
This paper is included in the Proceedings of the
15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

Open access to the Proceedings of
the 15th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by USENIX.

Prophecy: Accelerating Mobile Page Loads
Using Final-state Write Logs

Ravi Netravali, MIT CSAIL; James Mickens, Harvard University

https://www.usenix.org/conference/nsdi18/presentation/netravali-prophecy

Prophecy: Accelerating Mobile Page Loads Using Final-state Write Logs
Ravi Netravali*, James Mickens†

*MIT CSAIL, †Harvard University

ABSTRACT

Web browsing on mobile devices is expensive in terms
of battery drainage and bandwidth consumption. Mobile
pages also frequently suffer from long load times due
to high-latency cellular connections. In this paper, we
introduce Prophecy, a new acceleration technology for
mobile pages. Prophecy simultaneously reduces energy
costs, bandwidth consumption, and page load times. In
Prophecy, web servers precompute the JavaScript heap
and the DOM tree for a page; when a mobile browser
requests the page, the server returns a write log that con-
tains a single write per JavaScript variable or DOM node.
The mobile browser replays the writes to quickly recon-
struct the final page state, eliding unnecessary interme-
diate computations. Prophecy’s server-side component
generates write logs by tracking low-level data flows be-
tween the JavaScript heap and the DOM. Using knowl-
edge of these flows, Prophecy enables optimizations that
are impossible for prior web accelerators; for example,
Prophecy can generate write logs that interleave DOM
construction and JavaScript heap construction, allowing
interactive page elements to become functional immedi-
ately after they become visible to the mobile user. Ex-
periments with real pages and real phones show that
Prophecy reduces median page load time by 53%, energy
expenditure by 36%, and bandwidth costs by 21%.

1 INTRODUCTION

Mobile browsing now generates more HTTP traffic than
desktop browsing [18]. On a smartphone, 63% of user
focus time, and 54% of overall CPU time, involves a
web browser [56]; mobile browsing is particularly im-
portant in developing nations, where smartphones are
often a user’s sole access mechanism for web con-
tent [12, 23]. So, mobile page loads are important to op-
timize along multiple axes: bandwidth consumption, en-
ergy consumption, and page load time. Reducing band-
width overhead allows users to browse more pages with-
out violating data plan limits. Reducing energy con-
sumption improves the overall lifetime of the device,
because web browsing is a significant drain on battery
power [8, 11, 48, 55, 56]. Improving page load time is
important because users are frustrated by pages that take
more than a few seconds to load [15, 17, 29, 50].

In this paper, we describe Prophecy, a new system for
improving all three aspects of a mobile page load. A
Prophecy web server precomputes much of the informa-
tion that a mobile browser would generate during a tra-
ditional page load. In particular, a Prophecy server pre-

computes the JavaScript state and the DOM state that
belongs to a loaded version of a frame. The precom-
puted JavaScript heap and DOM tree represent graphs
of objects; however, one of Prophecy’s key insights is
that this state should be transmitted to clients in the
form of write logs, not serialized graphs. At a high level,
a write log contains one write operation per variable
in the frame’s load-time state. By returning write logs
for each variable’s final state, instead of returning tra-
ditional, unprocessed HTML, CSS, and JavaScript, the
browser can elide slow, energy-intensive computations
involving JavaScript execution and graphical layout/ren-
dering. Conveniently, Prophecy’s write logs for a frame
are smaller than the frame’s original content, and can be
fetched in a single HTTP-level RTT. Thus, Prophecy’s
precomputation also decreases bandwidth consumption
and the number of round trips needed to build a frame.

Earlier attempts at applying precomputation to web
sites have suffered from significant practical limitations
(§6), in part because these systems used serialized graphs
instead of write logs. Serialized graphs hide data flows
that write logs capture; analyzing these data flows is
necessary to perform many optimizations. For example,
Prepack [16] cannot handle DOM state, and is unable to
elide computation for some kinds of common JavaScript
patterns. Shandian [51] does not support caching for the
majority of a page’s content, does not support immedi-
ate page interactivity (§3.5), and does not work on un-
modified commodity browsers; furthermore, Shandian
exposes all of a user’s cookies to a single proxy, rais-
ing significant privacy concerns. In contrast, Prophecy
works on commodity browsers, handles both DOM and
JavaScript state, preserves traditional same-origin poli-
cies about cookie security, and supports byte-granularity
caching (which is better than HTTP’s standard file-level
caching scheme). Prophecy can also prioritize the load-
ing of interactive state; this feature is important for sites
that load over high-latency links, and would otherwise
present users with rendered GUIs that may not actually
be functional. Many of Prophecy’s advantages are en-
abled by having fine-grained, variable-level understand-
ing of how a page load unfolds.

Experiments with a Nexus 6 phone, loading 350 web
pages on real WiFi and LTE networks, reveal Prophecy’s
significant benefits: median energy usage drops by 36%,
median bandwidth consumption decreases by 21%, and
median page load time decreases by 53% (2.8 seconds).
Prophecy also helps page loads on desktop browsers, re-
ducing median bandwidth usage by 18%, and median

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 249

page load time by 38% (0.8 seconds). These benefits
are 2.2×–4.6× better than those enabled by Polaris [36],
another state-of-the-art web accelerator. Thus, Prophecy
represents a significant advance in web optimization.

2 BACKGROUND

A single web page consists of one or more frames.
Each frame is defined by an associated HTML file. The
HTML describes a tree structure that connects individ-
ual HTML tags like <title> and <div>. Most kinds
of tags can embed visual style attributes directly in their
HTML text (e.g., <h1 style=’color:blue;’>).
However, best practice is for developers to place style
information in separate CSS files, so that a frame’s ba-
sic visual structure (as defined by HTML) can be de-
fined separately from a particular styling approach for
that structure.

Some tags, like <script> and , support a
src property which indicates the URL from which
the tag’s content should be downloaded. Alternatively,
the content for the tag can be inlined. For example,
a <script> tag can directly embed the associated
JavaScript code. CSS information can also be inlined us-
ing a <style> tag. Inlining a tag’s content eliminates
an HTTP-level RTT to fetch the associated data. How-
ever, inlining prevents a browser from caching the asso-
ciated object, since the browser cache interposes on ex-
plicit HTTP requests and responses, using the URL in
the HTTP request as the key for storing and retrieving
the associated object.

A frame uses JavaScript code to perform computa-
tion. JavaScript code is single-threaded and event-driven,
with managed memory allocation; so, between the ex-
ecution of event handlers, a frame’s only JavaScript
state resides in the managed heap. There are two
kinds of JavaScript objects: application-defined and na-
tive. Application-defined objects are composed of pure
JavaScript-level state. In contrast, native objects are
JavaScript wrappers around native code functionality
defined by the JavaScript engine, the HTML renderer,
or the network engine. Examples of native objects in-
clude RegExps (which implement regular expressions)
and XMLHttpRequests (which expose HTTP net-
work connections).

DOM nodes [34] are another important type of native
object. As the HTML parser scans a frame’s HTML, the
parser builds a native code representation of the HTML
tree; this tree is reflected into the JavaScript runtime
as the DOM tree. There is a 1-1 correspondence be-
tween HTML tags and DOM nodes. Using the DOM in-
terface, JavaScript code can programmatically add, re-
move, or update DOM nodes, changing the visual con-
tent which is shown to a user. DOM changes often re-
quire the browser to recalculate the layout and styles of

window&

document& a"

<head>" <body>"

<+tle>" <script>" <style>" <div>" "

b"

c()" d()"

<p>"" "
Figure 1: A simple frame’s JavaScript heap and DOM
tree. The JavaScript heap is red; the DOM tree is blue.

DOM nodes, and then repaint the DOM nodes. These
calculations are computationally expensive (and there-
fore energy-intensive as well) [8, 25, 27, 56].

As shown in Figure 1, native code objects like
the DOM tree can reference application-defined
objects, and vice versa. For example, a DOM
node becomes interactive via JavaScript calls like
DOMnode.addEventListener(eventType,
callback), where callback is an application-
defined JavaScript function which the browser will
invoke upon the reception of an event.

Browsers define two main types of client-side storage.
A cookie [5] is a small, per-origin file that can store up
to 4 KB of data. When a browser issues an HTTP re-
quest to origin X , the browser includes any cookie that
the browser stores on behalf of X . When the server re-
ceives the cookie, the server can generate personalized
content for the HTTP response. The server can also use
special HTTP response headers to modify the client-side
cookie. Cookies are often used to hold personal user in-
formation, so cookie sharing has privacy implications.

DOM storage is the other primary type of client-side
storage. DOM storage is also siloed per origin, but allows
each origin to store MBs of key/value data. DOM storage
can only be read and written by JavaScript code, and is
separate from the browser cache (which is automatically
managed by the browser itself).

3 DESIGN

Figure 2 shows the high-level design of Prophecy. Users
employ an unmodified browser to fetch and evaluate a
Prophecy page. A single page consists of one or more
frames; content providers who wish to accelerate their
frame loads must run server-side Prophecy code that han-
dles incoming HTTP requests for the relevant frames.
The server-side Prophecy code uses a headless browser1

to load the requested frame. The frame consists of in-
dividual objects like HTML files, JavaScript files, and
images; Prophecy rewrites HTML and JavaScript before
it is passed to the headless browser, injecting instru-

1A headless browser lacks a GUI, but otherwise performs the nor-
mal duties of a browser, parsing and rendering HTML, executing
JavaScript, and so on.

250 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Unmodified)
client))

browser)

b.com)

c.com)

a.com)

Prophecy)
rewriter)Instrumented)

HTML,)CSS,)
JavaScript)

Unmodified)
headless)
browser)

Prophecy)
log)

Prophecy)
frame)

generator)

Image)
prefetch)

list)

Final)DOM)
+)

CSS)styles)

Final)
JavaScript)
heap)

Prophecy)frame)loading)logic)

Figure 2: The Prophecy architecture.

mentation which tracks how the frame manipulates the
JavaScript heap and the DOM tree.

