usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

LHD: Improving Cache Hit Rate
by Maximizing Hit Density
Nathan Beckmann, Carnegie Mellon University; Haoxian Chen, University of Pennsylvania;
Asaf Cidon, Stanford University/Barracuda Networks

https://www.usenix.org/conference/nsdi18/presentation/beckmann

This paper is included in the Proceedings of the
15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI '18).

April 9-11, 2018 « Renton, WA, USA
ISBN 978-1-939133-01-4

Open access to the Proceedings of
the 15th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by USENI

NRRRRARAER AN ”-. —

LHD: Improving Cache Hit Rate by Maximizing Hit Density

Nathan Beckmann

beckmann@cs.cmu.edu

Abstract

Cloud application performance is heavily reliant on the
hit rate of datacenter key-value caches. Key-value caches
typically use least recently used (LRU) as their eviction
policy, but LRU’s hit rate is far from optimal under real
workloads. Prior research has proposed many eviction
policies that improve on LRU, but these policies make
restrictive assumptions that hurt their hit rate, and they
can be difficult to implement efficiently.

We introduce least hit density (LHD), a novel eviction
policy for key-value caches. LHD predicts each object’s
expected hits-per-space-consumed (hit density), filtering
objects that contribute little to the cache’s hit rate. Unlike
prior eviction policies, LHD does not rely on heuristics,
but rather rigorously models objects’ behavior using con-
ditional probability to adapt its behavior in real time.

To make LHD practical, we design and implement
RankCache, an efficient key-value cache based on mem-
cached. We evaluate RankCache and LHD on com-
mercial memcached and enterprise storage traces, where
LHD consistently achieves better hit rates than prior poli-
cies. LHD requires much less space than prior policies
to match their hit rate, on average 8x less than LRU and
2-3x less than recently proposed policies. Moreover,
RankCache requires no synchronization in the common
case, improving request throughput at 16 threads by 8x
over LRU and by 2 x over CLOCK.

1 Introduction

The hit rate of distributed, in-memory key-value caches
is a key determinant of the end-to-end performance of
cloud applications. Web application servers typically
send requests to the cache cluster over the network,
with latencies of about 100 ps, before querying a much
slower database, with latencies of about 10 ms. Small
increases in cache hit rate have an outsize impact on ap-
plication performance. For example, increasing hit rate
by just 1% from 98% to 99% halves the number of re-
quests to the database. With the latency numbers used
above, this decreases the mean service time from 210 ps
to 110 ps (nearly 2 x) and, importantly for cloud applica-
tions, halves the tail of long-latency requests [21].

To increase cache hit rate, cloud providers typically
scale the number of servers and thus total cache ca-

Haoxian Chen
Carnegie Mellon University University of Pennsylvania
hxchen@seas.upenn.edu

Asaf Cidon
Stanford University/Barracuda Networks
asaf@cidon.com

— LHD M Hyperbolic ®=®® GDSF mHmm AdaptSize &= |RU

2 0

mcaf—\"‘e orc) o 0 orcd - A usV b pro\ A prO\,

3-

Relative Size at
Equal Hit Ratio

Figure 1: Relative cache size needed to match LHD’s hit rate
on different traces. LHD requires roughly one-fourth of LRU’s
capacity, and roughly half of that of prior eviction policies.

pacity [37]. For example, Facebook dedicates tens of
thousands of continuously running servers to caching.
However, adding servers is not tenable in the long run,
since hit rate increases logarithmically as a function of
cache capacity [3, 13, 20]. Prohibitively large amounts
of memory are needed to significantly impact hit rates.

This paper argues that improving the eviction policy is
much more effective, and that there is significant room
to improve cache hit rates. Popular key-value caches
(e.g., memcached, Redis) use least recently used (LRU)
or variants of LRU as their eviction policy. However, LRU
is far from optimal for key-value cache workloads be-
cause: (i) LRU’s performance suffers when the workload
has variable object sizes, and (ii) common access pat-
terns expose pathologies in LRU, leading to poor hit rate.

These shortcomings of LRU are well documented, and
prior work has proposed many eviction policies that im-
prove on LRU [4, 14, 16, 25, 35, 38, 40]. However, these
policies are not widely adopted because they typically
require extensive parameter tuning, which makes their
performance unreliable, and globally synchronized state,
which hurts their request throughput. Indeed, to achieve
acceptable throughput, some systems use eviction poli-
cies such as CLOCK or FIFO that sacrifice hit rate to re-
duce synchronization [22, 33, 34].

More fundamentally, prior policies make assumptions
that do not hold for many workloads, hurting their hit
rate. For example, most policies prefer recently used ob-
jects, all else equal. This is reasonable—such objects
are often valuable—, but workloads often violate this as-

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 389

sumption. Prior policies handle the resulting pathologies
by adding new mechanisms. For example, ARC [35] adds
a second LRU list for newly admitted objects, and Adapt-
Size [9] adds a probabilistic filter for large objects.

We take a different approach. Rather than augment-
ing or recombining traditional heuristics, we seek a new
mechanism that just “does the right thing”. The key mo-
tivating question for this paper is: What would we want
to know about objects to make good caching decisions,
independent of workload?

Our answer is a metric we call hit density, which mea-
sures how much an object is expected to contribute to the
cache’s hit rate. We infer each object’s hit density from
what we know about it (e.g., its age or size) and then
evict the object with least hit density (LHD). Finally, we
present an efficient and straightforward implementation
of LHD on memcached called RankCache.

1.1 Contributions

We introduce hit density, an intuitive, workload-agnostic
metric for ranking objects during eviction. We arrive at
hit density from first principles, without any assumptions
about how workloads tend to reference objects.

Least hit density (LHD) is an eviction policy based on
hit density. LHD monitors objects online and uses con-
ditional probability to predict their likely behavior. LHD
draws on many different object features (e.g., age, fre-
quency, application id, and size), and easily supports
others. Dynamic ranking enables LHD to adapt its evic-
tion strategy to different application workloads over time
without any hand tuning. For example, on a certain
workload, LHD may initially approximate LRU, then
switch to most recently used (MRU), least frequently
used (LFU), or a combination thereof.

RankCache is a key-value cache based on memcached
that efficiently implements LHD (and other policies).
RankCache supports arbitrary ranking functions, making
policies like LHD practical. RankCache approximates
a true global ranking while requiring no synchroniza-
tion in the common case, and adds little implementation
complexity over existing LRU caches. RankCache thus
avoids the unattractive tradeoff in prior systems between
hit rate and request throughput, showing it is possible to
achieve the best of both worlds.

1.2 Summary of Results

We evaluate LHD on a weeklong commercial mem-
cached trace from Memcachier [36] and storage traces
from Microsoft Research [48]. LHD significantly im-
proves hit rate prior policies—e.g., reducing misses by
half vs. LRU and one-quarter vs. recent policies—and
also avoids pathologies such as performance cliffs that
afflict prior policies. Fig. 1 shows the cache size (i.e.,
number of caching servers) required to achieve the same

hit rate as LHD at 256 MB on Memcachier and 64 GB on
Microsoft traces. LHD requires much less space than
prior eviction policies, saving the cost of thousands of
servers in a modern datacenter. On average, LHD needs
8 less space than LRU, 2.4 less than GDSF [4], 2.5%
less than Hyperbolic [11], and 2.9x less than Adapt-
Size [9]. Finally, at 16 threads, RankCache achieves 16 x
higher throughput than list-based LRU and, at 90% hit
rate, 2x higher throughput than CLOCK.

2 Background and Motivation

We identify two main opportunities to improve hit rate
beyond existing eviction policies. First, prior policies
make implicit assumptions about workload behavior that
hurt their hit rate when they do not hold. Second, prior
policies rely on implementation primitives that unneces-
sarily limit their design. We avoid these pitfalls by go-
ing back to first principles to design LHD, and then build
RankCache to realize it practically.

2.1 Implicit assumptions in eviction policies

Eviction policies show up in many contexts, e.g., OS
page management, database buffer management, web
proxies, and processors. LRU is widely used because it
is intuitive, simple to implement, performs reasonably
well, and has some worst-case guarantees [12, 47].

However, LRU also has common pathologies that hurt
its performance. LRU uses only recency, or how long
it has been since an object was last referenced, to de-
cide which object to evict. In other words, LRU as-
sumes that recently used objects are always more valu-
able. But common access patterns like scans (e.g.,
AB...ZAB...Z ...) violate this assumption. As a result,
LRU caches are often polluted by infrequently accessed
objects that stream through the cache without reuse.

