
This paper is included in the Proceedings of the
13th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’16).
March 16–18, 2016 • Santa Clara, CA, USA

ISBN 978-1-931971-29-4

Open access to the Proceedings of the
13th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’16)

is sponsored by USENIX.

Diplomat: Using Delegations to Protect
Community Repositories

Trishank Karthik Kuppusamy, Santiago Torres-Arias, Vladimir Diaz,
and Justin Cappos, New York University

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/kuppusamy

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 567

Diplomat: Using Delegations to Protect Community Repositories

Trishank Karthik Kuppusamy Santiago Torres-Arias Vladimir Diaz Justin Cappos
Tandon School of Engineering, New York University

Abstract
Community repositories, such as Docker Hub, PyPI,

and RubyGems, are bustling marketplaces that distribute
software. Even though these repositories use common
software signing techniques (e.g., GPG and TLS), at-
tackers can still publish malicious packages after a server
compromise. This is mainly because a community repos-
itory must have immediate access to signing keys in or-
der to certify the large number of new projects that are
registered each day.

This work demonstrates that community repositories
can offer compromise-resilience and real-time project
registration by employing mechanisms that disambiguate
trust delegations. This is done through two delegation
mechanisms that provide flexibility in the amount of trust
assigned to different keys. Using this idea we implement
Diplomat, a software update framework that supports se-
curity models with different security / usability trade-
offs. By leveraging Diplomat, a community repository
can achieve near-perfect compromise-resilience while al-
lowing real-time project registration. For example, when
Diplomat is deployed and configured to maximize se-
curity on Python’s community repository, less than 1%
of users will be at risk even if an attacker controls the
repository and is undetected for a month. Diplomat is
being integrated by Ruby, CoreOS, Haskell, OCaml, and
Python, and has already been deployed by Flynn, LEAP,
and Docker.

1 Introduction
Community repositories, such as Docker Hub [32],

Python Package Index (PyPI) [66], RubyGems [68], and
SourceForge [78] provide an easy way for a developer
to disseminate software. These repositories are run by a
central group of administrators and distribute third-party
software for hundreds of thousands of projects. Unlike
traditional repositories, the administrators of community
repositories do not dictate which projects can or cannot
be hosted; instead, developers are free to curate their own
projects. Community repositories are immensely popu-
lar and collectively serve more than a billion packages
per year. Unfortunately, the popularity of these reposito-
ries also makes them an attractive target to attackers.

Attacks on community repositories are unfortunately a
common occurrence that threaten users who rely on their

software. Major repositories run by Adobe, Apache,
Debian, Fedora, FreeBSD, Gentoo, GitHub, GNU Sa-
vannah, Linux, Microsoft, npm, Opera, PHP, RedHat,
RubyGems, SourceForge, and WordPress repositories
have all been compromised at least once [4,5,7,27,28,30,
31,35,36,39–41,48,59,61,62,67,70,79,80,82,86,87,90].
For example, a compromised SourceForge repository
mirror located in Korea distributed a malicious ver-
sion of phpMyAdmin, a popular database administration
tool [79]. The modified version allowed attackers to gain
system access and remotely execute PHP code on servers
that installed the software. This is despite the use of off-
the-shelf solutions like TLS and GPG, which (for rea-
sons described in Section 4) are known to be ineffective
against practical threats in this domain. For example,
we found that, on PyPI, so few developers sign pack-
ages and so few users download signatures that within a
one month period there was not a single user who down-
loaded only GPG-signed packages and their signatures.

Prior work has shown that delegations [1, 52, 92] help
the users of a repository remain secure even if it is com-
promised [71]. Delegations add security to repositories
when the root of trust is an offline key, such as a key
stored on a disconnected server that must be manually
used. Although using offline keys works for software
repositories that have infrequent release cycles, com-
munity repositories commonly register dozens of new
projects daily, with new packages uploaded every few
minutes. As such, it is not practical to require manual
operations for project registration.

This paper presents Diplomat, a practical security sys-
tem that provides a community repository with immedi-
ate project registration and compromise-resilience. Our
key insights come from delegation techniques that utilize
multiple online and offline keys to take advantage of the
best properties of both. Central to this strategy is the use
of a prioritized delegations [44, 56–58] mechanism for
disambiguating trust statements. Prioritized delegations
enforce an order among parties who would otherwise be
equally trusted. In addition, our work uses terminat-
ing delegations, which prevent statements by less trusted
parties from being trusted for a package. The combina-
tion of prioritized and terminating delegations allows an
offline key’s attestation about a project to be trusted over
information provided by an online key. Placing greater

568 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

trust in the offline key provides compromise-resilience
because an attacker who compromises the repository
cannot modify a package without being detected. How-
ever, the online key may still be used (and trusted) to
create new projects.

We feel one of the main contributions of this work is
how it balances security and usability to solve a prac-
tical, widespread problem. The security models and
experiences we describe in this work are based upon
practical lessons learned from ongoing integrations with
RubyGems [75–77], Haskell [91], CoreOS [64], and
OCaml [38] and production use in Flynn [65], LEAP
(Bitmask) [53], and Docker [63].

Contributions.

• We examine threats to community repositories and
find that current security approaches inadequately ad-
dress these threats. In particular, these techniques are
unable to accommodate both compromise-resilience
and instant registration of new projects.

