
This paper is included in the Proceedings of the 
13th USENIX Symposium on Networked Systems  

Design and Implementation (NSDI ’16).
March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

Open access to the Proceedings of the 
13th USENIX Symposium on 

Networked Systems Design and 
Implementation (NSDI ’16) 

is sponsored by USENIX.

AnonRep: Towards Tracking-Resistant  
Anonymous Reputation

Ennan Zhai, Yale University; David Isaac Wolinsky, Facebook, Inc.; 
Ruichuan Chen, Nokia Bell Labs; Ewa Syta, Yale University; Chao Teng, Facebook, Inc.;  

Bryan Ford, École Polytechnique Fédérale de Lausanne (EPFL)

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/zhai



USENIX Association  13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 583

AnonRep: Towards Tracking-Resistant Anonymous Reputation

Ennan Zhai† David Isaac Wolinsky‡ Ruichuan Chen§

Ewa Syta† Chao Teng‡ Bryan Ford∗

†Yale University ‡Facebook Inc. §Nokia Bell Labs ∗EPFL

Abstract

Reputation systems help users evaluate information qual-

ity and incentivize civilized behavior, often by tallying

feedback from other users such as “likes” or votes and

linking these scores to a user’s long-term identity. This

identity linkage enables user tracking, however, and ap-

pears at odds with strong privacy or anonymity. This

paper presents AnonRep, a practical anonymous reputa-

tion system offering the benefits of reputation without en-

abling long-term tracking. AnonRep users anonymously

post messages, which they can verifiably tag with their

reputation scores without leaking sensitive information.

AnonRep reliably tallies other users’ feedback (e.g., likes

or votes) without revealing the user’s identity or exact

score to anyone, while maintaining security against score

tampering or duplicate feedback. A working prototype

demonstrates that AnonRep scales linearly with the num-

ber of participating users. Experiments show that the la-

tency for a user to generate anonymous feedback is less

than ten seconds in a 10,000-user anonymity group.

1 Introduction

Online services such as eBay, Yelp, and Stack Overflow

employ reputation systems to evaluate information qual-

ity and filter spam. In Yelp, for example, users post mes-

sages (e.g., reviews), and offer feedback on other users’

posts (e.g., votes) based on perceived utility. User repu-

tations increase or decrease based on this feedback, and

reputation affects how widely a user’s future posts are

viewed. This long-term linkage between user behavior

and reputation, however, can quickly de-anonymize users

wishing to hide their true identities [4,23,28,31]. For ex-

ample, Minkus et al. [28] revealed eBay users’ sensitive

purchase histories by analyzing only pseudonyms’ trans-

actions and feedback. As privacy has become a major

concern for online users, we raise the question: can we

combine the benefits of reputation with the privacy af-

forded by fully anonymous, unlinkable messaging? Can

we build an anonymous reputation system?

In an anonymous reputation system, no entity – ei-

ther users or servers implementing the reputation sys-

tem – should be able to link posted messages and feed-

back to any user identity. Maintaining reputation without

identity in principle offers the benefits of reputation with

unprecedented user privacy [5]. Achieving this goal is

challenging, however, since the requirement to associate

users with their historical activities seems to preclude

anonymity [38]. Establishing reputation while maintain-

ing unlinkability of activities appears to be a paradox.

Prior efforts have addressed this problem [2, 5, 7, 15],

but none have yet proven practical or sufficiently gen-

eral for realistic deployment. For example, Androulaki

et al. [2] proposed blind signatures for anonymous peer-

to-peer reputation transactions, but this protocol relies

on a centralized honest entity and cannot support nega-

tive feedback (e.g., about trolls or otherwise misbehav-

ing users). Similarly, Bethencourt et al. [5] proposed to

use zero-knowledge proofs to construct signatures of rep-

utation, thus keeping unlinkability of users’ historical be-

haviors. This approach supports limited reputation algo-

rithms, however, and is computationally expensive.

This paper presents AnonRep, the first practical anony-

mous reputation system supporting diverse reputation

schemes without leaking sensitive information about

users’ long-term identities or historical activities. Anon-

Rep represents a novel integration of known crypto-

graphic primitives – verifiable shuffles [32], linkable ring

signatures [26], and homomorphic crypto [17] – in a

multi-provider deployment architecture. AnonRep builds

on the anytrust model [41], like Dissent [42] and Vu-

vuzela [39], for scalability and robustness to client churn.

An AnonRep group consists of a potentially large set

of client nodes representing users, and a smaller set of

third-party commodity servers implementing the anony-

mous reputation service. Each client trusts that at least

one server is honest and not colluding with the others,

but the client need not know which server to trust.

AnonRep operates in a series of message-and-

feedback rounds. Each round might in practice last a few

minutes, hours, or even a full day, depending on the ap-

plication scenario. At the beginning of each round, the

servers maintain a database containing all clients’ long-

term identities and their respective encrypted reputation

scores. During each round, the servers successively run

a scheduling protocol based on verifiable shuffles [32],

which transforms the reputation list into an anonymously

permuted list consisting of a one-time pseudonym for

each client and an associated plaintext reputation score.

While exact reputation scores could themselves link

clients across rounds, AnonRep allows users to reveal

only approximate reputations (§6). AnonRep’s schedul-

ing protocol is decentralized: neither servers nor clients
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(a) A typical message board equipped with conventional reputation

technique which potentially has linkability issues.

(b) The same message board equipped with AnonRep. Adversary can-

not link different activities to any specific identity.

Figure 1: Motivating example. We use a typical message board with different reputation technique. The sample mes-

sage board evaluates the quality of posted messages based on the reputation of these messages’ authors. Feedback is

represented as votes.

(other than the owner) can link one-time pseudonyms or

reputations to long-term identities.

Clients then post messages anonymously using these

one-time pseudonyms. The servers can associate these

messages with their corresponding reputation scores

without learning clients’ sensitive information. Each

client may then provide feedback (e.g., votes) on other

clients’ posted messages. Each vote is signed by a link-

able ring signature [26], enabling the servers to ver-

ify that each client votes only once without revealing

which client submitted each vote. This design enables the

servers to tally positive and negative feedback without

linking this feedback with long-term identities.

Finally, the servers tally the feedback received for

each one-time pseudonym, update the reputation score,

and then perform a “reverse scheduling” to transform

these one-time pseudonyms and their updated reputation

scores back to the original long-term identities and their

encrypted updated reputation scores.

