
Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Distributed Network Monitoring
and Debugging with SwitchPointer

Praveen Tammana, University of Edinburgh; Rachit Agarwal, Cornell University;
Myungjin Lee, University of Edinburgh

https://www.usenix.org/conference/nsdi18/presentation/tammana

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Distributed Network Monitoring and Debugging with SwitchPointer

Praveen Tammana
University of Edinburgh

Rachit Agarwal
Cornell University

Myungjin Lee
University of Edinburgh

Abstract
Monitoring and debugging large-scale networks remains
a challenging problem. Existing solutions operate at one
of the two extremes — systems running at end-hosts
(more resources but less visibility into the network) or at
network switches (more visibility, but limited resources).

We present SwitchPointer, a network monitoring and
debugging system that integrates the best of the two
worlds. SwitchPointer exploits end-host resources and
programmability to collect and monitor telemetry data.
The key contribution of SwitchPointer is to efficiently
provide network visibility by using switch memory as a
“directory service” — each switch, rather than storing
the data necessary for monitoring functionalities, stores
pointers to end-hosts where relevant telemetry data is
stored. We demonstrate, via experiments over real-world
testbeds, that SwitchPointer can efficiently monitor and
debug network problems, many of which were either
hard or even infeasible with existing designs.

1 Introduction
Managing large-scale networks is complex. Even
short-lived problems due to misconfigurations, failures,
load imbalance, faulty hardware and software bugs can
severely impact performance and revenue [15, 23, 31].

Existing tools to monitor and debug network problems
operate at one of the two extremes. On the one hand,
proposals for in-network monitoring argue for capturing
telemetry data at switches [7, 20, 30, 21, 18], and query-
ing this data using new switch interfaces [24, 13, 25, 4]
and hardware [19, 24]. Such in-network approaches pro-
vide visibility into the network that may be necessary
to debug a class of network problems; however, these
approaches are often limited by data plane resources
(switch memory and/or network bandwidth) and thus
have to rely on sampling or approximate counters which

are not accurate enough for monitoring and diagnosing
many network problems (§2).

At the other extreme are recent systems [23, 28] that
use end-hosts to collect and monitor telemetry data, and
to use this data to debug spurious network events. The
motivation behind such end-host based approaches is
two folds. First, hosts not only have more available re-
sources than switches but also already need to process
packets; thus, monitoring and debugging functionalities
can potentially be integrated within the packet processing
pipeline with little additional overhead. Second, hosts
offer the programmability needed to implement various
monitoring and debugging functionalities without any
specialized hardware. While well-motivated, such purely
end-host based approaches lose the benefits of network
visibility offered by in-network approaches.

We present SwitchPointer, a network monitoring and
debugging system that integrates the best of the two
worlds — resources and programmability of end-host
based approaches, and the visibility of in-network ap-
proaches. SwitchPointer exploits end-host resources and
programmability to collect and monitor telemetry data,
and to trigger spurious network events (e.g., using exist-
ing end-host based systems like PathDump [28]). The
key contribution of SwitchPointer is to efficiently enable
network visibility for such end-host based systems by us-
ing switch memory as a “directory service” — in contrast
to in-network approaches where switches store telemetry
data necessary to diagnose network problems, Switch-
Pointer switches store pointers to end-hosts where the
relevant telemetry data is stored. The distributed storage
at switches thus operates as a distributed directory ser-
vice; when an end-host triggers a spurious network event,
SwitchPointer uses the distributed directory service to
quickly filter the data (potentially distributed across mul-
tiple end-hosts) necessary to debug the event.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 453

The key design choice of thinking about network
switch storage as a directory service rather than a data
store allows SwitchPointer to efficiently solve many
problems that are hard or even infeasible for existing
systems. For instance, consider the network problems
shown in Figure 1. We provide an in-depth discussion
in §2, but note here that existing systems are insufficient
to debug the reasons behind high latency, packet drops
or TCP timeout problems for the red flow since this re-
quires maintaining temporal state (that is, flow IDs and
packet priorities for all flows that the red flow contends
with in Figure 1(a)), combining state distributed across
multiple switches (required in Figure 1(b)), and in some
cases, maintaining state even for flows that do not trigger
network events (for the blue flow in Figure 1(c)).

SwitchPointer is able to solve such problems using a
simple design (detailed discussion in §4):

• Switches divide the time into epochs and maintain
a pointer to all end-hosts to which they forward the
packets in each epoch;

• Switches embed their switchID and current epochID
into the packet header before forwarding a packet;

• End-hosts maintain a storage and query service that
allows filtering the headers for packets that match a
(switchID, epochID) pair; and,

• End-hosts trigger spurious events, upon which a con-
troller (or an end-host) uses pointers at the switches to
locate the data necessary to debug the event.

While SwitchPointer design is simple at a high-level, re-
alizing it into an end-to-end system requires resolving
several technical challenges. The first challenge is to
decide the epoch size — too small an epoch would re-
quire either large storage (to store pointers for several
epochs) or large bandwidth between data plane and con-
trol plane (to periodically push the pointers to persistent
storage); too large an epoch, on the other hand, may lead
to inefficiency (a switch may forward packets to many
end-hosts). SwitchPointer resolves this challenge using
a hierarchical data structure, where each subsequent level
of the hierarchy stores pointers over exponentially larger
time scales. We describe the data structure in §4.1.1, and
discuss how it offers a favorable tradeoff between switch
memory and bandwidth, and system efficiency.

The second challenge in realizing the SwitchPointer
design is to efficiently maintain the pointers at switches.
The naïve approach of using a hash table for each level
of the hierarchy would either require large amount of
switch memory or would necessitate one hash operation
per level per packet for the hierarchical data structure,

A ...

m hosts

B ...

(a) Too much traffic

A D E

B C F

S1 S3S2

(b) Too many red lights

A D E

B C F

S1 S3S2

(c) Traffic cascades

Figure 1: Three example network problems. Green, blue
and red flows have decreasing order of priority. Red flow
observes high latency (or even TCP timeout due to exces-
sive packet drops) due to: (a) contention with many high
priority flows at a single switch; (b) contention with mul-
tiple high priority flows across multiple switches; and (c)
cascading problems — green flow (highest priority) delays
blue flow, resulting in blue flow contending with and delay-
ing red flow (lowest priority). Please see more details in §2.

making it hard to achieve line rate even for modest size
packets. SwitchPointer instead uses a perfect hash func-
tion [1, 14] to efficiently store and update switch pointers
in the hierarchical data structure. Perfect hash functions
require only 2.1 bits of storage per end-host per-level for
storing pointers and only one hash operation per packet
(independent of number of levels in the hierarchical data
structure). We discuss storage and computation require-
ments of perfect hash functions in §4.1.2.

The final two challenges in realizing SwitchPointer
design into an end-to-end system are: (a) to efficiently
embed switchIDs and epochIDs into packet header; and
(b) handle the fact that switch and end-host clocks are
typically not synchronized perfectly. For the former,
SwitchPointer can of course use clean-slate approaches
like INT [4]; however, we also present a design in
§4.1.3 that allows SwitchPointer to embed switchIDs and
epochIDs into packet header using commodity switches
(under certain assumptions). SwitchPointer resolves the
latter challenge by exploiting the fact that while the net-
work devices may not be perfectly synchronized, it is
typically possible to bound the difference between clocks
of any pair of devices within a datacenter. This allows
SwitchPointer to handle asynchrony by carefully design-
ing epoch boundaries in its switch data structures.