• We use two types of delegations — prioritized and
terminating delegations — to design and implement
Diplomat, the first security system that achieves both
compromise-resilience and instant registration of new
projects.

• We discuss two different security models — legacy
and maximum — that provide slightly different us-
ability / security trade-offs. Drawing on practical ex-
perience, we discuss procedures for managing offline
key storage, usability for users and developers, recov-
ering from compromises, and procedures to minimize
the effort required of repository administrators.

• We evaluate the effectiveness of Diplomat using re-
quests to PyPI, the main Python community reposi-
tory. Our findings demonstrate that Diplomat will pro-
tect over 99% of PyPI’s users, even if an attacker con-
trols PyPI and is undetected for a month.

2 Background
We first discuss and define community repositories,

paying attention to how they differ from traditional
software repositories. We then provide some back-
ground on roles and delegations, two techniques used
in compromise-resilient repositories [20–23, 71] that we
will leverage to build Diplomat.
2.1 Community Repositories

A community repository hosts and distributes third-
party software. Three groups of people, administra-
tors, developers and users, interact with a community
repository. The administrators, who are usually volun-
teers, manage the community repository software and
hardware. Developers upload software to the repository,

Metadata Packages

projects

Alice

Django-
1.7.1.tar.gz

Dja
ng
o-*

*.tar.gz
Bob

Administrator-
managed

Developer-
managed

Sue
Scapy-
2.3.1.zip

Django-
1.6.8.tar.gz

Scapy-*

Figure 1: An example of delegation of trust in a software
repository. The top-level projects role delegates to Sue for
the Scapy project and Alice for Django. Alice further delegates
to Bob the ability to create tar.gz packages for Django.

which is requested by users. Users install and validate
software using a package manager, which downloads
software through middlemen, such as content delivery
networks and / or mirrors to reduce bandwidth costs.

The software that is uploaded by developers is orga-
nized as follows. A developer registers a project with
a unique name and adds access to other developers that
work on the project. When a specific version of the soft-
ware for that project is ready to be released, the software
is built into a package (e.g., Django-1.7.tar.gz) and
one of the developers uploads that package to the com-
munity repository. The community repository also dis-
tributes metadata about projects and packages (such as a
list of package names) and includes metadata created by
developers (such as a signature for a package).

2.2 Roles
One of the key security concepts used in compromise-

resilient software repositories is that of a role [71]. A role
defines the set of actions that a party is allowed to per-
form. For example, the projects role is trusted to sign
metadata that indicates which developer keys belong to
a project. Similarly, the release role is trusted to sign
metadata that indicates which versions of each package
and metadata are in the latest release. However, if the
release role’s key is used to sign the metadata that indi-
cates which developer key belongs to a project, that sig-
nature will not be trusted because the key is not trusted
for that role. This paper describes techniques that apply
to the projects role’s use of delegations, so the paper
will focus primarily on this role.

2.3 Delegations
The use of delegations is a powerful strategy that has

successfully been used in a variety of contexts, including
distributed systems [92], role-based access control [73],
trust management [16], delegation logic [57], and soft-
ware repositories [20–23, 71]. In the context of soft-
ware repositories, delegations are specifically used to
distribute permissions to sign packages across different

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 569

administrators and developers. If A can sign a package
K, then A can delegate this permission to B so that B
can sign K on behalf of A. The delegation is an indirect
package signature, where B “speaks for” [52] A about K.

Although the projects role may sign packages be-
cause it is the root of trust for all packages, in Fig-
ure 1 the projects role has instead delegated the Django
project (or the package path Django-*) to the public
keys belonging to the developer Alice. Similarly, the
Scapy project has been delegated to Sue. A delegation
is simply a trusted map of which developer keys are re-
sponsible for signing which projects (or sets of pack-
ages). Based on this delegation, users would trust only
Alice’s signature on a Django package. Developers can
further delegate entrusted packages to other developers.
In this case, Alice has delegated some packages (any
package matching the path Django-*.tar.gz) to the de-
veloper Bob. Thus, Bob speaks for Alice for only the
Django-*.tar.gz packages, whereas Alice’s signature
on Django-1.7.1.exe (not shown) would be trusted in-
stead of Bob’s.

3 Threats and Threat Model
There are many risks that users of software reposito-

ries face. Attackers can interject traffic by proxy inter-
ception attacks [43], target weaknesses in TLS [37, 85],
set up a malicious mirror [21, 79], exploit weaknesses in
the network infrastructure [19, 81], compromise signing
keys due to weaknesses [45, 84], or steal keys outright
by exploiting a security vulnerability [25]. Furthermore,
attackers have proven adept at compromising the repos-
itory or signing infrastructure of many companies. This
leads us to consider a threat model where a compromise
of at least some part of the system occurs.
3.1 Threat Model

We assume that an attacker can:

1. Compromise a running repository and / or any keys
stored on the repository, including those situations
where the key itself is unknown (e.g., due to hard-
ware protection) but where the attacker is never-
theless able to sign malicious packages using the
key [67].

2. Respond to user requests. This can be done either
by acting as a man-in-the-middle, or compromising
the repository or one of its mirrors.