After the headless browser has loaded the frame,
Prophecy uses the resulting log to create a post-processed
version of the frame. The post-processed version con-
tains four items:
• a write log for the JavaScript heap, containing an

ordered set of writes that a client executes to recre-
ate the frame’s final heap state;
• a write log for the DOM, containing HTML tags

with precomputed styles, such that the client can
immediately resurrect the DOM with minimal lay-
out and rendering overheads;
• an image prefetch log, describing the images that

the browser should fetch in parallel with the con-
struction of the JavaScript heap and the DOM; and
• the Prophecy resurrection library, a small piece

of JavaScript code which orchestrates client-side re-
construction of the frame (§3.2), optimizing the re-
construction for a particular load metric (§3.5).

During a warm cache load (§3.3), the three logs are diffs
with respect to the client’s cached logs. By applying the
diffs and then executing the patched logs, a client fast-
forwards its view of the frame to the latest version.

3.1 Generating a Prophecy Frame
Prophecy enables web acceleration at the granularity of a
frame. However, web developers create the content for a
particular frame in a Prophecy-agnostic way, using a nor-
mal workflow to determine which objects (e.g., HTML,
CSS, JavaScript, and images) should belong in a frame.
The process of transforming the normal frame into a
Prophecy variant is handled automatically by Prophecy.
The transformation can happen online (i.e., at the time of
an HTTP request for the frame), or offline (i.e., before
such a request has arrived). In this section, we describe
the transformation process; later, we describe the trade-
offs between online and offline transformation (§3.4).

After fetching the frame’s HTML, Prophecy’s server-
side component loads the frame in a headless browser. As
the frame loads, Prophecy tracks the reads and writes that

the frame makes to the JavaScript heap and to the DOM.
Prophecy’s design is agnostic as to how this tracking
is implemented. Our concrete Prophecy prototype uses
Scout [36], a frame rewriting framework, to inject log-
ging instrumentation into the loaded frame, but Prophecy
is compatible with in-browser solutions that use a mod-
ified JavaScript engine and renderer to log the neces-
sary information. Regardless, once the frame has loaded,
Prophecy analyzes the reads and writes to create the three
logs which represent the Prophecy version of a frame.
The JavaScript write log: This log, expressed as a se-
ries of JavaScript statements, contains a single lhs =
rhs; statement for each JavaScript variable that was
live at the end of the frame load. The set of operations
in the write log is a subset of all writes observed in the
original log—only the final write to each variable in the
original log is preserved. The write log first creates top-
level global variables that are attached to the window
object (see Figure 1); then, the log iteratively builds ob-
jects at greater depths from the window object. The final
write log for the JavaScript heap does not create DOM
nodes, so any JavaScript object properties that refer to
DOM state are initially set to undefined.

The write log must pay special attention to func-
tions. In JavaScript, a function definition can be nested
within an outer function definition. The inner func-
tion becomes a closure, capturing the variable scope of
the outer function. To properly handle these functions,
Prophecy rewrites functions to explicitly expose their
closure scope [30, 32, 51]. At frame load time on the
server, this allows Prophecy’s write tracking to explic-
itly detect which writes involve a function’s closure state.
Later, when a mobile browser needs to recreate a clo-
sure function, the replayed write log can simply create
the function, then create the scope object, and then write
to the scope object’s variables.

The write log for the JavaScript heap does not con-
tain entries for native objects that belong to the DOM
tree. However, the write log does contain entries for the
other native objects in a frame. For example, the log
will contain entries for regular expressions (RegExps)
and timestamps (Dates). Generally speaking, the write
log creates native objects in the same way that it
creates normal objects, i.e., by calling lhs = new
ObjClass() and then assigning to the relevant proper-
ties via one or more statements of the form lhs.prop
= rhs. However, Prophecy does not attempt to capture
state for in-flight network requests associated with ob-
jects like XMLHttpRequests; instead, Prophecy waits
for such connections to terminate before initiating the
frame transformation process.
The DOM write log: Once Prophecy’s server-side
component has loaded a frame, Prophecy generates
an HTML string representation for the frame using

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 251

the browser’s predefined XMLSerializer interface.
Importantly, the HTML string that is returned by
XMLSerializer does not contain styling information
for individual tags; the string merely describes the
hierarchical tag structure. To extract the style infor-
mation, Prophecy iterates over the DOM tree, and
uses window.getComputedStyle(domNode)
to calculate each node’s style information.2 Prophecy
then augments the frame’s HTML string with explicit
style information for each tag. For example, a tag in
the augmented HTML string might look like <div
style=’border-bottom-color: rgb(255,
0, 0);border-left-color: rgb(255, 0,
0);’>. Prophecy modifies all CSS-related tags in the
augmented HTML string, deleting the bodies of inline
<style> tags, and setting the href attributes in
<link rel=’stylesheet’> tags to point to the
empty string (preventing a network fetch). Prophecy
also modifies the src attribute of <script> tags to
point to the empty string (since all JavaScript state will
be resurrected using the JavaScript write log).

The augmented HTML string is the write log for
the DOM, containing precomputed style information for
each DOM node. Note that the style data may have been
set by CSS rules, or by JavaScript code via the DOM
interface. Also, some of the DOM nodes in the write
log may have been dynamically created by JavaScript
(instead of being statically created by the frame’s orig-
inal HTML). Prophecy’s server-side component repre-
sents the DOM write log as a JavaScript string literal.

The image prefetch log: This log is a JavaScript array
that contains the URLs for the images in the loaded
frame. The associated tags may have been
statically declared in the frame’s HTML, or dynamically
injected via JavaScript. Note that the write log for the
DOM tree contains the associated tags; however,
as we explain in Section 3.2, the image prefetch list
allows the mobile browser to keep its network pipe busy
as the CPU is parsing HTML and evaluating JavaScript.

The Prophecy frame consists of the three logs from
above, and a small JavaScript library which uses the logs
to resurrect the frame (§3.2). Since the three logs are ex-
pressed as JavaScript variables, the Prophecy server can
just add those variables to the beginning of the resurrec-
tion library. So, the Prophecy frame only contains one
HTML tag—a single JavaScript tag with inline content.

3.2 Loading a Prophecy Frame
A mobile browser receives the Prophecy frame as an
HTTP response, and starts to execute the resurrection

2Prophecy uses additional logic to ensure that the extracted style
information includes any default tag styles that apply to the DOM node.
These default styles are not returned by getComputedStyle().

library. The library first issues asynchronous Image()
requests for the URLs in the image prefetch log. As the
browser fetches those images in the background, the res-
urrection library builds the frame in three phases.

Phase 1 (DOM Reconstruction): The resurrection li-
brary passes the DOM write log to the browser’s pre-
existing DOMParser interface. DOMParser returns a
document object, which is a special type of DOM node
that represents an entire DOM tree. The resurrection li-
brary updates the frame’s live DOM tree by splicing in
the <head> and <body>DOM subtrees from the newly
created document. After these splice operations com-
plete, the entire DOM tree has been updated; note that
the browser has avoided many of the traditional compu-
tational overheads associated with layout and rendering,
since the resurrection library injected a pre-styled DOM
tree which already contains the side effects of load-time
JavaScript calls to the DOM interface. As the browser
receives the asynchronously prefetched image data, the
browser injects the pixels into the live DOM tree as
normal, without assistance from the resurrection library;
note that the browser will not “double-fetch” an image if,
at DOM reconstruction time, the browser encounters an
 tag whose prefetch is still in-flight.

Phase 2 (JavaScript Heap Reconstruction): Next,
the resurrection library executes the assignments in the
write log for the JavaScript heap. Each write operation is
just a regular JavaScript assignment statement in the res-
urrection library’s code. Thus, the mobile browser natu-
rally recreates the heap as the browser executes the mid-
dle section of the library.

Phase 3 (Fixing Cross-references): At this point, the
DOM tree and the JavaScript heap are largely complete.
However, DOM objects can refer to JavaScript heap ob-
jects, and vice versa. For example, an application-defined
JavaScript object might have a property that refers to
a specific DOM node. As another example, the event
handler for (say) a mouse click is an application-defined
JavaScript function that must be attached to a DOM
node via DOMnode.addEventLister(evtType,
func). In Phase 3, the resurrection library fixes these
dangling references using information in the JavaScript
write log. During the initial logging of reads and
writes in the frame load (§3.1), Prophecy assigned a
unique id to each JavaScript object and DOM node that
the frame created. Now, at frame reconstruction time
on the mobile browser, the resurrection library uses
object ids to determine which object should be used
to resolve each dangling reference. As hinted above,
the library must resolve some dangling references in
DOM nodes by calling specific DOM functions like
addEventListener(). The library also needs to

252 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

invoke the relevant timer registration functions (e.g.,
setTimeout(delay, callback)) so that timers
are properly resurrected.3

At the end of Phase 3, the frame load is complete, having
skipped intermediate JavaScript computations, as well
as intermediate styling and layout computations for the
DOM tree. A final complication remains: what happens
if, post-load, the frame dynamically injects a new DOM
node into the DOM tree? Remember that Prophecy’s
write log for the DOM tree contains no inline <style>
data, nor does it contain href attributes for <link
rel=’stylesheet’> tags (§3.1). So, as currently
described, a Prophecy frame will not assign the proper
styles to a dynamically created DOM node.

To avoid this problem, the resurrection library contains
a string which stores all of the frame’s original CSS data.
The resurrection code also shims [31] DOM interfaces
like DOMnode.appendChild(c) which are used to
dynamically inject new DOM content. Upon the invoca-
tion of such a method, the Prophecy shim examines the
frame’s CSS rules (and the live style characteristics of the
DOM tree) to apply the appropriate inline styles to the
new DOM node. After applying those styles, Prophecy
can safely inject the DOM node into the DOM tree.