We have implemented SwitchPointer into an end-to-
end system that currently runs over a variety of network
testbeds comprising commodity switches and end-hosts.
Evaluation of SwitchPointer over these testbeds (§5, §6)
demonstrates that SwitchPointer can monitor and debug
network events at sub-second timescales while requiring
minimal switch and end-host resources.

454 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Motivation
In this section we discuss several network problems that
motivate the need for SwitchPointer.

2.1 Too much traffic
The first class of problems are related to priority-based
and microburst-based contention between flows.

Priority-based flow contention. Consider the case of
Figure 1(a), where a low-priority flow competes with
many high-priority flows on an output port. As a result,
the low priority flow may observe throughput drop, high
inter-packet arrival times, or even TCP timeouts.

To demonstrate this problem, we set up an experi-
ment. We create a low-priority TCP flow between two
hosts A and B that lasts for 100ms. We then create 5
batches of high-priority UDP bursts; each burst lasts for
1ms and has increasingly larger number of UDP flows
(m in Figure 1(a)) all having different source-destination
pairs. We use Pica8 P-3297 switches in our experiment;
the switch allows us to delay processing of low-priority
packets in the presence of a high-priority packet.

Figure 2(a) demonstrates that high-priority UDP
bursts hurt the throughput and latency performance of the
TCP flow significantly. With increasingly larger number
of high-priority flows in the burst, the TCP flow observes
increasingly more throughput drop eventually leading to
starvation (e.g., 0 Gbps for ∼10 ms in case of 16 UDP
flows). The figure also shows that increasing number
of high-priority flows in the burst results in increasingly
larger inter-arrival times for packets in the TCP flow. The
reduced throughput and increased packet delays may, at
the extreme, lead to TCP timeout.

Microburst-based flow contention. We now create a
microburst based flow contention scenario, where con-
gestion lasts for short periods, from hundreds of mi-
croseconds to a few milliseconds, due to bursty arrival of
packets that overflows a switch queue. To achieve this,
we use the same set up as priority-based flow contention
with the only difference that we use a FIFO queue instead
of a priority queue at each switch (thus, all TCP and UDP
packets are treated equally). The results in Figure 2(b)
show a throughput drop similar to priority-based flow
contention, but a slightly different plot for inter-packet
arrival times — as expected, the increase in inter-packet
delays is not as significant as in priority-based flow con-
tention since all packets get treated equally.

Limitations of existing techniques. The two problems
demonstrated above can be detected and diagnosed using
specialized switch hardware and interfaces [24]. With-
out custom designed hardware, these problems can still

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

1 2 4 8 16

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

In
te

r-
pa

ck
et

 a
rr

iv
al

 ti
m

e
(m

s)

Timeline (ms)

1 2 4 8 16

(a) Throughput (left) and inter-packet arrival time (right) of a low-
priority TCP flow under priority-based flow contention.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

1 2 4 8 16

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80 100

In
te

r-
pa

ck
et

 a
rr

iv
al

 ti
m

e
(m

s)

Timeline (ms)

1 2 4 8 16

(b) Throughput (left) and inter-packet arrival time (right) of a TCP
flow under microburst-based flow contention.

Figure 2: Too much traffic problem depicted in Figure 1(a).
Five UDP burst batches are introduced with a gap of 15 ms
between each other. The gray lines highlight the five
batches, all of which last for 1 ms. The number in circle
denotes the number of UDP flows used in each batch.

be detected at the destination of the suffering flow(s),
but diagnosing the root cause is significantly more chal-
lenging. Packet sampling based techniques would miss
microbursts due to undersampling; switch counter based
techniques would not be able to differentiate between
the priority-based and microburst-based flow contention;
and finally, since diagnosing these problems requires
looking at flows going to different end-hosts, existing
end-host based techniques [23, 28] are insufficient since
they only provide visibility at individual end-hosts.

2.2 Too many red lights
We now consider the network problem shown in
Figure 1(b). Our set up uses a low-priority TCP flow
from host A to host F (the red flow) that traverses
switches S1, S2 and S3. The TCP flow contends with
two high-priority UDP flows (B-D and C-E), each last-
ing for 400µs in a sequential fashion (that is, flow C-E
starts right after flow B-D finishes). Consequently, the
TCP flow gets delayed for about 400µs at S1 due to UDP
flow B-D and another 400µs at S2 due to UDP flow C-E.

The result is shown in Figure 3. The destination of the
TCP flow sees a sudden throughput drop almost down to

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 455

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

(a) Throughput of flow A-F at S1

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 2 4 6 8 10

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (ms)

(b) Throughput of flow A-F at S2

Figure 3: Too many red lights problem depicted in
Figure 1(b). UDP is used for flows B-D and C-E and TCP
for flow A-F.

200 Mbps. This is a consequence of performance degra-
dation accumulated across two switches S1 and S2 —
Figures 3(a) and 3(b) show that the throughput is around
600Mbps at S1 and around 200 Mbps at S2 (at around
6 ms time point). In fact, the problem is not limited
to reduced throughput for the TCP flow — taken to the
extreme, adding more “red lights” can easily result in a
timeout for the TCP flow.

Limitations of existing techniques. The too many red
lights problem highlights the importance of combining
in-network and end-host based approaches to network
monitoring and debugging.

Indeed, it is hard for purely in-network techniques to
detect the problem — switches are usually programmed
to collect relevant flow- or packet-level telemetry infor-
mation if a predicate (e.g., throughput drop is more than
50% or queuing delay is larger than 1ms) is satisfied,
none of which is the case in the above phenomenon.
Since the performance of the TCP flow degrades grad-
ually due to contention across switches, the net effect
becomes visible closer to the end-host of the TCP flow.

On the other hand, existing end-host based techniques
allow detecting the throughput drop (or for that mat-
ter, the TCP timeout); however, these techniques do not
provide the network visibility necessary to diagnose the
gradual degradation of throughput across switches in the
too-many-red-lights phenomenon.