We have implemented an AnonRep prototype in Go.

Experimental results show that the AnonRep server

scales linearly with the number of clients. With a 10,000-

client anonymity group, for example, each server’s com-

putational cost is about one minute per round. The time

required for a client to construct an anonymous vote to

provide feedback is less than ten seconds in a 10,000-

client anonymity group. While the current prototype has

many limitations and would benefit from further develop-

ment, we nevertheless believe that AnonRep represents a

significant step towards building a practical anonymous

reputation system for realistic online services.

In summary, this paper makes the following contribu-

tions. First, we propose the first practical anonymous rep-

utation system, AnonRep, offering the benefits of reputa-

tion while maintaining the unlinkability and anonymity

of users’ historical activities. Second, we provide a fully-

functional open-source prototype illustrating AnonRep’s

functionality and practicality.

2 Motivation and Challenges

This section first presents a simple but illustrative exam-

ple to motivate AnonRep’s goals (§2.1), then discusses

key technical challenges (§2.2).

2.1 Motivating Example

Figure 1a shows a typical reputation system, which uti-

lizes a message board to evaluate information quality and

filter out spam. The message board maintains a reputa-

tion score for each client. Each client has an identity or

pseudonym, which remains fixed throughout the client’s

lifetime. Suppose a client, Alice, posts a message on the

message board. The message board associates the mes-

sage with Alice’s reputation score, which other users or

content curation algorithms might use to determine how

widely Alice’s message is seen. Other clients who view

Alice’s message can then give positive or negative feed-

back to express subjective opinions on the quality of

Alice’s message. Based on this feedback, the message

board updates Alice’s reputation, enabling Alice to post

new messages with the updated reputation. Precisly how

user feedback affects clients’ reputation scores varies de-

pending on the specific reputation algorithm.

Message board reputation systems of this kind have

been widely employed by many online services, e.g.,

eBay, Yelp, and Stack Overflow. However, in such a sys-

tem, each client’s reputation score is associated with ei-

ther her real identity or a long-lived pseudonym. As a

result, even with pseudonyms, a client’s historical activ-

ities can be easily tracked and linked, leaking sensitive

information. For example, in Figure 1a, an adversary can

observe that the first and third messages are posted by the

same pseudonym aflo23p2, and the second message is

2
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posted by another pseudonym dged2p. The adversary can

also learn the voters of each message. For example, the

client with pseudonym aflo23p2 casts a negative vote to

the second message. Even in the absence of clients’ real

identities, Minkus et al. [28] have successfully exposed

eBay clients’ sensitive purchase histories and feedback

by analyzing only pseudonyms’ transactions.

The goal of this paper is to design a practical anony-

mous reputation system providing the utility of a rep-

utation system, while hiding clients’ sensitive informa-

tion – including the linkage between messages posted by

the same user. With AnonRep, as shown in Figure 1b,

a client appears as different one-time pseudonym ev-

ery time the client posts a message. These one-time

pseudonyms avoid revealing information that can link

any clients’ messages, reputation scores, or votes across

posting rounds. Meanwhile, AnonRep can still privately

update each client’s reputation score without any partici-

pants learning sensitive information.

While content-based attacks such as stylometry [30]

could still link one user’s message across rounds, these

techniques are uncertain and prone to false positives, es-

pecially operating on short messages (e.g., tweets). Re-

gardless, AnonRep’s goal is not to address content-based

linkage risks, but to ensure that feedback and reputation

management does not leak any more sensitive informa-

tion beyond what the user-provided content itself might.

2.2 Technical Challenges

We face two main technical challenges to build a practi-

cal anonymous reputation system.

Challenge 1: Protecting the association between rep-

utation and identity. The calculation of a user’s rep-

utation score relies on the historical activities associ-

ated with this user’s identity. It seems that maintaining

this reputation would preclude any possibility of identity

anonymity [2, 5]. Two straightforward solutions are 1)

to introduce a trusted third party that updates reputation

scores for clients, or 2) to use secure multi-party compu-

tation (SMPC) [44] to update reputation scores privately.

Unfortunately, the former solution offers weak security

by requiring every user to trust a third party, while the

latter solution is slow and computation-intensive and has

not proven scalable in practice. Therefore, keeping the

association between reputation and user identity private

presents a significant challenge.

Challenge 2: Detection of misbehavior. A centralized

reputation system can readily enforce well-defined rules

for handling reputation and feedback fairly – such as

“one client, one vote” – because a trusted entity can see

all clients’ activities and enforce these rules. In a decen-

tralized anonymous reputation system without a trusted

party, however, clients might misbehave, e.g., by casting

multiple votes on the same message to amplify the user’s

Figure 2: AnonRep’s multi-provider deployment model,

and its basic communication topology. In an AnonRep

group, each client communicates with a single upstream

server, while each server can communicate with all other

servers.

feedback unfairly. Such misbehavior is non-trivial to de-

tect in an anonymous reputation system [5].

3 AnonRep Overview

In this section, we first sketch the architecture of Anon-

Rep in §3.1. Then, we present our assumptions and threat

model in §3.2. Finally, we give our security goals in §3.3.

3.1 Architecture

As illustrated in Figure 2, AnonRep relies on a multi-

provider model to achieve scalability and resilience to

link failures [16, 41, 42]. A typical AnonRep group in-

cludes two types of members: 1) a potentially large num-

ber of unreliable client nodes representing individual

users, and 2) a small number of servers, which are as-

sumed to be highly available and well-provisioned.

In practice, each server in an AnonRep group should

be operated independently (i.e., each managed by a sepa-

rate operator) to limit the risks of all servers being com-

promised or colluding against clients.

Each client directly communicates with at least one up-

stream server, while each server can communicate with

any other servers (see Figure 2). Such a communication

topology reduces the communication and computational

overhead at the clients, and enables the system to toler-

ate client churn [42]. More specifically, each client does

not need to know which other clients are online while

posting messages or feedback to the upstream server.

3.2 Threat Model and Assumptions

In an AnonRep group, clients need not assume any par-

ticular server is trustworthy, and they need not even trust

their respective upstream servers. Instead, we assume the

anytrust model, i.e., each client trusts only that there ex-

ists at least one honest server without knowing which

this server is [16, 41, 42]. An AnonRep group member

(server or client) is honest if the member follows the spec-

ified protocol faithfully and does not collude with or leak

sensitive information to other group members. A mem-

ber is dishonest (or malicious) otherwise.
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A malicious client may wish to link or track sensi-

tive information such as reputation scores, messages, and

feedback to specific victim clients. Multiple malicious

clients may collude with each other.

