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Abstract
Many popular cloud applications are large-scale dis-
tributed systems with each request involving tens to
thousands of RPCs and large code bases. Because of
their scale, performance optimizations without action-
able supporting data are likely to be ineffective: they
will add complexity to an already complex system of-
ten without chance of a benefit. This paper describes the
challenges in collecting actionable data for Gmail, a ser-
vice with more than 1 billion active accounts.

Using production data from Gmail we show that both
the load and the nature of the load changes continuously.
This makes Gmail performance difficult to model with a
synthetic test and difficult to analyze in production. We
describe two techniques for collecting actionable data
from a production system. First, coordinated bursty trac-
ing allows us to capture bursts of events across all lay-
ers of our stack simultaneously. Second, vertical con-
text injection enables us combine high-level events with
low-level events in a holistic trace without requiring us to
explicitly propagate this information across our software
stack.

1 Introduction

Large cloud applications, such as Facebook and Gmail,
serve over a billion active users [4, 5]. Performance of
these applications is critical: their latency affects user
satisfaction and engagement with the application [2, 26]
and their resource usage determines the cost of running
the application. This paper shows that understanding
and improving their resource usage and latency is diffi-
cult because their continuously varying load continually
changes the performance characteristics of these applica-
tions.

Prior work has shown that as the user base changes, the
load on cloud applications (often measured as queries-
per-second or QPS) also changes [28]. We show, using

data from Gmail, that the biggest challenges in analyzing
performance come not from changing QPS but in chang-
ing load mixture. Specifically, we show that the load on
a cloud application is a continually varying mixture of
diverse loads, some generated by users and some gen-
erated by the system itself (e.g., essential maintenance
tasks). Even if we consider only load generated by users,
there is significant variation in load generated by differ-
ent users; e.g., some user mailboxes are four orders of
magnitude larger than others and operations on larger
mailboxes are fundamentally more expensive than those
on smaller mailboxes.

This time-varying mixture of load on our system has
two implications for performance analysis. First, to de-
termine the effect of a code change on performance, we
must collect and analyze data from many points in time
and thus many different mixtures of load; any single
point in time gives us data only for one mixture of load.
Second, to reproduce a performance problem we may
need to reproduce the combination of load that led to the
performance problem in the first place. While sometimes
we can do this in a synthetic test, often times we need to
collect and analyze data from a system serving real users.

Doing experiments in a system serving real users is
challenging for two reasons. First, since we do not con-
trol the load that real users generate, we need to do each
experiment in a system serving a large (tens of millions
users) random sample of users to get statistically signifi-
cant results. Second, since experiments in a system serv-
ing real users is inherently risky (a mistake can nega-
tively impact users) we use statistics whenever possible
to predict the likely outcome of an experiment before ac-
tually undertaking the experiment. We show that this is
not without its pitfalls: sometimes the distribution of the
data (and thus the appropriate statistical method) is not
obvious.

To collect rich performance data from a system serv-
ing real users we have developed two techniques.

First, coordinated bursty tracing collects coordinated
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Figure 1: Continuously changing queries per second

bursts of traces across all software layers without re-
quiring explicit coordination. Unlike traditional sam-
pling or bursty approaches which rely on explicitly main-
tained counters [19, 6] or propagation of sampling deci-
sions [27, 22], coordinated bursty tracing uses time to
coordinate the start and end of bursts. Since all layers
collect their bursts at the same time (clock drift has not
been a problem in practice), we can reason across the en-
tire stack of our application rather than just a single layer.
By collecting many bursts we get a random sampling of
the mix of operations which enables us to derive valid
conclusions from our performance investigations.

Second, since interactions between software layers are
responsible for many performance problems, we need to
be able to connect trace events at one layer with events
at another. Vertical context injection solves this problem
by making a stylized sequence of innocuous system calls
at each high-level event of interest. These system calls
insert the system call events into the kernel trace which
we can analyze to produce a trace that interleaves both
high and low-level events. Unlike prior work (e.g., [27]
or [15]) our approach does not require explicit propaga-
tion of a trace context through the layers of the software
stack.

To illustrate the above points, this paper presents data
from Gmail, a popular email application from Google.
However, the authors have used the techniques for many
other applications at Google, particularly Google Drive;
the lessons in this paper apply equally well to those other
applications.

2 Our challenge: constantly varying load

The primary challenge in performance analysis of cloud
applications stems from their constantly varying load.
Figure 1 shows scaled queries per second (QPS) across
thousands of processes serving tens of millions of users
over the course of a week for one deployment of Gmail.
By “scaled” we mean that we have multiplied the actual
numbers by a constant to protect Google’s proprietary
information; since we have multiplied each point by the

Figure 2: Continuously changing response size

Figure 3: Continuously changing user behavior

same constant and each graph is zero based, it allows rel-
ative comparisons between points or curves on the same
graph.1 The time axes for all graphs in this paper are in
US Pacific time and start on a Sunday unless the graph
is for a one-off event in which case we pick the time
axis most suitable for the event. We see that load on our
system changes continuously: from day to day and from
hour to hour by more than a factor of two.

While one expects fluctuations in QPS (e.g., there are
more active users during the day than at night), one
does not expect the mix of requests to fluctuate signif-
icantly. Figure 2 shows one characteristic of requests,
the response size per request, over the course of a week.
Figure 2 shows that response size per request changes
over the course of the week and from hour to hour (by
more than a factor of two) which indicates that the actual
mix of requests to our system (and not just their count)
changes continuously.