2.3 Traffic cascades
Finally, we discuss the traffic cascade phenomenon from
Figure 1(c). Here, we have three flows, B-D, A-F and
C-E, with flow priorities being high, middle and low, re-
spectively. Flows B-D and A-F use UDP and last for
10ms each whereas flow C-E uses TCP and transfers
2MB of data. A cascade effect happens when the high-
priority flow B-D affects the middle-priority flow A-F

 0
 0.2
 0.4
 0.6
 0.8

Flow B-D

 0
 0.2
 0.4
 0.6
 0.8

Th
ro

ug
hp

ut
 (G

bp
s)

Flow A-F

 0
 0.2
 0.4
 0.6
 0.8

 0 10 20 30 40 50
Timeline (ms)

Flow C-E

(a)

 0
 0.2
 0.4
 0.6
 0.8

 0
 0.2
 0.4
 0.6
 0.8

Th
ro

ug
hp

ut
 (G

bp
s)

 0
 0.2
 0.4
 0.6
 0.8

 0 10 20 30 40 50
Timeline (ms)

(b)

Figure 4: Traffic cascades problem depicted in Figure 1(c).
Throughput of flows (a) without traffic cascades; (b) with
traffic cascades. UDP is used for flows B-D and A-F, and
TCP for flow C-E.

which subsequently affects the low-priority flow C-E.
Specifically, if flow B-D and flow A-F do not contend
at switch S1, the flow A-F will depart from switch S2 be-
fore flow C-E arrives resulting in no flow contention in
the network (Figure 4(a)). However, due to contention
of flow B-D and flow A-F at switch S1 (for various rea-
sons, including B-D being rerouted due to failure on a
different path), flow A-F is delayed at switch S1 and ends
up reducing the throughput for flow C-E at switch S2
(Figure 4(b)).

Limitations of existing techniques. Diagnosing the root
cause of the traffic cascade problem is challenging for
both in-network and for end-hosts based techniques. It
not only requires capturing the temporal state (flowIDs
and packet priorities for all contending flows) across
multiple switches, but also requires to do so even for
flows that do not observe any noticeable performance
degradation (e.g., the B-D flow). Existing in-network and
end-host based techniques fall short of providing such
functionality.

2.4 Other SwitchPointer use cases
There are many other network monitoring and debugging
problems for which in-network techniques and end-host
based techniques, in isolation, are either insufficient or
inefficient (in terms of data plane resources). We have
compiled a list of such network problems along with a
detailed description of how SwitchPointer is able to mon-
itor and diagnose such problems in [8].

456 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

3 SwitchPointer Overview
SwitchPointer integrates the benefits of end-host based
and in-network approaches into an end-to-end system
for network monitoring and debugging. To that end, the
SwitchPointer system has three main components. This
section provides a high-level overview of these compo-
nents and how SwitchPointer uses these components to
monitor and debug network problems.

SwitchPointer Switches. The first component runs at
network switches and is responsible for three main tasks:
(1) embedding the telemetry data into packet header; (2)
maintaining pointers to end hosts where the telemetry
data for packets processed by the switch are stored; and
(3) coordinating with an analyzer for monitoring and de-
bugging network problems.

SwitchPointer switches embed at least two pieces
of information in packet headers before forwarding a
packet. The first is to enable tracing of packet trajec-
tory, that is, the set of switches traversed by the packet;
SwitchPointer uses solutions similar to [27, 28] for this
purpose. The second piece of information is to efficiently
track contending packets and flows at individual ports
over fine-grained time intervals. To achieve this, each
SwitchPointer switch divides (its local view of) time into
epochs and embeds into the packet header the epochID
at which the packet is processed. SwitchPointer can of
course use clean-slate approaches like INT [4] to embed
epochIDs into packet headers; however, we also present
a design in §4.1.3 that extends the techniques in [27, 28]
to efficiently embed these epochIDs into packet headers
along with the packet trajectory tracing information.

Embedding path and epoch information within the
packet headers alone does not suffice to debug network
problems efficiently. Once a spurious network event is
triggered, debugging the problem requires the ability to
filter headers contributing to that problem (potentially
distributed across multiple end hosts); without any ad-
ditional state, filtering these headers would require con-
tacting all the end hosts. To enable efficient filtering of
headers contributing to the triggered network problem,
SwitchPointer uses distributed storage at switches as a
directory service — switches store “pointers” to destina-
tion end hosts of the packets processed by the switch in
different epochs. Once an event is triggered, this direc-
tory service can be used to quickly filter out headers for
packets and flows contributing to the problem.

Using epochs to track contending packets and flows
at switches, and storing pointers to destination end-hosts
for packets processed in each epoch leads to several de-
sign and performance tradeoffs in SwitchPointer. Indeed,
too large an epoch size is not desirable — with increasing

epoch size, a switch may forward packets to increasingly
many end-hosts within an epoch, leading to inefficiency
(at an extreme, this would converge to trivial approach
of contacting all end-hosts for filtering relevant headers).
Too small an epoch size is also undesirable since with
increasing number of epochs, each switch would require
either increasingly large memory (SRAM for storing the
pointers) or increasingly large bandwidth between the
data plane and the control plane (for periodically trans-
ferring the pointers to persistent storage).

SwitchPointer achieves a favorable tradeoff between
switch memory, bandwidth between the data plane and
the control plane, and the efficiency of debugging net-
work problems using a hierarchical data structure, where
each subsequent level of the hierarchy stores pointers
over exponentially larger time scales. This data struc-
ture enables both real-time (potentially automated) de-
bugging of network problems using pointers for more
recent epochs, and offline debugging of network prob-
lems by transferring only pointers over coarse-grained
time scales from the data plane to the control plane. We
discuss this data structure in §4.1.1. Maintaining a hier-
archy of pointers also leads to challenges in maintaining
an updated set of pointers while processing packets at
line rate; indeed, a naïve implementation that uses hash
tables would require one operation per packet per level of
hierarchy to update pointers upon each processed packet.
We present, in §4.1.2, an efficient implementation that
uses perfect hash functions to efficiently maintain up-
dated pointers across the entire hierarchy using just one
operation per packet (independent of number of levels in
the hierarchical data structure).

SwitchPointer End-hosts. SwitchPointer, similar to re-
cent end-host based monitoring systems [28, 23], uses
end hosts to collect and monitor telemetry data carried in
packet headers, and to trigger spurious network events.
SwitchPointer uses PathDump [28] to implement its end-
host component; however, this requires several exten-
sions to capture additional pieces of information (e.g.,
epochIDs) carried in SwitchPointer’s packet headers and
to query headers. We describe SwitchPointer’s end-host
component design and implementation in §4.2.

SwitchPointer Analyzer. The third component of
SwitchPointer is an analyzer that coordinates with
SwitchPointer switches and end-hosts. The analyzer can
either be colocated with the end-host component, or on a
separate controller. A network operator, upon observing
a trigger regarding a spurious network event, uses the an-
alyzer to debug the problem. We describe the design and
implementation of the SwitchPointer analyzer in §4.3.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 457

An example for using SwitchPointer:
We now describe how a network operator can use
SwitchPointer to monitor and debug the too many red
lights problem from Figure 1 and §2.2. The destina-
tion end-host of the victim TCP flow A-F detects a large
throughput drop and triggers the event. The operator,
upon observing the trigger, uses the analyzer module to
extract the end-hosts that store the telemetry data relevant
to the problem — the analyzer module internally queries
the destination end-host for flow A-F to extract the trajec-
tory of its packets (switches S1, S2 and S3 in this exam-
ple) and the corresponding epochIDs, uses this informa-
tion to extract the pointers from the three switches (for
corresponding epochs), and returns the relevant point-
ers corresponding to the end-hosts that store the relevant
headers for flows that contended with the victim TCP
flow (D and E in this example). The operator then filters
the relevant headers from the end-hosts to learn that flow
A-F contended with flow B-D and C-E, and can interac-
tively debug the problem using these headers. Switch-
Pointer debugs other problems in a similar way (more
details in §5).