A malicious server may refuse to service honest

clients, but such refusal should not compromise clients’

anonymity. Moreover, a malicious server may try to tam-

per with clients’ reputation scores, and even collude with

malicious clients.

We assume that public and symmetric key encryptions,

key-exchange mechanisms, signature schemes and hash

functions are all correctly used. We also assume that

public keys of AnonRep servers and clients are publicly

available. We assume the network connections between

clients and servers are established over anonymous com-

munication channels (e.g., Tor [19], or traffic analysis re-

sistant networks like Dissent [42] and Vuvuzela [39]).

3.3 Security Goals

Anonymity. The main goal of AnonRep is to achieve

anonymity for its clients in face of a strong adversary,

i.e., malicious servers and clients as defined above. In

AnonRep, anonymity means not only the privacy of each

client’s data such as profile and IP location, but also the

unlinkability of clients’ historical activities. No Anon-

Rep group member should be able to link a specific

client’s sensitive information such as posted messages,

reputation scores, or feedback to the client’s identity.

AnonRep provides the above anonymity guarantee

among the set of honest group members, that is, members

who faithfully follow our protocol. AnonRep does not at-

tempt to provide anonymity to malicious group members

as they can may collude with others and reveal their iden-

tities and association to their messages themselves.

Other goals. Besides anonymity, AnonRep should en-

sure that the misbehaviors of malicious group mem-

bers are detectable. In addition, AnonRep should bal-

ance the trade-offs between practicality and security. The

more clients an anonymity group contains, the stronger

anonymity it can offer but at the cost of higher overhead.

Non-goals. Like many prior reputation systems, Anon-

Rep is not designed against the Sybil attack where at-

tackers generate a large number of fake clients to ma-

nipulate the reputation of honest clients. How to make

AnonRep resistant to the Sybil attack is out of the scope

of this paper. In addition, AnonRep is not resilient to

network-level Denial-of-Service (DoS) attacks where at-

tackers, for instance, could target the AnonRep servers.

The servers, however, are assumed to be highly available.

Nevertheless, some well-known defenses (e.g., server

provisioning and proof-of-work challenges) could be de-

ployed to mitigate DoS attacks.

Figure 3: A simple Mix-Net example with three mix-

servers. Each mix-server performs the verifiable shuffle

protocol. The input is a two-column list with four entries.

Each mix-server 1) encrypts and decrypts the elements in

the first and second columns with different keys, respec-

tively; 2) permutes the order of entries in the list; and 3)

sends the permuted list to the next mix-server.

4 Cryptographic Building Blocks

Before we elaborate on the design details of AnonRep

in §5, we first describe several cryptographic techniques

that AnonRep builds upon.

4.1 Mix-Net and Verifiable Shuffles

Mix-Net [12] is a decentralized cryptographic protocol

that creates hard-to-trace communications by using a

chain of servers (called mixes or mix-servers) which take

in a list of objects, shuffle them, and then output them

in random order. As shown in Figure 3, such a primitive

ensures unlinkability between the source and the destina-

tion of the list.

The shuffle phase in a Mix-Net protocol contains en-

cryption, decryption and permutation operations. For ex-

ample in Figure 3, each mix-server adds one ciphertext

layer on each element in the first column of the received

list, strips one ciphertext layer from each element in the

second column, then permutes entries in the list, and fi-

nally sends the resulting list to the next mix-server.

In order to ensure the correctness of the operations

performed in shuffle phases, many verifiable shuffle pro-

tocols have been proposed [25, 32, 33]. In a typical ver-

ifiable shuffle protocol, besides performing the shuffle

operartions, each mix-server generates a zero-knowledge

proof, which can be used by any observer (i.e., verifier)

to check whether the mix-server correctly performed its

shuffle.

Here, we detail a verifiable shuffle primitive

Shuffle(gi, �Li, zi, ei) that we use in the AnonRep

design (§5.3). Figure 3 presents an example where three

mix-servers successively run this primitive. In a typical

Shuffle primitive execution, each mix-server i performs

the following four operations.

1. Use the public key ei to encrypt each element in the

first column of list �Li; use the private key zi to strip

one ciphertext layer from each element in the second

column of the list �Li;

4
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2. Permute entries in the resulting list, producing �Li+1;

3. Use the public key ei to encrypt the received generator

gi, i.e., gi+1 = gi
ei mod p; and

4. Generate a (zero-knowledge) proof fi attesting that

the above operations are correctly performed.

After running the primitive, the mix-server i sends �Li+1,

gi+1 with the proof fi to the next mix-server i+1.

4.2 Linkable Ring Signatures

Liu et al. proposed linkable ring signatures [26], a variant

of traditional ring signatures [37]. A linkable ring signa-

ture allows any of n group members to produce a ring sig-

nature on some message such that no one knows which

group member produced the signature but all signatures

from the same member can be linked together.

Each group member holds a public/private key pair

(PKi,SKi). Member i can compute a ring signature σ on a

message m, on input (m,SKi,PK1, ...,PKn). Anyone can

check the validity of a ring signature given (σ , m) and

the public key list L = {PK1, ...,PKn} of all group mem-

bers; however, nobody knows who signed the message

m. It is hard for anyone to create a valid ring signature

on any message on behalf of some group without know-

ing at least one secret key of a member of this group.

Another important property of linkable ring signature is

linkability: given any two signatures, a verifier can deter-

mine whether they were produced by the same member

in the group but still without learning the specific mem-

ber’s identity.

In particular, linkable ring signature consists of the fol-

lowing four steps [26].

Initialization step: Each member i (i = 1, ...,n) has a

public key Yi, and private key yi, where (Yi = gyi). Each

member knows the list of n members’ public keys L =
{Y1, ...,Yn}, and a public hash function H(·).

Signature generation step: Suppose a member i, called

a signer, wants to use linkable ring signature scheme to

sign a message m. She first needs to compute the linka-

bility tag t = H(L). Then, i runs the primitive Sign(m, L,

yi, t) to get m’s linkable ring signature σ(m). Finally, i

sends m and σ(m) to the verifier.