An attack will be successful if the attacker can change
the contents of a package that a user installs (e.g., to
insert a backdoor [27, 41, 43, 61, 62, 67]). Existing
software update systems protect against a wide array
of other attacks such as replay and mix-and-match at-
tacks [20–23, 71]. We protect against those attacks by
leveraging the role and delegation layout from these prior

works. Thus, those types of attacks are only briefly dis-
cussed in this paper, so that we may focus on key com-
promise resilience while allowing online registration of
projects.

We assume that projects have trustworthy developers
and that these developers, who store their keys external to
the community repository, take measures to secure them.
If a key corresponding to a project is compromised, we
consider a community repository’s security to be effec-
tive if it limits the impact of an attack to the project
whose key has been compromised.

4 Analysis of Current Systems
In this section, we examine four security approaches

that are used on repositories. These techniques allow ad-
ministrators of community repositories to sign packages
— either themselves or by delegating packages to their
respective project developers. These security models are
illustrated in Figure 2. These models are discussed in
turn in the following subsections.

4.1 Existing Security Models

(a) Repositories sign with online keys

In community repositories such as PyPI, RubyGems
and npm, all packages are signed only by repositories
with online keys (Figure 2(a)). A repository may sign
packages with a transport mechanism such as TLS or
CUP [42]. These private keys are kept online because
community repositories must publish new projects and
packages as soon as possible. Unfortunately, because the
key is online, a compromise of the repository would in-
stantly render all packages vulnerable. For example, the
npm community repository reported that a programming
bug not only leaked its TLS keys, but also allowed at-
tackers to remotely rewrite packages [90]. Since devel-
opers do not sign their packages in this security model,
users who subsequently request packages that have been
tampered with trust the repository’s package signatures
without question. This is because the transport mech-
anism is useful only for establishing the identity of the
repository, but not the authenticity of the packages them-
selves as belonging to their respective developers.

(b) Developers sign with offline keys

Some community repositories, including PyPI and
RubyGems, permit developers to sign their packages
with offline GPG [83] or RSA keys before uploading
them to the repository (Figure 2(b)). Unlike the pre-
vious security model, signatures are used to verify the
authenticity of packages, not to authenticate the repos-
itory’s identity. In this model, users must discover the
correct key for a developer from an out-of-band channel
and then use this to verify packages.

One substantial problem with this model is that finding

570 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

online
keys

developer
keys

offline
keys package

delegates
packages to

foo-2.0

packages

signs for
packages

project
developers

repository
administrators(a)

(c)

foo-2.1

bar-1.0

foo-2.0

projects

(d)

foo-2.1

bar-1.0

foo-2.0

projects foo-2.1

bar-1.0

foo

bar

foo

bar

legend

(b)

foo-2.0

foo-2.1

bar-1.0

foo

barGPG

packagesproject
developers

repository
administrators

Figure 2: Existing security models for community reposito-
ries.

and verifying developer keys remains a manual process,
with the burden placed on both developers and users.
Finding true developer keys can be tricky, especially with
attackers distributing fake keys, as was the case with the
Tor project [24]. The repository is compromise-resilient
only inasmuch as users have found and verified the cor-
rect developer keys. While PyPI and RubyGems support
this model, only 4% of PyPI projects even list a signa-
ture. Moreover, in a month long trace of package re-
quests to PyPI, only 0.07% of users downloaded these
signatures for verification. If signatures are not used,
then attackers who compromise the repository may mod-
ify any package in whatever manner they choose.

Thus, repository administrators across diverse com-
munity repositories are seeking a better solution [33, 47,
91]. To quote the RubyGems security guide [69]: “The
goal is to improve (or replace) the signing system so that
it is easy for authors and transparent for users.”

(c) Repositories delegate to projects with online keys

In this security model (Figure 2(c)), the projects role
for a delegation framework like TUF [71] is signed with
an online key. In order to solve the problem of which
developer keys map to which packages, repositories will
delegate a project (its set of packages) to the public keys
of the developers of that project. For example, PyPI will
delegate all packages of the Django project (matching,
say, the package path Django-*) to the public key of
the lead developer of the project who, in turn, may del-
egate the Django packages to other developers. Since
the projects role key is online, a new project can be
immediately registered by the repository, through a new
delegation to a project.

This model does not build compromise-resilient com-
munity repositories precisely because the projects role
can be compromised by an attacker. (This is true de-
spite the fact that developers sign their respective pack-
ages with offline keys.) This is because the keys for
the projects role are kept online. Thus, once an at-
tacker has compromised a repository, he (or she) is free to
rewrite delegations using the online private keys. Then,

Roles and Responsibilities
root

release

timestamp

projects

The root role is the locus of trust. It indicates which keys are
authorized for the projects, release, and timestamp roles. It also lists
the keys for the root role itself.
The projects role is trusted to validate packages. Often, the projects
role will delegate trust for a project to the responsible developers.
The release role indicates the latest versions of all metadata on the
repository. This prevents a user from later being deceived into
installing an outdated package.
The timestamp role is responsible for indicating if the repository
contents have changed. This role will often be performed by external
parties, such as mirrors.

Figure 3: The top-level roles used within Diplomat.

an attacker can have the projects role delegate trust for
the Django-* packages to a key that the attacker con-
trols. As such, the attacker could deceive users into in-
stalling malicious packages that did not originate from
the project’s developers.