3.3 Caching, Personalization, and Cookies
To enable frame content to be personalized, we extend
the approach from Sections 3.1 and 3.2. At a high level,
when a server receives an HTTP request for a frame, the
server looks inside the request for a cookie that bears
a customization id. If the server does not find such a
cookie, then the server assumes that the mobile browser
has a cold cache; in this case, the server returns the
Prophecy frame as described in Section 3.1, placing a
cookie in the HTTP response which describes the frame’s
customization id. If the server does find a customiza-
tion id in the HTTP request, then the server assumes that
the client possesses cached write logs for the frame. The
server computes the write logs for the latest customiza-
tion version of the frame. The server then calculates the
diffs between the latest write logs and the ones that are
cached on the phone. Finally, the server returns the diffs
to the mobile browser. The mobile browser applies the
diffs to the cached write logs, and then recreates the
frame as described in Section 3.2.

To efficiently track the client-side versions of a frame,
the server must store some metadata for each frame:
• The server stores a baseline copy of the three write

logs for a frame. Denote those logs baselineJS,
baselineHT ML, and baselineimages. These logs cor-

3During the instrumented frame load on the server, Prophecy shims
timer registration interfaces to track timer state [31].

respond to a default version of the frame that has
not been customized.
• For each version v of the frame that has been

returned to a client, the server stores three
diffs, namely, diff (baselineJS,customizationv,JS),
diff (baselineHT ML,customizationv,HT ML), and
diff (baselineimages,customizationv,images). The
server stores these diffs in a per-frame table, using
v as the key.

“Customization” has a site-specific meaning. For exam-
ple, many sites return the same version of a frame to all
clients during some epoch tstart to tend . In this scenario, a
new version is generated at the start of a new epoch. In
contrast, if a site embeds unique, per-user content into a
frame, then a version corresponds to a particular set of
write logs that were sent to a particular user.

In the cold cache case, the server generates the appro-
priate write logs for the latest frame version v, and then
diffs the latest logs against the baseline logs. The server
stores the diffs in diffTable[v], and then returns the lat-
est write logs to the client as in Section 3.1, setting the
customization id in the HTTP response to v. The client
rebuilds the frame as in Section 3.2, and then stores the
three write logs in DOM storage.

In the warm cache scenario, the server extracts v
from the HTTP request, finds the associated diffs in
diffTable[v], and then applies the diffs to the baseline
versions of the write logs. This allows the server to
reconstruct the write logs that the client possesses for
the old copy of v. The server then generates the write
logs for the latest incarnation of v, and diffs the latest
write logs against the client-side ones. The server updates
diffTable[v] appropriately, and then returns the diffs to the
mobile browser. The mobile browser reads the cached
write logs from DOM storage, applies the diffs from the
server, and then rebuilds the frame using the latest write
logs. Finally, the browser caches the latest write logs in
DOM storage.

Note that the mobile phone and the server can get
out-of-sync with respect to cache state. For example,
the server might reboot or crash, and lose its per-frame
diffTables. The user of the mobile browser could also
delete the phone’s DOM storage or cookies. Fortunately,
desynchronization is only a performance issue, not a cor-
rectness one, because desynchronization can always be
handled by falling back to the cold cache protocol. For
example, suppose that a client clears its DOM storage,
but does not delete its cookie. The server will send diffs,
but then the client-side resurrection library will discover
that no locally-resident write logs exist. The library will
delete the cookie, and then refresh the page by call-
ing window.location.reload(), initiating a cold
cache frame load.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 253

To minimize the storage overhead for diffTable, each
frame’s baseline should share a non-trivial amount of
content with the various customized versions of the
frame. Choosing good baselines is easy for sites in
which, regardless of whether a user is logged in, the bulk
of the site content is the same. For frames with large
diffs between customized versions, and a large number
of versions, servers can minimize diffTable overhead by
breaking a single frame into multiple frames, such that
highly-customized content lives in frames that are al-
ways served using the cold cache protocol (and store no
server-side information in a diffTable). Less-customized
frames can enable support for warm Prophecy caches,
and communicate with the highly-dynamic frames using
postMessage().

For frames that enable the warm-cache protocol, the
server may have to periodically update the associated
baselines, to prevent diffs in diffTable from growing too
large as the latest frame content diverges from that in the
baselines. One simple pruning strategy is to generate a
new baseline once the associated diffs get too large in
terms of raw bytes, or as a percentage of the baseline ob-
ject’s size. After updating a baseline, the server must ei-
ther discard the associated diffs, or recalculate them with
respect to the new baseline.

3.4 Online versus Offline Transformation
Prophecy’s server-side code transforms a frame’s
HTML, CSS, JavaScript, and images into three write
logs. The transformation process can happen online or
offline. In the online scenario, the server receives an
HTTP request for a frame, and then loads and post-
processes the frame synchronously, generating the asso-
ciated write logs on-the-fly. In the offline scenario, the
server periodically updates the write logs for each frame,
so that, when a client requests a frame, the server already
possesses the relevant write logs.

Each approach has trade-offs. Offline processing re-
duces the client-perceived fetch time for the frame, since
the instrumented version of the regular frame does not
have to be analyzed in real time. However, offline pro-
cessing introduces problems of scaling and freshness if
each frame has many customized versions, or those ver-
sions change frequently. A frame with many customized
versions will require the server to generate and store
many different sets of write log diffs, some of which
may never be used if clients do not issue fetches for
the associated frame versions. If versions change fre-
quently, then the server must either frequently regener-
ate diffs (thereby increasing CPU overheads), or regener-
ate diffs less often (at the cost of returning stale versions
to clients). In contrast, online processing guarantees that
clients receive the latest version of a frame. Online pro-
cessing also avoids wasted storage dedicated to diffs that

A

B C

I%HGFE

D

J%

Figure 3: An example of how Prophecy determines the
interactive DOM subtree to build before the rest of the
DOM nodes are recreated. The shaded circles represent
DOM nodes that are 1) above-the-fold, and/or 2) are ma-
nipulated by the event handlers of above-the-fold DOM
nodes. The interactive subtree resides above the red line.

are never fetched. A single page that contains multiple
frames can use the most appropriate transformation pol-
icy for each frame.

3.5 Defining Load Time
To fully load a traditional frame, a browser must fetch
and evaluate the frame’s HTML, and then fetch and
evaluate the external objects that are referenced by
that HTML. The standard definition for a frame’s load
time requires all of the external objects to be fetched
and evaluated. A newer load metric, called Speed In-
dex [21], measures how quickly a browser renders a
frame’s above-the-fold4 visual content. Using write logs,
Prophecy improves frame-load time (FLT) by eliding
unnecessary intermediate computations and inlining all
non-image content. However, as described in Section 3.2,
Prophecy completely renders the DOM before con-
structing the JavaScript heap and then patching cross-
references between the two. So, Prophecy gives higher
priority to visual content, much like Speed Index (SI).

Both FLT and SI have disadvantages. FLT does not
capture the notion that users desire above-the-fold con-
tent to appear quickly, even if below-the-fold content
is still loading. However, at FLT time, all of a frame’s
content is ready; in contrast, SI ignores the fact that a
visible DOM element does not become interactive un-
til the element’s JavaScript event handler state has been
loaded. The difference between visibility and interactiv-
ity is especially apparent when a web page loads over
a high-latency link; in such scenarios (which are com-
mon on mobile devices), slow-loading JavaScript can
lead to <button> tags that do nothing when clicked, or
<input> tags that do not offer autocompletion sugges-
tions upon receiving user text. The median page in our
test corpus had 113 event handlers for GUI interactions,
so optimizing for interactivity is useful for many mobile
pages.

To optimize for interactivity, Prophecy can explic-

4Above-the-fold content refers to the visual portion of a frame that
lies within the browser GUI at the beginning of a frame load, before the
user has scrolled down.

254 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

itly target a newer load metric called Ready Index [37].
Ready Index (RI) declares a frame to be ready when its
above-the-fold content is both visible and interactive. To
optimize for RI, Prophecy feeds its server-side log of
reads and writes (§3.1) to Vesper [37]. Vesper uses load-
time read/write logs, as well as read/write logs generated
by active, Vesper-driven triggering of event handlers, to
identify the frame’s interactive state. The interactive state
consists of:
• the above-the-fold DOM nodes,
• the JavaScript state which defines the event handlers

for above-the-fold DOM nodes,
• the DOM state and the JavaScript state which is ma-

nipulated by those event handlers.
Given the DOM nodes in a frame’s interactive state,
Prophecy finds the minimal HTML subtree, rooted by the
top-level <html> tag, which contains all of the interac-
tive DOM nodes. Figure 3 shows an example of this in-
teractive DOM subtree. Prophecy then represents a frame
using two HTML write logs (one for the interactive sub-
tree, and one for the remaining HTML subtrees), and
two JavaScript write logs (one for the state which sup-
ports above-the-fold interactive DOM nodes, and another
write log for the remaining JavaScript state). Prophecy
keeps a single image prefetch log, but places above-the-
fold images first in the log. To load a frame on the client
browser, Prophecy first renders the above-the-fold DOM
nodes, and then builds the JavaScript state which sup-
ports interactivity for those DOM nodes. After patching
cross-references, the frame is interactive. Prophecy then
attaches the below-the-fold DOM nodes, creates the re-
maining JavaScript state, and patches a final set of cross-
references.

By optimizing for RI, Prophecy can minimize the like-
lihood that attempted user interactions will fail. How-
ever, Prophecy cannot eliminate all such problems. For
example, if a user issues GUI events before the first
set of write logs are applied, the events may race with
the browser’s creation of above-the-fold DOM elements
and interactive JavaScript state. Such race conditions are
present during regular, non-Prophecy page loads [40]; by
optimizing for RI, Prophecy reduces the size of the race
window, but does not completely eliminate it.