Prior eviction policies improve on LRU in many dif-
ferent ways. Nearly all policies augment recency with
additional mechanisms that fix its worst pathologies. For
example, ARC [35] uses two LRU lists to distinguish
newly admitted objects and limit pollution from infre-
quently accessed objects. Similarly, AdaptSize [9] adds
a probabilistic filter in front of an LRU list to limit pol-
lution from large objects. Several recent policies split
accesses across multiple LRU lists to eliminate perfor-
mance cliffs [6, 18, 51] or to allocate space across objects
of different sizes [10, 17, 18, 37, 41, 43, 49].

All of these policies use LRU lists as a core mecha-
nism, and hence retain recency as built-in assumption.
Moreover, their added mechanisms can introduce new
assumptions and pathologies. For example, ARC as-
sumes that frequently accessed objects are more valu-
able by placing them in a separate LRU list from newly
admitted objects and preferring to evict newly admitted
objects. This is often an improvement on LRU, but can
behave pathologically.

390 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Other policies abandon lists and rank objects using a
heuristic function. GDSF [4] is a representative exam-
ple. When an object is referenced, GDSF assigns its rank
using its frequency (reference count) and global value L:

Frequency

GDSF Rank = + L 1

Size
On a miss, GDSF evicts the cached object with the lowest
rank and then updates L to this victim’s rank. As a result,
L increases over time so that recently used objects have
higher rank. GDSF thus orders objects according to some
combination of recency, frequency, and size. While it is
intuitive that each of these factors should play some role,
it is not obvious why GDSF combines them in this par-
ticular formula. Workloads vary widely (Sec. 3.5), so no
factor will be most effective in general. Eq. 1 makes im-
plicit assumptions about how important each factor will
be, and these assumptions will not hold across all work-
loads. Indeed, subsequent work [16, 27] added weighting
parameters to Eq. 1 to tune GDSF for different workloads.
Hence, while prior eviction policies have significantly
improved hit rates, they still make implicit assumptions
that lead to sub-optimal decisions. Of course, all online
policies must make some workload assumptions (e.g.,
adversarial workloads could change their behavior arbi-
trarily [47]), but these should be minimized. We believe
the solution is not to add yet more mechanisms, as do-
ing so quickly becomes unwieldy and requires yet more
assumptions to choose among mechanisms. Instead, our
goal is to find a new mechanism that leads to good evic-
tion decisions across a wide range of workloads.

2.2 Implementation of eviction policies

Key-value caches, such as memcached [23] and Re-
dis [1], are deployed on clusters of commodity servers,
typically based on DRAM for low latency access. Since
DRAM caches have a much lower latency than the back-
end database, the main determinant of end-to-end request
latency is cache hit rate [19, 37].

Request throughput: However, key-value caches must
also maintain high request throughput, and the eviction
policy can significantly impact throughput. Table 1 sum-
marizes the eviction policies used by several popular and
recently proposed key-value caches.

Most key-value caches use LRU because it is simple
and efficient, requiring O(1) operations for admission,
update, and eviction. Since naive LRU lists require global
synchronization, most key-value caches in fact use ap-
proximations of LRU, like CLOCK and FIFO, that elim-
inate synchronization except during evictions [22, 33,
34]. Policies that use more complex ranking (e.g., GDSF)
pay a price in throughput to maintain an ordered ranking
(e.g., O(log N) operations for a min-heap) and to syn-
chronize other global state (e.g., L in Eq. 1).

Key-Value Cache Allocation Eviction Policy
memcached [23] Slab LRU
Redis [1] jemalloc LRU
Memshare [19] Log LRU
Hyperbolic [11] jemalloc GD
Cliffhanger [18] Slab LRU
GD-Wheel [32] Slab GD
MICA [34] Log ~LRU
MemC3 [22] Slab ~LRU

Table 1: Allocation and eviction strategies of key-value caches.
GD-Wheel and Hyperbolic’s policy is based on GreedyD-
ual [53]. We discuss a variant of this policy (GDSF) in Sec. 2.1.

For this reason, most prior policies restrict themselves
to well-understood primitives, like LRU lists, that have
standard, high-performance implementations. Unfortu-
nately, these implementation primitives restrict the de-
sign of eviction policies, preventing policies from retain-
ing the most valuable objects. List-based policies are
limited to deciding how the lists are connected and and
which objects to admit to which list. Similarly, to main-
tain data structure invariants, policies that use min-heaps
(e.g., GDSF) can change ranks only when an object is
referenced, limiting their dynamism.

We ignore such implementation restrictions when de-
signing LHD (Sec. 3), and consider how to implement the
resulting policy efficiently in later sections (Secs. 4 & 5).

Memory management: With objects of highly variable
size, another challenge is memory fragmentation. Key-
value caches use several memory allocation techniques
(Table 1). This paper focuses on the most common one,
slab allocation. In slab allocation, memory is divided
into fixed 1 MB slabs. Each slab can store objects of
a particular size range. For example, a slab can store
objects between 0-64 B, 65-128 B, or 129-256 B, etc.
Each object size range is called a slab class.

The advantages of slab allocation are its performance
and bounded fragmentation. New objects always replace
another object of the same slab class, requiring only a
single eviction to make space. Since objects are al-
ways inserted into their appropriate slab classes, there
is no external fragmentation, and internal fragmentation
is bounded. The disadvantage is that the eviction policy
is implemented on each slab class separately, which can
hurt overall hit rate when, e.g., the workload shifts from
larger to smaller objects.

Other key-value caches take different approaches.
However, non-copying allocators [1] suffer from frag-
mentation [42], and log-structured memory [19, 34, 42]
requires a garbage collector that increases memory band-
width and CPU consumption [19]. RankCache uses slab-
based allocation due to its performance and bounded
fragmentation, but this is not fundamental, and LHD
could be implemented on other memory allocators.

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 391

3 Replacement by Least Hit Density (LHD)

We propose a new replacement policy, LHD, that dy-
namically predicts each object’s expected hits per space
consumed, or hit density, and evicts the object with the
lowest. By filtering out objects that contribute little to
the cache’s hit rate, LHD gradually increases the av-
erage hit rate. Critically, LHD avoids ad hoc heuris-
tics, and instead ranks objects by rigorously modeling
their behavior using conditional probability. This section
presents LHD and shows its potential in an idealized set-
ting. The following sections will present RankCache, a
high-performance implementation of LHD.

3.1 Predicting an object’s hit density

Our key insight is that policies must account for both
(i) the probability an object will hit in its lifetime; and
(ii) the resources it will consume. LHD uses the follow-
ing function to rank objects:

Hit probabilit
Hit density = — - P y - 2)
Object size X Expected time in cache

Eq. 2 measures an object’s contribution to the cache’s hit
rate (in units of hits per byte-access). We first provide
an example that illustrates how this metric adapts to real-
world applications, and then show how we derived it.

3.2 LHD on an example application

To demonstrate LHD’s advantages, consider an exam-
ple application that scans repeatedly over a few objects,
and accesses many other objects with Zipf-like popular-
ity distribution. This could be, for example, the common
media for a web page (scanning) plus user-specific con-
tent (Zipf). Suppose the cache can fit the common me-
dia and some of the most popular user objects. In this
case, each scanned object is accessed frequently (once
per page load for all users), whereas each Zipf-like object
is accessed much less frequently (only for the same user).
The cache should ideally therefore keep the scanned ob-
Jects and evict the Zipf-like objects when necessary.

Fig. 2a illustrates this application’s access pattern,
namely the distribution of time (measured in accesses)
between references to the same object. Scanned objects

= Zipf
= Scan

Reference Probability
Probability

produce a characteristic peak around a single reference
time, as all are accessed together at once. Zipf-like ob-
jects yield a long tail of reference times. Note that in
this example 70% of references are to the Zipf-like ob-
jects and 30% to scanned objects, but the long tail of
popularity in Zipf-like objects leads to a low reference
probability in Fig. 2a.

Fig. 2b illustrates LHD’s behavior on this example ap-
plication, showing the distribution of hits and evictions
vs. an object’s age. Age is the number of accesses since
an object was last referenced. For example, if an object
enters the cache at access 7', hits at accesses 1" + 4 and
T + 6, and is evicted at access 1" + 12, then it has two
hits at age 4 and 2 and is evicted at age 6 (each reference
resets age to zero). Fig. 2b shows that LHD keeps the
scanned objects and popular Zipf references, as desired.