4 SwitchPointer
In this section, we discuss design and implementation
details for various SwitchPointer components.

4.1 SwitchPointer switches
SwitchPointer provides the network visibility necessary
for debugging network problems by using the memory at
network switches as a distributed directory service, and
by embedding telemetry information in the packet head-
ers. We now describe the data structure stored at and
packet processing pipeline of SwitchPointer switches.

4.1.1 Hierarchical data structure for pointers

SwitchPointer switches divide their local view of time
into epochs and enable tracking of contending packets
and flows at switches by storing pointers to destina-
tion end-hosts for packets processed in different epochs.
SwitchPointer stores these pointers using a hierarchical
data structure, where each subsequent level of the hi-
erarchy stores pointers over exponentially larger time
scales. We describe this data structure and discuss how
it achieves a favorable tradeoff between switch mem-
ory (to store pointers) and bandwidth between data plane
and control plane (to periodically transfer pointers from
switch memory to persistent storage).

Figure 5 shows SwitchPointer’s hierarchical data
structure with k levels in the hierarchy. Suppose the
epoch size is α ms. At the lowermost level, the data

α
k
 ms

Pointer

Update

Function

Dst IP

...

... α
2
 ms

...

α
3
 ms...

Time

...

Level k

Level 1α set of pointers α ms

α set of pointers

...

Level 3

Update

k pointers

Update

k pointers
Level 2

α set of pointers

Figure 5: SwitchPointer’s hierarchical data structure for
storing pointers. For each packet that a switch forwards,
SwitchPointer stores a pointer to the packet’s destination
end-host along a hierarchy of k levels. For epoch size α ms,
level h (1 ≤ h ≤ k − 1) stores pointers to destination end-
hosts for packets processed in last consecutive αh epochs
(that is, αh+1 ms) across α set of pointers. The topmost
level stores only one set of pointers corresponding to pack-
ets processed in last αk ms.

structure stores α set of pointers, each corresponding to
destinations for packets processed in one epoch; thus the
set of pointers at the lowermost level provide a per-epoch
information on end-hosts storing headers to all contend-
ing packets and flows over an α2 ms period. In general,
at level h (1 ≤ h ≤ k−1), the data structure stores α set
of pointers corresponding to packets processed in con-
secutive αh ms intervals. The top level stores only one
set of pointers corresponding to packets processed in last
αk ms of time period.

The hierarchical data structure, by design, maintains
some redundant information. For instance, the first set of
pointers in level h+1 correspond to packets processed in
last αh+1 ms of time period, collectively similar to all the
set of pointers in level h. It is precisely this redundancy
that allows SwitchPointer to achieve a favorable tradeoff
between switch memory and bandwidth. We return to
characterizing this tradeoff below, but note that pointers
at the lower level of the hierarchy provide a more fine-
grained view of packets and flows contending at a switch
and are useful for real-time diagnosis; the set of pointers
on the upper levels, on the other hand, provide a more
coarse-grained view and are useful for offline diagnosis.

SwitchPointer allows pointers at all levels to be ac-
cessed by the analyzer under a pull model. For instance,
suppose the epoch size is α = 10 and the data structure
has k = 3 levels. Then, each set of pointers at level 1
correspond to 10 ms of time period while those at level 2
correspond to 100 ms of time period. If a network opera-
tor wishes to obtain the headers corresponding to packets
and flows processed by the switch for last 50 ms (i.e., 5

458 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

epochs), it can pull the five most recent set of pointers
from level 1; for last 150 ms period, the operator can pull
the two most recent pointers from level 2 (which, in fact,
correspond to 200 ms time period). In addition to sup-
porting access to the hierarchical data structure using a
pull model, SwitchPointer also pushes the topmost level
of pointers to the control plane for persistent storage ev-
ery αk ms which can then be used for offline diagnosis
of network events. The toplevel pointers provide coarse-
grained view of contending packets and flows at switches
which may be sufficient for offline diagnosis but using a
push model only for the topmost level pointers signifi-
cantly reduces the requirements on bandwidth between
the data plane and the control plane.

Tradeoff. The hierarchical data structure, as described
above, exposes a tradeoff between switch memory and
the bandwidth between the data plane and the control
plane via two parameters — k and α . Specifically, let
the storage needed by a set of pointers to be S bits
(this storage requirement depends on the maximum num-
ber of end-hosts in the network, and is characterized in
next subsection); Then, the overall storage needed by
the hierarchical data structure is α · (k − 1) · S+ S bits.
Moreover, since only the topmost pointer is pushed from
the data plane to the control plane (once every αk ms),
the bandwidth overhead of SwitchPointer is bounded
by S × (103/αk) bps. For a fixed network size (and
hence, fixed S), as k and α are increased, the memory
requirements increase and the bandwidth requirements
decrease. We evaluate this tradeoff in §6 for varying val-
ues of k and α; however, we note that misconfiguration
of k and α values may result in longer diagnosis time
(the analyzer may touch more end-hosts to filter relevant
headers) but does not result in correctness violation.

4.1.2 Maintaining updated pointers at line rate

We now describe the technique used in SwitchPointer
to minimize the switch memory requirements for storing
the hierarchical data structure and to minimize the num-
ber of operations performed for updating all the levels in
the hierarchy upon processing each packet.

Strawman: a simple hash table. A plausible solution
for storing each set of pointers in the hierarchical data
structure is to use a hash table. However, since Switch-
Pointer requires updating k set of pointers upon process-
ing each packet (one at each level of hierarchy), using a
standard hash table would require k operations per packet
in the worst case. This may be too high a overhead for
high-speed networks (e.g., with 10Gbps links). One way
to avoid such overhead is to use hash tables with large

number of buckets so as to have a negligible collision
probability. Using such a hash table would reduce the
number of operations per packet to just one (independent
of number of levels in the hierarchy); however, such a
hash table would significantly increase the storage re-
quirements. For instance, consider a network with m
destinations; given a hash table with n buckets, the ex-
pected number of collisions under simple uniform hash-
ing is m−(n−n(1−1/n)m). Suppose that m= 100K and
the target number of collisions is 0.001m (i.e., 0.1% of
100K keys). To achieve this target, the number of buck-
ets in the hash table should be close to 50 million, 500×
larger than the number of keys. Thus, this strawman ap-
proach becomes quickly infeasible for our hierarchical
data structure — it would either require multiple oper-
ations per packet to update the data structure or would
require very large switch memory.

Our solution: Minimal perfect hash function. Our key
observation is that the maximum number of end-hosts in
a typical datacenter is known a priori and that it changes
at coarse time scales (hours or longer). Therefore, we can
construct a minimal perfect hash function to plan ahead
on the best way to map destinations to buckets to avoid
hash collisions completely. In fact, since each level in the
hierarchy uses the same perfect hash function, Switch-
Pointer needs to perform just one operation per packet to
find the index in a bit array of size equal to the maximum
number of destinations; the same index needs to be up-
dated across all levels in the hierarchy. Upon processing
a packet, the bit at the same index across the bit array is
set in parallel. Lookups are also easy — to check if a
packet to a particular destination end-host was processed
in an epoch, one simply needs to check the corresponding
bit (given by the perfect hash function) in the bit array.