(d) Administrators delegate to projects with offline keys

Unlike the previous TUF security model, which dele-
gates trust using an online key, administrators could al-
ternatively choose to delegate using offline keys (Fig-
ure 2(d)). This means that the projects role key (kept
offline) delegates projects to developer keys. There-
fore, this model does indeed build compromise-resilient
repositories because attackers cannot rewrite delegations
(and thus packages) after a repository compromise. The
attacker’s capabilities are limited to preventing clients
from seeing new packages in a timely manner (freeze
attack) or providing new package updates out of or-
der (mix-and-match attack) [71]. This model is used
by traditional repositories, including LEAP [53]. Un-
fortunately, this model is impractical to use in commu-
nity repositories because new projects, which are created
dozens of times a day, cannot be registered without an
administrator using an offline key.

5 Diplomat: Architecture and Delegations
This section describes the architecture of Diplomat,

a security system designed to allow community repos-
itories to have both compromise-resilience and imme-
diate project registration. It begins with a high-level
overview that explains the roles and use of delega-
tions within Diplomat (Section 5.1). Following this,
we present two problems that a delegation-based sys-
tem would face when used on community repositories
(Section 5.2). Diplomat addresses these problems using
two types of delegations: prioritized delegations (Sec-
tion 5.3) and terminating delegations (Section 5.4). In
the next section, (Section 6) we will demonstrate how to
use these delegations to provide compromise-resilience
so that even if online keys for project registration are
stolen, projects that were previously registered (with of-
fline keys) are not at risk.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 571

5.1 Roles and Delegations in Diplomat
Much like our earlier work on TUF [71], Diplomat

separates trust between different parties using the four
top-level roles shown in Figure 3: root, timestamp,
release, and projects. Each role produces metadata
that fulfills a specific purpose. The root role specifies
the public keys of the top-level roles (including its own)
and can revoke the other top-level role keys, if needed.
The release role indicates the latest version numbers
of all Diplomat metadata (other than timestamp) that is
available on the repository. The timestamp role refer-
ences the latest release role metadata and will signify
the last time the contents of the repository have changed.
The projects role lists the available projects and either
provides cryptographic hashes of packages or delegates
trust to keys that provide those hashes. Each top-level
role is only trusted for its assigned responsibilities; this
minimizes the impact of a compromised role.

Our focus in this work is on the projects role (and
the delegations it makes to non-top-level roles). Hence,
details about any top-level role other than the projects
role are only discussed as needed. Documentation is
available that provides a more holistic discussion about
the roles and their use [49, 50, 71].

The projects role is the root of trust for all pack-
ages on the repository; if a user wishes to download
(and install) some package, he or she must first download
and verify the latest projects role metadata. The user
has the keys for this role because these public keys are
contained within the root metadata file. The top-level
projects role may delegate to other developers or ven-
dors, which may also then delegate to others. A client
can validate a package by following the chain of delega-
tions until they find a trusted developer’s metadata that
contains the cryptographic hash of the package.
5.2 Problems With Delegation Ambiguity

Security problems can occur when a party cannot ef-
fectively control how much trust they place in a party
when performing a delegation. To illustrate the problem,
Figure 4 provides an example we will use throughout this
section. In this example, A is the root of trust for pack-
ages. A delegates trust in any package with a name that
matches the package path bar-* to B, and all packages
(including bar packages) to C. This example illustrates
two problems.

The Ordering Problem. Suppose that A has dele-
gated bar to B and all packages to C. If B and C provide
different cryptographic hashes for bar-1.0, which hash
should be trusted?

Note that there is no “correct” resolution to this ques-
tion, because A’s intent is not clear. In some cases, the
more specific delegation of bar-* to B should be trusted
over the more general delegation of * to C. However, in

ba
r-*

*A

B

*

bar-1.0

C

bar-1.0

bar-1.1

car-1.0

signs
packages

delegates
packages to

Figure 4: An example of ambiguous delegations. The label on
a delegation specifies what packages to delegate.

other cases the reverse should be true. (In fact, the maxi-
mum security model in Section 6.1 has a general delega-
tion which is prioritized over a specific delegation, which
in turn is prioritized over another general delegation.) A
solution must allow a party to express the intended order
in which to resolve delegations.

The Failover Problem. Suppose that A wants B to
be the only trusted party for bar packages, but C can
be trusted with any other package. How can this be ex-
pressed?

There are clearly cases where failover is desirable
(e.g., allowing a second developer to sign a package if
the first does not) and those where it is not desirable (e.g.,
the ability for C to provide bar-1.1, if B is meant to be
the only source of bar packages). A solution must enable
the delegator to specify their intended behavior.

5.3 Prioritized Delegations
Diplomat uses prioritized delegations to order delega-

tions between different parties and address the ordering
problem. The key concept is to prioritize delegations
based upon the order they occur in the metadata file.
(This is similar to the manner in which firewall rules are
processed in the order they are listed [60].) By exploit-
ing the order in which delegations are listed, then the first
delegation will be used before the second delegation, and
so forth. For example, if B is listed before C in Figure 4,
then the user would trust B over C for the bar-1.0 pack-
age.

In case a role both delegates and signs a package, then
the role’s package signature takes precedence over its
delegations. So if A signed the bar-1.0 package, then
A would be trusted for the package despite its delegation
of the package to both B and C.