The remainder of this section explores the sources of
variation in the mix of requests.
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2.1 Variations in rate and mix of user visi-
ble requests (UVR)

Figure 3 gives the response size per request (upper curve)
and QPS (lower curve) for “user visible requests” (UVR
for short) only. By UVR we mean requests that users ex-
plicitly generate (e.g., by clicking on a message), back-
ground requests that the user’s client generates (e.g.,
background sync by the IMAP client), and message de-
livery.

From Figure 3 we see that, unlike Figure 1, the QPS
curve for UVR exhibits an obvious diurnal cycle; during
early morning (when both North America and Europe are
active) we experience the highest QPS, and the QPS grad-
ually ramps up and down as expected. Additionally we
see higher QPS on weekdays compared to weekends.

We also see that the bytes per response in Figure 3 is
flatter than in Figure 2: for UVR, we see that the high-
est observed response size per request is approximately
20% higher than the lowest observed response size per
request. In contrast, when we consider all requests (and
not just UVR), the highest response size is more than
100% higher than the lowest (Figure 2).

While a 20% variation is much smaller than a 100%
variation, it is still surprising: especially given that the
data is aggregated over tens of millions of users, we ex-
pect that there would not be much variation in average
response size over time. We have uncovered two causes
for this variation.

First, the mix of mail delivery (which has a small re-
sponse size) and user activity (which usually has a larger
response size) varies over the course of the day which in
turn affects the average response size per request. This
occurs because many bulk mail senders send bursts of
email at particular times of the day and those times do not
necessarily correlate with activity of interactive users.

Second, the mix of user interactive requests and sync
requests varies over the course of the day. For exam-
ple, Figure 4 shows the scaled ratio of UVR requests
from a web client to UVR requests from an IMAP client
(e.g., from an iOS email application or from Microsoft
Outlook). IMAP requests are mostly synchronization re-
quests (i.e., give me all messages in this folder) while
web client requests are a mix of interactive requests (i.e.,
user clicks on a message) and prefetch requests. Thus,
IMAP requests tend to have a larger response size com-
pared to interactive requests. We see that this ratio too
exhibits a diurnal cycle indicating that over the course
of the day the relative usage of different email clients
changes (by more than a factor of three), and thus the re-
sponse size per request also changes. This comes about

1All graphs in this paper use such scaling but different graphs may
use different scaling to aid readability and thus absolute values are not
comparable across graphs.

Figure 4: Scaled fraction of web client requests to IMAP
requests

due to varying email client preferences; for example one
user can use a dedicated Gmail application while another
can use a generic IMAP-based email application on a mo-
bile device).

In summary, even if we consider only UVR, both the
queries per second and mix of requests changes hour to
hour and day to day.

2.2 Variations in rate and mix of essential
non-UVR work

In addition to UVR requests which directly provide ser-
vice to our users, our system performs many essential
tasks:

• Continuous validation of data. Because of the scale
of our system, any kind of failure that could happen
does actually happen. Besides software failures, we
regularly encounter hardware errors (e.g., due to an
undetected problem with a memory chip). To pre-
vent these failures from causing widespread corrup-
tion of our data, we continuously check invariants
of the user data. For example, if our index indicates
that N messages contain a particular term, we check
the messages to ensure that those and only those
messages contain the term. As another example, we
continuously compare replicas of each user’s data to
detect any divergence between the replicas.

• Software updates. Our system has many interact-
ing components and each of them has its own up-
date cycle. Coordinating the software updates of all
components is not only impractical but undesirable:
it is invaluable for each team to be able to update
its components when necessary without coordina-
tion with other teams. Rather than using dynamic
software updating [18] which attempts to keep each
process up while updating it, we use a simpler ap-
proach: we push software updates by restarting a
few processes at a time; our system automatically
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Figure 5: Scaled CPU usage of UVR and non-UVR work

moves users away from servers that are being up-
dated to other servers and thus our users get unin-
terrupted service.

• Repairs. Hardware and software bugs can and do
happen. For example, we once had a bug in the
message tokenizer that incorrectly tokenized certain
email addresses in the message. This bug affected
the index and thus users could not search for mes-
sages using the affected email addresses. To fix this
problem, we had to reindex all affected messages
using a corrected tokenizer. Given the scale of our
system, such fixes can take weeks or longer to com-
plete and while the fixes are in progress they induce
their own load on the system.

• Data management. Gmail uses Bigtable as its un-
derlying storage [11, 10]. Bigtable maintains stacks
of key-value pairs and periodically compacts each
stack to optimize reads and to remove overwritten
values. This process is essential for the resource
usage and performance of our system. These com-
pactions occur throughout the day and are roughly
proportional to the rate of updates to our system.

As with UVR work, the mix of non-UVR work also
changes continuously. When possible we try to schedule
non-UVR work when the system is under a low UVR load:
this way we not only minimize impact on user-perceived
performance but are also able to use resources reserved
for UVR that would otherwise go unused (e.g., during
periods of low user activity).

Figure 5 shows the scaled CPU usage of UVR work
(lowest line), non-UVR work (middle line) and total
scaled CPU consumed by the email backend (top line).
From this we see that UVR directly consumes only about
20% of our CPU; indirectly UVR consumes more CPU be-
cause it also induces data management work. Thus, fo-
cusing performance analysis on just the UVR or just the
non-UVR work alone is inadequate for understanding the
performance of our system.

