
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

ResQ: Enabling SLOs
in Network Function Virtualization

Amin Tootoonchian, Intel Labs; Aurojit Panda, NYU, ICSI; Chang Lan, UC Berkeley;
Melvin Walls, Nefeli; Katerina Argyraki, EPFL; Sylvia Ratnasamy, UC Berkeley;

Scott Shenker, UC Berkeley, ICSI

https://www.usenix.org/conference/nsdi18/presentation/tootoonchian

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

ResQ: Enabling SLOs in Network Function Virtualization

Amin Tootoonchian? Aurojit Panda¶‡ Chang Lan† Melvin Walls§

Katerina Argyraki• Sylvia Ratnasamy† Scott Shenker†‡

?Intel Labs †UC Berkeley ‡ICSI ¶NYU §Nefeli •EPFL

Abstract
Network Function Virtualization is allowing carriers to re-
place dedicated middleboxes with Network Functions (NFs)
consolidated on shared servers, but the question of how (and
even whether) one can achieve performance SLOs with soft-
ware packet processing remains open. A key challenge is
the high variability and unpredictability in throughput and
latency introduced when NFs are consolidated. We show that,
using processor cache isolation and with careful sizing of
I/O buffers, we can directly enforce a high degree of perfor-
mance isolation among consolidated NFs – for a wide range
of NFs, our technique caps the maximum throughput degra-
dation to 2.9% (compared to 44.3%), and the 95th percentile
latency degradation to 2.5% (compared to 24.5%). Building
on this, we present ResQ, a resource manager for NFV that
enforces performance SLOs for multi-tenant NFV clusters
in a resource efficient manner. ResQ achieves 60%-236%
better resource efficiency for enforcing SLOs that contain
contention-sensitive NFs compared to previous work.

1 Introduction
Modern networks are replete with dedicated “middlebox”
appliances that perform a wide variety of functions. In
recent years, operators have responded to the growing cost
of procuring and managing these appliances by adopting
Network Function Virtualization (NFV). In NFV, middlebox
functionality is implemented using software Network
Functions (henceforth NFs), which are deployed on racks of
commodity servers [18, 36, 38]. This approach offers several
advantages including lower costs, easier deployment, and
the ability to share infrastructure (e.g., servers) between NFs.

However, there is one oft-overlooked disadvantage to
the move to software. Because physical instantiations of
these functions relied on dedicated hardware; they had
well-understood performance properties which allowed
operators to offer performance SLOs [3, 7, 44]. Providing
performance guarantees is harder with software, particularly
when multiple NFs are consolidated on the same server.

While current NFV solutions [28, 41, 47, 49] typically
place NFs on dedicated cores, this is insufficient to ensure
performance isolation. Even when run on separate cores,
NFs share other processor resources such as the last-level
cache (LLC), memory, and I/O controllers (Figure 1),

Pr
oc

es
so

r ProcessorDDR DDR

RAMRAM

PCI-E PCI-E

NI
C

NIC

QPI

Server

… …Core

Core

Core

Core
LLC

IDI
iMC

DDR

QPI IIO

PCI-EQPI

Processor

Figure 1: High-level view of shared resources inside a server and CPU.
A typical NFV deployment consists of racks of servers interconnected
with a commodity fabric. Each server consists of a set of resources (CPU,
RAM, NIC) interconnected with standard interfaces (QPI, DDR, PCIe). A
modern general-purpose Intel CPU consists of a number of processor cores
all sharing the uncore that includes I/O controller (IIO), integrated memory
controller (iMC), last-level cache (LLC), and in-die interconnect (IDI).

collectively referred to as uncore resources [29]. NFs
contend for these uncore resources and, as we show, such
contention can degrade an NF’s throughput by as much as
40% compared to its performance when run in isolation (§2).

Providing performance guarantees in NFV essentially
boils down to solving the noisy neighbor problem, common
in multi-tenant environments [62]. Traditionally, this problem
has been addressed through resource partitioning. However,
in the NFV context, performance variability primarily stems
from contention for the LLC [10] and, until recently, no
mechanism existed to partition the LLC.1 This changed with
the introduction of processor features – e.g., Intel® Cache
Allocation Technology (CAT) [27] – that provides hardware
mechanisms for partitioning the LLC across cores.

CAT is a mechanism that opens the door to a new approach
for performance isolation in NFV. However, this mechanism
has neither been widely tested in nor applied to the NFV con-
text. Hence, in this paper, we study whether and how CAT can
be applied to support performance SLOs for NFV workloads.
More specifically, we explore the following two questions.

First, we evaluate whether CAT is sufficient to ensure per-
formance isolation across NFs? We show that CAT “out of
the box” does not provide predictable performance: instead,
some NFs’ performance continues to vary (by as much as
14.7%) depending on their neighboring NFs. This contradicts

1Instead, prior work on providing SLOs aimed to predict the impact of
contention on performance [10]. However, such prediction is difficult and,
as we show in §6.2, is no longer accurate with newer hardware and software.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 283

Application Description Mpps Instructions/Cycle L3 refs/Packet L3 hit rate Kilocycles/Packet

Efficuts [61] Efficuts classifier (32k rules) 1.224 0.63 10.23 99.92 1.72
EndRE [1] Click-based WAN optimizer 3.770 1.95 1.54 99.95 0.56
Firewall Click-based classifier (250 rules, sequential search) 0.366 0.59 1.59 99.44 5.74
IPsec Click-based IPsec tunnel using IPsec elements 0.442 3.31 5.13 99.83 4.75
LPM Click-based IP router pipeline with RadixIPLookup 5.475 1.92 3.87 99.80 0.38
MazuNAT Click-based NAT pipeline by Mazu Networks 2.698 1.53 12.14 99.92 0.78
Snort [53] Inline IDS (20k rules [16, 57]) with netmap for I/O 0.683 1.94 25.61 97.03 3.06
Stats Click-based flow stat collection with AggregateIPFlows 3.685 1.28 10.22 99.92 0.57
Suricata [46] Inline IDS (20k rules [16, 57]) with netmap for I/O 0.205 1.61 26.89 98.36 10.
vEPC Standalone software implementation of LTE core network - - - - -

Table 1: Characteristics of NFs used in this work. The performance is measured when the NF is run alone with exclusive access to 45 MB LLC with a
test traffic of min-sized packets sampled from a pool of 100k flows uniformly at random. Snort and Suricata use netmap while the rest use DPDK for
I/O. We do not report these statistics for vEPC due to constraints discussed in §4.1.

prior work [10, 63] which identified cache contention as
the main source of performance variability for NFs. Careful
investigation reveals the cause of this problem: poor buffer
management with Intel Data Direct I/O [31], a processor fea-
ture that enables direct NIC-to-LLC transfers (i.e., bypassing
memory), can lead to a leaky DMA problem in which packets
are unnecessarily evicted from LLC leading to variable
performance. We describe a simple buffer sizing policy that
avoids the leaky-DMA problem and show that, with this
policy, CAT is sufficient to ensure performance isolation
(with performance variability under 3% across all scenarios).

Next, having ensured the robustness of CAT as a
performance isolation knob given proper buffer sizing, we
turn to the question of how to apply CAT in a practical
system. The challenge here lies in designing a scheduler that
assigns resources to NFs in a manner that is accurate (no
SLO violations), efficient (minimizing resource use), and
scalable (so that decisions can be easily adapted to changing
workloads and infrastructure).

We develop ResQ, a cluster resource scheduler that
provides performance guarantees for NFV workloads. ResQ
computes the number of NF instances required to satisfy
SLO terms, and allocates LLC and cores to them. ResQ
balances accuracy and efficiency by first profiling NFs to
understand how their performance varies as a result of LLC
allocation. For scalability, ResQ uses a fastpath-slowpath
approach. We formulate the scheduling problem as a
mixed-integer linear program (MILP) that minimizes the
number of machines to guarantee SLOs. Solving this
MILP optimally is NP-hard and hence ResQ uses a greedy
approximation to schedule NFs upon admission. In the
background, it periodically computes a near-optimal solution,
and only moves from the greedy to this solution when doing
so would lead to a sufficiently large improvement.

We show that ResQ is accurate (with zero SLO violations
in our test scenarios), efficient (achieving between 60–236%
better resource efficiency compared to prior work based on
prediction [10]) and scalable (can profile and admit new
SLOs in under a minute).

To our knowledge, our work is the first to analyze the
efficacy of using CAT to solve the noisy neighbor problem
for a wide range of NFs and traffic types, and ResQ is the
first NFV scheduler to support performance SLOs, showing
that the benefits of NFV need not come with the loss of
what has traditionally been a vital part of carriers’ service
offerings. ResQ is open source and the code can be found
at https://github.com/netsys/resq.

The remainder of this paper is organized as follows:
we start by quantifying the impact of contention on NFV
workloads (§2) and then provide relevant background
information and elaborate on the problem we address
(§3). We study whether CAT is sufficient for performance
isolation in §4, then present the design and evaluation of
ResQ in §5 and §6 respectively. We discuss related work in
§7, and finally conclude.