LHD does not know whether an object is a scanned
object or a Zipf-like object until ages pass the scanning
peak. It must conservatively protect all objects until this
age, and all references at ages less than the peak therefore
result in hits. LHD begins to evict objects immediately
after the peak, since it is only at this point it knows that
any remaining objects must be Zipf-like objects, and it
can safely evict them.

Finally, Fig. 2c shows how LHD achieves these out-
comes. It plots the predicted hit density for objects of
different ages. The hit density is high up until the scan-
ning peak, because LHD predicts that objects are poten-
tially one of the scanned objects, and might hit quickly.
It drops after the scanning peak because it learns they are
Zipf objects and therefore unlikely to hit quickly.

Discussion: Given that LHD evicts the object with the
lowest predicted hit density, what is its emergent behav-
ior on this example? The object ages with the lowest pre-
dicted hit density are those that have aged past the scan-
ning peak. These are guaranteed to be Zipf-like objects,
and their hit density decreases with age, since their im-
plied popularity decreases the longer they have not been
referenced. LHD thus evicts older objects; i.e., LRU.
However, if no objects older than the scanning peak
are available, LHD will prefer to evict the youngest ob-
jects, since these have the lowest hit density. This is

—— Hits
= Evictions

Hit Density

; :
Time (in accesses)

(a) Summary of access pattern.

T T T i
Age (accesses since reference)

(b) Distribution of hits and evictions.

: i : T
Age (accesses since reference)

(c) Predicted hit density.

Figure 2: How LHD performs on an application that scans over 30% of objects and Zipf over the remaining 70%.

392 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

the most recently used (MRU) eviction policy, or anti-
LRU. MRU is the correct policy to adopt in this example
because (i) without more information, LHD cannot dis-
tinguish between scanning and Zipf-like objects in this
age range, and (ii) MRU guarantees that some fraction
of the scanning objects will survive long enough to hit.
Because scanning objects are by far the most frequently
accessed objects (Fig. 2a), keeping as many scanned ob-
jects as possible maximizes the cache’s hit rate, even if
that means evicting some popular Zipf-like objects.

Overall, then, LHD prefers to evict objects older than
the scanning peak and evicts LRU among these objects,
and otherwise evicts MRU among younger objects. This
policy caches as many of the scanning objects as possi-
ble, and is the best strictly age-based policy for this ap-
plication. LHD adopts this policy automatically based on
the cache’s observed behavior, without any pre-tuning re-
quired. By adoping MRU for young objects, LHD avoids
the potential performance cliff that recency suffers on
scanning patterns. We see this behavior on several traces
(Sec. 3.5), where LHD significantly outperforms prior
policies, nearly all of which assume recency.

3.3 Analysis and derivation

To see how we derived hit density, consider the cache
in Fig. 3. Cache space is shown vertically, and time in-
creases from left to right. (Throughout this paper, time
is measured in accesses, not wall-clock time.) The fig-
ure shows how cache space is used over time: each
block represents an object, with each reference or evic-
tion starting a new block. Each block thus represents a
single object lifetime, i.e., the idle time an object spends
in the cache between hits or eviction. Additionally, each
block is colored green or red, indicating whether it ends
in a hit or eviction, respectively.

Reference pattern:
.ABBACBABDABCDABCB..

Space =

Figure 3: Illustration of a cache over time. Each block depicts
a single object’s lifetime. Lifetimes that end in hits are shown
in green, evictions in red. Block size illustrates resources con-
sumed by an object; hit density is inversely proportional to
block size.

Fig. 3 illustrates the challenge replacement policies
face: they want to maximize hits given limited resources.

In other words, they want to fit as many green blocks into
the figure as possible. Each object takes up resources
proportional to both its size (block height) and the time
it spends in the cache (block width). Hence, the replace-
ment policy wants to keep small objects that hit quickly.

This illustration leads directly to hit density. Integrat-
ing uniformly across the entire figure, each green block
contributes 1 hit spread across its entire block. That is,
resources in the green blocks contribute hits at a rate of:
1 hit/(size x lifetime). Likewise, lifetimes that end in
eviction (or space lost to fragmentation) contribute zero
hits. Thus, if there are N hits and M evictions, and if
object 7 has size .S; bytes and spends L; accesses in the
cache, then the cache’s overall hit density is:

Hits Evictions

ELifetimes m + m

> Lifetimes S1 X L1+ ..+ Sn X Ly 4+ S1 X L1 + ... + Sy X Ly

Hit resources Eviction resources
The cache’s overall hit density is directly proportional to
its hit rate, so maximizing hit density also maximizes the
hit rate. Furthermore, it follows from basic arithmetic
that replacing an object with one of higher density will
increase the cache’s overall hit density.

LHD’s challenge is to predict an object’s hit density,
without knowing whether it will result in a hit or eviction,

nor how long it will spend in the cache.

Modeling object behavior: To rank objects, LHD must
compute their hit probability and the expected time they
will spend in the cache. (We assume that an object’s size
is known and does not change.) LHD infers these quanti-
ties in real-time using probability distributions. Specifi-
cally, LHD uses distributions of hit and eviction age.

The simplest way to infer hit density is from an ob-
ject’s age. Let the random variables H and L give hit
and lifetime age; that is, P[H = q] is the probability that
an object hits at age a, and P[L = a] is the probability
that an object is hit or evicted at age a. Now consider an
object of age a. Since the object has reached age a, we
know it cannot hit or be evicted at any age earlier than a.
Its hit probability conditioned on age a is:

P[H > a]

Hit probability = P[hitlage a] = PL>aq

3)

Similarly, its expected remaining lifetime? is:

201 @ P[L = a+a]

Lifetime = E[L — alage a] = P> dl
a

“4)
Altogether, the object’s hit density at age a is:
>t PIH =a+1]

Hit density,g(a) = Size - (30, = - P[L = a+x]) ©)

ISpecifically, if a/b > c/d, then (a + ¢)/(b + d) > ¢/d.
2We consider the remaining lifetime to avoid the sunk-cost fallacy.

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation

393

3.4 Using classification to improve predictions

One nice property of LHD is that it intuitively and rigor-
ously incorporates additional information about objects.
Since LHD is based on conditional probability, we can
simply condition the hit and eviction age distributions
on the additional information. For example, to incorpo-
rate reference frequency, we count how many times each
object has been referenced and gather separate hit and
eviction age distributions for each reference count. That
is, if an object that has been referenced twice is evicted,
LHD updates only the eviction age distribution of objects
that have been referenced twice, and leaves the other dis-
tributions unchanged. LHD then predicts an object’s hit
density using the appropriate distribution during ranking.
To generalize, we say that an object belongs to an
equivalence class c; e.g., ¢ could be all objects that have
been referenced twice. LHD predict this object’s hit den-
sity as:
> PIH = a+ 2|

Size - (307, - P[L = a+]c]) ©

Hit density(a, ¢) =

where P[H = a|c] and P[L = a|c] are the conditional hit
and lifetime age distributions for class c.

3.5 Idealized evaluation

To demonstrate LHD’s potential, we simulate an ideal-
ized implementation of LHD that globally ranks objects.
Our figure of merit is the cache’s miss ratio, i.e., the frac-
tion of requests resulting in misses. To see how miss ra-
tio affects larger system tradeoffs, we consider the cache
size needed to achieve equal miss ratios.

Methodology: Unfortunately, we are unaware of a pub-
lic trace of large-scale key-value caches. Instead, we
evaluate two sets of traces: (i) a weeklong, commercial
trace provided by Memcachier [36] containing requests
from hundreds of applications, and (ii) block traces from
Microsoft Research [48]. Neither trace is ideal, but to-
gether we believe they represent a wide range of relevant
behaviors. Memcachier provides caching-as-a-service
and serves objects from a few bytes to 1 MB (median:
100 B); this variability is a common feature of key-value
caches [5, 22]. However, many of its customers mas-
sively overprovision resources, forcing us to consider
scaled-down cache sizes to replicate miss ratios seen
in larger deployments [37]. Fortunately, scaled-down
caches are known to be good models of behavior at larger
sizes [6, 30, 51]. Meanwhile, the Microsoft Research
traces let us study larger objects (median: 32KB) and
cache sizes. However, its object sizes are much less vari-
able, and block trace workloads may differ from key-
value workloads.

We evaluate 512 M requests from each trace, ignoring
the first 128 M to warm up the cache. For the shorter
traces, we replay the trace if it terminates to equalize

trace length across results. All included traces are much
longer than LHD’s reconfiguration interval (see Sec. 5).