Figure 6: CPU usage goes up globally (circled) after a
natural event

2.3 Variations due to one-off events

In addition to UVR and essential non-UVR work, our sys-
tem also experiences one-off events. We cannot plan for
one-off events: they may come from hardware or soft-
ware outages or from work that must be done right away
(e.g., a problem may require us to move the users served
by one datacenter into other datacenters).

Figure 6 shows a 20% increase, on average, in CPU
usage (circled) of our system after lightning struck
Google’s Belgian datacenter four times and potentially
caused corruption in some disks [3]. Gmail dropped
all the data in the affected datacenter because it could
have been corrupted and automatically reconstructed
data from a known uncorrupted source in other datacen-
ters; all of this without the users experiencing any outage
or issues with their email. Consequently, during the re-
covery period after this event, we experienced increased
CPU usage in datacenters that were not directly affected
by the event; this is because they were now serving more
users than before the event and because of the work re-
quired to reconstruct another copy of the user’s data.

One-off events can also interact with optimizations.
For example, we wanted to evaluate a new policy for us-
ing hedged requests [13] when reading from disk. Our
week-long experiment clearly showed that this change
was beneficial: it reduced the number of disk operations
without degrading latency.

Unfortunately, we found that this optimization inter-
acted poorly with a datacenter maintenance event which
temporarily took down a percentage of the disks for a
software upgrade. Figure 7 shows the scaled 99th per-
centile latency of a critical email request with and with-
out our optimization during a maintenance event. We see
that during the events, our latency nearly tripled, which
of course was not acceptable.

The latency degradation was caused by a bug in our
heuristic for deciding whether to redirect a read to an-
other copy of the data: our heuristic was taking too long
to blacklist the downed disks and thus rather than redi-
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Figure 7: Scaled latency during a datacenter maintenance
event

recting the read to another copy, it was waiting for the
downed disks until the request would time out. Fixing
this bug enabled our optimization to save resources with-
out degrading latency even during maintenance events.

In summary, the resource usage during one-off events
is often different from resource usage in the stable state.
Since one-off events are relatively rare (affect each dat-
acenter every few months) they are easy to miss in our
experiments.

2.4 Variation in load makes it difficult to
use a synthetic environment

The superimposition of UVR load, non-UVR load, and
one-off events results in a complex distribution of la-
tency and resource usage, often with a long-tail. When
confronted with such long-tail performance puzzles, we
first try to reproduce them with synthetic users: if we
can do this successfully, it simplifies the investigation:
with synthetic users we can readily add more instrumen-
tation, change the logic of our code, or rerun operations
as needed. With real users we are obviously limited be-
cause we do not want our experiments to compromise our
users’ data in any way and because experimenting with
real users is much slower than with synthetic users: be-
fore we can release a code change to real users it needs
to undergo code reviews, testing, and a gradual rollout
process.

Gmail has a test environment that brings up the entire
software stack and exercises it with synthetic mailboxes
and load. We have modeled synthetic users as closely as
we can on real users: the mailbox sizes of synthetic users
have the same distribution as the mailbox sizes of real
users and the requests from synthetic users is based on a
model from real users (e.g., same distribution of interar-
rival times, same mixture of different types of requests,
and similar token frequency).

Figure 8 compares the latency of a common email op-
eration for real users to the latency for synthetic users.

Figure 8: Latency for synthetic users versus real users at
the 50th, 95th, and 99th percentiles

We collected all data from the same datacenter (different
datacenters may use different hardware and thus are not
always comparable). The dotted lines in Figure 8 give the
latency from the synthetic load and the solid lines display
the latency from the real load at various percentiles.

Despite our careful modeling, latency distribution in
our test environment is different (and better) than latency
distribution of real users. As discussed in Section 2.1,
the continuously varying load is difficult to model in any
synthetic environment and large distributed systems in-
corporate many optimizations based on empirical obser-
vations of the system and its users [24]; it is therefore
not surprising that our test environment yields different
results from real users. Even then, we find our syn-
thetic environment to be an invaluable tool for debug-
ging many egregious performance inefficiencies. While
we cannot directly use the absolute data (e.g., latencies)
we get from our synthetic environment, the relationships
are often valid (e.g., if an optimization improves the la-
tency of an operation with synthetic user it often does so
for real users but the magnitude of the improvement may
be different).

For most subtle changes though, we must run experi-
ments in a live system serving real users. An alternate,
less risky, option is to mirror live traffic to a test environ-
ment that incorporates the changes we wish to evaluate.
While we have tried mirroring in the past, it is difficult
to get right: if we wait for the mirrored operation to fin-
ish (or at least get queued to ensure ordering), we de-
grade the latency of user-facing operations; if we mirror
operations asynchronously, our mirror diverges from our
production system over time.

2.5 Effect of continuously-varying load
The continuously-varying load mixtures affect both the
resource usage and latency of our application. For exam-
ple, Figure 9 shows two curves: the dotted curve gives
the scaled QPS to the Gmail backend and the solid line
gives the 99th percentile latency of a particular operation
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Figure 9: Changing load and changing latency

to the Gmail backend across tens of millions of users:
this operation produces the list of message threads in a
label (such as inbox). Since we are measuring the latency
of a particular operation and our sample is large, we do
not expect much variation in latency over time. Surpris-
ingly, we see that latency varies by more than 50% over
time as the load on the system changes. Furthermore the
relationship between load and latency is not obvious or
intuitive: e.g., the highest 99th percentile latency does
not occur at the point that QPS is at its highest and some-
times load and latency appear negatively correlated.