2 Motivation
A reasonable first question to ask is whether the current
NFV approach of running multiple NFs on shared hardware
results in performance variability, i.e., does the noisy
neighbor problem matter in practice for NFV workloads.
We address this question by evaluating the effects of sharing
resources for a range of NFs (listed in Table 1), and by
comparing their throughput and latency when they are run
in isolation – i.e., on a dedicated server with no other NFs
– to their performance in a shared environment comprising
of a mix of 11 other NFs (see §4.1). In both cases, we run
the NF being evaluated on its own core and allocate the
same set of resource to it, thus avoiding any contention due
to core sharing. We repeat our measurements using both
small (64 B) packets and large (1518 B) packets, and send
sufficient traffic to saturate NF cores. We delay a more in
depth discussion of our experimental setup to §3.

We show the results of our comparison in Figure 2, which
shows the percent degradation in throughput and 95th per-
centile latency. Each bar shows the maximum performance
loss for an NF running on shared infrastructure when com-
pared to the isolated run. We observe that 7 of the NFs we test
demonstrate a performance degradation of more than 10%,

284 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/netsys/resq

while another 5 show a degradation of more than 20%. Some
suffer significant throughput (up to 44.3%) and latency degra-
dation (up to 24.5%) and we find that this holds for both small
and large-packet workloads. We also tested the effect of con-
tention on a virtual Evolved Packet Core (vEPC) system us-
ing a domain specific packet generator, and observed an 80%
degradation in throughput. The vEPC packet generator does
not measure latency, and as a result we do not include these re-
sults in Figure 2. Finally, we expect that NF degradation will
worsen as we increase the number of NFs that share a server.

In conclusion, we find that most NFs suffer significant
degradation due to resource contention – this holds for both
small and large packet traffic.

3 Background and Problem Definition
Next we present some background for our work, focusing in
particular on describing NFV workloads, identifying sources
of contention that affect network functions, evaluating
prior work in this area, and introducing the processor cache
isolation mechanism used by ResQ. Finally, we define the
NFV SLO enforcement problem that we address in the rest
of this paper.

3.1 NFV Workloads
NFV workloads consist of packet-processing applications,
canonically referred to as Network Functions (NFs); they
range from relatively simple with lightweight processing (e.g.,
NAT, firewall) to more heavyweight ones (e.g., vEPC [17]).
NFs may be chained together such that packets output from
one NF is steered to another. For example packets might first
be processed by a firewall and then a NAT.

NF performance can vary – even in the absence of the
noisy neighbor problems, and an individual NF running in iso-
lation will often display variance in performance across runs.
Work over the last decade has led to practices that have been
shown to improve performance stability for software packet
processors and are now widely understood and adopted [11,
13, 42]. The most significant ones include running NFs on
dedicated and isolated cores that use local memory and NICs
(NUMA affinity), maintaining interrupt-core affinity, dis-
abling power saving features (i.e., idle states, core and uncore
frequency scaling), and disabling transparent huge pages. We
adopt the same and, from here on, all our discussion of per-
formance predictability assumes that the above techniques
are already in use. As we shall show, these are necessary but
not sufficient – we still need to address contention for shared
resources, which is our focus in this paper.

3.2 Sources of Contention
Naı̈vely, one might believe that placing NFs on independent
cores ensures that they do not share resources.2 However,

2There may also be contention within the fabric connecting different
servers; that is outside the scope of this paper, but we envisage that standard
fabric QoS and provisioning mechanisms [6, 54] can be applied there.

in modern processors, cores share several resources.
Resources shared across cores include: PCI-e lanes and
CPU’s integrated I/O controller, and memory channels and
CPU’s integrated memory controller, and last-level cache
(LLC) as shown in Figure 1. Currently, most servers do not
oversubscribe PCIe lanes, and NICs do not contend for these
resources. While independent NFs might share PCIe lanes
when sharing NICs using SR-IOV [33] or through a software
switch [25], one can control contention for these resources
by rate limiting ingress traffic received by an interface. As a
result the main resource that NFs in shared infrastructure can
compete on are memory and LLC, and we study the effect
of both in this paper.

3.3 Prior Work (or Lack Thereof) in NFV
To our knowledge, the only work that analyzes the impact
of resource contention on NFV workloads is a work by
Dobrescu et al. [10]. That work proposes using a simple
model for predicting performance degradation due to
contention for the last level cache. However, as shown in
§6.2, the model is inaccurate when tested under newer
hardware and different workloads – e.g., we find that their
model overestimates the impact of contention by as much
as 13% (a relative error of 75%) for newer hardware and
workloads. In addition, that work focuses on predicting
degradation rather than meeting performance guarantees;
consequently, it does not discuss how one can enforce a
desired limit on the level of contention. In contrast, our work
focuses on enforcing SLOs using hardware mechanisms
such as CAT. As we show in §4, ResQ provides robust
performance guarantees for a variety of workloads.

Other work has looked at managing NFV jobs. This
includes works such as E2 [47], Stratos [20], OPNFV [36].
While these systems perform some basic allocation of
resources to NFs, none consider contention nor do they
aim to provide performance guarantees. ResQ can be
incorporated into these systems allowing them to provide
performance guarantees; ResQ is currently under evaluation
for adoption in one commercial orchestrator.

3.4 Hardware Cache Isolation
ResQ’s enforcement relies on recent processor QoS features
implemented in processors that enable monitoring and con-
trol of shared processor resources. For Intel processors, these
features are collectively known as the Intel Resource Director
Technology (RDT) which include Intel Cache Allocation
Technology (CAT) [30]3 and Cache Monitoring Technology
(CMT). They allow users to allocate or monitor the amount
of cache accessible to or used by threads, cores, or processes.

To monitor a set of processes or cores using CMT, the
kernel allocates a resource monitoring ID (RMID) which the
processor uses to collect usage statistics for them. The kernel

3Cache partitioning is also available in other server processors, for ex-
ample Qualcomm’s Amberwing processor [43] which is based on ARM64.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 285

De
gr

ad
at

io
n

(p
er

ce
nt

)

0

10

20

30

40

50

EffiCutsEndRE
Firewall IPsec LPM

MazuNATSnort Stats
Suricata

Throughput - 64B
Throughput - 1518B

(a) Maximum throughput drop

De
gr

ad
at

io
n

(p
er

ce
nt

)

0

6

12

18

24

30

EffiCuts EndRE
Firewall LPM Snort Stats

Suricata

Small packets
Large packets

(b) Maximum 95th percentile latency increase
Figure 2: Maximum performance degradation for minimum and MTU-sized packets without isolation. Due to interference, throughput and latency degrade
up to 44.3% and 24.5% respectively. Small and large packet trends are similar for all NFs. We do not measure latency for NFs that mangle packets in
a way incompatible with our traffic generator’s timestamp embedding (MazuNAT, IPSec), and vEPC whose domain-specific traffic generator does not
report latency. LPM and Snort do not exhibit sensitivity with large packets due to a testbed limitation: their cores were not saturated at line rate.

updates a core register with this RMID upon context switch
to bind the monitored entities to the RMID. Similarly, when
limiting the cache available to processes or cores, the kernel
first allocates a class of service identifier (CLOS). It then
updates a register to specify the amount of cache accessible
to a CLOS. Finally, the kernel can associate a CLOS with a
process by updating the appropriate register when switching
to the process. Linux allows users to specify the set of
processes to be monitored using a newly introduced RDT

interface. For the evaluation reported in this paper, we used
these features as implemented on the Xeon® processor E5 v4
family which allows users to specify up to 16 cache classes.
The processor we use for our evaluation allows us to enable
access to between 5%–100% of the cache, in 5% increments,
for each CLOS. To our knowledge ResQ is the first research
work that uses CAT to provide performance isolation in NFV.

3.5 Problem Definition

Our goal is to support performance SLOs for NFV work-
loads. The conjecture driving this paper is that CAT gives
us a powerful and practical knob to achieve this. To validate
this conjecture we must answer the following questions:

1. The crux of providing SLOs is knowing how to isolate
different NFs from a performance standpoint. Is CAT
sufficient to ensure performance isolation between NFs
or do we also have to consider contention for other
resources? We study this question in §4.

2. CAT is ultimately just a configuration knob and using
it in a practical system raises a number of questions: what
is a good scheduling algorithm that balances scalability
(scheduling decisions per second), accuracy (minimizing
SLO violations), and efficiency (minimizing use of
server resources)? What is the API for SLOs or contract
between NFs and the NFV scheduler? What information
do we need from NFs to make good scheduling decisions?
We address these through the design, implementation,
and evaluation of ResQ in §5 and §6.