The minimal perfect hash function provides O(1) up-
date operation and expresses a 4-byte IP address with 1
bit (e.g., 100Kbits for 100K end-hosts). While an ad-
ditional space is required to construct a minimal perfect
hash function, it is typically small (70 KB and 700 KB
for for 100K and 1M end-hosts respectively; see §6.1).
Moreover, while constructing a perfect hash function is
a computationally expensive task, small storage require-
ment of perfect hash tables allow us to recompute the
hash function only at coarse-grained time intervals —
temporary failures of end-hosts do not impact the cor-
rectness since the bits corresponding to those end-hosts
will simply remain unused. For resetting pointers at
level h, an agent at the switch control plane updates a
register with the memory address of next pointer every
αh ms and resets its content. The agent conducts this
process for pointers at all levels.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 459

S1 Core S3
S2 S5S4

Pod 1 Pod 2

ei S2-S3MAC header

1st tag: Link ID2nd tag: Epoch ID

Figure 6: Telemetry data embedding using two VLAN tags
using a modified version of the technique in [27]. See §4.1.3
and §4.2.1 for discussion.

4.1.3 Embedding telemetry data

SwitchPointer requires two pieces of information to be
embedded in packet headers. The first is the trajectory
of a packet, that is, the set of switches (i.e., switchIDs)
traversed by the packet between the source and the des-
tination hosts. The second is epoch information (i.e.,
epochID) on when a packet traverses those switches.

SwitchPointer extends the link sampling idea
from [27, 28] to efficiently enable packet trajectory
tracing and epoch embedding for commonly used
datacenter network topologies (e.g., clos networks like
fat-tree, leaf-spine and VL2) without any hardware
modifications. Specifically, it is shown in [27, 28] that
an end-to-end path in typical datacenter network topolo-
gies can be represented by selectively picking a small
number of key links. For instance, in a fat-tree topology
the technique reconstructs a 5-hop end-to-end path by
selecting only one aggregate-core link and embedding its
linkID into the packet header. For embedding epochIDs
in addition to the linkID, we extend the technique that
relies on IEEE 802.1ad double tagging. When a linkID
is added to the packet header using a VLAN tag, we add
an epochID using another tag (see Figure 6).

The number of rules for embedding linkID increases
linearly with respect to the number of switch ports
whereas only one flow rule is for epochID embedding.
However, the switch needs a rule update once every
epoch — as the epoch changes, the switch should be able
to increment epochID and add a new epochID for incom-
ing packets. A commodity OpenFlow switch that we use
is capable of updating flow rules every 15 ms, giving us
a lower bound on α granularity for commodity switches.

We note that the limitations on supported topologies
and α granularity in our implementation over commod-
ity switches are merely an artifact of today’s switch hard-
ware — it is possible to use SwitchPointer with clean-
slate solutions such as INT [4] to support trajectory trac-
ing and epoch embedding over arbitrary topologies.

4.2 SwitchPointer End-hosts
SwitchPointer uses PathDump [28] to collect and moni-
tor telemetry data carried in packet headers, and to trig-
ger spurious network events. In this subsection, we dis-
cuss the extensions needed in PathDump to capture ad-
ditional pieces of information (e.g., epochIDs) carried in
SwitchPointer’s packet headers and to query headers.

4.2.1 Decoding telemetry data

When a packet arrives at its destination, the destination
host extracts the telemetry data from the packet header. If
the network supports clean-slate approaches like INT [4],
this is fairly straight forward. For implementation us-
ing commodity switches (using techniques discussed in
§4.1.3), the host extracts two VLAN tags containing the
switchID and the epochID associated with the switchID.
Using the switchID, the end-to-end path can be con-
structed using techniques in [27, 28], giving us a list of
switches visited by the packet. Next, we decide a list
of epochIDs for each of those switches. However, since
only one epochID is available at the end-host, it is hard to
determine the missing epochIDs for those switches cor-
rectly. Thus, we set a range of epochs that the switches
should examine. Specifically, we may need to examine
max_delay/α number of pointers at each switch due to
uncertainty in epoch identification.

Let ∆ denote the a maximum one hop delay and ε be a
maximum time drift among all switches. Given epochID
ei of switch S and an end-to-end path, the epochIDs for
switches along the path are identified as follows.

For the upstream switches of switch S, the epoch range
is [ei − (ε + j ·∆)/α,ei + ε/α] and for the downstream
switches of S, it is [ei − ε/α,ei +(ε + j ·∆)/α], where j
is hop difference between an upstream (or downstream)
switch and switch S. Suppose α = 10 ms, ε = α and
∆ = 2 ·α . For instance, in the example of Figure 6, we
set [ei −3,ei +1] for switch S2, [ei −1,ei +3] for S4, and
so forth. This provides a reasonable bound due to two
reasons. First, a maximum queuing delay is within tens
of milliseconds in the datacenter network (e.g., 14 ms in
[9]). Second, millisecond-level precision is sufficient as
SwitchPointer epochs are of similar granularity.

4.2.2 Event trigger and query execution

The end-host also has an agent that communicates with
and executes queries on behalf of the analyzer. The agent
is implemented using a microframework called flask [3],
and implements a variety of techniques (similar to those
in existing end-host based systems [28, 23]) to monitor
spurious network events.

460 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0

 20

 40

 60

 80

 100

1 2 4 8 16

T
im

e
 (

m
s
)

No. of UDP flows

Problem detection

Alert to analyzer

Pointer retrieval

Diagnosis

Figure 7: Debugging time of the priority-based flow con-
tention problem depicted in Figure 2(a). SwitchPointer is
able to monitor and debug the problem in less than 100ms.
We provide a break down of the diagnosis latency later in
Figure 12.

4.3 SwitchPointer Analyzer
The analyzer is also implemented using flask mi-
croframework. It communicates with both switch and
end-host agents. From the switch agent, the analyzer ob-
tains pointers to end-hosts for epoch(s). From the end-
host agent, it receives alert messages, and exchanges
queries and responses. Another responsibility is that
it constructs a minimal perfect hash function whenever
there are permanent changes in the number of end-hosts
in the network, especially when end-hosts are newly
added. It then distributes the minimal perfect hash func-
tion to all the switches in the network. The analyzer also
does pre-processing of pointers by leveraging network
topology, flow rules deployed in the network, etc. For ex-
ample, to diagnose the network problem experienced by
a flow, the analyzer filters out irrelevant end-hosts in the
pointer if the paths between the flow’s source and those
end-hosts do not share any path segment of the flow. This
way, the analyzer reduces search radius, i.e., number of
end-hosts that it has to contact.

5 SwitchPointer Applications
In this section, we demonstrate some key monitoring ap-
plications SwitchPointer supports.

5.1 Too much traffic
We debug the problem discussed in §2 using Switch-
Pointer. This problem include two different cases: (i)
priority-based flow contention and (ii) microburst-based
flow contention. The debugging processes of both cases
are similar; the only difference is the former case re-
quires the analyzer to examine flow’s priority value.
Thus, we only discuss the former case.