3.6 Privacy
A frame from origin X may embed content from a differ-
ent origin Y . For example, X’s frame may embed images
or JavaScript from Y . When the mobile browser sends
an HTTP request for X’s frame, the browser will only
include cookies from X , since the URL in the HTTP re-
quest has an origin of X . As Prophecy’s server-side code
loads the frame and generates the associated logs (§3.1),
the server from X will fetch content from Y . However, in
the HTTP requests that the server sends to Y , the server

will not include any of Y ’s cookies that reside on the
mobile browser—the server never received those cookies
from the client. This policy amounts to a “no third-party
cookie” approach. Variants of this policy are already be-
ing adopted by some browsers for privacy reasons, since
third party cookies enable users to be tracked across dif-
ferent sites [43]. So, in Prophecy, a server from X only
sees cookies that belong to X , and a frame load does not
send third party cookies to any external origin Y .

3.7 Discussion
Prophecy is compatible with transport protocols like
HTTP/2 [26] and QUIC [7] that pipeline HTTP requests,
leverage UDP instead of TCP to transmit data, or other-
wise try to optimize a browser’s HTTP-level network uti-
lization. Prophecy is also compatible with proxy-based
web accelerators like compression proxies [1, 44] or
split-browsers [3, 38, 39]. From the perspective of these
technologies, the content in a Prophecy frame is no dif-
ferent than the content in a non-Prophecy frame.

Prophecy is also compatible with HTTP/2’s server-
push feature [7]. Server-push allows a web server to
proactively send an HTTP object to a browser, pre-
warming the browser’s cache so that a subsequent fetch
for the object can be satisfied locally. Prophecy-enabled
frames use cookies to record the versions of locally-
DOM-cached frames (§3.3). So, imagine that a web
server would like to push frames. When the server re-
ceives an HTTP request for frame fi, the server can in-
spect the cookies in the request and determine, for some
different frame f j to push, whether to push a cold-cache
or warm-cache version of the frame.

A Prophecy web server does not track any informa-
tion about a client’s DOM storage (besides diffs for the
write logs that reside in that DOM storage). Since the
server does not track client-side DOM storage, the final
result of a frame load should not depend on the client’s
non-write-log DOM storage—this state will not be avail-
able to the server-side frame load that is used to generate
write logs. To the best of our knowledge, all web accel-
erators that use server-side load analysis [3, 38, 39, 51]
assume empty client-side DOM storage, since mirroring
all of that storage would be expensive, and developer best
practice is to use DOM storage as a soft-state cache.

4 IMPLEMENTATION

On the server-side, Prophecy uses a modified version
of Scout [36] to rewrite frame content and track reads
and writes to the JavaScript heap and the DOM tree.
Prophecy extends Scout’s JavaScript translator to rewrite
closure scopes (so that Prophecy can efficiently resurrect
closure functions). Prophecy also extends the translator
to log the classes of objects created via the new operator

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 255

(so that Prophecy can determine the appropriate instance
objects to create in the write log for the JavaScript heap).

When rewriting a frame’s HTML, Prophecy injects
JavaScript source code for a timer that fires in response
to the load event. This timer serializes the DOM as
described in Section 3.1, using XMLSerializer to
generate the basic HTML string, and using Beautiful
Soup [41] to parse and edit the string, e.g., to inject
precomputed CSS styles, and to extract the image src
URLs to place in the image prefetch log.

To support client-side caching, Prophecy servers use
the google-diff-patch-match library [20] to
generate diffs. The scaffolding for Prophecy’s server-side
logic is implemented as a portable CGI script for Apache.

On the client-side, Prophecy’s resurrection
code is 1.3 KB in size. The code uses the
google-diff-patch-match library [20] to
perform diffing, and a modified version of the
CSSUtilities framework [28] to apply styles
to dynamically-created DOM nodes (§3.2).

5 RESULTS

We evaluated Prophecy in both mobile and desktop set-
tings. Mobile page loads were performed on a Sony Xpe-
ria X (1.8 GHz hexa-core processor) and a Nexus 6
smartphone (2.7 GHz quad core processor); each phone
had 3 GB of RAM, and ran Android Nougat v7.1.1 and
Chrome v61. Prophecy’s performance was similar on
both phones, so we only show results for the Nexus 6
device. Desktop page loads were performed on a Lenovo
M91p desktop running GNU Linux 14.04. The desktop
machine had 8 processors with 8 GB of RAM, and used
Google Chrome v60 to load pages.

To create a reproducible test environment, we used
Mahimahi [38] to record the content in the Alexa Top 350
pages [2], and later replay that content to test browsers.
For pages which defined both a mobile version and a
desktop version, we recorded both. Later, at experiment
time, Mahimahi always returned the desktop version of a
page to the desktop browser; when possible, Mahimahi
returned the mobile version of a page to the mobile
browser. At replay time, Mahimahi used HTTP/2 for
pages that employed HTTP/2 at recording time. Server-
push events that were seen at recording time were applied
during replay.

The desktop machine hosted Mahimahi’s replay envi-
ronment. For experiments that involved desktop brows-
ing, all web traffic was forwarded over emulated
Mahimahi networks with link rates in {12,25,50}Mbps
and RTTs in {5,10,25} ms. We observed similar trends
across all of these desktop network conditions, so we
only present results for the 25 Mbps link with RTTs of
10 ms.

The mobile phone was connected to the desktop via
both USB tethering and a live wireless connection (Ver-
izon LTE or WiFi) with excellent signal strength. The
desktop ran the test driver, initiating mobile page loads
by sending commands through the USB connection.
HTTP and DNS traffic between the phone and Mahimahi
used the LTE or WiFi link. The live LTE connection had
RTTs of roughly 75 ms, and the live WiFi connection had
RTTs of roughly 15 ms.

In each of our experiments, we considered two ver-
sions of Prophecy: an offline version in which Prophecy
frames were computed before clients requested them,
and an online version in which the write logs were com-
puted on-demand, in the critical path of each HTTP re-
quest (§3.4). Throughout this section, we refer to the
offline version as Prophecy, and the online version as
Prophecy-online. We compared the versions to default
Chrome page loads, and to page loads that used Po-
laris [36], a state-of-the-art web accelerator. Polaris uses
a client-side JavaScript library to schedule the fetching
and evaluation of a page’s objects. Polaris improves page
load time through parallel use of the CPU and the net-
work, and by prioritizing the fetching of objects along
the dynamic critical path in a page’s dependency graph.
However, Polaris does not inline content or apply pre-
computation.

We evaluated each system on several metrics. Page
load time (PLT) is the page-level equivalent of FLT
(§3.5). In other words, PLT measures the time required
for a browser to fetch all of the content in all of a
page’s frames. We evaluated Prophecy using PLT in-
stead of FLT because PLT better captures a human’s
notion of a page being loaded when all of the page’s
frames are loaded. To measure PLT, we recorded the
time between the JavaScript navigationStart and
onload events. RI was computed using Vesper [37],
and SI was measured using Speedline [24]. In each ex-
periment, we loaded every page in our corpus 5 times
for each system listed above, recording the median value
for each load metric. Unless otherwise specified, all ex-
periments used cold browser caches and DNS caches. In
experiments with a mobile phone, energy savings were
recorded by directly connecting the phone’s battery leads
to a Monsoon power monitor [33].

5.1 Reducing PLT
Figure 4 illustrates Prophecy’s ability to reduce PLT for
both mobile devices and desktop machines. Prophecy’s
benefits are the largest on mobile devices; for example,
when using a phone to load a page over an LTE net-
work, Prophecy reduces median PLT by 53%, and 95th
percentile PLT by 67%. Prophecy helps mobile devices
more for two reasons.

256 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Mobile: 4G LTE cellular network (b) Mobile: Residential WiFi network (c) Desktop: 25 Mbps link, 10 ms RTT
Figure 4: Distribution of page load times with Prophecy, Prophecy-online, Polaris, and a default browser.

• First, mobile devices suffer from higher CPU over-
heads for page loads, compared to desktop ma-
chines [35, 52]. So, Prophecy’s elision of interme-
diate computation (including reflows and repaints)
is more impactful on mobile devices.
• PLT is much more sensitive to network latency than

to network bandwidth [1, 6, 46, 47]. Cellular links
typically exhibit higher latencies than wired or WiFi
links. Prophecy’s aggressive use of inlining allows
clients to fetch all frame content in a single HTTP-
level RTT. Such RTT elision unlocks disproportion-
ate benefits in cellular settings.

That being said, Prophecy enables impressive benefits for
desktop browsers too—median PLT decreased by 38%,
and 95th percentile PLT reduced by 45%.

Polaris elides no computation; in fact, client-side com-
putational costs are slightly higher due to the addition of
the JavaScript library which orchestrates object fetches
and evaluation. Polaris also inlines no content. So, even
though Polaris can keep the client’s network pipe full,
clients must fetch the same number of objects as in a
normal page load. Since browsers limit the number of
parallel HTTP requests that a page can make, Polaris
generally cannot overlap all requests, leading to serial
HTTP-level RTTs to build a frame. In contrast, Prophecy
uses a single HTTP-level RTT to build a frame. As a re-
sult of these differences, Polaris provides fewer benefits
than Prophecy. For example, on a mobile browser with
an LTE connection, Polaris reduces median PLT by 23%,
whereas Prophecy reduces median PLT by 53%.

As expected, PLT improvements with Prophecy-
online are lower than with Prophecy, since Prophecy-
online generates a frame’s write logs on-demand, upon
receiving a request for that frame. However, Prophecy-
online still reduces median PLT by 49% on the LTE con-
nection.