4 Enforcing Performance Isolation
Dobrescu et al. [10] argued that the level of LLC contention
entirely determines NF performance degradation. This obser-
vation would lead one to believe that merely enabling CAT
– which controls the level of cache contention – is sufficient
to ensure performance isolation, i.e., ensure that one NF’s
performance is unchanged due to the actions of any other
colocated NF. In this section we evaluate this hypothesis,
and find that it does not hold; we then explain why this is
the case and present our strategy for mitigating this issue.

4.1 Experimental Setup
NF workloads. We ran our evaluation on a range of
NFs (see Table 1) including: NFs from the research
community (e.g., Efficuts [61], EndRE [1]) and industry
(e.g., Snort [53], Suricata [46], vEPC [17]); NFs with simple
(e.g., Firewall, LPM) and complex (e.g., Snort, Suricata)
packet processing; NFs with small (e.g., IPSec) and large
(e.g., Snort, Stats) working set sizes; NFs using netmap [52]
(e.g., Snort and Suricata) and DPDK [12] (e.g., Efficuts and
Click) for I/O; NFs that are standalone (e.g., Snort) and those
that are built on frameworks like Click (e.g., MazuNAT).
We also evaluated the impact of contention on an industrial
virtual Evolved Packet Core [17] system4 that implements
LTE core network functionality in software. Due to licensing
issues these tests were run on a different testbed, and made
use of a domain-specific commercial traffic generator.

Test setup and CAT configuration. We ran all our
evaluation on a server with an Intel Xeon E5-2695 v4
processor and dedicated 10 Gb/s and 40 Gb/s network ports.

We repeat the same experiments as in §2 after enabling
CAT. We evaluate two scenarios for each NF:
• Solo run, where we run the NF under test on a single core

and CAT is configured to allocate 5% of LLC to the NF
(the smallest allocation with CAT). We run no other NFs
run on the machine. This provides us with a baseline for

4Vendor name anonymized due to licensing requirements.

286 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

how the NF behaves with a specific LLC allocation but
no contention on the other resources.

• Shared runs, where the NF under test is run on a single core
and we use CAT to allocate 5% of LLC to the NF. We run
11 instances of a different competing NF on the remaining
cores, these instances share the remaining 95% of LLC. We
repeat this experiment to analyze the performance impact
of each type of competing NF, i.e., in each iteration we pick
a different NF from Table 1 to use as the competing NF.
Observe that in both cases, the NF under test is allocated

the same number of cores and the same amount of LLC. In
our experiments we measure the target NF’s performance in
terms of throughput and 95th percentile latency, and compute
performance degradation for shared runs compared to a solo
run.

NF Size Degradation LLC Miss Rate (%) Mem BW
(bytes) (%) NF TX RX Util. (%)

MazuNAT 64 2.4 65.5 0.02 8.49 31
1518 12.2 72.9 55.3 88.6 94

Stats 64 0.3 64.5 0.07 8.84 31
1518 14.7 73.1 63.5 89.1 99

Table 2: CAT does not sufficiently isolate NFs in shared runs with large
packets. The culprit is the high memory bandwidth utilization with large
packets which in turn is because the “leaky DMA” issue renders DDIO
ineffective. All numbers are the worst-case numbers for shared runs. TX/RX
LLC miss rate and memory bandwidth utilization are processor-scoped
whereas NF degradation and its LLC miss-rate are NF-scoped.

4.2 Is CAT Sufficient?
Surprisingly, our results were mixed and showed that
CAT is not always sufficient for providing performance
isolation: while CAT was successful at isolating NFs when
processing small (64 B) packets, where throughput and
latency degradation remained below 3%, it could not isolate
all NFs when large (1518 B) packets were used: we observed
degradation of up to 14.7% for some NFs (e.g., MazuNAT
and Stats). This is particularly surprising in light of the fact
that NFs process packets at a higher rate when small packets
are used, as a result, memory accesses should be more
frequent for smaller packets compared to larger packets, and
one would expect greater degradation for smaller packets.

We began our investigation into this anomalous result
by checking whether there was a difference in cache miss
rates between shared and solo runs. Unsurprisingly, we
found no noticeable difference and concluded that CAT was
functioning as expected. Next, we analyzed measurements
from other hardware counters in the platform and found
that memory bandwidth utilization increased substantially
in going from small to large packets (Table 2).

Can memory contention affect NF performance? To
answer this question, we first used the Intel Memory Latency
Checker (MLC) [32] to measure memory access latency as
a function of increasing memory bandwidth utilization. We
plot the memory access speed (i.e., inverse of the latency)

A
c
c
e
s
s
 s

p
e
e
d

 (
p

e
rc

e
n
t)

40

50

60

70

80

90

100

Memory bandwidth utilization (percent)

0 20 40 60 80 100

Figure 3: Memory access speed as a function of load. The memory access
latency increases linearly with load on memory controller up to around 90%
utilization.

in Figure 3 and find that with up to approximately 90% load
on memory channels, the memory access speed degrades
linearly with increase in load, and subsequently experiences
super-linear degradation dropping to 40% of the baseline
value.

Figure 4: Normalized NF throughput for a selection of NFs as a function of
memory load. The curves track the memory access speed curve (Figure 3)
very closely.

Next, we checked whether this observation meant that
NF performance would also degrade with increased memory
contention. We analyzed this by running NFs under the same
environment as was used for the solo runs and running MLC
on the other cores of the same server to generate memory
bandwidth load. We show the results for this experiment
in Figure 4 and find that the added memory contention
does lead to performance degradation for NFs; NFs like
MazuNAT are up to 50% slower with aggressive memory
contention. Note that this is a near worst-case degradation
in response to memory contention – MLC exhibits a more
aggressive memory access pattern when compared to
network functions (and most other applications).

What causes memory contention? We certainly did not
expect to see much memory traffic in our shared workload.
While a single core is capable of inducing around 12 GB/s traf-
fic on the memory controller, we expect cores running NFs to
generate a fraction of this load. That is because, cycles during
which the NF may access state are spaced out by cycles spent

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 287

on compute intensive portions of packet processing including
I/O, framework processing, and stateless portions of the NF
processing. To empirically validate this hypothesis, we wrote
a synthetic NF that accesses DRAM 1000 times per packet
and observe that it can only generate 2.5 GB/s of memory
traffic – we expect a realistic NF to generate far less traffic.

Furthermore, our processor is equipped with Intel Data
Direct I/O (DDIO) technology [31] which lets DMAs for
packet I/O interact with the last level cache rather than
going to DRAM. As a result, we did not expect packet I/O
to contribute to memory contention. However, given our
expectation that NF state accesses should be more frequent
with small packets (due to higher packet rates) we suspected
that some interaction with DDIO might be the root cause
of the substantial increase in DRAM traffic.

4.3 The Leaky DMA Problem
By default, DDIO is limited to using 10% of the LLC. When
a buffer that needs to be DMAed is not present in LLC, it is
first brought into the LLC resulting in memory traffic. We hy-
pothesized that this might be the cause of memory contention
in our system. Furthermore, DMA transfers are mediated by
the processor DMA engine (as opposed to a core), therefore,
cache misses during DMA are not included in the core-based
LLC counters we used when evaluating the efficacy of CAT
above. To test our hypothesis, we looked at CPU perfor-
mance counters that measure PCIe-sourced LLC references
and misses, and found that the I/O-related LLC miss-rates
increased from nearly 0% to around 60% on the TX path and
90% on the RX path when going from small packets to large
packets in the shared runs. This showed that DDIO is ineffec-
tive at preventing memory contention in our system, but why?

The LLC space used by DDIO cannot be partitioned using
CAT, and is shared across NFs. As a result, if the aggregate
number of packet buffers exceed DDIO’s LLC space then
packet I/O can contend for cache space and evict buffers
holding packets being processed. The maximum number of
in-flight packets is bounded by the number of descriptors
available to NIC queues. For the experiments above, NFs
had their own queue each with 2048 descriptors – that is a
total of 24576 buffers for 12 queues. In the shared runs, this
translates to requiring 3 MB of cache space for small packets
(each spanning 2 cache lines), but a whopping 37.5 MB for
large packets (each spanning 25 cache lines).

As noted earlier, we had not observed significant changes
in NF cores’ cache miss rates when comparing solo and
shared runs. This suggested that LLC contention due to
DDIO does not affect parts of the packet that are processed
by the NF. We thus found that DDIO frequently evicts cache
lines belonging to packets that are being processed, and
these are needed soon after eviction for packet TX. Similarly
the RX path frequently needs to fetch buffers that were
previously evicted due to DDIO space contention. Together,
they result in much of the network traffic and stale buffers

to bounce back and forth between LLC and DRAM multiple
times. We refer to this problem as the leaky DMA problem
and identify it as the root cause of performance variability
for NFs when CAT is used.