Since it is too expensive to compute Eq. 2 for every
object on each eviction, evictions instead sample 64 ran-
dom objects, as described in Sec. 4.1. LHD monitors hit
and eviction distributions online and, to escape local op-
tima, devotes a small amount of space (1%) to “explorer”
objects that are not evicted until a very large age.

What is the best LHD configuration?: LHD uses an ob-
ject’s age to predict its hit density. We also consider
two additional object features to improve LHD’s predic-
tions: an object’s last hit age and its app id. LHDapp
classifies objects by hashing their app id into one of N
classes (mapping several apps into each class limits over-
heads). We only use LHDapp on the Memcachier trace,
since the block traces lack app ids. LHDpastur clas-
sifies objects by the age of their last hit, analogous to
LRU-K [38], broken into /N classes spaced at powers
of 2 up to the maximum age. (E.g., with max age =
64K and N = 4, classes are given by last hit age in
0< 16K < 32K < 64K < 00).

We swept configurations over the Memcachier and
Microsoft traces and found that both app and last-hit
classification reduce misses. Furthermore, these im-
provements come with relatively few classes, after which
classification yields diminishing returns. Based on these
results, we configure LHD to classify by last hit age (16
classes) and application id (16 classes). We refer to this
configuration as LHD+ for the remainder of the paper.

How does LHD+ compare with other policies?: Fig. 4
shows the miss ratio across many cache sizes for LHD+,
LRU, and three prior policies: GDSF [4, 16], Adapt-
Size [9], and Hyperbolic [11]. GDSF and Hyperbolic
use different ranking functions based on object recency,
frequency, and size (e.g., Eq. 1). AdaptSize probabilis-
tically admits objects to an LRU cache to avoid pollut-
ing the cache with large objects (Sec. 6). LHD+ achieves
the best miss ratio across all cache sizes, outperforms
LRU by a large margin, and outperforms Hyperbolic,
GDSF, and AdaptSize, which perform differently across
different traces. No prior policy is consistently close to
LHD+’s hit ratio.

Moreover, Fig. 4 shows that LHD+ needs less space
than these other policies to achieve the same miss ra-
tio, sometimes substantially less. For example, on Mem-
cachier, a 512 MB LHD+ cache matches the hit rate of
a 768 MB Hyperbolic cache, a 1 GB GDSF, or a 1 GB
AdaptSize cache, and LRU does not match the perfor-
mance even with 2GB. In other words, LRU requires
more than 4 X as many servers to match LHD+’s hit rate.

Averaged across all sizes, LHD+ incurs 45% fewer
misses than LRU, 27% fewer than Hyperbolic and GDSF
and 23% fewer than AdaptSize. Moreover, at the largest

394 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

X Hyperbolic

100

80

N
=]

60 -

40 -

Miss Ratio (%)
[T
o w

5- 20 -

1024 2048 0

Size (MB)
(a) Memcachier

256 512
100
80

60 -

Miss Ratio (%)

20 -

0 256 512 % 3264 128
Size (GB)

(d) MSR usr_1

3264 128

+ GDSF

64

Size (GB)

(b) MSR srcl1_0

256

Size (GB)
(e) MSR proj_1

* AdaptSize <«

100
80 -
60 -
40 -

20 -

léa
Size (GB)

(¢) MSR srcl_1

64

128 32

192

256 512

Size (GB)

(f) MSR proj_2

512 3264 128

Figure 4: Miss ratio for LHD+ vs. prior policies over 512 M requests and cache sizes from 2 MB to 2 GB on Memcachier trace and
from 128 MB to 512 GB on MSR traces. LHD+ consistently outperforms prior policies on all traces.

—— 1st Quartile ~ ----- 2nd Quartile === 3rd Quartile —-= 4th Quartile

2 100+

2

=]

S 80-

>

g 60 -

5]

X 40-

S

£ 20-

=

>

o 0 T e e S —

10° 10! 102 100 10t 102 10° 10! 102

Age (M requests) Age (M requests) Age (M requests)

(a) LRU. (b) AdaptSize. (c) LHD.

Figure 5: When policies evict objects, broken into quartiles by
object size. LRU evicts all objects at roughly the same age, re-
gardless of their size, wasting space on big objects. AdaptSize
bypasses most large objects, losing some hits on these objects,
while also ignoring object size after admission, still wasting
space. LHD dynamically ranks objects to evict larger objects
sooner, allocating space across all objects to maximize hits.

sizes, LHD+ incurs very few non-compulsory misses,
showing it close to exhausting all possible hits.

Where do LHD+’s benefits come from?: LHD+’s dy-
namic ranking gives it the flexibility to evict the least
valuable objects, without the restrictions or built-in as-
sumptions of prior policies. To illustrate this, Fig. 5 com-
pares when LRU, AdaptSize, and LHD evict objects on
the Memcachier trace at 512 MB. Each line in the figure
shows the cumulative distribution of eviction age for ob-
jects of different sizes; e.g., the solid line in each figure
shows when the smallest quartile of objects are evicted.
LRU ignores object size and evicts all objects at
roughly the same age. Because of this, LRU wastes
space on large objects and must evict objects when they
are relatively young (age~30M), hurting its hit ratio.
AdaptSize improves on LRU by bypassing most large ob-

jects so that admitted objects survive longer (age~75 M).
This lets AdaptSize get more hits than LRU, at the cost
of forgoing some hits to the bypassed objects. How-
ever, since AdaptSize evicts LRU after admission, it still
wastes space on large, admitted objects.

LHD+ is not limited in this way. It can admit all ob-
jects and evict larger objects sooner. This earns LHD+
more hits on large objects than AdaptSize, since they are
not bypassed, and lets small objects survive longer than
AdaptSize (age~200 M), getting even more hits.

Finally, although many applications are recency-
friendly, several applications in the Memcachier trace as
well as most of the Microsoft Research traces show that
this is not true in general. As a result, policies that in-
clude recency (i.e., nearly all policies, including GDSF,
Hyperbolic, and AdaptSize), suffer from pathologies like
performance cliffs [6, 18]. For example, LRU, GDSF, and
Hyperbolic suffer a cliff in src1 0 at 96 MB and proj 2
at 128 MB. LHD avoids these cliffs and achieves the high-
est performance of all policies (see Sec. 6).

4 RankCache Design

LHD improves hit rates, but implementability and re-
quest throughput also matter in practice. We design
RankCache to efficiently support arbitrary ranking func-
tions, including hit density (Eq. 5). The challenge is
that, with arbitrary ranking functions, the rank-order of
objects can change constantly. A naive implementation
would scan all cached objects to find the best victim for
each eviction, but this is far too expensive. Alternatively,
for some restricted ranking functions, prior work has
used priority queues (i.e., min-heaps), but these queues
require expensive global synchronization to keep the data

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation

395

structure consistent [9].

RankCache solves these problems by approximating
a global ranking, avoiding any synchronization in the
common case. RankCache does not require synchroniza-
tion even for evictions, unlike prior high-performance
caching systems [22, 34], letting it achieve high request
throughput with non-negligible miss rates.

4.1 Lifetime of an eviction in LHD

Ranks in LHD constantly change, and this dynamism is
critical for LHD, since it is how LHD adapts its policy
to the access pattern. However, it would be very expen-
sive to compute Eq. 5 for all objects on every cache miss.
Instead, two key techniques make LHD practical: (i) pre-
computation and (ii) sampling. Fig. 6 shows the steps of
an eviction in RankCache, discussed below.

Sample

X Lookup ranks
objects

(pre-computed)

. A
- L~
E

Figure 6: Steps for an eviction in RankCache. First, randomly
sample objects, then lookup their precomputed rank and evict
the object with the worst rank.

Selecting a victim: RankCache randomly samples
cached objects and evicts the object with the worst rank
(i.e., lowest hit density) in the sample. With a large
enough sample, the evicted object will have eviction
priority close to the global maximum, approximating
a perfect ranking. Sampling is an old idea in pro-
cessor caches [44, 46], has been previously proposed
for web proxies [39], and is used in some key-value
caches [1, 11, 19]. Sampling is effective because the
quality of a random sample depends on its size, not the
size of the underlying population (i.e., number of cached
objects). Sampling therefore lets RankCache implement
dynamic ranking functions in constant time with respect
to the number of cached objects.

Sampling eliminates synchronization: Sampling makes
cache management concurrent. Both linked lists and pri-
ority queues have to serialize GET and SET operations
to maintain a consistent data structure. For example, in
memcached, where LRU is implemented by a linked list,
every cache hit promotes the hit object to the head of the
list. On every eviction, the system first evicts the object
from the tail of the list, and then inserts the new object at
the head of the list. These operations serialize all GETs
and SETs in memcached.