3 Our approach

Prior work has shown that even understanding the perfor-
mance of systems with stable load (e.g., [23]) is difficult;
thus, understanding the performance of a system with
widely varying load (Section 2) will be even harder. In-
deed we have found that even simple performance ques-
tions, such as “Does this change improve or degrade la-
tency?” are difficult to answer. In this section we de-
scribe the methodologies and tools that we have devel-
oped to help us in our performance analysis.

Since we cannot easily reproduce performance phe-
nomena in a synthetic environment, we conduct most of
our experiments with live users; Section 3.1 explains how
we do this. Section 3.2 describes how we can sometimes
successfully use statistics to predict the outcome of ex-
periments and the pitfalls we encounter in doing so. Sec-
tion 3.3 describes the two contexts in which we need to
debug the cause of slow or resource intensive operations
in a system under constantly varying load.

3.1 Running experiments in a live serving
system

As discussed in Section 2.4, we often need to do our per-
formance analysis on systems serving live users. This
section describes and explains our approach.

To conduct controlled experiments with real users we

(a) 100K users

(b) X0M users

Figure 10: Latency comparison: (a) 100K users, (b)
X0M users

partition our users (randomly) and each experiment uses
one partition as the test and the other as the control. The
partitions use disjoined sets of processes: i.e., in the non-
failure case, a user is served completely by the processes
in their partition. Large partitions enable us to employ
the law of large numbers to factor out differences be-
tween two samples of users. We always pick both the
test and control in the same datacenter to minimize the
difference in hardware between test and control and we
have test and control pairs in all datacenters.

Figure 10(a) shows scaled 50th, 95th and 99th per-
centile latency for two partitions, each serving 100K ac-
tive users. Each partition has the same number of pro-
cesses and each process serves the same number of ran-
domly selected users. We expect the two partitions to
have identical latency distributions because neither is
running an experiment but we see that this is not the
case. For example, the 95th percentiles of the two par-
titions differ by up to 50% and often differ by at least
15%. Thus, 100K randomly selected users is clearly not
enough to overwhelm the variation between users and
operations.

Figure 10(b) shows scaled 50th, 95th, and 99th per-
centile latency for two partitions, each serving tens of
millions users. With the exception of a few points where
the 95th percentiles diverge, we see that these partitions
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are largely indistinguishable from each other; the differ-
ences between the percentiles rarely exceed 1%.

Given that many fields routinely derive statistics from
fewer than 100K observations, why do our samples dif-
fer by up to 50% at some points in time? The diversity of
our user population is responsible for this: Gmail users
exhibit a vast spread of activity and mailbox sizes with a
long-tail. The 99th percentile mailbox size is four orders
of magnitude larger than the median. The resource usage
of many operations (such as synchronization operations
and search) depend on the size of the mailbox. Thus, if
one sample of 100K users ends up with even one more
large user compared to another sample, it can make the
first sample appear measurably worse. With larger sam-
ples we get a smaller standard deviation (by definition) in
the distribution of mailbox sizes and thus it is less likely
that two samples will differ significantly by chance. Intu-
itively, we need a greater imbalance (in absolute terms)
in mailbox sizes as samples increase in size before we
observe a measurable difference between the samples.

3.2 Using statistics to determine the impact
of a change

Since a change may affect system performance differ-
ently under different load, we:

• Collect performance data from a sample of produc-
tion. A large sample (tens of millions of randomly
chosen users) makes it likely that we see all of the
UVR behaviors.

• Collect performance data over an entire week and
discount data from holiday seasons which tradition-
ally have low load. By collecting data over an entire
week we see a range of likely mixtures of UVR and
non-UVR loads.

• Collect data from “induced” one-off events. For ex-
ample, we can render one cluster as “non-serving”
which forces other clusters to take on the additional
load.

• Compare our test to a control at the same time and
collect additional metrics to ensure that there was
no other factor (e.g., a one-off event or the residual
effects of a previous experiment) that renders the
comparison invalid.

Once we have the data, we use statistical methods to
analyze it. Unfortunately, the choice of the statistical
method is not always obvious: most methods make as-
sumptions about the data that they analyze (e.g., the dis-
tribution or independence of the data). Suppose, for ex-
ample, that we want to test for statistically significant dif-
ferences between latency in two partitions of randomly

Figure 11: CPU of processes running the same binary has
a near-normal distribution

selected users (as illustrated in Figure 10). Because
the Kolmogorov-Smirnov (K-S) test is non-parametric
(without distributional assumptions) it seems like a good
candidate to use. However, due to the scale of the ap-
plication, we store only aggregate latency at various per-
centiles rather than latency of each operation. Apply-
ing the K-S test to the percentiles (treating the repeated
measurements over time as independent observations)
would violate the independence assumption and inflate
the power of the test. Any time we violate the assump-
tions of a statistical method, the method may produce
misleading results (e.g., [9]).

This section gives two real examples: one where sta-
tistical modeling yields a valid outcome and one where it
surprisingly does not.

3.2.1 Example 1: Data is near normal

A critical binary in our email system runs with N pro-
cesses, each with C CPU cores serving U users. We
wanted to deploy processes for 2U users but without us-
ing 2C CPU (our computers did not have 2C CPU). Since
larger processes allow for more pooling of resources, we
knew that the larger process would not need 2C CPU; but
then how much CPU would it need?