4.4 Solution: CAT + Buffer Sizing
Fortunately, both DPDK and netmap provide mechanisms
to control the number of DMA buffers used by the system.
In case all DMA buffers are in use, no packets are received
from the NIC. DMA buffers become available once the
packet data contained within them is freed, at which point
new data can be received. Therefore controlling the number
of in-flight buffers allows us to control the efficacy of DDIO.
In ResQ, we restrict the size of the pool from which packet
buffers are allocated based on the aggregate number of MTU
sized packets that can fit in the LLC space reserved for
DDIO, thus avoiding the leaky DMA problem. Note that
NICs also contain a sizeable buffer (4096 packets in Intel
NICs) and as a result this restriction does not result in packet
loss unless the incoming link is congested.

We evaluated the efficacy of using buffer sizing to solve
the leaky DMA problem by rerunning both solo and shared
runs after fixing the number of allocated packet buffers to the
number calculated above. As shown in Figure 5, this resulted
in a situation where for both packet sizes throughput and
latency degradation were less that 3% (including the vEPC
which is not reported in the Figure 5), thus confirming our fix.

Other Resources. Given our experience with memory
contention, one might be concerned about contention on
other resources which we briefly discuss here. We do not
observe notable IOMMU contention [50] since we use
statically-mapped DMA buffers backed by huge pages. The
maximum degradation we observe in a microbenchmark
that maximizes core to IDI traffic is below 4% – in practice,
the IDI utilization is much lower and the degradation
is negligible. IIO throughput in the Haswell/Broadwell
processors is around 160 Gbit/s which may introduce a
bottleneck if all PCIe lanes (40) are more than half utilized.
However, the aggregate traffic per CPU remains below
150 Gbit/s in our experiments; classical QoS mechanisms
would sufficiently address the fair-sharing of this resource.
Consequently, we conclude that contention for these other
resources is not a concern given the current architecture.

Recap. To summarize we found that while memory con-
tention can be a source of performance variability, this is not a
result of NF behavior, but rather because of poor DMA buffer
sizing which can result in the leaky DMA problem. The leaky
DMA problem causes DMA buffers to be repeatedly evicted
from cache which in turn results in high memory bandwidth
utilization. We address the leaky DMA problem by appro-
priately controlling the aggregate number of active DMA
buffers, and find that this, in conjunction with CAT, is suffi-
cient to ensure performance isolation for NFV workloads. Fi-

288 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

De
gr

ad
at

io
n

(p
er

ce
nt

)

0

0.5

1

1.5

2

2.5

3

3.5

EffiCutsEndRE
Firewall IPsec LPM

MazuNATSnort Stats
Suricata

Small packets
Large packets

(a) Maximum throughput drop

De
gr

ad
at

io
n

(p
er

ce
nt

)

0

0.5

1

1.5

2

2.5

3

3.5

EffiCuts EndRE
Firewall LPM Snort Stats

Suricata

Small packets
Large packets

(b) Maximum 95th percentile latency increase
Figure 5: Maximum degradation in throughput and 95th percentile latency for minimum and MTU-sized packets when target NF is isolated per §4.4. They
are both consistently below 3% across all the experiments. When comparing, note the difference in the y-axis range with Figure 2 and that the results do
not include latency measurements for IPSec and MazuNAT due to traffic generator’s constraints.

nally, our results here show that as opposed to what was found
by Dobrescu et al. [10], issues beyond LLC sizing can affect
NF performance. We believe this is because of changes to
software (e.g., use of DPDK), and hardware architecture (e.g.,
DDIO). Additionally that work considered only small packet
sizes and did not analyze accuracy with MTU-sized packets.

5 ResQ

In this section we present the design and implementation
of ResQ, a cluster resource manager that is designed to
efficiently schedule NFs while guaranteeing that SLOs hold.
We begin by describing ResQ’s design and we focus our
discussion on three aspects:

Service interfaces: Traditionally, network operators have
relied on resource overprovisioning to meet performance
objectives with hardware network appliances. NFV can
allow us to guarantee SLOs while more efficiently utilizing
resources. However, achieving this greater efficiency
requires that tenants provide ResQ with workload and other
information in addition to the NF. We describe ResQ’s
inputs and the types of guarantees it can enforce in §5.1.

NF profiling: Given an input NF, ResQ needs to determine
its resource requirements. These depend on the NF con-
figuration, input traffic, and platform and thus varies across
tenants and operators. In §5.2, we describe ResQ’s efficient
and automatic profiler that measures how NF performance
(both throughput and latency) varies as a function of LLC
allocation. The ResQ profiler minimizes the number of
executions required to collect this information, and can
thus rapidly profile a large set of NFs. The profiler’s output
is a key input to the ResQ scheduler.

NF scheduling: Finally, we present our scheduler in §5.3.
ResQ implements a two-level scheduler that takes as input
NFs, SLO specifications and requirements, and profiling re-
sults and determines (a) the number of NF instances to start,
(b) the server(s) on which these instances must be placed;
and (c) the amount of the LLC to assign to each instance.

5.1 ResQ SLOs
How do we improve efficiency of resource utilization while
continuing to meet performance objectives? Our insight is
that how an NF performs – given a fixed set of resources
– depends on two factors. First, NF configuration such as
rule set of a firewall or an IDS – the size and complexity
of this configuration directly affects performance [4, 15]).
Second, traffic profile which captures characteristics such
as distributions for flow arrival, flow sizes, packet sizes,
and packet interarrivals. NF data sheets often highlight that
performance depends not just on the input traffic rate but also
on factors such as the number of new sessions per second
and traffic mix [48]. ResQ improves scheduling efficiency
by accounting for these factors when allocating resources.

Tenants can specify two types of performance SLOs:
reserved and on-demand, which we explain next.

Reserved SLOs specify the NF or chain, its expected con-
figuration and traffic profile, and its performance target (i.e.,
expected latency and throughput). Given this information,
ResQ profiles (see §5.2) the NF to determine its performance
as a function of resource use, and uses this information to
allocate resources. ResQ does not distinguish between NFs
or chains of NFs and profiles a chain similarly to a single NF.
Since we assume that the traffic profile, configuration, and
maximum input rate (specified as part of the performance
target) do not vary, implementing the computed allocation is
sufficient to satisfy the SLO term. Run-time deviations from
the specified traffic profile or NF configuration may only
violate the corresponding SLO term – it does not affect other
SLOs because ResQ provides sufficient isolation among
SLOs. Tenants are required to submit a new admission
request to ResQ in the event any of these parameters change;
in response, ResQ may either reallocate resources or deny
admission if objectives cannot be met.

ResQ ensures stable resource usage for NFs making use
of reserved SLOs. This simplifies resource provisioning
for the network operator without significantly affecting
efficiency for NFs with stable configuration and input

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 289

Figure 6: Normalized throughput as a function of LLC allocation for a
selection of NFs.

traffic. We envision that, similar to cloud providers, network
operator will encourage the use of reserved SLOs by
providing volume discounts to tenants. Reserved SLOs are,
however, inefficient for NFs with highly variable workloads
– e.g., NFs with high traffic variance – since these must be
overprovisioned to meet worse-case traffic demands. Such
NFs are better suited to use on-demand SLOs.

On-demand SLOs specify the NF and target latency.
ResQ continuously monitors NF latencies and resource
utilization, and dynamically adjusts resource allocations to
meet the target latency independent of the input traffic or
configuration. If the target latency could not be met under
a best-case allocation, ResQ raises an error. Furthermore,
ResQ relies on traffic policing to appropriately reduce input
load if it is unable to meet the total traffic demand – e.g.,
due to lack of resources or reaching a user-specified cap on
resource usage. We provide further details about in §5.3.

5.2 ResQ Profiler
ResQ relies on performance profiles to determine resource
allocation for reserved SLOs. A ResQ profile consists of
throughput-LLC allocation (e.g., Figure 6) and latency-load
(e.g., Figure 7) curves. To construct these curves, the profiler
runs a set of experiments and collects measurements. The
time taken to run one experiment varies depending on the
traffic pattern – it takes around 5 seconds with our sample
traffic profiles. Building a general NF profile that is valid
across all configurations and traffic patterns would likely
require exploring a potentially unbounded space and is
infeasible. Profiles generated by ResQ are, therefore, specific
to not just the NF, but also the configuration and traffic
pattern specified by a reserved SLO. Since our profiles are
quite specific, we might require a large number of profiles for
an NFV cluster; consequently, we must ensure that profile
generation is fast. Furthermore, errors in an NF profile affect
ResQ’s accuracy and efficiency, and therefore we need to
ensure that generated profiles are accurate. We rely on in-
terpolation, with dynamically varying interpolation intervals,
to quickly produce accurate profiles as described below.

The throughput-LLC allocation curve for an NF can
be generated by running it alone on a profiling server

Figure 7: Latency as a function of normalized input traffic load for a
selection of NFs.

and measuring its throughput as the profiler varies the
amount of allocated LLC using CAT §3.4. To generate
the latency-throughput curve (e.g., Figure 6), the profiler
launches the NF with a given LLC allocation and measures
the 95th percentile latency as a function of input traffic rate.
This measurement is repeated for different LLC allocations
to produce a latency-throughput curve. In Figure 7, we show
an example of such curves for a fixed LLC allocation (we
chose to allow NFs to access all of the LLC in this case).