Verification step: The verifier receives the message m

and the signature σ(m). He knows the public key list L.

The verifier runs Verify(t, m, L, σ(m)) to check whether

σ(m) is produced by one of the members in the group

specified by L.

Linkability checking step: Given two signatures σ ′(m′)
and σ ′′(m′′), the verifier can check whether the two signa-

tures are from the same signer by running Check(σ ′(m′),
σ ′′(m′′)). Because each linkable ring signature is gener-

ated based on a linkability tag t = H(L) and the private

key of signer yi, if the two signatures are from the same

signer, the verifier would successfully confirm this fact.

Figure 4: AnonRep’s session, rounds and phases. An Anon-

Rep session contains a continuous series of message-and-

feedback rounds. Each round has three phases: 1) announce-

ment phase, 2) message posting phase, and 3) feedback phase.

All the online (or available) members, including servers and

clients, synchronously participate in these rounds.

5 AnonRep System Design

This section details AnonRep’s basic design (§5.1-§5.5),

followed by practical considerations (§5.6).

5.1 AnonRep Workflow

A typical AnonRep session, as shown in Figure 4, con-

sists of a series of message-and-feedback rounds. All

online AnonRep group members (including servers and

clients) synchronously participate in these rounds. In

practice, the duration of each round may be a few hours

or even one day, depending on the application scenario.

The input to each round is a two-column reputation

list. The first column records the long-term identity of

each registered client, and the second column is the

client’s reputation score encrypted by all servers (see

§5.2). A client’s long-term identity is her public key,

which corresponds to a private key maintained by the

client herself. The output of each round is a similar rep-

utation list with updated clients’ reputation scores. The

output list of one round serves as input to the next round,

as shown in Figure 4. Any newcomer client can partici-

pate in the AnonRep session after she completes the reg-

istration process (details in §5.2).

Each round consists of three phases. The duration of

each phase may be significantly different.

• Announcement phase: Servers run scheduling proto-

cols to assign a one-time pseudonym to each client.

Only the client knows and can use the one-time

pseudonym assigned to her (§5.3).

• Message posting phase: Clients anonymously post

messages using the assigned one-time pseudonyms,

and the upstream servers associate the corresponding

reputation scores with the messages, without learning

clients’ long-term identities (§5.4).

5
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Figure 5: AnonRep’s announcement phase via schedul-

ing protocols. Each entry in the reputation list records

some client’s long-term identity and the ciphertext of

her reputation score E(Ri), which has been encrypted

by all the servers. On the other side, each entry in

the fresh pseudonym list records some client’s one-time

pseudonym for this round and the plaintext of her reputa-

tion score Ri.

• Feedback phase: Clients anonymously provide feed-

back to posted messages. At the end of this phase,

servers update each one-time pseudonym’s reputation

score based on the received feedback, and then update

the long-term scores in the reputation list by running

“reverse scheduling” protocols (§5.5).

With the system overview in place, we now describe

the details of the system design.

5.2 Client Registration

Any newcomer client who wants to use AnonRep needs

to register with the servers.

Specifically, each new client i first generates a key-pair

�Yi = gyi ,yi�, where g is a generator shared among servers

and clients. Here, Yi and yi are the client i’s long-term

public and private keys, respectively. Then, the client i

uploads the public key Yi to a randomly selected Anon-

Rep server S j, called the client i’s upstream server. Next,

S j creates an initial reputation score ri for the client i,

and then encrypts this initial reputation score by using its

public key Z j, and sends the ciphertext to the next server,

i.e., S j+1. All servers use their public keys to encrypt

this initial reputation in sequence. Once the client i’s

upstream server S j receives the client’s reputation score

E(ri) which has been encrypted by all servers, S j creates

a tuple �Yi,E(ri)�, and broadcasts this tuple to the servers.

Finally, each AnonRep server appends this tuple to a lo-

cal reputation list.

5.3 Announcement Phase

As shown in Figure 4, the announcement phase is the

first phase of a message-and-feedback round. In a typical

announcement phase, as shown in Figure 5, the servers

take the reputation list as input, and successively per-

form scheduling protocols to generate a fresh pseudonym

list, in order to enable each client to have a “temporary

identity” to post message and provide feedback in the

following phases. The entries in the fresh pseudonym

list are in a permuted order. Each entry corresponds to

one client, and contains a one-time pseudonym as well

as the plaintext reputation score for this client. Because

the announcement phase is executed by multiple inde-

pendent servers, no server can link the original reputa-

tion list to the generated fresh pseudonym list as long as

at least one server does not collude with others. More-

over, each client only knows her own entry in the fresh

pseudonym list, and cannot learn the associations be-

tween other clients and their pseudonyms.

At the beginning of an announcement phase, each

server j locally maintains an ephemeral secret e j (differ-

ent in each round), a public generator g, and its own pri-

vate key z j, which corresponds to a public key, Z j, used

to encrypt the new client’s reputation score during the

client registration. The servers perform the scheduling

protocol (shown in Algorithm 1), transforming the input

reputation list�L and the public generator g into the fresh

pseudonym list �pk and the final generator gm+1 = ge1...em .

After all the servers finish the scheduling protocol,

each client learns the fresh pseudonym list, i.e., �pk, and

the final generator, gm+1, from her upstream server. Then,

each client i is able to compute and find her own one-time

pseudonym, pkπ(i), in �pk by: pkπ(i) = gm+1
yi , where yi

is the client i’s private key (corresponding to her long-

term public key Yi, defined in §5.2), and π(i) denotes

the location of client i’s one-time pseudonym in the fresh

pseudonym list �pk.

Based on the working principle of verifiable shuffle

primitive (see §4.1 and Algorithm 1), client i’s long-term

pseudonym key Yi is encrypted by all the servers, i.e.,

Yi
e1...em = pkπ(i). Because Yi = gyi (see §5.2), we have:

pkπ(i) = Yi
e1...em = (gyi)e1...em = (ge1...em)yi = gm+1

yi

Only the client i learns pkπ(i), since only i knows her pri-

vate key yi. In the current round, each client i is assigned

a new public/private key-pair �pkπ(i),yi� based on the fi-

nal generator gm+1: pkπ(i) = gm+1
yi . Each client can use

this one-time pseudonym to post messages and provide

feedback later, without leaking the long-term identity.

The scheduling protocol uses verifiable shuffles [32].