Looking at the distribution of the CPU usage of the
N processes, we observed that (per the central limit the-
orem) they exhibited a near normal distribution. Thus,
at least in theory, we could calculate the properties of
the larger process (2N total processes) using the stan-
dard method for adding normal distributions. Concretely,
when adding a normal distribution to itself, the resulting
mean is two times the mean of the original distribution
and the standard deviation is

√
2 of the standard devia-

tion of the original distribution. Using this method we
predicted the resources needed by the larger process and
deployed it using the prediction.

The solid lines in Figure 11 show the observed 50th,
95th, and 99th percentiles of scaled CPU usage of the
larger process using a sample of 3,000 processes. The
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Figure 12: Time-shifted resource usage

dashed lines display the percentiles predicted by the sta-
tistical model. We see that the dashed and solid lines are
close to each other (usually within 2%) at the 50th and
95th percentiles but the observed 99th percentile is al-
ways larger than the normal 99th percentile, usually by
10 to 20%. With the exception of the tail, our statisti-
cal model effectively predicted the resource needs of the
larger process.

3.2.2 Example 2: Data is near normal but not inde-
pendent

Our email application is made up of many different ser-
vices which communicate with each other using RPC
calls. Similar to the pooling in the previous section, we
wanted to explore if allowing pairs of communicating
processes (one from the higher-level binary and one for
the lower-level binary) to share CPU would be beneficial.

The dashed (“Normal”) lines in Figure 12 show the
50th, 95th, and 99th percentiles of scaled CPU usage that
we expected when we shared resources between pairs of
communicating processes. The solid (“Observed”) lines
show the actual percentiles of scaled CPU usage that we
observed for the paired processes. To our surprise, the
actual CPU usage is lower than the modeled CPU usage
by up to 25% at the 95th and 99th percentiles and by
50% to 65% at the median. Clearly, our statistical model
is incorrect.

On further investigation we determined that the CPU
usage of the two communicating processes is not inde-
pendent of each other: the two processes actually exhibit
“time-shifted” CPU usage: when the higher-level process
makes an RPC call to the lower-level process, it waits
for the response and thus consumes no CPU (for that re-
quest); when the lower-level process returns a response
it stops using CPU (for that request) and the higher-level
process then becomes active processing the response.
Thus, because these two distributions are not indepen-
dent we cannot add them together.

3.3 Temporal and operation context

Section 3.2 shows how we approach establishing the im-
pact of a change to the live system. Before we can de-
termine what changes we need for a cloud application
to become more responsive or cost effective, we need to
understand why a request to a cloud application is slow
or expensive. To achieve that understanding, we need to
consider two contexts.

First, because cloud applications experience continu-
ously varying load and load mixture (Section 2) we need
to consider the temporal context of the request. By “tem-
poral context” we mean all (possibly unrelated) concur-
rent activity on computers involved in serving our re-
quest throughout the time required to complete the re-
quest. Unrelated activity may degrade the performance
of our request by, for example, causing cache evictions.
While in our multi-tenant environment (i.e., many differ-
ent applications share each computer) the operation con-
text could include activity from processes uninvolved in
serving our request, in practice we have found that this
rarely happens: this is because each process runs in a
container that (for the most part) isolates it from other
processes running on the same computer. Thus, we are
only interested in temporal context from processes that
are actually involved in serving our request.

Second, a single request to a cloud application can in-
volve many processes possibly running on different com-
puters [21]. Furthermore, each process runs a binary
with many software layers, often developed by indepen-
dent teams. Thus a single user request involves remote-
procedure calls between processes, functional calls be-
tween user-level software layers, and system calls be-
tween user-level software and the kernel. A request may
be slow (expensive) because (i) a particular call is unrea-
sonably slow (expensive), (ii) arguments to a particular
call causes it to be slow (expensive), or (iii) the individ-
ual calls are fast but there is an unreasonably large num-
ber of them which adds up to a slow (expensive) request.
Knowing the full tree of calls that make up an operation
enables us to tease apart the above three cases. We call
this the operation context because it includes the calls
involved in a request along with application-level anno-
tations on each call.

We now illustrate the value of the two contexts with a
real example. While attempting to reduce the CPU reser-
vation for the backend of our email service, we noticed
that even though its average (over 1 minute) utilization
was under 50%, we could not reduce its CPU reservation
even slightly (e.g., by 5%) without degrading latency.
The temporal context showed that RPCs to our service
came in bursts that caused queuing even though the av-
erage utilization was low. The full operation context told
us what operations were causing the RPCs in the bursts.

412    15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association



By optimizing those operations (essentially using batch-
ing to make fewer RPCs per operation) we were able to
save 5% CPU for our service without degrading latency.

3.3.1 Coordinated bursty tracing

The obvious approach for using sampling yet getting the
temporal context is to use bursty tracing [6, 19]). Rather
than collecting a single event at each sample, bursty trac-
ing collects a burst of events. Prior work triggers a burst
based on a count (e.g., Arnold et al. trigger a burst on the
nth invocation of a method). This approach works well
when we are only interested in collecting a trace at a sin-
gle layer, it does not work across processes or across lay-
ers. For example, imagine we collect a burst of requests
o1, · · · ,on arriving at a server O and each of these opera-
tions need to make an RPC to a service S . For scalabil-
ity, S itself is comprised of multiple servers s1, · · · ,sm
which run on many computers (i.e., it is made up of
many processes each running on a different computer)
and the different oi may each go to a different server in
the s1, · · · ,sm set. Thus, a burst of requests does not give
us temporal context on any of the s1, · · · ,sm servers. As
another example, the nth invocation of a method will not
correspond to the nth invocation of a system call and thus
the bursts we get at the method level and at the kernel
level will not be coordinated.