Since the profiler is in the critical path of the admission
control process, naı̈vely running all the required experiments
(400 datapoints for around 20 utilization levels and 20
LLC allocations) delays the process significantly (e.g., 34
minutes with 5 second runs). To alleviate this bottleneck in
the admission control process, we observe that these curves
could be accurately constructed with far fewer datapoints.

We observed that, across a wide range of NFs, the
latency-throughput curves vary only slightly for different
LLC allocations. As a result, we can safely approximate this
curve by measuring an NF’s worst-case latency, which corre-
sponds to the LLC allocation that maximizes NF throughput.
Furthermore, we observed that both sets of curves are mono-
tonically increasing, and that in all cases the throughput-LLC
allocation is concave, while the latency-throughput curve
is convex. This allows us to approximate the curve by
measuring throughput and latency at a few points, and
using linear interpolation to compute values for intermediate
points. We implement our interpolation as follows: the
profiler begins by measuring the minimum, maximum
and midpoint of each curve. It then computes the linear
interpolation error by comparing the interpolated value with
the measured mid-point. If the interpolation error is above
1%, the profiler recursively splits both intervals and repeats
the same procedure. The profiler stops collecting additional
measurements once the interpolation error falls below 1%.
In our experience, each profile required between 8–12
measurements and could be constructed in under a minute.

5.3 ResQ Scheduler
The ResQ scheduler is comprised of two parts:
• A centralized scheduler is responsible for admission

control, placement for all SLOs, resource allocation for

290 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

reserved SLOs, and setting aside resources on individual
servers for on-demand SLOs.

• A server agent that runs on each server and is responsible
for configuring the server, monitoring resource utilization,
and detecting SLO violations. The server agent imple-
ments a local scheduler that is responsible for allocating
resources to NFs with on-demand SLOs that are placed
on the server by the centralized scheduler.
In clusters running ResQ, tenants submit SLO requests to

the centralized scheduler which performs admission control.
For on-demand SLOs, the scheduler checks if the cluster has
sufficient resources available to launch one instance of the
NF (the supplied NF description includes information about
minimum resources required by an instance), and rejects
the SLO should sufficient resources not be available. For
reserved SLOs, the scheduler consults the NF profile (see
§5.2) to determine whether the SLO is feasible; if so, the
scheduler uses a greedy algorithm (see §5.3.1) to compute
NF placement and resource requirements for meeting the
performance objectives. Admission is denied if the greedy
algorithm cannot find a fit, otherwise it notifies the appro-
priate server agents to launch NF instances and allocate the
requested resources to them. The scheduler also programs the
datacenter fabric so as to steer traffic to these NF instances
– similarly to existing NFV schedulers [20, 21, 47, 51], we
assume that the fabric will split traffic across these instances.

While the greedy allocation computed by the central
scheduler is sufficient for meeting the performance
objectives, it might not be optimal in terms of resource use.
Therefore, in the background, ResQ also periodically solves
a mixed-integer linear program (MILP) to find a (near-
)optimal schedule. If the gap in resource usage between this
and the greedy schedules exceeds a configurable threshold,
ResQ migrates running NFs5 to implement the optimal
schedule. Migrating to the optimal schedule frees up more
resources that can be used to accommodate other SLOs.

On-demand SLOs are scheduled locally by server agents.
Upon submission of an on-demand SLO, the centralized
scheduler finds a server that has sufficient resource to run
one instance of the NF and assigns the on-demand SLO to
that server. The server agent uses max-min fair allocation
to partition the on-demand LLC space among such NFs. If
the server agent is unable to meet the NFs latency targets,
it notifies the central scheduler which in turn adds NF
instances to the cluster.

Next we provide more details about the algorithm used
for scheduling both types of NFs.

5.3.1 Reserved SLOs

Computing the optimal schedule for reserved SLOs is an
NP-hard problem. Hence, we develop an online greedy
algorithm for fast admission. After the profile is generated,

5We rely on standard VM migration techniques.

ResQ attempts to greedily bin-pack the NF instances using
a first-fit heuristic, which works as follows.

1. It divides the target throughput by the expected through-
put of a single instance to estimate the number of NF
instances required to meet the objective. The expected
throughput of one instance is what a single instance
can sustain when allocated a fair share of LLC (i.e., the
available LLC divided by the number of cores) such that
its latency does not exceed the target latency.

2. It calculates the minimal LLC allocation for each instance
by iteratively adding a unit of LLC allocation to each
instance in a round-robin fashion until the aggregate
throughput is above the target.

3. It places instances on servers using the first-fit decreasing
heuristic, i.e., places the largest instance first. If this
algorithm succeeds, ResQ launches the instances each
with the computed schedule.

The greedily generated schedule may be suboptimal be-
cause (a) it is online and incremental (does not move running
instances), and (b) uses a heuristic to determine how many
NF instances to run. To improve the placement efficiency,
in the background, ResQ computes an optimal schedule. We
formulate the placement problem as a mixed-integer linear
program whose objective is to minimize the number of
servers used (see Appendix A). We use a MILP solver [24]
to compute the (near-)optimal schedule. In our experiments,
the greedily and incrementally computed schedule’s resource
use is within 20% of the optimal one (see §6).

The solver typically finds near-optimal solution(s) for
inputs which require a cluster size of around 40 servers in
seconds to minutes. To scale to larger-sized clusters, we
partition the SLOs into sets and pass each to a different
solver. The computed schedules are instantiated on different
slices of the cluster. This allows us to trade off computation
time for schedule optimality.

The computed MILP-based schedule might be different
than the running schedule that was greedily updated during
admission. To converge to the new schedule various NFs
must be migrated; this problem has been studied in the
literature in the form of migration of stateful middleboxes
or scaling out NFs [21, 51, 55]. This is likely an expensive
and disruptive process, therefore we migrate only when the
optimality gap is large enough.

Alternatively, a migration avoidance [47] strategy could
be deployed to avoid the disruption or complexity of state
migration. This involves booting up new instances but
leaving old instances (that were to be terminated) running
– the old instances will continue serving their traffic but no
new traffic is directed to them. When their traffic eventually
dies down they will be terminated. This strategy is only
effective when sufficient spare capacity is available to bring
up new instances without terminating the old ones.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 291

5.3.2 On-Demand SLOs

Resource allocation for on-demand SLOs is jointly per-
formed by the local resource scheduler and the centralized
scheduler. The central scheduler is responsible for leasing
dedicated cores and LLC space to local schedulers for
scheduling on-demand SLOs, and for assigning new
NF instances to servers with spare resources. Leases are
dynamically adjusted when reserved SLOs arrive or leave
the system – i.e., beyond configured resources reserved for
on-demand SLOs, the central scheduler may make spare
resources available to local schedulers.

When computing LLC allocations for on-demand SLOs,
NFs are placed in a shared LLC space or dedicated partitions
based on whether or not their latency objectives can be met
with sharing. Sharing LLC space (when possible) helps min-
imize the overhead of LLC partitioning since CAT allocates
LLC space in fixed and relatively large increments. The NFs
that require isolation are put in separate classes. If, despite
isolation, the local scheduler fails to meet an NF’s latency
objective, it notifies the central scheduler which in turn adds
more instances or resources for the failed SLO if possible.

The above-mentioned LLC allocation is computed as fol-
lows. First, all on-demand NFs are placed in a cache class
that includes all the on-demand LLC space leased to the local
scheduler. The server agent waits for a period of time for
NFs to serve traffic before monitoring SLO violations and
LLC occupancies (using Intel CMT – see §3.4) – occupancy
measurements are used to estimate NFs’ LLC demand. If
one or more SLO violations are observed, the local scheduler
continues with a max-min fair allocation of the LLC space.
SLO-compliant NFs and SLO-violating NFs with low cache
miss rates that use less than their fair share of LLC are put
in a shared cache class with an allocation closest to the sum
of their LLC occupancy. SLO-violating NFs with high cache
miss rates that use less than their fair share of LLC are put in
an isolated cache class with an allocation close to their fair
share. The rest remain in the shared cache class whose size
is reduced to the remaining on-demand LLC space. This pro-
cedure is repeated for the shared cache class to completion.

The server agent is responsible for monitoring on-demand
NF instances for SLO violations. Such violations may
occur when traffic pattern or NF configuration changes.
Upon detection of a violation or change in the leased LLC
space size, the local scheduler repeats the LLC allocation
procedure to find whether it could meet the new demand
with local resources and if not would notify the central
scheduler of the new failed SLO.

6 Evaluation
In this section, we address the following questions:
Accuracy: To what extent do contention-agnostic

schedulers violate SLOs? We compare against a simple
bin-packing strategy adopted by current contention-agnostic
schedulers [20, 45, 47]. We compare accuracy both without

CAT and when we use CAT to evenly partition LLC across
NFs.