Therefore, during the announcement, each server com-

putes and attaches a zero-knowledge proof of correctness

to each “intermediate list” sent to its successive server.

This step ensures that if a server misbehaves, it will be

detectable by other servers.

6
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Algorithm 1 Scheduling protocol.

All members (including clients and servers) know the

reputation list�L and the public generator g. Each server j

knows its private key z j and an ephemeral secret e j, and

each client i knows her public key Yi = gyi , where yi is i’s

private key.

1. The first server S1 takes the reputation list �L1 =�L as

input, and performs the verifiable shuffle primitive,

Shuffle(g = g1, �L1, z1, e1), to obtain outputs: g2, �L2

and a proof. Then, S1 sends �L2, g2 with the proof to

the next server S2.

2. Each server S j ( j = 2, ...,m) successively runs the

same verifiable shuffle primitive as S1. Namely, S j

runs Shuffle(g j, �L j, z j, e j) to obtain g j+1, �L j+1 and

a proof about the correctness. Then, S j sends �L j+1,

g j+1 with the proof to the next server S j+1.

3. After the final server Sm performs the shuffle primi-

tive, Sm outputs the fresh pseudonym list, �pk = �Lm+1,

and the final generator, gm+1, which has been en-

crypted by all the servers. Note: Reputation scores in
�pk are plaintexts now, since all the ciphertext layers

have already been decrypted by all the servers. Then,

servers distribute all results (�L j,g j∀ j ∈m with proofs)

to all the other servers.

4. Each server k verifies each �Lj, g j, and proofs. If they

match, server k transmits a signature, sigk, of �pk to all

other servers.

5. Upon collecting a signature sig j from every other

server j, servers distribute �pk, gm+1, and sig j∀ j ∈ m

to their clients.

5.4 Message Posting Phase

After the announcement phase, group members enter the

message posting phase. A client’s message posting pro-

cess is in principle a public key signature verification

procedure. A given client signs her message using her

private key, and then submits it to her upstream server.

The server verifies the signature using a public key from

the fresh pseudonym list. If the verification succeeds, the

server posts the message and associates the correspond-

ing reputation score with the message. This works, be-

cause each client has been assigned a “temporary” public-

private pair, �pkπ(i),yi� based on gm+1 in the announce-

ment phase (§5.3).

AnonRep uses ElGamal signature scheme for message

verification. Suppose some client i wants to post a mes-

sage m. She first chooses a random k so that 1< k < p−1

and gcd(k, p − 1) = 1. Then, the client computes r =
gm+1

kmod(p− 1), where gm+1 is the final generator ob-

tained from the announcement phase. With r in hand, the

client computes s= (H(m)−yi ·r)k
−1mod(p−1), where

yi is i’s private key and H(m) is the message m’s hash

value. Finally, the client sends her upstream server the

signature σ = (r,s) and message m through anonymous

communication tool (e.g., Tor [19] or Vuvuzela [39]),

which can hide the client’s local information.

After receiving the message and signature pair (m,σ),

the upstream server verifies it by checking gm+1
H(m) ?

=
pkr

π(i)r
s. If the verification is correct, then the server

concludes that the message m was sent by some client

whose one-time pseudonym is pkπ(i). Thus, the server

associates m with the reputation score corresponding to

pkπ(i) in the fresh pseudonym list. Such message posting

design enables servers to attach the corresponding rep-

utation scores to clients’ one-time pseudonyms without

learning their long-term identities.

If a client posts multiple messages in the same

round, each message would be associated with the same

pseudonym. Thus, we suggest that clients post one mes-

sage in each round to avoid tracking at best-effort.

5.5 Feedback Phase

Finally, group members enter the feedback phase. Clients

can provide feedback (either positive or negative) to dif-

ferent messages to indicate the quality of the messages.

At the end of this phase, the servers update the reputa-

tion of each one-time pseudonym based on the feedback

on its messages. Then, the servers perform the announce-

ment phase in reverse to “transform” the updated fresh

pseudonym list back to the reputation list consisting of

clients’ long-term identities and their now updated and

again encrypted reputations. The feedback phase could

start at the same time as message posting phase or after

message posting phase, but should not end before mes-

sage posting phase.

Feedback collecting. In our design, during a feedback

phase, any client can submit her upstream servers her

feedback on messages posted by other clients. In vari-

ous applications, feedback may take a different form. For

example, in a message board application like Yelp, feed-

back consists of votes clients cast while in Twitter, feed-

back is in a form of following another person. In Anon-

Rep, we use +1 and -1 to denote positive and negative

feedback, respectively.

Suppose some client wants to provide some feedback

F (i.e., +1 or -1) to a message m, she creates a tuple in

the form of �F,m�, and generates a linkable ring signature

for this tuple σ(�F,m�), by following the signature gen-

eration step in §4.2. The client uses anonymous commu-

nication tool (the same as in the message posting phase)

to send the tuple and the signature to her upstream server.

Note: When the client generates the linkability tag, she

needs to use t = H(H ′(m)+ �pk) rather than t = H(�pk)
mentioned in §4.2, where H ′(·) is another public hash

7
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function, H ′(m) is message m’s hash value, and �pk is the

fresh pseudonym list in the current round. The goal of

this design is to prevent clients from submitting dupli-

cate feedback on the same message. If a malicious client

signs and submits duplicate feedback on the same mes-

sage m, then this behavior would be detected by the Check

primitive (in §4.2), because both linkable ring signatures

are generated by the same t = H(H ′(m) + �pk) and pri-

vate key. In this case, the duplicate feedback would be

ignored by AnonRep. On the other hand, if a client signs

feedback on different messages, the generated signatures

would be different since they have different hash values.

If the upstream server’s verifications succeed (includ-

ing both verification and linkability checking steps in

§4.2), the server associates the received feedback with

the message m.

In summary, AnonRep derives two capabilities from

linkable ring signatures. First, no member learns who

provided feedback on the messages, except that it came

from a member of the AnonRep group. Thus, each

client’s activities remain unlinkable, even if she provides

feedback on multiple messages in the same round. Sec-

ond, if some dishonest client submits duplicate feedback

to the same message, such behavior is detected.

Reputation updating. At the end of the feedback phase,

the servers update the reputation of every one-time

pseudonym based on the feedback received on the mes-

sages associated with it. Because the collected feedback

is stored in plaintext, AnonRep can utilize diverse repu-

tation algorithms. For example, one-time pseudonym x’s

message receives 3 positive and 2 negative votes. If x’s

current reputation score is 4, then AnonRep will update

x’s reputation to 4 + (3-2) = 5.