5.4 Terminating Delegations
Diplomat uses the concept of a terminating delegation

to address the failover problem by halting the processing
of delegations at a specified point. Terminating delega-
tions instruct the client not to consider future trust state-
ments that match the delegation’s pattern. This stops the

572 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

delegation processing once this delegation (and its de-
scendants) have been processed. (Handling this case is
conceptually similar to the use of the cut operator in Pro-
log [18] to stop computation, except that Diplomat uses
this technique for security instead of efficiency.) A termi-
nating delegation for a package causes any further state-
ments about a package that are not made by the delegated
party or its descendants to be ignored.
5.5 Processing Delegations

The algorithm for resolving delegations through the
application of prioritized delegations involves a pre-
order, depth-first search of the projects metadata. This
algorithm is used on a client device when a user instructs
the package manager to install a package.

To install a package, a recursive algorithm begins at
the projects role and searches for the package of inter-
est. First, all of the hashes in the metadata file provided
by the projects role are checked to see if the requested
package is listed. This is the “pre-order” check to see if
the current party has information about the desired pack-
age. Following this, delegations are examined in their
order of priority (i.e., the order they are listed). If a del-
egation selects a portion of the namespace to delegate
(e.g., bar-*), then the algorithm ignores this delegation
if the pattern does not match (e.g., if the request was for
foo-1.0). For any matching delegation, the algorithm
will (in order) recursively search for the package of in-
terest. It does so by repeating the preceding steps on the
highest priority delegatees (in order). If any of the del-
egations is a terminating delegation, then the algorithm
is terminated at that point, even if this terminating dele-
gation does not return with an answer, preventing further
delegations from being considered.

6 Diplomat Security Models In Practice
This section describes how to set up Diplomat

metadata to provide real-time project registration and
compromise-resilience. To exemplify how Diplomat is
used in practice, we describe two security models that
have been standardized for use within the Python com-
munity: the maximum security model (Section 6.1) [50]
and the legacy security model (Section 6.2) [49]. After
describing these two models, we elaborate on other us-
ability aspects of Diplomat, such as handling key com-
promises, setting up roles, and maintenance in Sec-
tion 6.3.

The legacy and maximum security models provide dif-
ferent trade-offs for the security and the availability of
packages for projects we call rarely updated. A rarely
updated project is one for which its developers have not
provided a signing key, often because the package is not
actively maintained. Nevertheless, its packages may be
actively downloaded by users. An example is the Beau-
tifulSoup project on PyPI, which last released package

version 3.2.1 on February 16th, 2012, but nonetheless
was downloaded more than a hundred thousand times
in January 2016. The maximum security model uses
an offline key to sign these projects. If an update is
made, users will not receive it until the repository ad-
ministrators sign the package with an offline key. In
contrast, the legacy security model (Section 6.2) handles
rarely updated projects by signing them with the online
unclaimed-projects role. Due to the fact that online
keys are used, developers can immediately update un-
claimed projects. However, this comes at the cost of
leaving their users vulnerable in the event of a reposi-
tory compromise. Thus, the maximum model provides
higher security but delayed availability of new packages
for rarely updated projects, whereas the legacy model
provides exactly the opposite trade-off. The security
analysis of these models is available in our technical re-
port [51].
6.1 Maximum Security Model

The maximum security model [50] (Figure 5) aims to
reduce the risk to users if the repository is compromised
by an attacker at the cost of making users wait before
retrieving a new package for a rarely updated project.
The top-level projects role of the maximum security
model delegates to three other roles. The first and high-
est priority delegation, claimed-projects, is assigned
to projects who have developers sign their own project
metadata with their own offline key. The next highest pri-
ority delegation, rarely-updated-projects, requires
repository administrators to delegate these projects with
a terminating delegation, and to sign for these packages
with an offline key. Finally, the lowest priority delega-
tion, new-projects, is targeted to new projects, which
are signed by an online key. If an attacker compromises
the repository, they can change the metadata that indi-
cates which key should be trusted for new projects (and
thus can forge packages for those projects), but due to
the higher-priority, terminating delegations to existing
projects, whether rarely updated or not, cannot modify
those packages without being detected.

The highest priority delegation issued by the
projects role is to the claimed-projects role. The
claimed-projects role signs a terminating delegation
of all packages of a project (such as foo or flibble)
to the public keys of its developers. Projects may
choose to delegate trust to developers’ public keys, and
either a project or a developer will sign and upload
metadata about their packages. The use of a terminat-
ing delegation ensures that if a user attempts to ver-
ify a foo package, then the user would only search
for the package among its developers. Most impor-
tantly, the claimed-projects role signs its delegations
to projects with offline keys so that attackers cannot tam-
per with the packages of these projects after a reposi-