Figure 7 shows the breakdown of times it took to di-
agnose the priority-based flow contention case. First, we
instrument hosts with a simple trigger that detects dras-
tic throughput changes. The trigger measures throughput
every 1 ms interval and generates an alert to the analyzer
if throughput drop is more than 50%. The problem de-
tection takes less than 1 ms, thus almost invisible from
the figure (3-4 ms for the microburst-based contention
case). Then, it takes 2-3 ms to send the analyzer an alert
and to receive an acknowledgment. The alert contains
a series of <switchID, a list of epochIDs, a list of byte
counts per epoch> tuples that tell the analyzer when and
where packets of the TCP flow visit. The analyzer uses
the switchIDs and epochIDs, and obtains relevant point-
ers from switches. In this scenario, it only takes about
7-8 ms to retrieve a pointer from one switch.

Next, the analyzer learns hosts encoded in the pointer,
and diagnoses the problem by consulting them; it collects
telemetry data such as UDP flow’s priority, the number
of bytes in UDP flow during the epoch when the TCP
flow experiences high delay. The analyzer finally draws a
conclusion that the presence of high-priority UDP flows
aggravated the performance of the low-priority TCP flow.
As shown in Figure 7, the time for the diagnosis in-
creases as the number of consulted hosts (i.e., each UDP
flow is destined to a different host) increases. Although
not too large, the diagnosis overhead inflation pertains to
the implementation of connection initiation; we discuss
this matter and its optimization in §6.2.

5.2 Too many red lights

This problem illustrated in Figure 1(b) (for its behav-
ior, see Figure 3) requires spatial correlation of telemetry
data across multiple switches for diagnosis. While this
problem is challenging to existing tools, SwitchPointer
easily diagnoses it as follows.

First, destination F triggers an alert to the analyzer in
no time (∼1 ms) by using our throughput drop detection
heuristic introduced in §5.1. The alert contains IDs for
switches S1,S2 and S3 and their corresponding epochID
ranges. The analyzer contacts all of the switches and re-
trieves pointers that match the epoch IDs for each switch
in 10 ms, and then conducts diagnosis (another 20 ms)
by obtaining telemetry data for UDP flows B-D and C-E
from hosts D and E, respectively. The analyzer finds out
that low (A-F) and high prority (B-D and C-E) flows have
at least one common epochID, and finally concludes (in
about 30 ms) that both flows B-D and C-E contributed to
the actual impact on the TCP flow.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 461

 0

 100

 200

 300

 400

4 8 16 32 64 96D
ia

g
n

o
s
is

 t
im

e
 (

m
s
)

No. of servers with relevant flows

Figure 8: Latency for diagnosing load imbalance problem.

5.3 Traffic cascades
This problem is a more challenging problem to exist-
ing tools because debugging it requires spatial and tem-
poral correlation of telemetry data (see Figure 1(c) for
the problem illustration and Figure 4(b) for its behavior).
SwitchPointer diagnoses the problem as follows.

First, the low-priority TCP flow C-E observes a large
throughput drop at around 26 ms (see Figure 4(b)) and
triggers an alert along with switchIDs and correspond-
ing epoch details. Then, the analyzer retrieves pointers
that match with epochIDs from S2 and S3, contacts F
and finds out the presence of middle-priority flow A-F
on S2 caused the contention in ∼25 ms. Since flow A-F
has middle-priority, the analyzer subsequently examines
pointers from switches (i.e., S1 and S2) along the path of
flow A-F in order to see whether or not the flow was af-
fected by some other flows. From a pointer from switch
S1, the analyzer comes to know that flow B-C made flow
A-F delayed, which in turn had flows A-F and C-E col-
lide. This part of debugging takes another 25 ms. Hence,
the whole process takes about 50 ms in total.

Of course, in a large datacenter network, debugging
this kind of problem can be more complex than the exam-
ple we studied here. Therefore, in practice the debugging
process may be an off-line task (with a pointer at a higher
level that covers many epochs) rather than an online task.
However, independent of whether it is an off-line or on-
line task, SwitchPointer showcases, with this example,
that it is feasible to diagnose network problems that need
both spatial and temporal correlation.

5.4 Load imbalance diagnosis
To demonstrate the way SwitchPointer works for diag-
nosing load imbalance, we create the same problematic
setup used in [28]. In that setup, a switch that is con-
figured to malfunction, forwards traffic unevenly to two
egress interfaces; specifically, packets from flows whose
size is less than 1 MB are output on one interface; oth-
erwise, packets are forwarded to the other interface. We
vary the number of flows from 4 to 96. Each flow is des-

 0
 2
 4
 6
 8

 10

64 128 ≥ 256Th
ro

ug
hp

ut
 (G

bp
s)

Packet size (Bytes)

OVS
SwitchPointer (k = 1)
SwitchPointer (k = 5)

Figure 9: For smaller packet sizes, SwitchPointer is unable
to sustain line rate due to overheads of perfect hash func-
tion. SwitchPointer is able to achieve line rate for a 10GE
interface for packets of size 256bytes and more.

tined to a different end-host. Using this setup, we can
understand how the number of end-hosts contacted by
the analyzer impacts SwitchPointer’s performance.

The debugging procedure is similar to that of other
problems we already studied. This problem is detected
by monitoring interface byte counts per second. The an-
alyzer fetches the pointers corresponding to the most re-
cent 1 sec. It then obtains the end-hosts in the pointers,
and sends them a query that computes a flow size dis-
tribution for each of the egress interfaces of the switch.
Finally, the analyzer finds out that there is a clean sep-
aration in flow size between two distributions. Figure 8
shows the diagnosis time of running a query as a function
of the number of end-hosts consulted by the analyzer.
The diagnosis time increases almost linearly as the an-
alyzer consults more end-hosts. Since this trend comes
from the same cause, we refer to §6.2 for understanding
individual factors that contribute to the diagnosis time.

6 SwitchPointer Evaluation

We prototype SwitchPointer on top of Open vSwitch [6]
over Intel DPDK [2]. To build a minimal perfect hash
function, we use the FCH algorithm [14] among others
in CMPH library [1]. We also implement the telemetry
data extraction and epoch extrapolation module (§4.2.1)
on OVS. The module maintains a list of flow records;
one record consists of the usual 5-tuple as flowID, a list
of switchIDs, a series of epoch ranges that correspond
to each switchID, byte/packet counts and a DSCP value
as flow priority. This flow record is initially maintained
in memory and flushed to a local storage, implemented
using MongoDB [5]. We now evaluate SwitchPointer in
terms of switch overheads and query performance under
real testbeds that consist of 96 servers.

462 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

 0
 2
 4
 6
 8

 10
 12

 1 2 3 4 5

M
em

or
y

(M
B

)

k (No. of levels)

(n = 1M, α = 20)
(1M, 10)
(100K, 20)
(100K, 10)

(a) Memory overhead

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

B
an

dw
id

th
 (M

bp
s)

k (No. of levels)

(n = 1M, α = 20)
(1M, 10)

(100K, 20)
(100K, 10)

(b) Bandwidth overhead

Figure 10: Overheads of SwitchPointer. At (n, α) in the leg-
end, n denotes the maximum number of IP addresses traced
by SwitchPointer, and α is an epoch duration in ms.