To avoid this problem, systems commonly sacrifice
hit ratio: by default, memcached only promotes objects

if they are older than one minute; other systems use
CLOCK [22] or FIFO [33], which do not require global
updates on a cache hit. However, these policies still seri-
alize all evictions.

Sampling, on the other hand, allows each item to up-
date its metadata (e.g., reference timestamp) indepen-
dently on a cache hit, and evictions can happen concur-
rently as well except when two threads select the same
victim. To handle these rare races, RankCache uses
memcached’s built-in versioning and optimistic concur-
rency: evicting threads sample and compare objects in
parallel, then lock the victim and check if its version has
changed since sampling. If it has, then the eviction pro-
cess is restarted. Thus, although sampling takes more
operations per eviction, it increases concurrency, let-
ting RankCache achieve higher request throughput than
CLOCK/FIFO under high load.

Few samples are needed: Fig. 7 shows the effect of sam-
pling on miss ratio going from associativity (i.e., sample
size) of one to 128. With only one sample, the cache
randomly replaces objects, and all policies perform the
same. As associativity increases, the policies quickly
diverge. We include a sampling-based variant of LRU,
where an object’s rank equals its age. LRU, Hyperbolic,
and LHD+ all quickly reach diminishing returns, around
associativity of 32. At this point, true LRU and sampling-
based LRU achieve identical hit ratios.

a2z |HD W Hyperbolic mm® GDSF HE&8 LRU w/ Sampling

30 -
S
o 20-
2
©
o
@ 10-
=

0
1 2 & 2 16 32 ok 128

Associativity (# samples)

Figure 7: Miss ratios at different associativities.

Since sampling happens at each eviction, lower asso-
ciativity is highly desirable from a throughput and la-
tency perspective. Therefore, RankCache uses an asso-
ciativity of 64.

We observe that GDSF is much more sensitive to asso-
ciativity, since each replacement in GDSF updates global
state (L, see Sec. 2.1). In fact, GDSF still has not con-
verged at 128 samples. GDSF’s sensitivity to associa-
tivity makes it unattractive for key-value caches, since
it needs expensive data structures to accurately track its
state (Fig. 10). Hyperbolic [11] uses a different ranking
function without global state to avoid this problem.

Precomputation: RankCache precomputes object ranks
so that, given an object, its rank can be quickly found
by indexing a table. In the earlier example, RankCache
would precompute Fig. 2¢ so that ranks can be looked up

396 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

directly from an object’s age. With LHD, RankCache pe-
riodically (e.g., every one million accesses) recomputes
its ranks to remain responsive to changes in application
behavior. This approach is effective since application be-
havior is stable over short time periods, changing much
more slowly than the ranks themselves fluctuate. More-
over, Eq. 5 can be computed efficiently in linear time [8],
and RankCache configures the maximum age to keep
overheads low (Sec. 5).

4.2 Approximating global rankings with slabs

RankCache uses slab allocation to manage memory be-
cause it ensures that our system achieves predictable
O(1) insertion and eviction performance, it does not re-
quire a garbage collector, and it has no external fragmen-
tation. However, in slab allocation, each slab class evicts
objects independently. Therefore, another design chal-
lenge is to approximate a global ranking when each slab
allocation implements its own eviction policy.

Similar to memcached, when new objects enter the
cache, RankCache evicts the lowest ranked object from
the same slab class. RankCache approximates a global
ranking of all objects by periodically rebalancing slabs
among slab classes. It is well-known that LRU effectively
evicts objects once they reach a characteristic age that de-
pends on the cache size and access pattern [15]. This fact
has been used to balance slabs across slab classes to ap-
proximate global LRU by equalizing eviction age across
slab classes [37]. RankCache generalizes this insight,
such that caches essentially evict objects once they reach
a characteristic rank, rather than age, that depends on the
cache size and access pattern.

Algorithm: In order to measure the average eviction
rank, RankCache records the cumulative rank of evicted
objects and the number of evictions. It then periodically
moves a slab from the slab class that has the highest av-
erage victim rank to that with the lowest victim rank.
However, we found that some slab classes rarely evict
objects. Without up-to-date information about their av-
erage victim rank, RankCache was unable to rebalance
slabs away from them to other slab classes. We solved
this problem by performing one “fake eviction” (i.e.,
sampling and ranking) for each slab class during rebal-
ancing. By also averaging victim ranks across several
decisions, this mechanism gives RankCache enough in-
formation to effectively approximate a global ranking.
RankCache decides whether it needs to rebalance
slabs every 500K accesses. We find that this is suffi-
cient to converge to the global ranking on our traces, and
more frequent rebalancing is undesirable because it has
a cost: when a 1 MB slab is moved between slab classes,
1 MB of objects are evicted from the original slab class.

Evaluation: Fig. 8 shows the effect of rebalancing slabs
in RankCache. It graphs the distribution of victim rank

- RankCache + LHD - RankCache + LRU

= RankCache + LHD + Rebalancing === RankCache + LRU + Rebalancing
= Simulation + LRU

= Simulation + LHD
— 100

80 -

60 -

40 -

20 -

Interval Evictions (%

o i i i i
-5 -4 -3 -2 -1 0

Victim Ranks le-9

Victim Ranks le6

Figure 8: Distribution of victim rank for slab allocation poli-
cies with and without rebalancing vs. true global policy. LHD+
is on the left, LRU on the right.

for several different implementations, with each slab
class shown in a different color. The right-hand fig-
ure shows RankCache with sampling-based LRU, and the
left shows RankCache with LHD+. An idealized, global
policy has victim rank tightly distributed around a sin-
gle peak—this demonstrates the accuracy of our charac-
teristic eviction rank model. Without rebalancing, each
slab evicts objects around a different victim rank, and is
far from the global policy. With rebalancing, the victim
ranks are much more tightly distributed, and we find this
is sufficient to approximate the global policy.

5 RankCache Implementation

We implemented RankCache, including its LHD ranking
function, on top of memcached [23]. RankCache is back-
wards compatible with the memcached protocol and is a
fairly lightweight change to memcached v1.4.33.

The key insight behind RankCache’s efficient imple-
mentation is that, by design, RankCache is an approxi-
mate scheme (Sec. 4). We can therefore tolerate loosely
synchronized events and approximate aging information.
Moreover, RankCache does not modify memcached’s
memory allocator, so it leverages existing functional-
ity for events that require careful synchronization (e.g.,
moving slabs).

Aging: RankCache tracks time through the total number
of accesses to the cache. Ages are coarsened in large
increments of COARSENESS accesses, up to a MAX_AGE.
COARSENESS and MAX_AGE are chosen to stay within
a specified error tolerance (see appendix); in practice,
coarsening introduces no detectable change in miss ratio
or throughput for reasonable error tolerances (e.g., 1%).
Conceptually, there is a global timestamp, but for
performance we implement distributed, fuzzy counters.
Each server thread maintains a thread-local access count,
and atomic-increments the global timestamp periodically
when its local counter reaches COARSENESS.
RankCache must track the age of objects to compute
their rank, which it does by adding a 4 B timestamp to
the object metadata. During ranking, RankCache com-
putes an object’s coarsened age by subtracting the object

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 397

timestamp from the global timestamp.

Ranking: RankCache adds tables to store the ranks of
different objects. It stores ranks up to MAX_AGE per
class, each rank a 4B floating-point value. With 256
classes (Sec. 3), this is 6.4 MB total overhead. Ranks
require no synchronization, since they are read-only be-
tween reconfigurations, and have a single writer (see be-
low). We tolerate races as they are infrequently updated.

Monitoring behavior: RankCache monitors the distri-
bution of hit and eviction age by maintaining histograms
of hits and evictions. RankCache increments the appro-
priate counter upon each access, depending on whether
it was a hit or eviction and the object’s coarsened age.
To reduce synchronization, these are also implemented
as distributed, fuzzy counters, and are collected by the
updating thread (see below). Counters are 4B values;
with 256 classes, hit and eviction counters together re-
quire 12.6 MB per thread.

Sampling: Upon each eviction, RankCache samples ob-
jects from within the same slab class by randomly gen-
erating indices and then computing the offset into the
appropriate slab. Because objects are stored at regular
offsets within each slab, this is inexpensive.

Efficient evictions: For workloads with non-negligible
miss ratios, evictions are the rate-limiting step in
RankCache. To make evictions efficient, RankCache
uses two optimizations. First, rather than adding an ob-
ject to a slab class’s free list and then immediately claim-
ing it, RankCache directly allocates the object within the
same thread after it has been freed. This avoids unneces-
sary synchronization.