Efficiency: We compare the efficiency of ResQ’s online
(greedy) and offline (mixed integer program based)
schedulers against a prediction-based online scheduler [10]
and an E2-like scheduler [47] which dynamically scales the
number of NF instances in response to input traffic load.
To answer these questions, we generated three sets of

reservation-based SLOs each with around 200 terms: one
involving only the cache-sensitive NFs; one involving only
the cache-insensitive NFs; and one involving a mixture of
all the NFs. We set the target throughput and latency for
each SLO to 90% and 100% of what a single instance of the
corresponding NF can sustain when run in isolation without
LLC contention. To avoid interfering with DDIO’s reserved
LLC space (10%), ResQ uses only 90% of the available
LLC. To enable comparison with the fair allocation scheme,
we use 9 cores per server so that each core can be allocated
an equal cache partition (10%).

6.1 Accuracy
SL

O
 v

io
la

tio
ns

 (p
er

ce
nt

)

0

20

40

60

80

100

Shared LLC Equal LLC partitions

100
91

55

11 00

Insensitive
Combination
Sensitive

Figure 8: SLO violations with >5% error for contention-agnostic methods.
Contention-agnostic placement results in throughput and latency SLO
violations. As expected, violations increase with the sensitivity of NFs.
Naı̈vely partitioning LLC has an adverse effect.

If SLO violations were rare, it would be appealing to opt
for a simpler contention-agnostic scheduler. To assess this
choice, we evaluate the ability of current contention-agnostic
schedulers to meet SLOs. To do so, we first run each NF
on a dedicated server without restricting cache access to
determine its throughput and latency. We then use this
information to pack NF instances on the first available server.
We show the results in Figure 8. Unsurprisingly, no SLO
violation are observed for the cache-insensitive workload.
However, SLO violations are common for combination
(11%) and cache sensitive workloads (91%) workloads.

Next, to check whether a naı̈ve cache isolation strategy is
sufficient to reduce violations, we reran the same workload
after using CAT to partition the LLC evenly between all
NFs on a server. The number of violations worsened in
this case: 55% of SLOs are violated in the combination
workload, while all SLOs are violated for the cache-sensitive
case. In the combination case, this difference is due to the

292 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

unavailability of the underutilized dedicated LLC space of
the cache-insensitive NFs to the cache-sensitive ones.

Note that schedules computed by ResQ have no violations
in all cases.

6.2 Efficiency

Re
qu

ire
d

m
ac

hi
ne

s

0

20

40

60

80

100

120

140

ResQ optimal ResQ greedy Dynamic Prediction-based

128

4445
38

48
353530

22222222

Insensitive
Combination
Sensitive

Figure 9: Resource efficiency of different schemes and SLO mixes. Not
surprisingly, all methods are similar when NFs are cache-insensitive.
The ResQ’s greedy admission is within 19% of the optimal solution.
The prediction-based scheme uses significantly more servers because it
overestimates degradation.

ResQ builds on availability of a hardware mechanism
(cache isolation) to provide predictable performance regard-
less of contention. Two alternative strategies for getting
predictable performance involve: (a) online scheduling
where one measures NF performance and dynamically
allocates NF instances in response to SLO violations, and
(b) using a performance predictor (e.g., Dobrescu et al.’s
predictor [10]) to predict throughput degradation due to
resource sharing and using its result for scheduling. We
analyze ResQ’s efficiency in contrast to these options next.

ResQ’s efficiency. For reserved SLOs, ResQ implements
both an offline MILP-based scheduler that computes near
optimal schedules and an online greedy scheduler. In
Figure 9, we first evaluate the accuracy gap between these
options. The optimal scheduler performs up to 19% better
than the greedy scheduler. However, as previously noted in
§5.3.1, the optimal scheduler may take much longer than

Pr
ed

ic
tio

n
er

ro
r (

pe
rc

en
t)

0
2
4
6
8

10
12
14
16

EndRE IDS LPM NAT RE Stat VPN
Figure 10: Error of the throughput degradation prediction method [10].
We observe that errors are significantly higher using the current generation
of hardware than what was previously observed. To follow the original
setup, we use the following chains: EndRE is LPM→ Stats→ EndRE,
VPN is LPM→Stats→IPsec, IDS is Snort, RE [58] is LPM→Stats→RE,
STAT is LPM→Stats, NAT is MazuNAT, and IP is LPM.

the greedy scheduler, and ResQ can opportunistically move
to using the optimal schedule if warranted.

Comparison with elastic scaling. Systems like E2 [47]
continuously monitor NFs and dynamically add new
instances if demand could not be met. A major drawback
of this approach is that it cannot be used to enforce any
latency SLOs. Despite being dynamic, this approach is not
significantly more efficient than ResQ as seen in Figure 9.
The dynamic approach uses the same number of instances for
both cache-insensitive and combined traffic. It does provide
a small savings of 1 machine (i.e., a 2.2% improvement) for
cache-sensitive workloads. However, this saving comes at the
cost of no SLO isolation (variations in an NF’s behavior may
affect all its neighboring SLOs) and no latency guarantees.

Comparison with the predication-based approach.
Finally, one could use a performance predictor to predict
degradation due to resource sharing; this produces a safe
schedule assuming the predictor never underestimates
degradation. Dobrescu et al. [10] previously proposed such
a predictor. Their predictor works as follows. Each NF is
profiled using a series of synthetic benchmarks with tunable
pressure on the LLC. The result is a curve which one can
use to determine throughput as a function of competing LLC
references. The competing LLC references are approximated
by counting the LLC references of NFs’ solo runs. This
method was reported as being very accurate in 2012.

To study its robustness against significant hardware and
software changes, we reran the experiments on our testbed
using similar NFs and setup (6 competing NFs and 19.5 MB
of LLC). Figure 10 shows the average prediction error in
percentage points. Each bar shows the difference between
predicted and observed performance drop suffered by a target
NF when sharing a processor with 5 identical competing
application instances (9 different sets of NFs for each NF)
similarly to their choice of competitors. We find that this
predictor is conservative and consistently overestimates
degradation by a large margin. Consequently, it can be used
to enforce (throughput) SLOs albeit not efficiently.

We use this predictor to build an online first-fit bin-
packing scheduler. The scheduler packs an instance on the
first server whose existing SLOs do not get affected by the
new instance; it proceeds to pack a second instance if the
predicted throughput is below the target throughput. We ran
all the computed placements and recorded the real through-
put and latency to assess SLO compliance. All schedules
remain SLO compliant regardless of cache sensitivity except
the prediction-based scheduler that violates 0.5% latency
SLOs in the combination case. This is not surprising because
this method does not predict latency degradation.

In Figure 9, we compare the efficiency of ResQ with
the prediction-based method – by efficiency, we mean the
number of CPUs (equivalent to servers for single-CPU
servers) each scheduler needs to satisfy its SLOs. With

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 293

cache-insensitive NFs, all schedulers need the minimum
number of CPUs because consolidation does not affect the
performance. As expected, the efficiency gap widens as the
cache sensitivity of the mix of SLO NFs increases. The gap
between the prediction-based scheduler and ResQ’s greedy
scheduler increases from 37.1% to 184.4%.

The are two reasons for such a sharp increase in
resource usage for the prediction-based scheduler: (a) overly
conservative performance estimate results in more false
positives (mispredicting violations), and (b) lack of a
mechanism to predict how much traffic an NF can handle
without SLO violations. The gap in the sensitive case is due
to the latter reason: individual servers have spare capacity
but the scheduler cannot use any because an NF serving
maximum traffic will violate the existing NFs’ SLOs, but
what if it only serves 20% of its capacity? These issues aside,
scheduling is much simpler in ResQ because isolation is
enforced by hardware regardless of contention.

Based on this result, we conclude that ResQ’s simple
first-fit bin-packing heuristic using CAT (online admission)
is effective in maintaining a resource efficient and SLO-
compliant schedule, while there is opportunity to further
optimize this schedule by periodically running a slow offline
scheduler.

7 Related Work
Performance modeling. Prior work [5, 9, 23, 40, 60] has
investigated modeling and predicting the effect of resource
contention in the context of HPC and datacenter applications.
These models are often useful in contexts where the relative
performance of two settings needs to be compared, e.g.,
when scheduling or placing jobs. However, they are not
accurate enough for our purposes. Dobrescu et al. [10] have
proposed using cache references as a predictor of throughput
with contending processes. While this was highly accurate
given the hardware and software stacks available at the time,
we find that it consistently underestimate throughput (§6.2)
in today’s systems. We showed that a scheduler using this
predictor may consume up to 3×more resources compared
to ResQ (§6.2). Moreover, this work on prediction models
still leaves open the question of enforcement wherein an
NF that deviates from its predicted behavior (whether due
to malicious behavior, configuration changes, or varying
traffic) can impact the performance of its neighboring NFs.