We can address the above issues with bursty tracing
by having each layer (including the kernel) continuously
record all events in a circular buffer. When an event of
interest occurs, we save the contents of the buffers on all
processes that participated in the event. In practice we
have found this approach to be problematic because it
needs to identify all processes involved in an event and
save traces from all of these processes before the process
overwrites the events. Recall that the different processes
often run on different computers and possibly in different
datacenters.

To solve the above limitations of bursty tracing, we use
coordinated bursty tracing which uses wall-clock time
to determine the start and end of a burst. By “coordi-
nated” we mean that all computers and all layers collect
the burst at the same time and thus we can simultaneously
collect traces from all the layers that participated in ser-
vicing a user request. Since a burst is for a contiguous
interval of time, we get the temporal context. Since we
are collecting bursts across computers, we can stitch to-
gether the bursts into an operation context as long as we
enabled coordinated bursty tracing on all of the involved
computers.

We specify our bursts using a burst-config which is a
64-bit unsigned integer. The burst-config dictates both
the duration and the period of the burst. Most commonly
it is of the form:

(1)m(0)n (in binary)

i.e., it is m 1s followed by n 0s (in base 2). Each process
and each layer performs tracing whenever:

burst-config & WallTimeMillis() == burst-
config

Intuitively, each burst lasts for 2nms and there is one
burst every 2n+mms. For example if we want to trace
for 4ms every 32ms we would use the burst-config of
11100 (in base 2). Unlike common mechanisms for
bursty tracing, this mechanism does not require the appli-
cation to maintain state (e.g., count within a burst [6, 19])
or for the different processes to communicate with each
other to coordinate their bursts; instead, it can control the
bursts using a cheap conditional using only local infor-
mation (i.e., wall-clock time).

Collecting many bursts spread out over a period of
time ensures that we get the complete picture: i.e., by
selecting an appropriate burst-config we can get bursts
spread out over time and thus over many different loads
and load mixes.

There are five challenges in using coordinated bursty
tracing.

First, bursty tracing assumes that clocks across differ-
ent computers are aligned. Fortunately because of true
time [12] clock misalignment is not a problem for us in
practice.

Second, we need to identify and enable coordinated
bursty tracing on all processes involved in our request;
otherwise we will get an incomplete operation context.
Because we partition our users (Section 3.1) and pro-
cesses of a partition only communicate with other pro-
cesses of the same partition (except in the case of failure
handling) we can readily identify a set of processes for
which we need to enable coordinated bursty tracing to
get both the operation and the temporal context of all re-
quests by users in the partition.

Third, since coordinated bursty tracing is time based
(and not count based as in prior work on bursty tracing), a
burst may start or end in the middle of a request; thus we
can get incomplete data for such requests. To alleviate
this, we always pick a burst period that is at least 10 times
the period of the request that we are interested in. This
way, while some requests will be cut off, we will get full
data for the majority of requests within each burst.

Fourth, any given burst may or may not actually con-
tain the event of interest (e.g., a slow request); we need to
search through our bursts to determine which ones con-
tain interesting events. Sometimes this is as simple as
looking for requests of a particular type that take longer
than some threshold. Other times, the criteria is more
subtle: e.g., we may be interested in requests that make
at least one RPC to service S and S returns a particu-
lar size of a response. Thus, we have built tools that use
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temporal logic to search over the bursts to find interesting
operations [25].

Fifth, coordinated bursty tracing, and really any trac-
ing, can itself perturb system behavior. If severe enough,
the perturbation can mislead our performance analysis.
The perturbation of coordinated bursty tracing depends
on the traces that we are collecting; since traces for dif-
ferent layers have vastly different costs, we cannot quan-
tify the perturbation of coordinated bursty tracing in a
vacuum. Instead, we always confirm any findings with
corroborating evidence or further experiments. In prac-
tice we have not yet encountered a situation where the
perturbation due to bursty tracing was large enough to
mislead us.

We use coordinated bursty tracing whenever we need
to combine traces from different layers to solve a per-
formance mystery. As a real example, cache traces at
our storage layer showed that the cache was getting re-
peated requests for the same block in a short (millisec-
onds) time interval. While cache lookups are cheap, our
cache stores blocks in compressed form and thus each
read needs to pay the price of uncompressing the block.
For efficiency reasons, the cache layer uses transient file
identifiers and an offset as the key; thus logs of cache
access contain only these identifiers and not the file sys-
tem path of the file. Without knowing the path of the
file, we did not know what data our application was re-
peatedly reading from the cache (the file path encodes
the type of data in the file). The knowledge of the file
path was in a higher level trace in the same process and
the knowledge of the operation that was resulting in the
reads was in another process. On enabling coordinated
bursty tracing we found that most of the repeated reads
were of the index block: a single index block provides
mapping for many data blocks but we were repeatedly
reading the index block for each data block. The prob-
lem was not obvious from the code structure: we would
have to reason over a deeply nested loop structure spread
out over multiple modules to find the problem via code
inspection alone. The fix improved both the long-tail la-
tency and CPU usage of our system.