Second, RankCache places object metadata in a sepa-
rate, contiguous memory region, called the rags. Tags are
stored in the same order as objects in the slab class, mak-
ing it easy to find an object from its metadata. Since slabs
themselves are stored non-contiguously in memory, each
object keeps a back pointer into the tags to find its meta-
data. Tags significantly improve spatial locality during
evictions. Since sampling is random by design, without
separate tags, RankCache suffers 64 (associativity) cache
misses per eviction. Compact tags allow RankCache to
sample 64 candidates with just 4 cache misses, a 16x
improvement in locality.

Background tasks: Both updating ranks and rebalanc-
ing slabs are off the critical path of requests. They run
as low-priority background threads and complete in a
few milliseconds. Periodically (default: every 1M ac-
cesses), RankCache aggregates histograms from each
thread and recomputes ranks. First, RankCache aver-
ages histograms with prior values, using an exponential
decay factor (default: 0.9). Then it computes LHD for
each class in linear time, requiring two passes over the
ages using an algorithm similar to [8]. Also periodically

(every 500K accesses), RankCache rebalances one slab
from the slab with the highest eviction rank to the one
with the lowest, as described in Sec. 4.2.

Across several orders of magnitude, the reconfigura-
tion interval and exponential decay factor have minimal
impact on hit rate. On the Memcachier trace, LHD+’s
non-compulsory miss rate changes by 1% going from re-
configuring every 10K to 10 M accesses, and the expo-
nential decay factor shows even smaller impact when it
is set between 0.1 and 0.99.

5.1 RankCache matches simulation

Going left-to-right, Fig. 9 compares the miss ratio over
512M accesses on Memcachier at 1 GB for (i) stock
memcached using true LRU within each slab class;
RankCache using sampling-based LRU as its rank-
ing function (ii) with and (iii) without rebalancing;
RankCache using LHD+ (iv) with and (v) without rebal-
ancing; and (vi) an idealized simulation of LHD+ with
global ranking.

30 - =

25 : - Memcached
g " mmm RankCache
% 20 - | — Ideal ml
3 15 - SRR R R . -
2 10- 1
=

\\<\Q g\“g C\(\Q, (\Q\(\Q’ Q\OX
@c 2 (29 (@2 Y
W ECR TS

Figure 9: RankCache vs. unmodified memcached and ideal-
ized simulation. Rebalancing is necessary to improve miss ra-
tio, and effectively approximates a global ranking.

As the figure shows, RankCache with slab rebalancing
closely matches the miss ratio of the idealized simula-
tion, but without slab rebalancing it barely outperforms
LRU. This is because LHD+ operating independently on
each slab cannot effectively take into account object size,
and hence on an LRU-friendly pattern performs similarly
to LRU. The small degradation in hit ratio vs. idealized
simulation is due to forced, random evictions during slab
rebalancing.

5.2 RankCache with LHD+ achieves both high
hit ratio and high performance

Methodology: To evaluate RankCache’s performance,
we stress request serving within RankCache itself by
conducting experiments within a single server and by-
passing the network. Each server thread pulls requests
off a thread-local request list. We force all objects to
have the same size to maximally stress synchronization
in each policy. Prior work has explored techniques to op-
timize the network in key-value stores [22, 33, 34]; these
topics are not our contribution.

398 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

We compare RankCache against list-based LRU, GDSF
using a priority queue (min-heap), and CLOCK. These
cover the main implementation primitives used in key-
value caches (Sec. 2). We also compare against random
evictions to show peak request throughput when the evic-
tion policy does no work and maintains no state. (Ran-
dom pays for its throughput by suffering many misses.)

Scalability: Fig. 10 plots the aggregate request through-
put vs. number of server threads on a randomly gener-
ated trace with Zipfian object popularities. We present
throughput at 90% and 100% hit ratio; the former repre-
sents a realistic deployment, the latter peak performance.

== Random =< CLOCK
»=x RankCache+tags > Linked List (LRU)
== RankCache = Priority Queue (GDSF)

ol] —— N G40 5
2 2

%30— %35»

225+ 3 30r-

g oL €25-

Z | £ 20-

5 515+

[=% =3 i

§ -E‘IOT

2 g Srfl

£ £ oL L]
0 2 4 6 8 10 12 14 16

#Threads

(a) 90% Hit ratio.

#Threads

(b) 100% Hit ratio.

Figure 10: RankCache’s request throughput vs. server threads.
RankCache’s performance approaches that of random, and out-
performs CLOCK with non-negligible miss ratio.

RankCache scales nearly as well as random because
sampling avoids nearly all synchronization, whereas LRU
and GDSF barely scale because they serialize all opera-
tions. Similarly, CLOCK performs well at 100% hit ratio,
but serializes evictions and underperforms RankCache
with 10% miss ratio. Finally, using separate tags in
RankCache lowers throughput with a 100% hit ratio, but
improves performance even with a 10% miss ratio.

Trading off throughput and hit ratio: Fig. 11a plots
request throughput vs. cache size for these policies on
the Memcachier trace. RankCache achieves the high-
est request throughput of all policies except random, and
tags increase throughput at every cache size. RankCache
increases throughput because (i) it eliminates nearly all
synchronization and (ii) LHD+ achieves higher hit ratio
than other policies, avoiding time-consuming evictions.

Fig. 11b helps explain these results by plotting request
throughput vs. hit ratio for the different systems. These
numbers are gathered by sweeping cache size for each
policy on a uniform random trace, equalizing hit ratio
across policies at each cache size. Experimental results
are shown as points, and we fit a curve to each dataset by
assuming that:

Total service time = # GETs X GET time—+# SETs X SET time

As Fig. 11b shows, this simple model is a good fit, and
thus GET and SET time are independent of cache size.

= Random = CLOCK
= RankCache+tags > Linked List (LRU)
== RankCache == Priority Queue (GDSF)

w
% 20— B
e " T - L T
i /—/\—._.__ $ 35 :
g150 : Sl g 35
g T 30 -
o« i
= 10‘?(,/\./—‘(L2
H / 22
£ 5 [e - g1
£ oL ... 'g,

i) O 09 0O 0 0 0 00 0 3)4
SSSSTSESSSSS o oL fias e -,
TSIV VS PSP E 55606570 75 80 85 90 95 100

) [

Cache Size (MB Hit Rate (%)

(a) vs. cache size. (b) vs. hit ratio.

Figure 11: Request throughput on Memcachier trace at 16
server threads. RankCache with LHD achieves the highest
request throughput of all implementations, because it reduces
synchronization and achieves a higher hit ratio than other poli-
cies. Tags are beneficial except at very high hit ratios.

Fig. 11b shows how important hit ratio is, as small
improvements in hit ratio yield large gains in request
throughput. This effect is especially apparent on CLOCK
because it synchronizes on evictions, but not on hits.
Unfortunately, CLOCK achieves the lowest hit ratio of
all policies, and its throughput suffers as a result. In
constrast, LHD+ pushes performance higher by improv-
ing hit ratio, and RankCache removes synchronization to
achieve the best scaling of all implementations.

Response latency: Fig. 12 shows the average response
time of GETs and SETs with different policies running
at 1 and 16 server threads, obtained using the same pro-
cedure as Fig. 11b. The 16-thread results show that, in
a parallel setting, RankCache achieves the lowest per-
operation latency of all policies (excluding random), and
in particular using separate tags greatly reduces eviction
time. While list- or heap-based policies are faster in a
sequential setting, RankCache’s lack of synchronization
dominates with concurrent requests. Because CLOCK
synchronizes on evictions, its evictions are slow at 16
threads, explaining its sensitivity to hit ratio in Fig. 11b.
RankCache reduces GET time by 5x vs. list and prio-
queue, and SET time by 5x over CLOCK.

B Random mmm RankCache W Linked List
I RankCache+tags W CLOCK I Priority Queue
15
6 | ‘
m
10 -
Sq4-
£
L [|
" 5 ‘ ‘ | ‘ ‘
(O L II 3 l.‘ ‘ (O L -I 3
Hits Evictions Hits Evictions

Figure 12: Request processing time for hits and evictions at a
single thread (left) and 16 threads (right).

In a real-world deployment, RankCache’s combina-
tion of high hit ratio and low response latency would
yield greatly reduced mean and tail latencies and thus

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 399

to significantly improved end-to-end response latency.