Performance isolation. Packet processing and NFV plat-
forms [28, 41, 47, 49] do not isolate NFs from contending
on uncore resources. Such systems can be extended to use
CAT to provide performance isolation. Our contribution
lies in showing how cache isolation can be used to both
provide performance isolation and guarantee SLOs. Other
systems that provide end-to-end performance guarantees for
multi-tenant networks [2, 39, 56] treat CPUs as independent
resource units and do not account for interference across
cores. DRFQ [22] models a packet-processing platform as

a pipeline of resources where each packet is sequentially
processed by each resource. DRFQ’s primary goal is to
provide per-flow fairness while we focus on SLO guarantees.
Ginseng [19] presents an auction-based LLC allocation
mechanism, but does not offer SLOs. Heracles [37] uses
CAT and other mechanisms to co-locate batch and latency-
sensitive jobs while maintaining millisecond time-scale
latency SLOs; we target more aggressive latency SLOs (high
throughput, microsecond scale).

Mechanisms. The mechanisms and use cases of cache
partitioning have been studied in the past [8, 34, 35]. A rich
body of literature looks at software-only methods for cache
isolation [14, 26, 59, 64]. Their performance implications
have not been studied in the NFV context but they may be
used as an alternative to CAT when hardware support is not
available or more granular allocations are desired. A recent
work [63] has also briefly looked at the benefit of using CAT
to alleviate a specific instance of the noisy neighbor problem.
It focuses on a single workload and demonstrates that, in
one specific case, CAT notably improves performance in
presence of a noisy neighbor problem. By contrast our work
is general (covering a wide range of NFs and workloads),
identifies cases where CAT alone does not sufficiently isolate
NFs, and develops a contention-aware scheduler that uses our
isolation mechanism to provide SLO guarantees for NFs.

8 Concluding Remarks
Despite no algorithmic innovation, ResQ’s simple greedy
scheduler achieves a significantly higher resource efficiency
than prior prediction-based methods and its efficiency is on-
par with elastic schedulers that do not guarantee SLOs. More-
over, despite its hardness, ResQ’s MILP formulation yields
(near-)optimal schedules in a matter of seconds to minutes.
These advances were all made possible because we identified
a technique – building on hardware cache isolation and
proper buffer management – that ensures strong performance
isolation regardless of noisy neighbors. ResQ is open source
and available at https://github.com/netsys/resq.

Acknowledgement
We would like to thank Andrew Herdrich, Edwin Verplanke,
Priya Autee, Christian Maciocco, Charlie Tai, Rich Uhlig,
Michael Alan Chang, Yashar Ganjali, David Lie, Hans-Arno
Jacobsen, our shepherd Tim Wood, and the NSDI reviewers
for their comments and suggestions. This work was funded in
part by NSF-1553747, NSF-1704941, and Intel corporation.

References
[1] B. Aggarwal, A. Akella, A. Anand, A. Balachan-

dran, P. Chitnis, C. Muthukrishnan, R. Ramjee, and
G. Varghese. EndRE: An End-system Redundancy
Elimination Service for Enterprises. In NSDI, 2010.

294 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/netsys/resq

[2] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E.
Thereska. End-to-end Performance Isolation Through
Virtual Datacenters. In OSDI, 2014.

[3] H. Basilier, M. Darula, and J. Wilke. Virtualizing Net-
work Services- The Telecom Cloud. Ericsson Review,
2014. URL: http://tinyurl.com/j5adfts.

[4] Y. Beyene, M. Faloutsos, and H. V. Madhyastha. SyFi:
A Systematic Approach for Estimating Stateful Fire-
wall Performance. In PAM, 2012.

[5] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fe-
dorova. A Case for NUMA-aware Contention Man-
agement on Multicore Systems. In USENIX ATC,
2011.

[6] R. Braden, D. Clark, and S. Shenker. Integrated Ser-
vices in the Internet Architecture: an Overview. RFC
1633.

[7] Broadband Forum. TR-178: Multi-service Broadband
Network Architecture and Nodal Requirements, 2014.
URL: http://tinyurl.com/z7vkk6h.

[8] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Pat-
terson, and K. Asanovic. A Hardware Evaluation of
Cache Partitioning to Improve Utilization and Energy-
efficiency While Preserving Responsiveness. In ISCA,
2013.

[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware
Scheduling for Heterogeneous Datacenters. In ASP-
LOS, 2013.

[10] M. Dobrescu, K. Argyraki, and S. Ratnasamy. To-
ward Predictable Performance in Software Packet-
processing Platforms. In NSDI, 2012.

[11] T. L. K. Documentation. Reducing OS Jitter Due to
Per-CPU kthreads. URL: http://tinyurl.com/
mpnf4m3.

[12] Data Plane Development Kit (DPDK), 2015. URL:
http://dpdk.org/.

[13] DPDK Performance Tuning Guide, 2016. URL: http:
//tinyurl.com/jkngtok.

[14] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fair-
ness via Source Throttling: A Configurable and High-
performance Fairness Substrate for Multi-core Mem-
ory Systems. In ASPLOS, 2010.

[15] S. Ehlert, G. Zhang, and T. Magedanz. Increasing
SIP firewall performance by ruleset size limitation. In
PIMRC, 2008.

[16] Emerging Threats. Emerging Threats Open Rulesets,
2016. URL: http://tinyurl.com/nppr7ut.

[17] The Evolved Packet Core. URL: http://tinyurl.
com/hvkukyw.

[18] ETSI. Network Functions Virtualisation. URL: http:
//portal.etsi.org/NFV/NFV_White_Paper.

pdf.

[19] L. Funaro, O. A. Ben-Yehuda, and A. Schuster. Gin-
seng: Market-Driven LLC Allocation. In USENIX
ATC, 2016.

[20] A. Gember-Jacobson, A. Krishnamurthy, S. S. John,
R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella,
and V. Sekar. Stratos: A Network-Aware Orches-
tration Layer for Middleboxes in the Cloud. CoRR,
abs/1305.0209, 2013.

[21] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R.
Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling Innovation in Network Function Control. In
SIGCOMM, 2014.

[22] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-
resource Fair Queueing for Packet Processing. In SIG-
COMM, 2012.

[23] S. Govindan, J. Liu, A. Kansal, and A. Sivasubrama-
niam. Cuanta: Quantifying Effects of Shared On-chip
Resource Interference for Consolidated Virtual Ma-
chines. In SOCC, 2011.

[24] Gurobi Optimization, Inc. Gurobi Optimizer Refer-
ence Manual, 2015. URL: http://www.gurobi.
com.

[25] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S.
Ratnasamy. SoftNIC: A Software NIC to Augment
Hardware. Technical report UCB/EECS-2015-155,
EECS Department, University of California, Berkeley,
2015.

[26] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V.
Chadha, and J. Moses. Rate-based QoS techniques
for cache/memory in CMP platforms. In ICS, 2009.

[27] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C.
Gianos, R. Singhal, and R. Iyer. Cache QoS: From
Concept to Reality in the Intel® Xeon® Processor
E5-2600 v3 Product Family. In HPCA, 2016.

[28] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM:
High Performance and Flexible Networking Using Vir-
tualization on Commodity Platforms. In NSDI, 2014.

[29] Intel® Xeon® Processor E5 and E7 v4 Families Un-
core Performance Monitoring, 2016. URL: http://
tinyurl.com/zpsj63k.

[30] Introduction to Cache Allocation Technology in the
Intel® Xeon® Processor E5 v4 Family, 2016. URL:
http://tinyurl.com/hasjlm2.

[31] Intel® Data Direct I/O (DDIO), 2014. URL: http:
//tinyurl.com/jlkzvll.

[32] Intel® Memory Latency Checker, 2015. URL: http:
//tinyurl.com/kgroxnw.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 295

http://tinyurl.com/j5adfts
http://tinyurl.com/z7vkk6h
http://tinyurl.com/mpnf4m3
http://tinyurl.com/mpnf4m3
http://dpdk.org/
http://tinyurl.com/jkngtok
http://tinyurl.com/jkngtok
http://tinyurl.com/nppr7ut
http://tinyurl.com/hvkukyw
http://tinyurl.com/hvkukyw
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.gurobi.com
http://www.gurobi.com
http://tinyurl.com/zpsj63k
http://tinyurl.com/zpsj63k
http://tinyurl.com/hasjlm2
http://tinyurl.com/jlkzvll
http://tinyurl.com/jlkzvll
http://tinyurl.com/kgroxnw
http://tinyurl.com/kgroxnw

[33] I. L. A. Division. PCI-SIG SR-IOV Primer, 2011. URL:
http://tinyurl.com/kt7bwqb.

[34] R. Iyer. CQoS: A Framework for Enabling QoS in
Shared Caches of CMP Platforms. In ICS, 2004.

[35] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D.
Newell, Y. Solihin, L. Hsu, and S. Reinhardt. QoS
Policies and Architecture for Cache/Memory in CMP
Platforms. In SIGMETRICS, 2007.