3.3.2 Vertical context injection

Section 3.3.1 explores how we can collect a coordinated
burst across layers. Since a burst contains traces from
different layers, we need to associate events in one trace
with events in another trace. More concretely, we would
like to project all of the traces from a given machine so
we get a holistic trace that combines knowledge from all
the traces.

Simply interleaving traces based on timestamps or
writing to the same log file is not enough to get a holistic
trace. For example by interleaving RPC events with ker-

nel events we will know that certain system calls, con-
text switches, and interrupts occurred while an RPC was
in progress. However, we will not know if those system
calls were on behalf of the RPC or on behalf of some un-
related concurrent work.

The obvious approach to combining high- and low-
level traces is to propagate the operation context through
all the layers and tag all trace events with it. This ap-
proach is difficult because it requires us to propagate the
context through many layers, some of which are not even
within our direct control (e.g., libraries that we use or the
kernel). We could use dynamic instrumentation tools,
such as DTrace [1], to instrument all code including ex-
ternal libraries. This approach is unfortunately unsuit-
able because propagating the operation context through
layers can require non-trivial logic; thus even if we could
do this using DTrace, the code with the instrumentation
would be significantly different from the code that we
have reviewed and tested. Using such untested and un-
reviewed code for serving real user requests could po-
tentially compromise our user’s data and thus we (as a
policy) never do this.

Our approach instead relies on the insight that any
layer of the software stack can directly cause kernel-level
events by making system calls. By making a stylized se-
quence of innocuous system calls, any layer can actually
inject information into the kernel traces. 2

For example, let’s suppose we want to inject the RPC-
level event, “start of an RPC,” into a kernel trace. We
could do this as follows:

syscall(getpid, kStartRpc);
syscall(getpid, RpcId);

The argument to the first getpid (kStartRpc) is a constant
for “start of RPC.” getpid ignores all arguments passed
to it, but the kernel traces still record the value of those
arguments. The argument to the second getpid identifies
the RPC that is starting. Back-to-back getpid calls (with
the first one having an argument of kStartRpc) are un-
likely to appear naturally and thus the above sequence
can reliably inject RPC start events into the kernel trace.

When we find the above sequence in the kernel trace
we know that an RPC started but more importantly we
know the thread on which the RPC started (the kernel
traces contain the context switch events which enable us
to tell which thread is running on which CPU). We can
now tag all system calls on the thread with our RPC until
either (i) the kernel preempts the thread, in which case
the thread resumes working on our RPC when the kernel
schedules it again, or (ii) the thread switches to working
on a different CPU (which we again detect with a pattern
of system calls).

2We discovered this idea in collaboration with Dick Sites at Google.
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We use vertical context injection for other high-level
events also. For example, by also injecting “just acquired
a lock after waiting for a long time” into the kernel trace,
we can uncover exactly what RPC was holding the lock
that we were waiting on; it will be the one that invokes
sched wakeup to wake up the blocked futex call.

Implementing the above approach for injecting RPC
and lock-contention information into our kernel traces
took less than 100 lines of code. The analysis of the ker-
nel traces to construct the holistic picture is of course
more complex but this code is offline; it does not add any
work or complexity to our live production system. In
contrast, an approach that propagated context across the
layers would have been far more intrusive and complex.

We use vertical context injection as a last resort: its
strength is that it provides detailed information that fre-
quently enables us to get to the bottom of whatever per-
formance mystery we are chasing; its weakness is that
these detailed traces are large and understanding them is
complex.

As a concrete example, we noticed that our servers had
low CPU utilization: under 50%. When we reduced the
CPU per server (to increase utilization and save CPU) the
latency of our service became worse. This indicated that
there were micro bursts where the CPU utilization was
higher than 50%; reducing the CPU per server was neg-
atively affecting our micro bursts and thus degrading la-
tency. We used vertical context injection along with co-
ordinated bursty tracing to collect bursts of kernel traces.
On analyzing the traces we found that reading user prop-
erties for each user request was responsible for the bursts;
for each user request we need a number of properties and
each property is small: e.g., one property gives the num-
ber of bytes used by the user. Rather than reading all
properties at once, our system was making a separate
RPC for each property which resulted in bursty behav-
ior and short (a few milliseconds) CPU bursts. Reading
all properties in a single RPC improved both the CPU and
latency of our service. Vertical context injection enabled
us to determine that the work in the bursts was related to
servicing the RPCs involved in reading the properties.

4 Related work

We now review related work in the areas of analyzing
the performance of cloud applications and performance
tools.

Magpie [7, 8] collects data for all requests (thus
the temporal context) and stitches together information
across multiple computers to provide the operation con-
text. Because Magpie collects data for all requests it
does not scale to billions of user requests per day; Dap-
per and Canopy (discussed below) address this issue by
using sampling.

Dapper [27] propagates trace identifiers to produce an
RPC tree for an operation. We use Dapper extensively
in our work because Dapper tells us exactly what RPCs
execute as part of an operation and the performance data
pertinent to the RPCs. By default Dapper performs ran-
dom sampling: e.g., it may sample 1 in N traces. While
this gives us the operation context, it does not give us
the temporal context. Thus, we use Dapper in conjunc-
tion with coordinated bursty tracing and vertical context
injection.

Canopy [22] effectively extends Dapper by provid-
ing APIs where any layer can add new events to a
Dapper-like trace and users can use DSL to extend traces.
Canopy’s solution to combining data from multiple lay-
ers is to require each layer to use a Canopy API; while
this is effective for high-level software layers, it may be
unsuitable for low-level libraries and systems (e.g., OS
kernel) because it creates a software dependency from
critical systems software on high-level APIs.