After the reputation updates, servers successively per-

form the reverse scheduling protocol to “transfer” the

current fresh pseudonym list containing each client’s one-

time pseudonym and updated reputation score back to

the reputation list. Note: This new reputation list is sim-

ilar to the input reputation list for the current round, but

the encrypted reputation score of each long-term identity

in the new reputation list has been updated.

So far, we described one message-and-feedback round,

which has updated clients’ reputation scores based on

their activities while protecting their privacy. The new

reputation list would be used as the input for the next

round (see Figure 4).

5.6 Practical Considerations

This section presents several practical issues AnonRep

faces and possible solutions to address them.

5.6.1 Performance Optimization

The announcement phase and the feedback collecting

phase may cause long latencies when the client popula-

tion is large, e.g., ≥ 100,000. This is because the crypto-

graphic primitives used in these two phases – verifiable

shuffle and linkable ring signatures – become more com-

putationally expensive as the number of clients grows.

AnonRep addresses this issue by randomly assign-

ing clients into multiple sub-groups, and each sub-group

operates in parallel. For instance, with 100,000 clients

in total, the original design takes about 15 minutes on

each server to run the scheduling protocol. With 20 sub-

groups of 5,000 clients each, running scheduling pro-

tocol on each server takes only 50 seconds thanks to

the parallelization. There is a trade-off to make, how-

ever. Larger sub-groups provide better anonymity while

smaller sub-groups provide better performance.

5.6.2 Misbehavior Detection

Under our trust model, servers may misbehave. There

are two possible cases. First, honest servers may notice

that some announcement(s) have not been performed cor-

rectly by checking the zero-knowledge proofs of cor-

rectness generated in the announcement phase when per-

forming the scheduling protocol. It is straightforward for

honest servers to check the proofs to detect misbehaving

servers. If a proof produced by server j fails, this indi-

cates the server’s misbehavior.

Second, clients may find that their reputation scores

appear incorrect. There can be multiple causes: a) an up-

stream server incorrectly attaches the client’s reputation

score to its posted message; b) the reputation update is

performed incorrectly; or c) a reputation is incorrectly

initialized during the registration process. In order to de-

tect these types of misbehaviors, the victim client enters

into a blame phase where AnonRep randomly selects

a witness (e.g., an AnonRep server) to replay the cor-

responding operations and check all the signatures dur-

ing the replay. Specifically, for case a) and b), the wit-

ness checks the corresponding upstream server who at-

taches and updates the reputation score, and then identi-

fies whether the server is at fault. Even if the selected wit-

ness is dishonest and it does not perform the blame phase

properly, no sensitive information is leaked, and the vic-

tim client simply needs to re-launch the blame process

until she finds an honest witness. For case c), we discuss

the solution in §5.6.3.

5.6.3 Registration Verification

The reputation score might be incorrectly initialized dur-

ing the registration phase, in two ways: 1) a malicious

server initializes an incorrect reputation score for a hon-

est newcomer (mentioned in §5.6.2); and 2) a malicious

newcomer colludes with a malicious server to assign her-

self a very high reputation score.

AnonRep can address this problem by asking each

server to additionally run a verifiable encryption shuf-

8
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fle [32], which is similar to the version described in §4.1,

but only includes the encryption operation. This is be-

cause performing a verifiable encryption shuffle enables

a server to generate a proof on whether the encryption op-

eration is correctly performed and whether the encrypted

value has a desired value (i.e., a correct, initial reputation

in this case). In particular, for any newcomer client, each

server first adds one ciphertext layer on her initial reputa-

tion score, which is a public value in the system setting,

then produces a corresponding proof based on verifiable

encryption shuffle, and finally sends the above results (ci-

phertext and proof) to the next server. If some malicious

server does not use a correct initial reputation score or

does not correctly perform the encryption, then it would

be detected by some honest server(s) (at least one).

6 A Security-Enhanced AnonRep

In the design of AnonRep described so far, the reputa-

tion scores of AnonRep clients are operated as plaintexts

during each round. Such a design, however, may intro-

duce some potential information leakage in certain situa-

tions. Suppose in a certain AnonRep group, for instance,

a client has a significantly higher reputation score (e.g.,

1000) than all the other clients’ reputations (e.g., lower

than 10). Even though AnonRep enables clients to post

messages with different one-time pseudonyms in differ-

ent rounds, this client’s messages could still be tracked

across rounds, since her reputation score is too excep-

tional to hide herself in this group.1

The insight on avoiding the privacy leakage through

exceptional reputations is to encrypt reputation scores.

Thus, we propose a security-enhanced system design

called the reputation budget scheme. Below we present

the design of the security-enhanced AnonRep.

Client registration. When a client i registers, her up-

stream server Si generates this client’s initial reputation

score. Then, all the servers successively encrypt this

score using a homomorphic encryption scheme (e.g., El-

Gamal [20] or Paillier [34]). We use EHom(ri) to denote

the client i’s reputation score ri which has been homo-

morphically encrypted by all the servers. Once Si re-

ceives EHom(ri), it takes EHom(ri) as the input to perform

the basic client registration protocol as usual (§5.2), fi-

nally obtaining E(EHom(ri)).

Announcement phase. The servers perform the same an-

nouncement phase as in the basic design. Notice however

that, the reputations in the generated fresh pseudonym

list are no longer in plaintext. Rather, the reputation

1 We make no claim that such situations always happen in reality,

because: 1) most reputation systems have an upper bound for reputation

scores, and 2) the number of clients with “the highest reputation scores”

is normally not too low, as shown in the Stack Overflow dataset [1].

Nevertheless, we still manage to enhance AnonRep to accommodate

such situations.

scores are homomorphically encrypted by all the servers.

This means servers in security-enhanced AnonRep no

longer can see reputation scores in plaintext.

Message posting phase. When a client i wants to post a

message in some round, she may leverage the Camenisch

et al. proof system [11] or Peng et al. [36] to generate

a zero-knowledge reputation budget proof, PoK, claim-

ing that 1) her actual reputation score is not lower than

a budget b, and 2) she wants to use b as the reputation

score to post this message. For example, if a client has

a reputation score 5, she can use any score no higher

than 5 to post her message, e.g., b = 2. b is called the

reputation budget, and is plaintext. Note: we just apply

the above proof systems [11, 36] as black-box to con-

struct the needed reputation budget proofs. These two

proof systems correspond to differnet homomorphic en-

cryption schemes (i.e., ElGamal and Paillier) used during

the client registration, respectively.