5.2 Reducing Bandwidth
Prophecy’s server-side frame transformations have dif-
ferent impacts on the size of JavaScript state, HTML
state, and image state:
• A Prophecy frame contains a write log which gener-

ates the final, precomputed JavaScript heap for the

Setting System Bandwidth Savings (KB)
Mobile Prophecy 262 (587)
Mobile Polaris -37 (-5)
Desktop Prophecy 336 (695)
Desktop Polaris -41 (-12)

Table 1: Median (95th percentile) per-page bandwidth
savings with Prophecy and Polaris. The baseline was the
bandwidth consumed by a normal page load. The aver-
age mobile page in our test corpus was 1519 KB large;
the average desktop page was 2388 KB in size.

frame. The JavaScript write log is typically smaller
than the frame’s original JavaScript source code;
although the write log must recreate the original
function declarations, the log can omit intermediate
function invocations that would incrementally cre-
ate frame state.
• The HTML write log for a frame consists of an aug-

mented HTML string that contains precomputed,
inline styles for the appropriate tags. The HTML
write log tends to be larger than a frame’s origi-
nal HTML string, since traditional CSS declarations
can often cover multiple tags with a single CSS rule.
• The image prefetch log does not change the size of

images. The log is simply a list of image URLs.
Table 1 depicts the overall bandwidth savings that
Prophecy enables; note that bandwidth savings are iden-
tical for Prophecy and Prophecy-online. Table 1 shows
that Prophecy’s large reductions in JavaScript size out-
weigh the small increases in HTML size, reducing over-
all bandwidth requirements by 21% in the mobile setting,
and 18% in the desktop setting. In contrast, Polaris in-
creases page size by a small amount. This is because a
Polaris page consist of a page’s original objects, plus the
client-side scheduler stub and scheduler metadata.

5.3 Energy savings
Figure 5 demonstrates that Prophecy significantly re-
duces the energy consumed during a mobile page load.
Median reductions in per-page energy usage are 36%
on an LTE network, and 30% on a WiFi network. For
both networks, Prophecy eliminates the same amount

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 257

Figure 5: Percent reduction in per-page energy usage
with Prophecy, Prophecy-online, and Polaris, relative to
a default page load. Bars show median values, and error
bars range from the 25th to the 75th percentiles. Results
were collected using a Nexus 6 smartphone.

of browser computation, the same number of HTTP-
level RTTs, and the same amount of HTTP-level trans-
fer bandwidth. However, LTE hardware consumes more
energy in the active state than WiFi hardware [46]; thus,
reducing network traffic saves more energy on an LTE
network than on a WiFi network.

Prophecy provides more energy reductions than
Prophecy-online—36% versus 31% for LTE, and 30%
versus 23% for WiFi. The reason is that, in Prophecy-
online, server-side request handling takes longer to com-
plete. As a result, the client-side phone must keep its net-
work hardware active for a longer period.

Polaris reduces energy usage by 14% on the LTE net-
work, and 10% on the WiFi network. Polaris keeps the
client’s network pipe full, decreasing the overall amount
of time that a phone must draw down battery power to
keep the network hardware on. However, because Polaris
elides no computation, Polaris cannot save as much en-
ergy as Prophecy.

5.4 Reductions in SI and RI
As described in Section 3.5, SI and RI only consider the
loading status of above-the-fold state. SI tracks the visual
rendering of above-the-fold content, whereas RI consid-
ers both visibility and functionality. Our exploration of
SI used Prophecy’s default configuration. In contrast, the
RI experiments used the version of Prophecy which ex-
plicitly optimizes for Ready Index (§3.5).

Speed Index: As shown in Figures 6a and 6b,
Prophecy actually reduces SI more than it reduces PLT.
For mobile browsing over an LTE network, the median
SI reduction is 61%; for desktop browsing over a 25
Mbps link with a 10 ms RTT, the reduction is 52%.
Recall that, by default, a Prophecy frame reconstructs
the entire DOM tree before resurrecting the JavaScript
heap (§3.1). Prioritizing DOM construction results in
better SI scores, since the browser totally dedicates the
CPU to rendering pre-computed HTML before replay-
ing the JavaScript write log. As with prior experiments,
the synchronous computational overheads of Prophecy-

online result in slightly worse performance compared to
Prophecy—57% SI reduction versus 61% in the mobile
scenario, and 45% SI reduction versus 52% in the desk-
top setting. However, the benefits are still significant, and
Prophecy-online has several advantages over Prophecy
with respect to server-side overheads (§3.4).

In the mobile setting, Polaris only reduces SI by a me-
dian of 10%. In the desktop setting, Polaris actually in-
creases SI by 2%. The reason is that Polaris’ client-side
scheduler is ignorant of which objects correspond to in-
teractive state—Polaris simply tries to load all objects as
quickly as possible. Reducing overall PLT is only weakly
correlated with reducing SI.

Ready Index: Figures 6c and 6d show that when
Prophecy explicitly optimizes for RI (§3.5), Prophecy re-
duces median RI by 43% in a mobile browsing scenario,
and 40% in a desktop setting. User studies indicate that,
when users load a page with the expectation of interac-
tion, optimizing for RI leads to happier users [37]. Of
course, not all sites have interactive content, or a typical
engagement pattern that involves immediate user input.
These sites can use the standard Prophecy configuration
and enjoy faster PLTs and SIs.

5.5 The Sources of Prophecy’s Benefits
Prophecy optimizes a frame load in several ways:
• Image prefetching: The resurrection library issues

asynchronous fetches for images before construct-
ing the DOM tree and the JavaScript heap. The
asynchronous fetches keep a client’s network pipe
busy as the CPU works on constructing the rest of
the frame.
• CSS precomputation: The DOM write log contains

precomputed CSS styles for all DOM nodes, in-
cluding ones that were dynamically injected by
JavaScript code. Precomputation reduces client-side
CPU overheads for styling, layout, and rendering.
• JavaScript write log: By only writing to each

JavaScript variable once, a browser avoids wasting
time and energy on unnecessary JavaScript compu-
tations.
• All content inlined: Prophecy consolidates all of the

frame content into a single inlined JavaScript file
which stores all of the information that is needed to
rebuild the frame. Thus, a browser can fetch the en-
tire frame in one HTTP-level round trip, as opposed
to needing multiple RTTs to fetch multiple objects.

To better understand how the individual optimizations af-
fect Prophecy’s performance, we loaded each page in our
corpus with a subset of the optimizations enabled. Our
experiments considered mobile browsing using LTE or
WiFi networks; we also tested a desktop browser with a
25 Mbps, 10 ms RTT link. In all scenarios, we used a
cold cache and measured PLT. In the mobile settings, we

258 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) 4G LTE cellular network (b) 25 Mbps link, 10 ms RTT (c) 4G LTE cellular network (d) 25 Mbps link, 10 ms RTT
Figure 6: Evaluating Prophecy using Speed Index and Ready Index.

(a) Breakdown of Prophecy’s page load time reductions.

(b) Breakdown of Prophecy’s energy savings.
Figure 7: Breakdown of the performance benefits en-
abled by individual optimizations. Optimization bars be-
gin with image prefetching, and incrementally add new
optimizations until “All content inlined,” which repre-
sents Prophecy’s default configuration.

also measured energy usage. Note that Prophecy’s band-
width savings are primarily from the JavaScript heap log;
image prefetching and CSS precomputation do not have
a significant impact on bandwidth usage (§5.2).

As shown in Figure 7, Prophecy’s largest reductions in
page load time and energy consumption are enabled by
the JavaScript write log optimization. The next most crit-
ical optimization is content inlining; saving round trips
not only reduces load time, but also reduces the amount
of time that a mobile device must actively listen to the
network (thereby reducing energy consumption).

5.6 Server-side overhead
When a Prophecy-online server receives a request for
a frame, the server must load the requested frame
and generate the necessary write logs on-demand.
If the client has a warm cache, then the server must
also calculate write log diffs on-demand. Figure 8

Figure 8: Prophecy-online’s impact on server response
throughput.

depicts the impact that these online calculations have
on server response throughput. We used the Apache
benchmarking tool ab [4] to scale client load and
measure response times. The server and ab ran on the
same machine, to isolate the computational overheads
of Prophecy-online. We evaluated five server-side
configurations: a default server which returned a
frame’s normal top-level HTML; Prophecy cold cache
and Prophecy cold cache v100000, in which
clients had cold caches, and the server had either
an empty diffTable or one that had 100,000 54
KB entries; and Prophecy warm cache v100 and
Prophecy warm cache v100000, in which clients had
warm caches and the server had the indicated number
of diffTable entries. For warm cache experiments,
we orchestrated ab so that all frame versions were
accessed with an equal random likelihood. In all ex-
periments, the baseline frame was the top-level frame
in the amazon.com homepage, and the diff was an
empirically-observed diff from two snapshots of the
frame that were captured a day apart.

As shown in Figure 8, the performance differences
grow as client load grows. Up to 6,500 concurrent re-
quests, all server variants are within 12.1% of each other,
but at 10,000 concurrent requests, the difference between
the default server and the warm-cache servers is 31.4%.
Performance overheads with Prophecy are mostly due to
online write log generation. Also note that the CPU over-
head of diffing, not the memory overhead of a diffTable,
leads to the degraded response throughput.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 259

(a) Mobile: 4G LTE cellular network

(b) Desktop: 25 Mbps link, 10 ms RTT
Figure 9: Distribution of warm cache page load times
with Prophecy, Prophecy-online, Polaris, and a default
browser. Warm cache page loads were performed 1 hour
after their cold cache counterparts.

5.7 Additional Results
Due to space restrictions, we defer a full discussion of
our remaining experiments to the appendix. Here, we
briefly summarize the results of those experiments:

Caching: Roughly 50% of users have an empty
browser cache for a particular page load [53, 54]. So,
load optimizers should provide benefits if caches are
warm or cold. The results in this section have assumed a
cold cache, but Section A.1 describes the performance
of Prophecy in warm cache scenarios. Unsurprisingly,
Prophecy’s benefits are smaller, but as shown in Figure 9,
the gains are still significant, with PLT decreasing by a
median of 43% in a mobile setting, and 34% in a desk-
top setting. Prophecy also maintains its performance ad-
vantages over Polaris with respect to SI, RI, bandwidth
consumption, and energy expenditure.