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 573

flibble-*

foo-*

foo-*

zap-*

projects
foo

Project
claimed-
projects

zap-1.0

flibble-2.2

alice
Developer

foo-mac-1.3

soup-0.1

nuts-0.0.1

Projects
at risk

Compromise-
resilient
projects

*

*

foo-mac-*

foo-*

*

*
*
*

soup-*,

nuts-*

bob
Developer

joe
Developer

flibble
Project

zap
Project

foo
Project

rarely-
updated-
projects

new-
projects

package

signs for package

Legend

developer keys
backtracking
delegation

terminating
delegation offline keys

online keys

zap-1.0

project developersadministrators packages

*

Maximum Security Model

foo-win-1.1

sam
Developer

foo-mac-1.2

foo-win-1.2

wildcard
operator

ambiguous
delegations

flibble-*

foo-*

foo-*

zap-*

projects
foo

Project
claimed-
projects

zap-1.0

flibble-2.2

alice
Developer

foo-mac-1.3

soup-0.1

nuts-0.0.1

Projects
at risk

Compromise-
resilient
projects

*

*

foo-mac-*

foo-*

*

*
*
*

bob
Developer

joe
Developer

flibble
Project

zap
Project

foo
Project

unclaimed-
projects

new-
projects

zap-1.0

project developersadministrators packages

foo-win-1.1

sam
Developer

foo-mac-1.2

foo-win-1.2

*

Legacy Security Model

Figure 5: Maximum and legacy security models for community repositories. The red symbol indicates delegations that are not
used due to earlier trust statements. Delegations that are higher on the figure (toward the top of the page) have higher priority.

tory compromise (without also compromising the pri-
vate keys used by claimed project developers). How-
ever, since the delegation from the projects role to the
claimed-projects role allows backtracking (i.e., it is
not a terminating delegation), any requests for projects
unknown to the claimed-projects role will not be ter-
minated at this role, and will instead continue with the
rarely-updated-projects role.

The second-highest priority delegation pertains to the
rarely-updated-projects role. This role directly
signs, with offline keys, all packages of rarely updated
projects. Since the key used is offline, packages cannot
be signed by this role without an action by the repository
administrators. This delays the release of new packages
of rarely updated projects.

The delegation from the projects role to the
rarely-updated-projects role is a terminating one.
Furthermore, the rarely-updated-projects delega-
tion specifies only the package paths of rarely updated
projects (such as soup-* and nuts-* in Figure 5). Be-
cause of this, no backtracking is performed to search
elsewhere for the package signatures of a project already
delegated to this role.

Finally, the new-projects role is able to assign keys
to package names that were not already defined. This
role is served by an online key that delegates trust to
newly created projects. However, since the role has an
online key, there is a substantial risk of compromise. By
assigning this role the lowest priority (and using priori-
tized, terminating delegations for claimed and rarely up-
dated projects), an attacker will be able to only impact
newly-created projects if the repository is compromised.
For example, in Figure 5, the new-projects role’s sec-
ond delegation of foo is ignored due to the first terminat-
ing delegation of foo having a higher priority delegation
via the claimed-projects role.

6.2 Legacy Security Model
The legacy security model [49] (Figure 5) is very sim-

ilar to the maximum security model, but differs in the
way that it handles rarely updated packages. This model
allows new packages for rarely updated projects to be
available immediately, while still providing security ben-
efits to the users of claimed projects.

Like the maximum security model, the legacy se-
curity model includes the claimed-projects and
new-projects roles. However, in the legacy security
model, the repository uses an online key to sign for
unclaimed projects. Like rarely updated projects, un-
claimed projects are also signed by the repository in-
stead of developers, but with the unclaimed-projects
role that uses online keys. The unclaimed-projects
role has the lowest priority delegation and, since the
key is online, all projects signed with this key are at
risk in the event of a compromise. Prioritized and
terminating delegations of claimed projects signed by
the claimed-projects role ensure that, even when
the repository is compromised, packages of claimed
projects are not at risk. Thus, all packages of unclaimed
projects—unlike rarely updated projects—are available
immediately, but vulnerable in case of a repository com-
promise (just like new projects).

The legacy model is drawn from our integration and
deployment experience with the Python and Docker
community repositories. Both repositories wanted to al-
low the repository to sign packages on behalf of devel-
opers who did not wish to do so. However, since its key
is stored offline, using the rarely-updated-projects
role would prevent administrators from quickly re-
leasing new packages from these developers. The
unclaimed-projects role permits the repository to im-
mediately sign packages on behalf of these developers.

Diplomat enables a repository to smoothly transition

574 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

from the legacy to the maximum security model. The
repository administrators can first have the projects
role delegate to both the rarely-updated-projects
and unclaimed-projects roles. The administrators can
then move projects from the unclaimed-projects to the
rarely-updated-projects role (Section 7.2.2), and /
or require developers to register a project key to upload a
new package. Either way, project developers will be in-
centivized to transition out of the unclaimed-projects
role over time (using policies explored in Section 7), im-
proving security.

Docker Hub uses a similar security model for its de-
ployment of Diplomat. As of February 2016, Docker was
signing the most popular projects, such as Ubuntu (a pol-
icy we explore in Section 7.2.1). Docker plans to explore
options such as incentivizing project developers to sign
their packages (by visually distinguishing or showing
signed packages first in search results on Docker Hub),
or requiring developers to sign packages in order to up-
load a new one (a policy we explore in Section 7.2.3).
6.3 Using Diplomat

Regardless of whether a repository uses the legacy or
maximum security model, Diplomat requires essentially
the same actions by users, developers and administrators.

Users. End users that install software through a pack-
age manager that uses Diplomat do not need to perform
any actions and see no difference in their package man-
ager’s behavior. This is because Diplomat downloads
and verifies its metadata before the package manager is
allowed to install a package. The delegation structure
in Diplomat manages keys on behalf of the user, which
avoids the issues involved with locating and downloading
appropriate project keys (e.g., the model in Figure 2(b)).
The only situation where the user will be aware of Diplo-
mat’s existence is when a repository was compromised
and it produces a message that notifies that signatures on
data provided by the repository do not match.