After generating the reputation budget proof, the

client i sends her upstream server a tuple containing the

reputation budget and its proof.2

Upon receiving the tuple, the upstream server verifies

the proof contained in the tuple. The server learns two

things: 1) whether the client i is the owner of her claimed

one-time pseudonym; and 2) whether the client i’s reputa-

tion budget is no more than her actual reputation score. If

the verification passes, the server posts the client’s mes-

sage with the reputation budget b.

Because the reputation budget proof is zero-

knowledge proof, servers cannot know clients’ actual

reputation scores. As a result, for a client who has a

distinctive reputation score (say, 1000), she can use

a relatively low reputation budget (e.g., 5) to post

messages, hiding herself in the group. In practice, how

to choose an optimal reputation budget depends on the

security considerations of specific scenarios.

Feedback phase. Feedback collection is the same as the

basic design. Reputation updating is different. In partic-

ular, at the end of feedback phase, servers first succes-

sively encrypt the received feedback (e.g., votes) lever-

aging the same homomorphic scheme as used in the

registration phase. Servers then update the clients’ en-

crypted reputation scores in the fresh pseudonym list. Re-

call: both the reputation scores in the fresh pseudonym

lists and the reputation values from the feedback are en-

crypted by the same homomorphic encryption scheme.

Thus, servers can directly operate the ciphertexts to up-

date the reputation scores for clients due to the homo-

morphic property.

2For different zero-knowledge proof constructions, the tuple may be

different. For example, for an ElGamal-style construction (i.e., choos-

ing Camenisch et al. proof system [11]), the tuple is 〈Ri,Ci,b,PoK〉,

where Ci is the i’s actual reputation in ciphertext (i.e., EHom(ri)), and b

is the reputation budget, Ri is another ciphertext serving for the proof.

9
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Figure 6: Microbenchmark (run time) evaluation of cryptographic operations.

This concludes our enhanced system design. Through-

out the process, no server learns the actual reputation

score of any client, only the reputation budget, thus pre-

serving clients’ information even if some clients’ reputa-

tion scores are significantly different from all others.

7 Implementation and Evaluation

In this section, we first describe our prototype implemen-

tation, and then evaluate the prototype.

7.1 Implementation

We have implemented a functional AnonRep prototype.

The prototype consists of 2700 lines of Go code as mea-

sured by CLOC [18]. Our implementation heavily de-

pends on an open-source Go library of advanced crypto

primitives including verifiable Neff shuffle [32], link-

able ring signature [26], and various zero-knowledge

proofs [11]. More specifically, our prototype implements

the complete basic AnonRep design, and all group mem-

bers in our prototype use UDP to communicate. We

support only a limited reputation budget proof construc-

tion. The source code of our prototype is available on

GitHub.3

7.2 Evaluation

Our experiments used NIST QR-512 quadratic residues,

although the implementation also works and has been

tested with other options such as NIST QR-1024 and QR-

2048. We deployed servers in Amazon EC2 as virtual

machines. In particular, we used the c4.8xlarge instances

each with 36 Intel Xeon E5-2666 v3 CPU cores, 60 GB

of RAM, and 10 Gbps of network bandwidth. We used

laptops as the AnonRep clients each equipped with Intel

Core i7 2.6 GHz and 16 GB of RAM.

7.2.1 Microbenchmark

A major performance bottleneck in AnonRep is the over-

head of the two cryptographic operations: verifiable shuf-

fle and linkable ring signature.

Figure 6a shows the computational overheads of Neff

verifiable shuffle’s three main building blocks: 1) key

3https://github.com/anonyreputation/anonCred

encryption and shuffle, 2) proof generation, and 3) ver-

ification. The key encryption and shuffle operation is

very efficient, since it only involves simple ElGamal en-

cryptions and element permutations. On the contrary, the

proof generation and verification are more expensive,

since they need to generate and verify a non-interactive

zero knowledge proof, respectively.

Figure 6b shows the run time of generating and veri-

fying linkable ring signatures with different number of

clients. Both operations are of very similar cost, and they

cost less than 100 seconds even with 10,000 clients. Fur-

thermore, we observe that the computational overheads

of both Neff verifiable shuffle and linkable ring signature

increase linearly with the number of participating clients.

7.2.2 System Overheads

To understand the practicality of AnonRep, we measured

server’s and client’s computational and bandwidth over-

heads during each phase.

Announcement phase. Figure 7a and Figure 7b show

the computational and bandwidth overheads in the an-

nouncement phase. Here, each server performs the

scheduling protocol, which contains 1) verifying the

proof from the former server, 2) encrypting keys and

striping one layer from the reputation ciphertext, and 3)

generating the proof. To speedup the system, the server

performs the proof generation (i.e., step 1 and 2) and the

verification (i.e., step 3) in parallel. As shown in Fig-

ure 7a, with 100,000 clients, each server needs about

1,000 seconds to execute the scheduling protocol. The

computational overhead at client is much less. This is be-

cause each client only needs to find its fresh pseudonym

whose complexity is O(logn).
Regarding the bandwidth overhead, each server needs

to send its successive server an “intermediate” list con-

taining all clients’ keys and encrypted reputation scores,

as well as a proof, as shown in Figure 7b. This results

in about 40 MB bandwidth overhead if there are 10,000

clients in the network. This is acceptable in practice

given the fact that servers are reliably connected. Fig-

ure 7b also shows that the client’s bandwidth overhead

is about 1.5 orders of magnitude smaller than server’s

10
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Figure 7: Comparison of computational and bandwidth overheads between server and client in different phases.

bandwidth overhead. This effectively allows even mobile

devices to join our system as the clients.

Message posting phase. In the message posting phase,

the only crypto operations are the well-known ElGamal

signature generation (client side) and verification (server

side). In particular, we want to understand the client’s

throughput, i.e., how many messages a client can create

and sign per second. With different message lengths, we

find that a client can generate and sign ten 10MB mes-

sages per second, and a server can verify about one hun-

dred 1MB messages per second.

