALTZ, D. A., ZHANG, H., GREEN-
BERG, A., HIALMTYSSON, G., AND REXFORD, J. On Static
Reachability Analysis of IP Networks. In INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings IEEE (2005), vol. 3, IEEE,
pp- 2170-2183.

ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN,
N. Automatic Test Packet Generation. IEEE/ACM Trans. Netw.
22,2 (Apr. 2014), 554-566.

450

15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Appendix

Evaluation on Test Running Time

10

X -.-Baselline ' ‘ ‘ E
10° H.A MB-based E
2 — A=A —A- A
S o [viato A= A& &]
a =
* g0 1
I A m-g -8
0 500 1000 1500 2000 2500

Network policies

Figure 13: Test running time for Oxford

N F e H—'._._H
10" H.A MB-based — A —A —A- 4]

@ - A
é 102 H| 4 Mikado A E
 m-m-N B A
* 0l g - i .
10°
0 500 1000 1500 2000 2500

Network policies

Figure 14: Test running time for Sprint

Proof of Theorem 1

Theorem 1 is a corollary of a stronger lemma (Lemma 2),
which we explain next.

We first define the compatibility of two tests traces #;
and #, using just the sequential run of each test trace as
follows. The definition essentially is the negation of the
condition on line 12 of Algorithm 1.

Definition 4 Test trace t| is compatible with test trace t;
w.r.t. My and (p, 8) iff r! = Ryeq(queue(ty), Minir), P =
Ryeq(queue(ty), M), Vi € [0,|r'| — 1], Vj € [0,|r?] —
1], Vx € dom(dtMap(8,M},Ip})) N (upd(ﬁ,Mf-,lp?)),
dtMap(8,M},Ip})(x) = upd(ﬁ,Mpr?)(x), where M¥
and lpf denotes the state map and the located packet pro-
cessed at the i'" state of r* respectively.

Prove disconnected nodes in the graph returned by
the GEN_INTF_GRAPH are compatible is straightforward
(Lemma 1).

Lemma 1 Ler G =GEN_INTF_GRAPH(T,C,M;y). If v,
and vy, are not connected by an edge in G then ty is com-
patible with t, w.r.t. M and C.

To simplify the proofs, we represent the set of runs
Z(Q,M) as an execution tree R, which can be either a
leaf node of one network environment, or a node whose
content is a network environment E and each of its chil-
dren is another execution tree obtained from making a
transition from E and processing packet Ip;.

Exec.tree R 1= Lf(E)
Ip1/lp} pa/lpn
‘ Nd(Ea—>R17"'7—>Rn)
Path T = eln:x

We can identify a unique run in R using a path 7, which
is a list of numbers indicating which transition to take.
For instance, path 1:1:1 identifies the run that takes three
transitions following the first branch at each step.

Next we define r Sz, ... 5.z, Ri;- -+ ; R, in Figure 15.
The meaning of this judgment is that » simulates an in-
terleaving of runs, each of which is indexed by the path
7; in R;. For our proofs, R; is the execution tree for test
case t; and r is a run of the ensemble of tests #; to #,,.

The base case is when the indices all point to the ini-
tial state. We only need to check that r contains only one
state, where the state map is the initial map and the queue
only contains the test traces. Here, we Q1 W Q> represents
an interleaving of packets from O and O, that preserves
the order of packets enforced by QO and Q5. The induc-
tive case checks that (1) the last transition of r matches
a transition in R; (2) the port queue of the last state of r
is an order-perserving interleaving of all the port queues
in each R; at the correct indices and (3) each state loca-
tion in the state map M in the last state of r preserves the
determinant state maps of each R;. The last condition is
the most complex, as we need to reason about who last
updates a location s in M. If s is last updated by a packet
related to test trace f,,, and s is part of the determinant
location of another test trace #; (I # m), then M(s) should
be the same as the value in that determinant state map.
Otherwise, m may interfere with /. However, a test trace
can modify its own determinant state locations. It would
be too strong to require M(s) to be equal to the values
of all determinant state location of the test trace m itself.
Instead, we only guarantee that M(s) is equal to the cor-
responding state in R,,.

Lemma 2 is the key to our correctness proof. It states
that any run starting from the ensemble of test traces
maintains a simulation relation with each individual runs.
Here, %,, denotes a run of length m.

Lemma 2 Give a set of test traces T = {t,--- ,ty}, s.1.
Vi jel[l,n] and i # j, t; is compatible with t; w.r.t.
Mipi; and C, let R; = Z((queue(t;),Mipi;),C) then let R =
Rm((queue(flatten(T)),Miyi),C), Vr € R, 3y, m,
r Sn17~'~,ﬂn Ri;-++ Ry

The proof is by induction of Y7, |m;|. We rely on the
fact that the set of valid runs have the same determinant
state maps and updates (Definition 5) to generalize the
compatibility conditions on sequential runs to other valid
runs.

Definition 5 We say that the valid runs of test
trace t form an equivalence class iff let 1y =
Ryeq(queue(t),Minir), Vr € Z(queue(t),Miit), Vip €
t, r Lypy= Tseq dypy and VO,M,Ipy,lp}, Q' \ M s.t.

Ip/lp) Ip/lp)

(Q,M) ——€ ryq and (Q'\M') ——€ r, imply

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 451

R Lf(Qza)OrNd((QH 1)7) M:MIZ"':Mn:M[m‘t Q:Ql&J"-H'JQn
(QvM) Sﬂ,-",. Rl7 ;Rn

/
m=mn V§n1 -, n,,Rls""R

V]E[l,i’l] let R; \ﬂ]—Lf(QJ’)OrNd((Qja)7)
Q = H'J’;‘:IQJ l\n’l/ :Nd((Qu, a)vCh) Ch.n =
Vx € dom(M), x is last updated by #,,,
VI € [1,n],s.t. | # m,if x is in the determinant state map of a state map My, in R;,then M (x) = My/(x).
let 7,y = Ryn|z,, let Mg be the last state in r,, where x is updated from the previous state, M (x) = Mg (x)
Vx € dom(M), x is not updated by any thread,V; € [l n),Mj(x) = M(x) = Mipir(x)

[i’

Ip/ip’ Pl o

i

Figure 15: Simulation relation

upd(6,M,lp) = upd(6,M’,Ip) and dtMap(6,M,lp) =
dtMap(8,M’,Ip).

The correspondence relation established in Lemma 2
ensures that the determinant state maps of individual runs
are preserved by the combined run. Theorem 1 follows
straightforwardly because observations are determined
by the transitions, which in turn, are determined by the
state maps.

452 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