6.1 Switch overheads
To quantify switch overheads, we vary epoch duration
(α ms), the number of levels in a pointer (k), the number
of IP addresses (n) and packet size (p). We set up two
servers connected via a 10GE link. From one server, we
generate 100K packets, each of which has a unique desti-
nation IP (hence, 100K flows); we play those 100K pack-
ets repeatedly to the other server where SwitchPointer
is running using one 3.1 GHz CPU core. Under the
setup, we measure i) throughput, ii) the amount of mem-
ory to keep pointers on data plane, iii) bandwidth to of-
fload pointers from SRAM (data plane) to off-chip stor-
age (control plane), and iv) pointer recycling period.

Throughput. We compare SwitchPointer’s throughput
with that of vanilla OVS (baseline) over Intel DPDK. We
set k = 1 and 5. Here one pointer of SwitchPointer is
configured to record 100K unique end-hosts. We then
measure the throughput of SwitchPointer while varying
p. Our current implementation in OVS processes about
7 million packets per second. From Figure 9, we ob-
serve that OVS and both configurations of SwitchPointer
achieve a full line rate (∼9.99 Gbps) when p≥ 256 bytes.
In contrast, when p < 256 bytes, both OVS and Switch-
Pointer face throughput degradation. For example, when
p is 128 bytes, OVS achieves about 9.29 Gbps whereas
SwitchPointer’s throughput is about 22% less than that
of OVS. However, since an average packet size in data
centers is in general larger than 256 bytes (e.g., 850
bytes [10], median value of 250 bytes for hadoop traf-
fic [26]), the throughput of SwitchPointer can be accept-
able. We also envision that a hardware implementation
atop programmable switch [11, 19] would eliminate the
limitation of a software version.

Memory. Perfect hash functions account for about
70 KB (n = 100K) and 700 KB (n = 1M). In addition,

101

102

103

104

105

 10 20 30

P
oi

nt
er

 re
cy

cl
in

g
pe

rio
d

(m
s)

α (epoch duration in ms)

level 1
level 2

Figure 11: Recycling period of a pointer when k = 3.

n also governs the pointer’s size: 12.5 KB (n = 100K)
and 125 KB (n = 1M). Together SwitchPointer requires
to have 82.5 KB and 825 KB, respectively. These are the
minimum amount of memory requirement for Switch-
Pointer. Figure 10(a) shows the memory overhead; the
memory requirement increases in proportion to each of k
and α . When n = 1M, α = 10 and k = 3, SwitchPointer
consumes 3.45 MB; for n = 100K, it is only 345 KB.

Bandwidth. In contrast to memory overhead, the band-
width requirement of system bus between SRAM and
off-chip storage decreases as we increase k and α be-
cause larger values of those parameters make the pointer
flush less frequent. In particular, k has a significant
impact in controlling the bandwidth requirement; in-
creasing it drops the requirement exponentially. For
n = 1M and α = 10 (the most demanding setting in
Figure 10(b)), the bandwidth requirement reduces from
100 Mbps (k = 1) to 10 Mbps (k = 2).

The results in Figures 10(a) and 10(b) present a clear
tradeoff between memory and bandwidth. Depending
on the amount of available resources and user’s require-
ments, SwitchPointer provides a great flexibility in ad-
justing its parameters. For instance, if memory is a scarce
resource, it may be better to keep k ≤ 3 and α ≤ 10.

Pointer recycling period. Except for top level pointers,
pointers are recycled after all the pointers on the same
layer are used. The pointer recycling period at level h is
expressed as α(αh − 1) ms where 1 ≤ h < k. Figure 11
shows a tradeoff between α and k. As expected, the
recycling period exponentially increases as the level in-
creases (when α = 10, the recycling period of a pointer at
level 1 is 90 ms and it is 900 ms at level 2). Because too
small α may always let SwitchPointer end up accessing
a higher-level pointer, α should be chosen carefully.

6.2 Query performance
We now evaluate the query performance of Switch-
Pointer, which we compare with that of PathDump [28]

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 463

 0

 0.1

 0.2

 0.3

 0.4

1 8 16 32 64 96

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

No. of servers

Connection initiation
Request
Query execution
Response

(a) PathDump

 0

 0.1

 0.2

 0.3

 0.4

1 8 16 32 64 96

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
)

No. of servers

(b) SwitchPointer

Figure 12: Top-100 query response time. Most of Switch-
Pointer latency overheads are due to connection initiation
requests from the analyzer to the end-hosts and can be im-
proved with a more optimized RPC implementation.

(baseline). We run a query that seeks top-k flows in a
switch in our testbed where there are 96 servers. The key
difference between SwitchPointer and PathDump is that
SwitchPointer knows which end-hosts it needs to contact
but PathDump does not. Thus, PathDump executes the
query from all the servers in the network. To see the im-
pact of the difference, we vary the number of servers that
contain telemetry data of flows that traverse the switch.

From Figure 12 we observe that the response time
of SwitchPointer gradually increases as the number of
servers increases. On the other hand, PathDump always
has the longest response time as it has to contact all
96 servers anyway. Both of them only have a similar
response time when all the servers have relevant flow
records and thus SwitchPointer has to contact all of them.

A closer look reveals that most of the response time is
because of connection initiation for both SwitchPointer
and PathDump. In our current implementation, the an-
alyzer creates one thread per server to initiate connec-
tion when a query should be executed. This on-demand
thread creation delays the execution of query at servers.
This is an implementation issue, not a fundamental flaw
in design. Thus, it can be addressed with proper tech-
nique such as thread pull management. However, since
PathDump must contact all the servers regardless of
whether or not the servers have useful telemetry data,
it wastes servers’ resources. On the contrary, Switch-
Pointer only spends right amounts of server resources,
thus offering a scalable way of query execution.

7 Related Work
SwitchPointer’s goals are related to two key areas of re-
lated work on network monitoring and debugging.

End-host based approaches. These approaches [23,
28, 29, 12, 15, 22] typically exploit the fact that end-

hosts have ample resources and support for programma-
bility needed to monitor and diagnose spurious network
events. As discussed in §2, these approaches lack the
network visibility needed to debug a class of network
problems. SwitchPointer incorporates such visibility by
using switch memory as a directory service thus enabling
monitoring and debugging for a larger class of network
problems [8].

In-network approaches. In-network approaches to net-
work monitoring and debugging have typically focused
on designing novel switch data structures [30, 20, 21, 18,
7], abstractions [17, 24, 16, 25, 13] and even switch hard-
ware [24] to capture telemetry data at switches. While
interesting, these approaches are often limited by switch
and data plane resources required to store and query the
telemetry data. Moreover, as discussed in §2, existing
in-network approaches are insufficient to debug network
problems that require analyzing data captured across
multiple switches. SwitchPointer is able to overcome
these limitations of in-network approaches using limited
switch resources (4-6 MB of SRAM and 1-2 Mbps of
bandwidth between the data plane and the control plane)
by delegating the tasks of collecting and monitoring the
telemetry data to the end-hosts, and by using switch
memory as a distributed directory service.