Non-landing pages: Our main test corpus consisted of
the landing pages for the Alexa Top 350 sites. We also
tested Prophecy on 200 interior pages that were linked to
by landing pages. As described in Section A.2, Prophecy
performs slightly better on interior pages, since they tend
to have more complicated structures than landing pages.

Diff sizes: We empirically analyzed snapshots of live
pages, measuring how large diffs would be for clients
with warm caches (Section A.3). For clients with a day-
old warm cache, the median diff size was 38 KB, with a
95th percentile size of 81 KB. So, diffs are small enough
for a server’s diffTable to store many of them.

6 RELATED WORK

6.1 Prepack
Prepack [16] is a JavaScript-to-JavaScript compiler.
Prepack scans the input JavaScript code for expressions
whose results are statically computable; Prepack replaces
those expressions with equivalent, shorter sequences that
represent the final output of the elided expressions. If
JavaScript code contains dynamic interactions with the
environment (e.g., via calls to Date()), Prepack leaves
those interactions in the transformed code, so that they
will be performed at runtime.

Prepack does not handle the DOM, or interactions
between HTML, CSS, and JavaScript. Prepack is also
unaware of important desiderata for web pages, like
object cacheability and personalization (§3.3), and in-
cremental interactivity (§3.5). Thus, Prepack is insuffi-
ciently powerful to act as a general-purpose web accel-
erator. Prepack’s ability to elide intermediate JavaScript
computations is shared by Prophecy, but Prophecy’s eli-
sion is more aggressive. Prepack uses symbolic exe-
cution [10, 14] and abstract interpretation [13] to al-
low the results of environmental interactions to live in
post-processed JavaScript as abstract values; in contrast,
Prophecy evaluates all environmental interactions on the
server-side, allowing all of the post-processed data to
be concrete. This aggressive elision is well-suited for
Prophecy’s goal of minimizing client-side power usage.
For example, if environmental interactions occur in a
loop, Prophecy only outputs the final results, whereas
Prepack often has to output an abstract, finalized-at-
runtime computation for each loop iteration.

6.2 Shandian
Shandian [51] uses a proxy to accelerate page loads. The
proxy uses a modified variant of Chrome to load a re-
quested page and generate two snapshots:
• The load-time snapshot is a serialized version of

(1) the page’s DOM nodes and (2) the subset of
the page’s CSS rules that are necessary to style the
DOM nodes. Importantly, the load-time snapshot
does not contain any JavaScript state (although the
serialized DOM nodes may contain the effects of
DOM calls made by JavaScript).
• The post-load snapshot contains JavaScript state

and the page’s full set of CSS rules.
A user employs a custom Shandian browser to load the
page. The browser fetches the load-time snapshot, de-
serializes it, and displays it. Later, the browser asyn-
chronously fetches and evaluates the post-load snapshot.

At the architectural level, the key difference between
Prophecy and Shandian is that Prophecy tracks fine-
grained reads and writes during a server-side page load.
Shandian does not. This design decision has cascading
ramifications for performance, deployability, and robust-

260 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ness, as described in great detail in Section A.4. For ex-
ample, Shandian cannot optimize for RI; more generally,
Shandian cannot interleave the resurrection of JavaScript
code and the DOM tree. The reason is that Shandian
lacks an understanding of how the JavaScript heap and
the DOM tree interact with each other, so Shandian can-
not make interleaved reconstruction safe. The specific
lack of write logs for the DOM tree and the JavaScript
heap also makes it difficult for Shandian to resurrect
state and support caching. JavaScript is a baroque, dy-
namic language, and the lack of write logs forces Shan-
dian’s resurrection logic to use complex, overly conser-
vative rules about (for example) which JavaScript state-
ments are idempotent and which ones are not. The com-
plicated logic requires in-browser support to get good
performance, and makes caching semantics sufficiently
hard to get right that Shandian does not try to support
caching for load-time state (and Shandian only supports
a limited form of caching for post-load state). In contrast,
Prophecy’s use of read/write tracking enables straightfor-
ward diff-based caching, safe interleaving of DOM con-
struction and JavaScript resurrection, and browser agnos-
ticism (since Prophecy’s write logs are just JavaScript
variables). Prophecy also enforces traditional privacy
policies for cookies, unlike Shandian (§A.4).

Shandian’s source code is not publicly available, and
there are no public Shandian proxies. So, we could
not perform an experimental comparison with Prophecy.
Based on the performance numbers in the Shandian pa-
per, we believe that Prophecy’s PLT savings are roughly
equivalent to those of Shandian, but Prophecy’s band-
width savings are roughly 20% better. The Shandian pa-
per did not evaluate energy consumption, but we be-
lieve that Prophecy will consume less energy due to a
simpler resurrection algorithm and less network traffic
at resurrection time. Prophecy provides these benefits
while enabling a constellation of important features (e.g.,
cacheability, optimization for interactivity) that Shandian
does not provide. We refer the interested reader to Sec-
tion A.4 for a more detailed discussion of Shandian.

6.3 Split browsers
In a split-browser system [38, 45, 46], a client fetches the
top-level HTML in a page via a remote proxy. The proxy
forwards the request to the appropriate web server. Upon
receiving the response, the proxy uses a headless browser
to load the page; as the proxy parses HTML, executes
JavaScript, and discovers external objects in the page,
the proxy fetches those objects and then forwards them
to the client. Since the proxy has fast, low-latency net-
work paths to origin servers, the time needed to resolve
a page’s dependency graph [11, 36] is mostly bound by
proxy/origin RTTs (which are small), not the last-mile
client/proxy RTTs (which may be large).

Prophecy is compatible with such approaches—a
Prophecy frame can be loaded by a split-browser proxy.
However, the only external objects that the proxy would
discover are images, since a Prophecy frame inlines the
(final effects of) external CSS and JavaScript objects.
Also note that the goal of a split-browser is to hide the
network latency associated with a client’s object fetches;
split browsers cannot identify client-side computations
that may be elided. Prophecy does find such computa-
tions, while also eliminating fetch RTTs via inlining.

6.4 Mobile web optimizations
Klotski [9] is a mobile web optimizer that uses server-
push (§3.7). When a browser fetches HTML for a par-
ticular page, the Klotski web server returns the HTML,
and also pushes high-priority objects which are refer-
enced by the page (and will later be requested by the
browser). Klotski identifies high-priority objects in an
offline phase using a utility function (e.g., that prior-
itizes above-the-fold content). Prophecy is compatible
with server-push, but at the granularity of entire frames,
not individual objects, since Prophecy inlines content
(§3.7). Inlining, combined with final-state patching, al-
lows Prophecy to both lower load time and decrease
energy consumption. In contrast, a Klotski page elides
no computation. VROOM [42] is similar to Klotski, ex-
cept that clients prefetch data instead of receiving server
pushes; a VROOM server uses link preload headers [22]
in returned HTTP responses to hint to clients which ob-
jects can be usefully prefetched.

AMP [19] accelerates mobile page loads by requiring
pages to be written in a restricted dialect of HTML, CSS,
and JavaScript that is faster to load. For example, AMP
forces all external <script> content to use the async
attribute so that the browser’s HTML parse can continue
as the JavaScript code is fetched in the background. AMP
forces a page to have at most one CSS file, which must
be an inlined <style> tag whose contents are less than
50 KB in size. Prophecy is designed to support arbitrary
pages that use arbitrary HTML, CSS, and JavaScript.
However, Prophecy can be applied to AMP pages since
those pages are just HTML, CSS, and JavaScript.

7 CONCLUSION

Prophecy is a new acceleration system for mobile page
loads. Prophecy uses precomputation to reduce (1) the
amount of state which must be transmitted to browsers,
and (2) the amount of computation that browsers must
perform to build the desired pages. Unlike current state-
of-the-art systems for precomputation, Prophecy han-
dles all kinds of page state, including DOM trees, and
supports critical features like object caching, incremen-
tal interactivity, and cookie privacy. Experiments show
that Prophecy enables substantial reductions in page load
time, bandwidth usage, and energy consumption.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 261

REFERENCES

[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-
gan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s
Data Compression Proxy for the Mobile Web. In
Proceedings of NSDI, 2015.

[2] Alexa. Top Sites in United States. http://www.
alexa.com/topsites/countries/US, 2018.

[3] Amazon. What Is Amazon Silk? https : / /
docs.aws.amazon.com/silk/latest/developerguide/
introduction.html, 2018.

[4] Apache Software Foundation. ab: Apache HTTP
server benchmarking tool. https://httpd.apache.org/
docs/2.4/programs/ab.html, 2018.

[5] A. Barth. HTTP State Management Mechanism.
RFC 6265. https : / / tools . ietf . org /html / rfc6265,
April 2011.

[6] M. Belshe. More Bandwidth Doesn’t Matter
(Much). Google. https://goo.gl/PFDGMi, April 8,
2010.

[7] M. Belshe, R. Peon, and M. Thomson. Hypertext
Transfer Protocol Version 2. RFC 7540. https://
tools.ietf.org/html/rfc7540, May 2015.

[8] D. H. Bui, Y. Liu, H. Kim, I. Shin, and F. Zhao. Re-
thinking Energy-Performance Trade-Off in Mobile
Web Page Loading. In Proceedings of Mobicom,
2015.

[9] M. Butkiewicz, D. Wang, Z. Wu, H. V. Mad-
hyastha, and V. Sekar. Klotski: Reprioritizing Web
Content to Improve User Experience on Mobile De-
vices. In Proceedings of NSDI, 2015.

[10] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unas-
sisted and Automatic Generation of High-coverage
Tests for Complex Systems Programs. In Proceed-
ings of OSDI, 2008.