Xtrace [15] uses auxiliary information (X-Trace Meta-
data) to tie together events that belong to the same oper-
ation. Thus, one could use Xtrace to tie together high-
level RPC events and kernel-level events; however, un-
like vertical context injection, Xtrace requires each layer
to explicitly propagate the metadata across messages.

Jalaparti et al. [21] discuss the variations in latency
that they observe in Bing along with mitigation strate-
gies that involve trading off accuracy and resources with
latency. Unlike our work, Jalaparti et al. do not explore
the effects of time-varying load on performance.

Vertical profiling [17] recognizes the value of the oper-
ation context and subsequent work extends vertical pro-
filing to combine traces from multiple layers using trace
alignment [16]. Unlike our work, this work only consid-
ers the operation context within a single Java binary.

5 Discussion

This paper shows that for Gmail the load varies continu-
ally over time; these variations are not just due to changes
in QPS; the actual nature of the load changes over time
(for example, due to the the mix of IMAP traffic and web
traffic). These variations create challenges for evaluating
the performance impact of code changes. Concretely, (i)
we cannot compare before-after performance data at dif-
ferent points in time and instead we run the test and con-
trol experiments simultaneously to ensure that they expe-
rience comparable loads; (ii) it is difficult to model this
changing load in a synthetic environment and thus we
conduct our experiments in a system serving live users;
and (iii) we need large sample sizes (millions of users) to
get statistically significant results.

We can take each source of variation described in this
paper and devise a fix for it. For example, by isolating
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IMAP and web traffic in disjoint services we circumvent
the variation due to different mixes of IMAP and web
traffic over the course of time. Unfortunately, such an
approach does not work in general: there are many other
causes of load variation besides the ones that we have
described and fixes for each of the many causes becomes
untenable quickly. The remainder of this section dis-
cusses some other sources of variation and in doing so
generalizes the contributions of this paper.

The continuously changing software [14] causes per-
formance to vary. A given operation to a Cloud applica-
tion may involve hundreds of RPCs in tens of services;
for example a median request to Bing involves 15 stages
processed across 10s to 1000s of servers [21]. Different
teams maintain and deploy these stages independently.
To ensure the safety of the deployed code, we cannot
deploy new versions of software atomically even if the
number of instances is small enough to allow it (e.g.,
[20]). Instead we deploy it in a staged fashion: e.g., first
we may deploy a software only to members of the team,
then to random users at Google, then to small sets of ran-
domly picked external users, and finally to all users. As a
result, at any given time many different versions of a soft-
ware may be running. Two identical operations at differ-
ent points in time will often touch different versions of
some of the services involved in serving the operation.
Since different versions of a server may induce differ-
ent loads (e.g., by making different RPCs to downstream
servers or by inducing different retry behavior on the up-
stream servers), continuous deployment of software also
continuously changes the load on our system.

Real-world events can easily change the mix or
amount of load on our systems and thus cause perfor-
mance to vary. For example, Google applications that
are popular in academia (e.g., Drive or Classroom) see
a surge of activity at back-to-school time. Some world
events may be more subtle: e.g., a holiday in a place with
limited or expensive internet connectivity may change
the mix of operations to our system because clients in
such areas often access our systems in a different mode
(e.g., using offline mode or syncing mode) than clients in
areas with good connectivity.

Datacenter management software can change the num-
ber of servers that are servicing user requests, move
servers across physical machines, and turn up or turn
down VMs; in doing so they directly vary the load on
services.

In summary, there are many and widespread reasons
beyond the ones explored in this paper that result in con-
tinuously varying load on cloud applications. Thus, we
believe that the approaches in this paper for doing exper-
iments in the presence of these variations and the tools
that we have developed are widely applicable.

6 Conclusions

Performance analysis of cloud applications is important;
with many cloud applications serving more than a bil-
lion active users, even a 1% saving in resources translates
into significant cost savings. Furthermore, being able to
maintain acceptable long-tail latency at such large scale
requires constant investment in performance monitoring
and analysis.

We show that performance analysis of cloud applica-
tion is challenging and the challenges stem from con-
stantly varying load patterns. Specifically, we show that
superimposition of requests from users, different email
clients, essential background work, and one-off events
results in a continuously changing load that is hard to
model and analyze. This paper describes how we meet
this challenge. Specifically, our approach has the follow-
ing components:

• We conduct performance analysis in a live appli-
cation setting with each experiment setting involv-
ing millions of real users. Smaller samples are not
enough to capture the diversity of our users and their
usage patterns.

• We do longitudinal studies over a week or more to
capture the varying load mixes. Additionally, we
primarily compare data (between the test and con-
trol setups) at the same point in time so that they are
serving a similar mix of load.

• We use statistics to analyze data and to predict the
outcome of risky experiments and we corroborate
the results with other data.

• We use coordinated bursty tracing to capture bursts
of traces across computers and layers so we get both
the temporal and the operation context needed for
debugging long-tail performance issues.

• We project higher-level events into kernel events so
that we can get a vertical trace which allows us to
attribute all events (low or high level) to the high-
level operation (e.g., RPC or user operation).

We have used the above strategies for analyzing and
optimizing various large applications at Google includ-
ing Gmail (more than 1 billion users) and Drive (hun-
dreds of millions users).
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