8 Conclusion
SwitchPointer is a system that integrates the benefits of
end-host based approaches and in-network approaches to
network monitoring and debugging. SwitchPointer uses
end-host resources and programmability to collect and
monitor telemetry data, and to trigger spurious network
events. The key technical contribution of SwitchPointer
is to enable network visibility by using switch memory
as a “directory service” — SwitchPointer switches use a
hierarchical data structure to efficiently store pointers to
end-hosts that store relevant telemetry data. Using ex-
periments on real-world testbeds, we have shown that
SwitchPointer efficiently monitors and debugs a large
class of network problems, many of which were either
hard or even infeasible with existing designs.

Acknowledgments
We would like to thank anonymous NSDI reviewers
and our shepherd Mohammad Alizadeh for their insight-
ful comments and suggestions. We would also like
to thank Minlan Yu for many discussions during the
project. This work was in part supported by EPSRC
grants EP/L02277X/1 and EP/N033981/1, a Google fac-
ulty research award, and NSF grant F568379.

464 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References
[1] CMPH - C Minimal Perfect Hashing Library.

http://cmph.sourceforge.net/.

[2] DPDK: Data Plane Development Kit. http://
dpdk.org/.

[3] Flask. http://flask.pocoo.org/.

[4] In-band Network Telemetry. https:
//github.com/p4lang/p4factory/
tree/master/apps/int.

[5] MongoDB. https://www.mongodb.org/.

[6] Open vSwitch. http://openvswitch.org/.

[7] Sampled NetFlow. http://www.cisco.com/
c/en/us/td/docs/ios/12_0s/feature/
guide/12s_sanf.html, 2003.

[8] PathDump. https://github.com/
PathDump, 2016.

[9] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Srid-
haran. Data center TCP (DCTCP). In ACM SIG-
COMM, 2010.

[10] T. Benson, A. Anand, A. Akella, and M. Zhang.
Understanding Data Center Traffic Characteristics.
ACM SIGCOMM CCR, 40(1), Jan. 2010.

[11] P. Bosshart, G. Gibb, H.-S. Kim, G. Vargh-
ese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding Metamorphosis: Fast
Programmable Match-action Processing in Hard-
ware for SDN. In ACM SIGCOMM, 2013.

[12] H. Chen, N. Foster, J. Silverman, M. Whittaker,
B. Zhang, and R. Zhang. Felix: Implementing traf-
fic measurement on end hosts using program anal-
ysis. In ACM SIGCOMM SOSR, 2016.

[13] N. Foster, R. Harrison, M. J. Freedman, C. Mon-
santo, J. Rexford, A. Story, and D. Walker. Fre-
netic: A network programming language. In ACM
SIGPLAN ICFP, 2011.

[14] E. A. Fox, Q. F. Chen, and L. S. Heath. A Faster
Algorithm for Constructing Minimal Perfect Hash
Functions. In ACM SIGIR, 1992.

[15] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang,
D. Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z.-
W. Lin, and V. Kurien. Pingmesh: A Large-Scale

System for Data Center Network Latency Measure-
ment and Analysis. In ACM SIGCOMM, 2015.

[16] A. Gupta, R. Birkner, M. Canini, N. Feamster,
C. Mac-Stoker, and W. Willinger. Network mon-
itoring as a streaming analytics problem. In ACM
HotNets, 2016.

[17] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. I Know What Your Packet Did
Last Hop: Using Packet Histories to Troubleshoot
Networks. In USENIX NSDI, 2014.

[18] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y.-
C. Chen, and G. Zhang. Sketchvisor: Robust net-
work measurement for software packet processing.
In ACM SIGCOMM, 2017.

[19] V. Jeyakumar, M. Alizadeh, Y. Geng, C. Kim, and
D. Mazières. Millions of Little Minions: Using
Packets for Low Latency Network Programming
and Visibility. In ACM SIGCOMM, 2014.

[20] Y. Li, R. Miao, C. Kim, and M. Yu. FlowRadar: A
Better NetFlow for Data Centers. In USENIX NSDI,
2016.

[21] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and
V. Braverman. One sketch to rule them all: Re-
thinking network flow monitoring with univmon. In
ACM SIGCOMM, 2016.

[22] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the Data Plane
with Anteater. In ACM SIGCOMM, 2011.

[23] M. Moshref, M. Yu, R. Govindan, and A. Vahdat.
Trumpet: Timely and Precise Triggers in Data Cen-
ters. In ACM SIGCOMM, 2016.

[24] S. Narayana, A. Sivaraman, V. Nathan, P. Goyal,
V. Arun, M. Alizadeh, V. Jeyakumar, and C. Kim.
Language-Directed Hardware Design for Network
Performance Monitoring. In ACM SIGCOMM,
2017.

[25] S. Narayana, M. Tahmasbi, J. Rexford, and
D. Walker. Compiling Path Queries. In USENIX
NSDI, 2016.

[26] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C.
Snoeren. Inside the social network’s (datacenter)
network. In ACM SIGCOMM, 2015.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 465

http://cmph.sourceforge.net/
http://dpdk.org/
http://dpdk.org/
http://flask.pocoo.org/
https://github.com/p4lang/p4factory/tree/master/apps/int
https://github.com/p4lang/p4factory/tree/master/apps/int
https://github.com/p4lang/p4factory/tree/master/apps/int
https://www.mongodb.org/
http://openvswitch.org/
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
https://github.com/PathDump
https://github.com/PathDump

[27] P. Tammana, R. Agarwal, and M. Lee. CherryP-
ick: Tracing Packet Trajectory in Software-defined
Datacenter Networks. In ACM SIGCOMM SOSR,
2015.

[28] P. Tammana, R. Agarwal, and M. Lee. Simplifying
Datacenter Network Debugging with PathDump. In
USENIX OSDI, 2016.

[29] M. Yu, A. Greenberg, D. Maltz, J. Rexford,
L. Yuan, S. Kandula, and C. Kim. Profiling Net-
work Performance for Multi-tier Data Center Ap-
plications. In USENIX NSDI, 2011.

[30] M. Yu, L. Jose, and R. Miao. Software defined
traffic measurement with OpenSketch. In USENIX
NSDI, 2013.

[31] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu,
R. Mahajan, D. Maltz, L. Yuan, M. Zhang, B. Y.
Zhao, and H. Zheng. Packet-Level Telemetry in
Large Datacenter Networks. In ACM SIGCOMM,
2015.

466 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Introduction
	Motivation
	Too much traffic
	Too many red lights
	Traffic cascades
	Other SwitchPointer use cases

	SwitchPointer Overview
	SwitchPointer
	SwitchPointer switches
	Hierarchical data structure for pointers
	Maintaining updated pointers at line rate
	Embedding telemetry data

	SwitchPointer End-hosts
	Decoding telemetry data
	Event trigger and query execution

	SwitchPointer Analyzer

	SwitchPointer Applications
	Too much traffic
	Too many red lights
	Traffic cascades
	Load imbalance diagnosis

	SwitchPointer Evaluation
	Switch overheads
	Query performance

	Related Work
	Conclusion