Developers. To use Diplomat to protect a project, a
developer must create a public / private key pair and up-
load the public key to their community repository. The
repository will associate that key with the project first
through the new-projects role and later through the
claimed-projects role. If the project’s leaders elect to
do so, they may further delegate trust to different mem-
bers of the project, who may also sign packages so that
the project key need not be shared. Whenever a pack-
age is released, a developer must also generate a piece
of signed Diplomat metadata, the format of which is in
our standards document [49], that provides the crypto-
graphic hash of the package. The actions needed to cre-
ate or update this metadata can be added to the project’s
packaging scripts so that it is performed automatically
when a new package is built. Diplomat provides a set
of command-line tools [88] that helps developers to per-

form and automate those actions.
If the project key (i.e., the key that is delegated to di-

rectly by the claimed-projects or new-projects role)
is compromised, the repository administrator will need to
perform an action (discussed below) before trust in this
key is revoked. However, if an individual developer key
is compromised, the project can simply sign and upload
a new piece of metadata that changes the key or removes
that delegation. This action does not involve repository
administrators.

Repository Administrators. Most of the work in-
volved with using Diplomat comes from the initial setup.
Repository administrators need to generate the keys for
the roles and set up the initial delegations in their meta-
data. Offline keys should be stored in one or more de-
vices that are not network connected and high value roles
should require signatures from multiple keys. (We dis-
cuss procedures for this in more detail in the standards
documents [49, 50].) The repository software needs to
be modified so that Diplomat metadata is generated and
updated whenever projects are registered or packages
are uploaded. Diplomat provides administrators with
command-line tools and APIs [89] that automate these
actions and make it easy to integrate them into an exist-
ing repository.

Periodically (e.g., every few weeks), administrators
will perform a maintenance operation on the repository
to help it remain resilient to a key compromise. The
administrators should append the new-projects role
metadata to the claimed-projects role metadata and
sign the resulting metadata with the claimed-projects
key. If the rarely-updated-projects role exists, then
newly uploaded packages that are not signed by their de-
velopers should be added. Revoked project keys, which
are discussed below, are also replaced. Once this up-
dated metadata file is uploaded, this makes it so that an
attacker who compromises the repository cannot replace
the key for any projects included before that point. Ad-
ministrators will also calculate the cryptographic hash of
every package on the repository and store this data on
an offline system. This allows administrators to have a
known-good hash of each package to detect and recover
from a repository compromise.

Securely revoking a project key. When an autho-
rized party wants to revoke trust in a project key, they
notify the repository administrators and undergo an iden-
tity verification procedure [6]. (The exact procedure de-
pends on the deployment and is out of the scope of this
paper.) Once this is done, the administrators will write
the new project key into a revoked role metadata file (not
retrieved by users). When the maintenance operation is
performed to generate the new claimed-projects file,
the revoked keys are replaced. Administrators may pub-
lish revoked project keys to Twitter as both a notification

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 575

service and as a way of having a public log of project
keys that will change in the next maintenance operation.

Securely recovering from a repository compro-
mise. When a repository compromise has been de-
tected, the integrity of three types of information must
be validated. First, the keys for the new-projects and
unclaimed-projects roles of the repository need to be
revoked because they may have been compromised (i.e.,
their online keys have been compromised). The meta-
data for these roles must be discarded or returned to a
known-good state. These keys can be revoked by having
the offline projects role key sign new role metadata that
delegates to a new key.

Second, the role metadata of the repository may
have been changed. Metadata signed by the top-level
timestamp and release roles may have been changed,
enabling the attacker to launch mix-and-match and
freeze attacks [20–23]. These keys should be revoked
by the top-level root role, as is discussed in our prior
work [71].

Third, the packages themselves may have been tam-
pered with. Packages that existed the last time the
claimed-projects and rarely-updated-projects
role files were signed, can be verified using the stored
hash information. Also, new packages that are signed
by developers with the claimed-projects role may be
safely retained. However, any package signed by devel-
opers using the new-projects or unclaimed-projects
role should be discarded.

7 Evaluation
In order to better understand to what extent Diplomat

makes community repositories compromise-resilient, we
investigated the following questions:

• Does using the security models in Diplomat improve
users’ security in the event of a repository compro-
mise? Is Diplomat better than existing solutions like
TLS or GPG signatures? (Section 7.1)

• Suppose that the legacy security model is adopted for
usability reasons. If the goal is to maximize security,
what strategy should be used to get projects to sign
packages? For example:

– How effective is it to target the most popular
projects? (Section 7.2.1)

– What sort of benefit would there be from the
repository signing rarely updated projects? Which
projects should be considered rarely updated? (Sec-
tion 7.2.2)

– What is the effect of requiring developers to claim
projects when uploading a package? (Section 7.2.3)

– Is there an effective way to combine these strate-
gies? (Section 7.3)

Quantitative data used to answer these questions was
generated using anonymized request logs from PyPI
from March 21st to April 19th, 2014. For the purposes
of our analysis, we consider a user to be vulnerable if the
user downloads at least one package that an attacker who
compromised the repository (and thus all online keys)
could have tampered with. Thus, mapping requests to
user devices is important for our analysis. We sanitized
the log to remove situations where a single IP address
had diverse agent strings (likely multiple systems behind
a NAT), or requested the same package more than once
(likely a script), or requested more than 100 packages
(likely a mirror). Sanitizing the request log reduced the
absolute number of IPs in our dataset by about one third
to 398,983 users, but provides a data set where each IP
very likely corresponds to a unique client. This allows
us to take a set of vulnerable packages and understand
roughly what percent of clients would request at least one
package in that set (and thus would be at risk).