[11] Y. Cao, J. Nejati, M. Wajahat, A. Balasubrama-
nian, and A. Gandhi. Deconstructing the Energy
Consumption of the Mobile Page Load. In Pro-
ceedings of the 2017 ACM SIGMETRICS / Interna-
tional Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS, New York,
NY, USA, 2017. ACM.

[12] J. Chernofsky. Why emerging markets are dom-
inating mobile browsing. The Next Web. https:
//thenextweb.com/insider/2016/04/07/first-world-
problems-emerging-markets-dominating-mobile-
browsing/, April 7, 2016.

[13] P. Cousot and R. Cousot. Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Pro-
grams by Construction or Approximation of Fix-
points. In Proceedings of POPL, 1977.

[14] P. D. Coward. Symbolic Execution Systems: A Re-
view. Software Engineering Journal, 3(6):229–239,
November 1988.

[15] T. Everts. New findings: For Top Ecommerce Sites,
Mobile Web Performance is Wildly Inconsistent.
https://blog.radware.com/applicationdelivery/wpo/
2014/10/2014- mobile- ecommerce- page- speed-
web-performance/, October 22, 2014.

[16] Facebook. Prepack: Partial evaluator for javascript.
https://prepack.io/, 2017.

[17] D. F. Galletta, R. Henry, S. McCoy, and P. Polak.
Web Site Delays: How Tolerant are Users? Journal
of the Association for Information Systems, 5(1),
2004.

[18] S. Gibbs. Mobile web browsing overtakes desk-
top for the first time. The Guardian. https :
/ / www. theguardian . com / technology / 2016 / nov /
02/mobile- web- browsing- desktop- smartphones-
tablets, November 2, 2016.

[19] Google. Accelerated Mobile Pages Project - AMP.
https://www.ampproject.org/, 2018.

[20] Google. google-diff-match-patch. https://github.
com/google/diff-match-patch, February 13, 2018.

[21] Google. Speed Index: WebPagetest Documen-
tation. https://sites.google.com/a/webpagetest.
org/docs/using-webpagetest/metrics/speed-index,
2018.

[22] I. Grigorik and Y. Weiss. Preload. https://www.w3.
org/TR/preload/, October 26, 2017.

[23] GSMA Intelligence. Global Mobile Trends 2017.
https://www.gsmaintelligence.com/research/?file=
3df1b7d57b1e63a0cbc3d585feb82dc2&download,
September 2017.

[24] P. Irish. Speedline. https://github.com/paulirish/
speedline, November 21, 2017.

[25] P. Irish. What forces layout/reflow. https : / /
gist.github.com/paulirish/5d52fb081b3570c81e3a,
February 6 2018.

[26] A. Langley, A. Riddoch, A. Wilk, A. Vicente,
C. Krasic, D. Zhang, F. Yang, F. Kouranov, I. Swett,
J. Iyengar, J. Bailey, J. Dorfman, J. Roskind, J. Ku-
lik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W.-T. Chang, and Z. Shi. The QUIC
Transport Protocol: Design and Internet-Scale De-
ployment. In Proceedings of SIGCOMM, 2017.

[27] P. Lewis. Avoid Large, Complex Layouts
and Layout Thrashing. Google Developers.
https://developers.google.com/web/fundamentals/
performance / rendering / avoid - large - complex -
layouts-and-layout-thrashing, May 12, 2017.

[28] H. Lindqvist. CSSUtilities. http : / / www.
brothercake.com/site/resources/scripts/cssutilities/,
April 4, 2010.

[29] B. McQuade, D. Phan, and M. Vajolahi. Instant
Mobile Websites: Techniques and Best Practices.
Google I/O Conference presentation. http://goo.gl/
DfhPJT, May 16, 2013.

262 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[30] J. Mickens. Rivet: Browser-agnostic Remote De-
bugging for Web Applications. In Proceedings of
USENIX ATC, 2012.

[31] J. Mickens, J. Elson, and J. Howell. Mugshot: De-
terministic Capture and Replay for Javascript Ap-
plications. In Proceedings of NSDI, 2010.

[32] J. Mickens, J. Elson, J. Howell, and J. Lorch. Crom:
Faster Web Browsing Using Speculative Execution.
In Proceedings of NSDI, 2010.

[33] Monsoon Solutions Inc. Power monitor software.
http://msoon.github.io/powermonitor/, 2015.

[34] Mozilla Developer Network. Document Object
Model (DOM). https://developer.mozilla.org/en-
US/docs/Web/API/Document Object Model, Au-
gust 29, 2017.

[35] J. Nejati and A. Balasubramanian. An In-depth
Study of Mobile Browser Performance. In Proceed-
ings of WWW, 2016.

[36] R. Netravali, A. Goyal, J. Mickens, and H. Bal-
akrishnan. Polaris: Faster Page Loads Using Fine-
grained Dependency Tracking. In Proceedings of
NSDI, 2016.

[37] R. Netravali, V. Nathan, J. Mickens, and H. Bal-
akrishnan. Vesper: Measuring Time-to-Interactivity
for Modern Web Pages. In Proceedings of NSDI,
2018.

[38] R. Netravali, A. Sivaraman, S. Das, A. Goyal,
K. Winstein, J. Mickens, and H. Balakrish-
nan. Mahimahi: Accurate Record-and-Replay for
HTTP. In Proceedings of USENIX ATC, 2015.

[39] Opera. Opera Mini. http://www.opera.com/mobile/
mini, 2018.

[40] B. Petrov, M. Vechev, M. Sridharan, and J. Dolby.
Race Detection for Web Applications. In Proceed-
ings of PLDI, 2012.

[41] L. Richardson. Beautiful Soup. http: / /www.
crummy.com/software /BeautifulSoup/, February
17, 2016.

[42] V. Ruamviboonsuk, R. Netravali, M. Uluyol, and
H. V. Madhyastha. Vroom: Accelerating the Mo-
bile Web with Server-Aided Dependency Resolu-
tion. In Proceedings of SIGCOMM, 2017.

[43] S. Shankland. Ad industry attacks Safari’s effort to
protect your privacy. CNET. https://www.cnet.com/
news/ad-industry-attacks-safaris-effort-to-protect-
your-privacy/, September 15, 2017.

[44] S. Singh, H. V. Madhyastha, S. V. Krishnamurthy,
and R. Govindan. FlexiWeb: Network-Aware Com-
paction for Accelerating Mobile Web Transfers. In
Proceedings of Mobicom, 2015.

[45] A. Sivakumar, C. Jiang, Y. S. Nam, P. Shankara-
narayanan, V. Gopalakrishnan, S. Rao, S. Sen,
M. Thottethodi, and T. Vijaykumar. NutShell: Scal-
able Whittled Proxy Execution for Low-Latency

Web over Cellular Networks. In Proceedings of
MobiSys, 2017.

[46] A. Sivakumar, S. Puzhavakath Narayanan,
V. Gopalakrishnan, S. Lee, S. Rao, and S. Sen.
PARCEL: Proxy Assisted BRowsing in Cellular
Networks for Energy and Latency Reduction. In
Proceedings of CoNEXT, 2014.

[47] S. Sundaresan, N. Feamster, R. Teixeira, and
N. Magharei. Measuring and Mitigating Web Per-
formance Bottlenecks in Broadband Access Net-
works. In Proceedings of IMC, 2013.

[48] N. Thiagarajan, G. Aggarwal, A. Nicoara,
D. Boneh, and J. P. Singh. Who Killed My
Battery?: Analyzing Mobile Browser Energy
Consumption. In Proceedings of WWW, 2012.

[49] J. Vesuna, C. Scott, M. Buettner, M. Piatek, A. Kr-
ishnamurthy, and S. Shenker. Caching Doesn’t Im-
prove Mobile Web Performance (Much). In Pro-
ceedings of USENIX ATC, 2016.

[50] T. Vrountas. How Slow Mobile Page Speeds Are
Ruining Your Conversion Rates. https://instapage.
com/blog/optimizing-mobile-page-speed, August
5, 2017.

[51] X. S. Wang, A. Krishnamurthy, and D. Wetherall.
Speeding Up Web Page Loads with Shandian. In
Proceedings of NSDI, 2016.

[52] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie.
Why Are Web Browsers Slow on Smartphones? In
Proceedings of HotMobile, 2011.

[53] Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie.
How Far Can Client-only Solutions Go for Mobile
Browser Speed? In Proceedings of WWW, 2012.

[54] YUI Team. Performance Research, Part 2: Browser
Cache Usage - Exposed! https://yuiblog.com/blog/
2007/01/04/performance-research-part-2/, January
4, 2007.

[55] Y. Zhu and V. J. Reddi. High-performance and
energy-efficient mobile web browsing on big/little
systems. In Proceedings of the IEEE International
Symposium on High Performance Computer Archi-
tecture (HPCA), 2013.

[56] Y. Zhu and V. J. Reddi. WebCore: Architectural
Support for Mobileweb Browsing. In Proceeding
of the International Symposium on Computer Ar-
chitecuture (ISCA), 2014.

A APPENDIX

A.1 Warm Browser Caches
The experiments in Section 5 assumed a cold browser
cache. Here, we explore the performance of Prophecy
when caches are warm, finding that Prophecy still un-
locks significant decreases in page load time, bandwidth
consumption, and energy expenditure.

For each page in our test corpus, we used Mahimahi

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 263

Setting System Bandwidth Savings (KB)
Mobile Prophecy 176 (441)
Mobile Polaris -37 (-5)
Desktop Prophecy 298 (571)
Desktop Polaris -41 (-12)

Table 2: Median (95th percentile) per-page bandwidth
savings with Prophecy and Polaris, using warm browser
caches. The baseline was the bandwidth consumed by a
default browser with a warm cache. The average warm
cache mobile page load in our test corpus consumed 664
KB; the average desktop page used 973 KB.