6 Related Work

Prior work in probabilistic eviction policies: EVA, a re-
cent eviction policy for processor caches [7, 8], intro-
duced the idea of using conditional probability to balance
hits vs. resources consumed. There are several signifi-
cant differences between LHD and EVA that allow LHD
to perform well on key-value workloads.

First, LHD and EVA use different ranking functions.
EVA ranks objects by their net contribution measured in
hits, not by hit density. This matters, because EVA’s rank-
ing function does not converge in key-value cache work-
loads and performs markedly worse than LHD. Second,
unlike processor caches, LHD has to deal with variable
object sizes. Object size is one of the most important
characteristics in a key-value eviction policy. RankCache
must also rebalance memory across slab classes to im-
plement a global ranking. Third, LHD classifies objects
more aggressively than is possible with the implemen-
tation constraints of hardware policies, and classifies by
last hit age instead of frequency, which significantly im-
proves hit ratio.

Key-value caches: Several systems have tried to improve
upon memcached’s poor hit ratio under objects of vary-
ing sizes. Cliffhanger [18] uses shadow queues to incre-
mentally assign memory to slab classes that would gain
the highest hit ratio benefit. Similarly, Dynacache [17],
Moirai [49], Mimir [43] and Blaze [10] determine the ap-
propriate resource allocation for objects of different sizes
by keeping track of LRU’s stack distances. Twitter [41]
and Facebook [37] periodically move memory from slabs
with a high hit ratio to those with a low hit ratio. Other
systems have taken a different approach to memory allo-
cation than memcached. Memshare [19] and MICA [34]
utilize log-structured memory allocation. In the case of
all the systems mentioned above, the memory allocation
is intertwined with their eviction policy (LRU).

Similar to RankCache, Hyperbolic caching [11] also
uses sampling to implement dynamic ranking functions.
However, as we have demonstrated, Hyperbolic suffers
from higher miss ratios, since it is a recency-based policy
that is susceptible to performance cliffs, and Hyperbolic
did not explore concurrent implementations of sampling
as we have done in RankCache.

Replacement policies: Prior work improves upon LRU
by incorporating more information about objects to
make better decisions. For example, many policies fa-
vor objects that have been referenced frequently in the
past, since intuitively these are likely to be referenced
again soon. Prominent examples include LRU-K [38],
SLRU [29],2Q [28], LRFU [31], LIRS [26], and ARC [35].
There is also extensive prior work on replacement poli-

cies for objects of varying sizes. LRU-MIN [2], HY-
BRID [52], GreedyDual-Size (GDS) [14], GreedyDual-
Size-Frequency (GDSF) [4, 16], LNC-R-W3 [45], Adapt-
Size [9], and Hyperbolic [11] all take into account the
size of the object.

AdaptSize [9] emphasizes object admission vs. evic-
tion, but this distinction is only important for list-based
policies, so long as objects are small relative to the
cache’s size. Ranking functions (e.g., GDSF and LHD)
can evict low-value objects immediately, so it makes lit-
tle difference if they are admitted or not (Fig. 5).

Several recent policies explicitly avoid cliffs seen in

LRU and other policies [6, 11, 18]. Cliffs arise when
policies’ built-in assumptions are violated and the policy
behaves pathologically, so that hit ratios do not improve
until all objects fit in the cache. LHD also avoids cliffs,
but does so by avoiding pathological behavior in the first
place. Cliff-avoiding policies achieve hit ratios along the
cliff’s convex hull, and no better [6]; LHD matches or
exceeds this performance on our traces.
Tuning eviction policies: Many prior policies require
application-specific tuning. For example, SLRU divides
the cache into .S partitions. However, the optimal choice
of S, as well as how much memory to allocate to each
partition, varies widely depending on the application [24,
50]. Most other policies use weights that must be tuned
to the access pattern (e.g., [2, 11, 27, 38, 45, 52]). For
example, GD* adds an exponential parameter to Eq. 1
to capture burstiness [27], and LNC-R-W3 has separate
weights for frequency and size [45]. In contrast to LHD,
these policies are highly sensitive to their parameters.
(We have implemented LNC-R-W3, but found it performs
worse than LRU without extensive tuning at each size,
and so do not present its results.)

7 Conclusions

This paper demonstrates that there is a large opportunity
to improve cache performance through non-heuristic ap-
proach to eviction policies. Key-value caches are an es-
sential layer for cloud applications. Scaling the capac-
ity of LRU-based caches is an unsustainable approach to
scale their performance. We have presented a practical
and principled approach to tackle this problem, which
allows applications to achieve their performance goals at
significantly lower cost.

Acknowledgements

We thank our anonymous reviewers, and especially our
shepherd, Jon Howell, for their insightful comments. We
also thank Amit Levy and David Terei for supplying the
Memcachier traces, and Daniel Berger for his feedback
and help with implementing AdaptSize. This work was
funded by a Google Faculty Research Award and sup-
ported by the Parallel Data Lab at CMU.

400 15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

References

[1]
[2]

[3

=

[4

=

[5

=

[7]

[8]

[9]

(10]

[11]

(12]

[13]

[14]

[15]

[16]

Redis. http://redis.io/. 7/24/2015.

M. Abrams, C. R. Standridge, G. Abdulla, S. Williams, and E. A.
Fox. Caching proxies: Limitations and potentials. Technical re-
port, Blacksburg, VA, USA, 1995.

V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira. Char-
acterizing reference locality in the WWW. In Proceedings of the
Fourth International Conference on on Parallel and Distributed
Information Systems, DIS *96, pages 92—-107, Washington, DC,
USA, 1996. IEEE Computer Society.

M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin. Eval-
uating content management techniques for web proxy caches.
ACM SIGMETRICS Performance Evaluation Review, 2000.

B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny.
Workload analysis of a large-scale key-value store. In ACM SIG-
METRICS Performance Evaluation Review, volume 40, pages
53-64. ACM, 2012.

N. Beckmann and D. Sanchez. Talus: A simple way to remove
cliffs in cache performance. In HPCA-21, 2015.

N. Beckmann and D. Sanchez. Modeling cache performance be-
yond LRU. HPCA-22, 2016.

N. Beckmann and D. Sanchez. Maximizing cache performance
under uncertainty. HPCA-23, 2017.

D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter. AdaptSize:
Orchestrating the hot object memory cache in a content deliv-
ery network. In /4th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 483-498, Boston,
MA, 2017. USENIX Association.

H. Bjornsson, G. Chockler, T. Saemundsson, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceed-
ings of the 4th annual Symposium on Cloud Computing, page 59.
ACM, 2013.

A. Blankstein, S. Sen, and M. J. Freedman. Hyperbolic caching:
Flexible caching for web applications. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 499-511, Santa
Clara, CA, 2017. USENIX Association.

A. Borodin, S. Irani, P. Raghavan, and B. Schieber. Competi-
tive paging with locality of reference. Journal of Computer and
System Sciences, 50(2):244-258, 1995.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and Zipf-like distributions: Evidence and implications.
In INFOCOM’99. Eighteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 1, pages 126—-134. IEEE, 1999.

P. Cao and S. Irani. Cost-aware www proxy caching algorithms.
In Proceedings of the USENIX Symposium on Internet Technolo-
gies and Systems on USENIX Symposium on Internet Technolo-
gies and Systems, USITS 97, pages 18-18, Berkeley, CA, USA,
1997. USENIX Association.

H. Che, Y. Tung, and Z. Wang. Hierarchical web caching sys-
tems: Modeling, design and experimental results. /IEEE Journal
on Selected Areas in Communications, 2002.

L. Cherkasova.
greedy-dual-size-frequency caching policy.
Laboratories, 1998.

Improving WWW proxies performance with
Hewlett-Packard

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Dynacache:
Dynamic cloud caching. In 7th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 15), Santa Clara, CA, July 2015.
USENIX Association.

A. Cidon, A. Eisenman, M. Alizadeh, and S. Katti. Cliffhanger:
Scaling performance cliffs in web memory caches. In /3th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 16), pages 379-392, Santa Clara, CA, Mar.
2016. USENIX Association.

A. Cidon, D. Rushton, S. M. Rumble, and R. Stutsman.
Memshare: a dynamic multi-tenant key-value cache. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages
321-334, Santa Clara, CA, 2017. USENIX Association.

C. Cunha, A. Bestavros, and M. Crovella. Characteristics of
WWW client-based traces. Technical report, Boston, MA, USA,
1995.

J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2), 2013.

B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Com-
pact and concurrent MemCache with dumber caching and smarter
hashing. In Proceedings of the 10th USENIX Conference on
Networked Systems Design and Implementation, NSDI” 13, pages
371-384, Berkeley, CA, USA, 2013. USENIX Association.