Feedback phase. The feedback phase consists of two

steps: feedback collection and reverse scheduling. We

mainly measured the overhead of feedback collection, be-

cause the overhead of reverse scheduling is the same as

the overhead in the announcement phase.

The overheads in the feedback phase are mainly

caused by the linkable ring signature operations whose

computational overheads have been shown in Figure 6b.

Figure 7c shows the bandwidth overhead of each client

and server in the feedback phase. We observe that the

bandwidth overhead of each feedback is reasonable. For

example, in a scenario with 10,000 clients, the bandwidth

overheads at the client and server are 500KB and 5MB,

respectively.

7.2.3 Practical Deployment

We now discuss and evaluate the AnonRep’s deployment

in practice, i.e., how to set the duration of each phase

and how many servers should be used for an anonymity

group. Answering these questions is not straightforward.

It depends on specific application scenarios.

In this section, we take Stack Overflow as a sample

scenario. We utilize the analytical results from a large

Stack Overflow dataset [1]. In particular, we first extract

the analytical results conducted by Bhat et al. [6], and

then discuss how to deploy AnonRep in Stack Overflow

based on these results. Finally, we evaluate this AnonRep

deployment.

From the measurement study [6], we extract the fol-

lowing features of Stack Overflow: F-1) more than 80%

questions receive the accepted answers within 16 hours,

and F-2) questions receiving more positive feedback can
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Figure 8: Delay of announcement phase.

get accepted answers more quickly (e.g., less than 10

hours).

According to the feature F-1, we suggest AnonRep set

the message posting phase to 16 hours, thus enabling the

majority of questions to receive accepted answers within

one round. Due to the feature F-2, we allow the feedback

phase to start at the same time as the message posting

phase in each round. This enables questions to receive

answers as soon as possible.

We deployed our prototype on multiple Amazon EC2

c4.8xlarge virtual machines, and measured the delay

caused by the announcement phase with different num-

bers of clients and servers. Figure 8 shows that even

though we use five servers for the announcement phase,

the delay caused by the announcement phase is within

1% of a 24-hour round.

8 Discussion and Limitations

This section discusses some of AnonRep’s limitations,

and potential solutions.

Intersection attacks via online status. Current Anon-

Rep cannot defend against long-term intersection at-

tacks [24] which target otherwise-honest clients who re-

peatedly come and go during an interaction period, leak-

ing information to an adversary who can correlate on-

line status with activities across multiple rounds. There

is no perfect defense against such intersection attacks

when online status changes over time [24]. AnonRep

may adopt a buddy system [43] whereby a client posts

messages and feedback only when all of a fixed set of

buddies are online. With certain caveats, this discipline

11
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ensures that a client’s anonymity set includes at least his

honest buddies, at the availability cost of making the user

unable to transmit (safely) when any buddy is offline.

Weighted feedback. Our current design does not support

weighted feedback. Namely, all the feedback in our cur-

rent design has equal impact. Weighted feedback can dif-

ferentiate clients’ feedback. To enable this, the system

needs to know the reputation scores of clients who are

providing feedback. A possible solution is to introduce

another announcement phase between the message post-

ing phase and feedback phase, associating each feedback

with its corresponding weight (i.e., reputation score).

Malicious servers. Given the fact that AnonRep applies

verifiable shuffle, any malicious servers can be detected

and it is possible for an honest server to reveal a mali-

cious server. However, it does not yet have a mechanism

to prevent m−1 malicious servers from claiming that the

other honest server is malicious, since the clients do not

know the identity of the truly honest server. Although

this can hardly happen as the servers in AnonRep are as-

sumed to be managed by separate operators, it would ob-

viously be better to be able to defeat malicious servers.

9 Related Work

Building an anonymous reputation system is challeng-

ing [5, 28]. To our knowledge, AnonRep is the first prac-

tical system in this domain.

Electronic cash based schemes. Various anonymous

electronic cash (e-cash) protocols [3, 8, 10, 27] have

been proposed to maintain the unlinkability of individ-

ual users’ Peer-to-Peer transactions [13]. Some of them

have been applied to build anonymous reputation sys-

tems [2, 9, 29]. For example, Androulaki et al. proposed

RepCoin [2], which attempts to achieve a goal particu-

larly close to AnonRep. However, a general disadvan-

tage of e-cash based anonymous reputation systems, in-

cluding RepCoin, is that they are incapable of support-

ing negative feedback, which means reputation of ma-

licious users cannot be confiscated [45]. In addition, e-

cash based systems cannot offer fine-grained reputation

representations and updates, since all the reputation coins

have the same value.

Signature-based approaches. Applying reputation sig-

natures is another approach to preventing users from be-

ing tracked. Existing efforts [2, 14, 40] leverage blind

signatures to hide the origin and destination of each

reputation-based transaction. However, blind signature

based approaches heavily depend on the assumption that

the centralized authority behaves correctly. Another ef-

fort close to our work is to use the signature of reputa-

tion [5]. Specifically, each user may express trust in oth-

ers by voting for them, collect votes to build up her own

reputation, and attach a proof of her reputation to any

message she posts, while maintaining the unlinkability of

her activities. Similar to e-cash based approaches, how-

ever, with signature of reputation users cannot express

negative feedback, and this approach is also computation-

ally expensive.

Electronic voting based schemes. Electronic voting (e-

voting) schemes allow the casting of votes while protect-

ing user privacy [21,22]. However, e-voting schemes are

specifically designed for an election scenario where the

candidates have no need to track their historical activities

or publish any messages with updated reputation.

Others. Pavolv et al. [35] proposed a decentralized sys-

tem allowing for partial privacy preservation on the user

side and easy additive aggregation of users’ reputation

across the system. A malicious user, however, can easily

track other users’ activities by assigning specific reputa-

tion to victims. In addition, Clauß et al. [15] proposed

two privacy requirements for reputation systems, i.e., k-

anonymity and weak rating secrecy. These enable the

specification of practical reputation systems for provid-

ing strong privacy guarantees.

10 Conclusion

AnonRep is the first practical reputation system which

supports regular reputation utilities while maintaining

the unlinkability and anonymity of users’ historical ac-

tivities. AnonRep achieves this goal by an elegant inte-

gration of cryptographic techniques, e.g., verifiable shuf-

fles and linkable ring signatures, with a multi-provider

deployment architecture. The experimental evaluation

based on our functional prototype suggests that AnonRep

can be applied to existing online services to provide the

anonymous reputation utility.
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