Update frequency Pages Frames
<= 1 hour 124 313
1-2 hours 77 114
2-4 hours 41 76
4-8 hours 19 20

8-24 hours 49 109
>= 24 hours 41 229

Table 3: Update frequencies for the pages and Prophecy
frames in our corpus.

to take several snapshots of the page. Each snapshot used
a different time separation from the initial snapshot: no
separation (i.e., a back-to-back load), 1 hour, 8 hours, and
24 hours. During an experiment which tested a particular
age for a browser cache, we loaded each page twice. Af-
ter clearing the browser cache, we loaded the page once
using the initial snapshot. We then immediately loaded
the later version of the page, recording the time of the
second, warm-cache page load. Below, we discuss results
for a 1 hour separation, but we observed similar trends
for the other time separations.

PLT reductions: Figure 9 corroborates prior caching
studies which found that mobile caching is less effec-
tive than desktop caching at reducing PLT [49]. How-
ever, Figure 9 demonstrates that Prophecy still provides
substantial benefits compared to both Polaris and a de-
fault page load. For example, Prophecy enables median
PLT reductions of 43% in the mobile setting, and 34% in
the desktop setting. An important reason for Prophecy’s
persistent benefit is that, even in a warm-cache Prophecy
frame (§3.3), Prophecy elides computation that must be
incurred by Polaris and a default page load.

Polaris’ gains drop to 15% in the mobile case, and
9% in the desktop setting. All of Polaris’ benefits derive
from the ability to cleverly schedule network fetches, and
overlap those fetches with computation. In a warm cache
scenario, a page issues fewer network requests, giving
Polaris fewer opportunities for optimization.

Bandwidth savings: Table 2 demonstrates that
Prophecy reduces per-page bandwidth consumption by

26% (176 KB) for mobile browsing, and 30% (298 KB)
for desktop browsing. The raw savings are less than
the cold cache scenarios for obvious reasons. However,
since Prophecy can cache at byte granularity, not file
granularity (§3.3), Prophecy downloads fewer network
bytes than either Polaris or a default load.

Energy savings: Prophecy’s energy savings decrease
in warm cache page loads. The reason is that caching is
more effective at reducing energy costs than page load
time [11]; having an object cached will always avoid the
battery drain associated with a network fetch, but may
not decrease PLT much if the cached object is not on the
critical path in the page’s dependency graph [11, 36]. Re-
gardless, Prophecy still provides substantial energy sav-
ings, reducing median and 95th percentile consumption
by 17% and 29% for an LTE network. Prophecy-online’s
energy savings are lower than Prophecy (12% and 21%),
but are higher than those of Polaris (6% and 12%).

A.2 Additional Sites
In addition to the 350 site corpus that we used for our
main experiments, we also evaluated Prophecy on two
additional sets of sites. First, using a web monkey, we
generated a list of 200 additional pages by performing
clicks on the pages in our original corpus; we gener-
ated 4 clicks per page, and then randomly selected 200
pages from the 1400 page list. These pages represented
interior pages for websites, rather than the landing pages
which are provided by the Alexa lists. We performed the
same PLT experiments as described in Section 5.1, load-
ing pages with a mobile phone over an LTE network. The
trends were similar to those in our primary corpus. Me-
dian speedups with Prophecy increased to 57%, while
Prophecy-online and Polaris accelerated PLT by 53%
and 26%, respectively.

We also performed experiments with 100 randomly
selected pages from the Alexa top 1000 list. The pages
were chosen from the latter part of the list, such that no
site was a member of our original corpus. For the new
set of pages, the median PLT for a default mobile load
was over 2 seconds slower than the median PLT in our
original corpus. Nevertheless, the basic trends from our
main experiments persisted. Prophecy reduced the me-
dian PLT by 51%, whereas Prophecy-online and Polaris
decreased PLT by 45% and 20%, respectively.

A.3 Diff Characteristics
To understand how large diffs would be in practice, we
recorded 6 versions of each page in our corpus: a base-
line version (at time t=0), and versions recorded at t val-
ues of 1 hour, 2 hours, 4 hours, 8 hours, and 24 hours.
We then computed Prophecy frames for each version of
each page. Finally, we computed diffs for each version of
each frame, comparing against the baseline frame from

264 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

t=0. The server’s diff calculations were fast: across all
versions of the page, the median computation time was
4.6 ms, and the 95th percentile time was 8.8 ms. The me-
dian size for the largest diff across all frame versions was
38 KB; the 95th percentile largest diff size was 81 KB.

As shown in Table 3, 35% of the pages in our cor-
pus require diff updates at least once an hour. In contrast,
12% of the pages do not require any diff updates within a
single day. Similarly, some frames must be updated fre-
quently, and some rarely change.

As a final exploration of diff behavior, we considered
personalized versions of a subset of the pages in our cor-
pus. We selected 20 pages from our corpus and created 2
different user profiles on each page. When possible, the
preferences for each profile were set to different values.
We then recorded three versions of each page: the de-
fault page (with no user logged in), the first user’s page,
and the second user’s page. We created Prophecy frames
for each version of each page, and compared each user’s
Prophecy frames to the default frames. The median diff
size across all frames was 15 KB, while the maximum
diff size was 31 KB. Many diffs were 0 KB, making the
average diff size 6 KB.

A.4 Detailed Discussion of Shandian
In Section 6.2, we provided a high-level comparison of
Shandian and Prophecy. Here, we provide more technical
detail about how Shandian works, and why we believe
that Prophecy’s write log approach is advantageous.

Robustness: Shandian’s load-time snapshot is just se-
rialized HTML and CSS. However, Shandian’s post-
load snapshot cannot contain the page’s unmodified
JavaScript code, since client-side execution of the code
would encounter a different DOM environment than
what would have been seen in a normal page load. Thus,
resurrecting the JavaScript state is challenging. Shan-
dian’s approach is to create a post-load snapshot which
contains (1) a serialized graph of JavaScript objects mi-
nus their methods, and (2) a set of JavaScript function
definitions that Shandian extracted from the page’s origi-
nal JavaScript code. Splicing this post-load state into the
client-side environment requires complex, subtle reason-
ing about idempotency and ordering. For example, in a
JavaScript program, a single function definition can be
evaluated multiple times, with each evaluation binding
to a different set of closure variables that are chosen us-
ing dynamic information. Some of the closure variables
may themselves be functions. Thus, Shandian requires
careful logic to generate a function evaluation order that
results in the desired final state; using the lexical order of
function definitions in the original source code is insuf-
ficient. Our personal experience writing JavaScript heap

serializers [30, 32] has convinced us that serialization-
based approaches are fragile and difficult to make cor-
rect. Prophecy’s ability to track writes dramatically sim-
plifies matters. With knowledge of the final state of each
function, object, and primitive property, Prophecy can
apply a straightforward three-pass algorithm to recreate
an interconnected DOM tree and JavaScript heap (§3.2).
Thus, we believe that a write log approach is simpler and
more robust than a serialization-based approach.

Liveness: Shandian lacks a fine-grained understand-
ing of interactions between the JavaScript heap and the
DOM, so Shandian cannot safely interleave DOM con-
struction and JavaScript evaluation. As a result, Shandian
must restore all JavaScript state at once, after the DOM
has been constructed. This limitation prevents Shandian
from making pages incrementally interactive (§3.5). De-
ferring JavaScript execution has other disadvantages, like
timer-based animations not starting until the associated
JavaScript code has been fetched and evaluated. In con-
trast, Prophecy can identify related clusters of DOM
nodes and JavaScript state, enabling safe, interleaved
construction of a page’s DOM tree and JavaScript heap.
Prophecy also returns all of the page state to the client
in a single HTTP round trip, unlike Shandian, which re-
quires multiple RTTs.

Deployability: Shandian requires modified client
browsers to parse Shandian’s special serialization format
for JavaScript state, CSS rules, and DOM state. In con-
trast, Prophecy logs are expressed using regular HTML
and JavaScript. Thus, Prophecy works on unmodified
browsers, improving deployability.

Caching: Shandian provides no caching support for
the content in the initial snapshot. So, if just a single byte
in the initial snapshot changes, the client must download
an entirely new snapshot, spending precious energy and
network bandwidth. Shandian supports caching for the
post-load data, but the content in that snapshot is depen-
dent on the content in the load-time snapshot! Thus, if
the load-time snapshot changes, then cached post-load
content is invalidated. In contrast, Prophecy provides a
straightforward caching scheme that supports byte-level
diffing (§3.3), maximizing the amount of cached content
that can be used to reconstruct new versions of a page.
Prophecy’s caching approach is naturally suggested by
Prophecy’s use of write logs—these write logs are easily
diffed using standard algorithms. In contrast, given Shan-
dian’s complex resurrection approach, it is not immedi-
ately clear how Shandian could be extended to support
traditional caching semantics.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 265

CSS: On the client browser, Shandian evaluates load-
time CSS rules twice: once during the initial load, and
again during the evaluation of a page’s post-load CSS.
As the Shandian paper states, the result is “additional
energy consumption and latencies.” We cannot quantify
the costs due to lack of access to a Shandian system.
Thus, we merely observe that Prophecy’s inlining of CSS
styles avoids all client-side CSS parsing for load-time
DOM nodes—the associated CSS rules are evaluated
zero times on the client. Note that, post-load, a Prophecy
page can immediately style dynamically-created DOM
nodes (§3.2). In contrast, Shandian will either have to
wait for post-load CSS styles to be fetched (which may

take a long time on a slow mobile link), or style the node
immediately, but possibly incorrectly (leading to broken
page state).

Privacy: In Shandian, a client-side browser ships
all cookies, regardless of their origin, to a proxy. This
scheme allows a proxy to load arbitrary personalized
content on behalf of a user, but risks privacy violations
if the proxy is intrinsically malicious, or becomes
subverted by an external malicious party. Prophecy only
exposes the cookies for origin X to servers from X .

266 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