B. Fitzpatrick. Distributed caching with Memcached. Linux jour-
nal, 2004(124):5, 2004.

Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and
H. C. Li. An analysis of facebook photo caching. In Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Sys-
tems Principles, SOSP 13, pages 167-181, New York, NY, USA,
2013. ACM.

A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer. High
performance cache replacement using re-reference interval pre-
diction. In ISCA-37, 2010.

S. Jiang and X. Zhang. LIRS: An efficient low inter-reference
recency set replacement policy to improve buffer cache perfor-
mance. SIGMETRICS Perform. Eval. Rev., 30(1):31-42, June
2002.

S. Jin and A. Bestavros. GreedyDualal.UJ web caching algorithm:
exploiting the two sources of temporal locality in web request
streams. Computer Communications, 24(2):174-183, 2001.

T. Johnson and D. Shasha. 2Q: A low overhead high performance
buffer management replacement algorithm. In Proceedings of the
20th International Conference on Very Large Data Bases, VLDB
’94, pages 439450, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

R. Karedla, J. S. Love, and B. G. Wherry. Caching strategies to
improve disk system performance. Computer, 27(3):38-46, Mar.
1994.

R. E. Kessler, M. D. Hill, and D. A. Wood. A comparison of trace-
sampling techniques for multi-megabyte caches. IEEE Transac-
tions on Computers, 1994.

D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim. On the existence of a spectrum of policies that subsumes
the least recently used (LRU) and least frequently used (LFU)
policies. SIGMETRICS Perform. Eval. Rev., 27(1):134-143, May
1999.

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation

401

http://redis.io/

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

C. Liand A. L. Cox. GD-Wheel: a cost-aware replacement pol-
icy for key-value stores. In Proceedings of the Tenth European
Conference on Computer Systems, page 5. ACM, 2015.

S. Li, H. Lim, V. W. Lee, J. H. Ahn, A. Kalia, M. Kaminsky,
D. G. Andersen, O. Seongil, S. Lee, and P. Dubey. Architecting to
achieve a billion requests per second throughput on a single key-
value store server platform. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA 15,
pages 476-488, New York, NY, USA, 2015. ACM.

H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A
holistic approach to fast in-memory key-value storage. In 1/th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 14), pages 429-444, Seattle, WA, Apr. 2014.
USENIX Association.

N. Megiddo and D. S. Modha. Arc: A self-tuning, low overhead
replacement cache. In FAST, volume 3, pages 115-130, 2003.

Memcachier. www.memcachier.com.

R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C.
Li, R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford,
T. Tung, and V. Venkataramani. Scaling Memcache at Face-
book. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages
385-398, Lombard, IL, 2013. USENIX.

E.J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K page re-
placement algorithm for database disk buffering. In Proceedings
of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 93, pages 297-306, New York, NY,
USA, 1993. ACM.

K. Psounis and B. Prabhakar. A randomized web-cache replace-
ment scheme. In INFOCOM 2001. Twentieth Annual Joint Con-
ference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, volume 3, pages 1407-1415. IEEE, 2001.

M. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adap-
tive insertion policies for high performance caching. In ISCA-34,
2007.

M. Rajashekhar and Y. Yue. Twemcache. blog.twitter.com/
2012/caching-with-twemcache.

S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured
Memory for DRAM-based Storage. In FAST, pages 1-16, 2014.

T. Saemundsson, H. Bjornsson, G. Chockler, and Y. Vigfusson.
Dynamic performance profiling of cloud caches. In Proceedings
of the ACM Symposium on Cloud Computing, pages 1-14. ACM,
2014.

D. Sanchez and C. Kozyrakis. The zcache: Decoupling ways and
associativity. In MICRO-43, 2010.

P. Scheuermann, J. Shim, and R. Vingralek. A case for delay-
conscious caching of web documents. Computer Networks and
ISDN Systems, 29(8):997-1005, 1997.

A. Seznec. A case for two-way skewed-associative caches. In
ACM SIGARCH Computer Architecture News, volume 21, pages
169-178. ACM, 1993.

D.D. Sleator and R. E. Tarjan. Amortized efficiency of list update
and paging rules. Commun. ACM, 28(2):202-208, Feb. 1985.

SNIA. MSR Cambridge Traces. http://iotta.snia.org/
traces/388, 2008.

[49]

[50]

[51]

[52]

[53]

I. Stefanovici, E. Thereska, G. O’Shea, B. Schroeder, H. Bal-
lani, T. Karagiannis, A. Rowstron, and T. Talpey. Software-
defined caching: Managing caches in multi-tenant data centers.
In Proceedings of the Sixth ACM Symposium on Cloud Comput-
ing, pages 174-181. ACM, 2015.

L. Tang, Q. Huang, W. Lloyd, S. Kumar, and K. Li. RIPQ: Ad-
vanced photo caching on flash for Facebook. In /3th USENIX
Conference on File and Storage Technologies (FAST 15), pages
373-386, Santa Clara, CA, Feb. 2015. USENIX Association.

C. Waldspurger, T. Saemundsson, I. Ahmad, and N. Park. Cache
modeling and optimization using miniature simulations. In 2017
USENIX Annual Technical Conference (USENIX ATC 17), pages
487-498, Santa Clara, CA, 2017. USENIX Association.

R. P. Wooster and M. Abrams. Proxy caching that estimates page
load delays. In Selected Papers from the Sixth International Con-
ference on World Wide Web, pages 977-986, Essex, UK, 1997.
Elsevier Science Publishers Ltd.

N. Young. The k-server dual and loose competitiveness for pag-
ing. Algorithmica, 11:525-541, 1994.

402

15th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

www.memcachier.com
blog.twitter.com/2012/caching-with-twemcache
blog.twitter.com/2012/caching-with-twemcache
http://iotta.snia.org/traces/388
http://iotta.snia.org/traces/388

A Age coarsening with bounded error

RankCache chooses how much to coarsen ages and how
many ages to track in order to stay within a user-specified
error tolerance. RankCache is very conservative, so that
in practice much more age coarsening and fewer ages can
be used with no perceptible loss in hit rate.

Choosing a maximum age: The effect of age coarsening
is to divide ages into equivalence classes in chunks of
COARSENESS, so that the maximum true age that can be
tracked is COARSENESS X MAX_AGE. Any events above
this maximum true age cannot be tracked. Hence, if the
access pattern is a scan at a larger reuse distance than
this, the cache will be unable to find these objects, even
with an optimal ranking metric.

If the cache fits IV objects and the scan contains M
objects, then the maximum hit rate on the trace is N/M.
To keep the error tolerance below €, we must track ages
up to M > N/e, hence:

MAX_AGE > N)

COARSENESS X €

Choosing age coarsening: COARSENESS hurts per-
formance by forcing RankCache to be conservative
and keep objects around longer than necessary, until
RankCache is certain that they can be safely evicted. The
effect of large COARSENESS is to reduce effective cache
capacity, since more space is spent on objects that will be
eventually evicted. In the worst case, all evicted objects
spend an additional COARSENESS accesses in the cache,
reducing the space available for hits proportionally.

Coarsening thus “pushes RankCache down the hit rate
curve”. The lost hit rate is maximized when the hit rate
curve has maximum slope. Since optimal eviction poli-
cies have concave hit rate curves [6], the loss from coars-
ening is maximized when the hit rate curve is a straight
line. Once again, this is the hit rate curve of a scanning
pattern with uniform object size.

Without loss of generality, assume objects have
size = 1. The cache size equals the sum of the expected
resources spent on hits and evictions [8],

N = E[H] + E[E]

In the worst case, coarsening increases space spent on
evictions by

E[E’'] = E[E] + COARSENING,
so space for hits is reduced
E[H'] = E[H] — COARSENING

With a scan over M objects, the effect of coarsening is
thus to reduce cache hit rate by

COARSENING

Hit rate loss =
M

This loss is maximized when M is small, but M cannot
be too small since M < N leads to zero misses.
To bound this error below €, RankCache coarsens ages
such that
COARSENING < N X € (8)

Substituting into Eq. 7 yields
1
MAX_AGE > — 9)
€

Implementation: Age coarsening thus depends only
on the error tolerance and number of cached objects.
RankCache monitors the number of cached objects
and, every 100 intervals, updates COARSENING and
MAX_AGE. We find that hit rate is insensitive to these
parameters, so long as they are within the right order of
magnitude.

USENIX Association

15th USENIX Symposium on Networked Systems Design and Implementation 403