[36] Linux Foundation. OPNFV, 2016. URL: https://
www.opnfv.org/.

[37] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,
and C. Kozyrakis. Heracles: Improving Resource Effi-
ciency at Scale. In ISCA, 2015.

[38] D. Lopez. OpenMANO: The Dataplane Ready Open
Source NFV MANO Stack. In IETF Meeting Pro-
ceedings, Dallas, Texas, USA, 2015.

[39] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi.
Retro: Targeted Resource Management in Multi-
tenant Distributed Systems. In NSDI, 2015.

[40] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.
Soffa. Bubble-Up: Increasing Utilization in Mod-
ern Warehouse Scale Computers via Sensible Co-
locations. In MICRO, 2011.

[41] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M.
Honda, R. Bifulco, and F. Huici. ClickOS and the Art
of Network Function Virtualization. In NSDI, 2014.

[42] Performance Tuning for Mellanox Adapters. URL:
http://tinyurl.com/y8slm66k.

[43] T. P. Morgan. ARM Servers: Qualcomm is Now a
Contender. https://www.nextplatform.com/
2017/08/23/arm- servers- qualcomm- now-

contender/, 2017.

[44] Nokia. Solutions: Residential Services Delivery, 2016.
URL: http://tinyurl.com/h3cwqsy.

[45] T. L. Foundation. ONAP: Open Network Automa-
tion Platform. https://www.onap.org/ retrieved
09/21/2017.

[46] Open Information Security Foundation. Suricata:
Open Source IDS/IPS/NSM engine, 2015. URL: http:
//suricata-ids.org/.

[47] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-
nasamy, L. Rizzo, and S. Shenker. E2: A Framework
for NFV Applications. In SOSP, 2015.

[48] P. A. Networks. PA-3000 Series Datasheet. https:
/ / www . paloaltonetworks . com / products /

secure - the - network / next - generation -

firewall/pa-3000-series retrieved 09/21/2017.

[49] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,
and S. Shenker. NetBricks: Taking the V out of NFV.
In OSDI, 2016.

[50] O. Peleg, A. Morrison, B. Serebrin, and D. Tsafrir. Uti-
lizing the IOMMU Scalably. In USENIX ATC, 2015.

[51] S. Rajagopalan, D. Williams, H. Jamjoom, and A.
Warfield. Split/Merge: System Support for Elastic Ex-
ecution in Virtual Middleboxes. In NSDI, 2013.

[52] L. Rizzo. Revisiting Network I/O APIs: The Netmap
Framework. ACM Queue, 10(1), 2012.

[53] M. Roesch. Snort - Lightweight Intrusion Detection
for Networks. In LISA, 1999.

[54] S. Blake and D. Black and M. Carlson and E. Davies
and Z. Wang and W. Weiss. An Architecture for Dif-
ferentiated Services. RFC 2475, 1998.

[55] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishna-
murthy, C. Maciocco, M. Manesh, J. Martins, S. Rat-
nasamy, L. Rizzo, and S. Shenker. Rollback-Recovery
for Middleboxes. In SIGCOMM, 2015.

[56] D. Shue, M. J. Freedman, and A. Shaikh. Performance
Isolation and Fairness for Multi-tenant Cloud Storage.
In OSDI, 2012.

[57] Sourcefire’s Vulnerability Research Team. VRT Rule
Set, 2015. URL: https://www.snort.org/talos.

[58] N. T. Spring and D. Wetherall. A Protocol-
independent Technique for Eliminating Redundant
Network Traffic. In SIGCOMM, 2000.

[59] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.
RapidMRC: Approximating L2 Miss Rate Curves
on Commodity Systems for Online Optimizations. In
ASPLOS, 2009.

[60] L. Tang, J. Mars, and M. L. Soffa. Compiling for Nice-
ness: Mitigating Contention for QoS in Warehouse
Scale Computers. In CGO, 2012.

[61] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. Ef-
fiCuts: Optimizing Packet Classification for Memory
and Throughput. In SIGCOMM, 2010.

[62] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart,
and M. M. Swift. Resource-freeing attacks: improve
your cloud performance (at your neighbor’s expense).
In CCS, 2012.

[63] P. Veitch, E. Curley, and T. Kantecki. Performance
evaluation of cache allocation technology for NFV
noisy neighbor mitigation. NetSoft, 2017.

[64] X. Zhang, S. Dwarkadas, and K. Shen. Towards Prac-
tical Page Coloring-based Multicore Cache Manage-
ment. In EuroSys, 2009.

296 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://tinyurl.com/kt7bwqb
https://www.opnfv.org/
https://www.opnfv.org/
http://tinyurl.com/y8slm66k
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
http://tinyurl.com/h3cwqsy
https://www.onap.org/
http://suricata-ids.org/
http://suricata-ids.org/
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.snort.org/talos

A MILP Formulation
When a new reserved SLO is submitted, ResQ profiles the
given NF (or chain) and, if admissible, greedily schedules
one or more instances of it. Periodically, ResQ looks for
a more optimal schedule to switch to if this results in
significant resource savings. We formulate this optimal
scheduling as a mixed-integer linear program.

Symbol Type Description

θi Constant Target throughput of SLO i
πil Constant Pivot point of piece l of SLO i
αil Constant Slope of piece l of SLO i
βil Constant Y-intercept of piece l of SLO i
τ Constant Number of cores per machine
φ Constant LLC size per machine
Ui Constant Maximum input load of SLO i
Ii jk Binary Var Instance j of SLO i is assigned to machine k
Nk Binary Var Machine k is active
Ci j Integer Var LLC allocated to instance j of SLO i
λi jl Binary Var Piece l of instance j of SLO i is used

Table 3: List of symbols used in MILP. We use indices i, j,k,l for SLO
terms, instances, machines, and profiles’ linear fit pieces respectively. The
number of variables and constants depend on the size of the cluster, number
of SLO terms, maximum number of instances per SLO term, and number
of pieces of individual profiles.

The objective of the MILP in Listing 1 is to minimize the
number of machines used to satisfy all the SLO terms. As
input, it expects system configuration and profiles, and pro-
duces a schedule as output. For each SLO term, this schedule
provides the number of instances to start, where each instance
should be placed, and the amount of LLC allocated to each in-
stance. We encode the SLO profiles in the form of piecewise
linear approximations of their throughput-LLC curves.

min∑
k

Nk

s.t. ∑
k

Ii jk≤1 ∀i, j (1)

∑
i, j

Ci j.Ii jk≤φ ∀k (2)

Nk≤∑
i, j

Ii jk≤Nk.τ ∀k (3)

θi≤∑
j
[Ui.∑

l
λi jl.[αil.Ci j+βil]] ∀i (4)

∑
l

λi jl.πil≤Ci j≤∑
l

λi j(l+1).πi(l+1) ∀i, j (5)

∑
l

λi jl =∑
k

Ii jk ∀i, j (6)

Listing 1: Mixed-integer linear program that minimizes the number of
machines used to meet reserved SLOs in ResQ. A brief description of the
symbols appear in Table 3.

We use a set of variables to capture the scheduling results
and constants to encode the system configuration and
profiles:

θi specifies the target throughput for SLO term i.
πil specifies the pivot point for piece l of the throughput-LLC

linear approximation of SLO term i.
αil,βil specify the slope and y-intercept for piece l of the

throughput-LLC linear approximation of SLO term i.
τ,φ specify the number of cores and LLC size available on

each machine.
Ui is the maximum input load level that below which the

latency objective of SLO term i is satisfied across all LLC
allocations.

Ii jk indicates whether instance j of SLO term i is active on
machine k.

Nk is set if and only if machine k is active – i.e., at least one
instance is assigned to it.

Ci j indicates the amount of LLC allocated to instance j of
SLO term i. For an active instance, each such variable takes
a value between the minimum and maximum permissible
LLC allocation.

λi jl indicates whether linear fit l is chosen for instance j of
SLO term i.
Below we briefly describe the goal of each constraint in

the order they appear in Listing 1:
1. An instance runs on at most one machine.
2. The total LLC allocated to instances assigned to a machine

is less than or equal to the machine’s total LLC size (φ).
3. A machine is active when there is at least one instance

running on that machine, and an active machine may host
no more instances than its available cores (τ).

4. The aggregate throughput of instances of each SLO is
greater than or equal to its target throughput (θi).

5. Linear piece l of a profile is chosen if and only if the
LLC allocated to instance j of SLO term i lies in the
range corresponding to piece l of the throughput-LLC
linear approximation.

6. Exactly one linear piece is chosen when instance j of
SLO term i is active, otherwise, none is chosen.
For simplicity, we assume a homogeneous infrastructure

and that each SLO term instance requires a single CPU core;
the MILP could be adjusted to account for differences if nec-
essary. To account for small performance degradation despite
ResQ’s isolation (see §4.4), we include a 3% discount in Ui.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 297