For the purpose of our analysis, we assume that attack-
ers have compromised PyPI on March 21st, at the begin-
ning of the anonymized request log. Furthermore, when
analyzing the maximum security model, we assume that
all projects that existed before March 21st are delegated
by the claimed-projects role, and that all projects cre-
ated afterward during the compromise are delegated by
the new-projects role.
7.1 Security of Diplomat vs TLS and GPG

We first perform a comparative analysis of the amount
of risk placed on users if an attacker compromises (a) a
repository protected with TLS, (b) GPG, (c) Diplomat’s
maximum security model, and (d) Diplomat’s legacy se-
curity model. This analysis aims to find how effective
these solutions would be in practice.

Figure 6 compares the effectiveness of TLS and GPG
(the top-most line), and the maximum security model
(very near the x-axis). In the case of TLS, the repository
is trusted to indicate which packages are valid. Thus, if
the repository is compromised, every user is vulnerable
because users trust packages from the repository.

Even if GPG is used in conjunction with TLS, the se-
curity is not improved. So few developers sign packages
and so few users download signatures that there was not a
single user who downloaded only GPG-signed packages
and their signatures.

Diplomat’s maximum security model is not perfect,
but it does protect 99.33% of users even if the repository
compromise is not detected over the full month’s trace.
This is because most users only download packages from
projects that existed before the start of the trace and those
packages are not vulnerable. Users who are vulnerable
are those who download a project that was registered
during the compromise. This can happen when a new
project rapidly becomes popular — often because of the

576 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

Figure 6: The cumulative number of compromised users over
the month when popular projects are signed by developers
(lower is better).

“Slashdot effect” due to promotion on a news site.
7.2 Adoption Strategies in the Legacy Security

Model
The compromise-resilience offered by the legacy se-

curity model can range from the same as TLS and GPG
— none, if no project signs its packages — to as good as
the maximum security model, if administrators delegate
with offline keys all but new projects to their respective
developers. In the rest of this subsection, we explore how
the compromise-resilience of the legacy security model
differs when different types of projects adopt Diplomat.
7.2.1 Targeting popular projects

We first evaluated the impact of requiring developers
of the most popular projects to claim their packages (Fig-
ure 6). Increasing the number of popular packages that
are signed by developers dramatically increases security.
If the most popular 1% of projects are signed by devel-
opers (406 projects), then 73% of users are protected. If
the top 10% of projects sign their project, then 96% of
users are protected. This shows that users overwhelm-
ingly download only popular projects and so focusing on
their protection is highly effective.
7.2.2 Only signing rarely updated projects

We examined the security benefits of the repository
using an offline key to sign rarely updated projects, be-
cause this has very little usability impact until the project
is next updated.

As Figure 7 shows, the security benefit of signing
rarely updated projects is small. This is because many
popular projects are updated frequently. Even if projects
that have not updated merely in the last month are consid-
ered rarely updated, only 167,097 (42%) of users would
be protected if the repository were compromised.

Creating a new package for a rarely updated
project means that users will not see the update un-
til repository administrators sign the package with the

Figure 7: The cumulative number of compromised users over
the month when the rarely-updated-projects role signed
projects that were last updated before the specified time period.

rarely-updated-projects role. This is a major us-
ability problem and so the rate of projects that are con-
sidered rarely updated must be very low. To estimate
this, we examined the distribution of the maximum time
difference between consecutive package updates for all
projects (not shown). Our analysis shows that 12% of all
packages had a gap of at least a year between updates,
but only 4% had a gap of at least two years. We feel that
two years is the most aggressive setting for rarely up-
dated projects that is likely to be considered acceptable
by the Python community. However, due to the high rate
of false positives and low number of users protected, on
its own, this is not an effective strategy.
7.2.3 Requiring projects to sign to upload a package

We considered a strategy wherein PyPI would require
projects to sign packages in order to upload a new pack-
age. (We consider this from a security perspective and
ignore the community’s response to such a policy.) Fig-
ure 8 shows the relative impact on users to be dependent
on how long the policy has been in place. For exam-
ple, the magenta line (“legacy (last 3mo)”) shows that if
developers that updated a package within the last three
months signed that package, 247,969 users (62%) were
vulnerable.

The usefulness of requiring a signature to upload a
package tails off rather sharply. Somewhat surprisingly,
23% of users (90,091) were vulnerable even if all de-
velopers that uploaded a package in the last two years
signed it (27,235 projects). This means that many pop-
ular projects have not been recently updated. (Given
the observation in the previous subsection, many pop-
ular packages are updated frequently, yet many are not.)
In comparison, this is about as effective as signing the
most popular 1% of projects, despite only requiring an
action by 406 projects. Thus, requiring projects to sign
when uploading is not an effective strategy when used in
isolation.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 577

Figure 8: The cumulative number of compromised users over
the month when projects were gradually signed by developers
over time using the legacy security model.

7.3 Summary: Recommended strategy
To summarize, pushing for adoption by the most pop-

ular 1% projects is critical to securing users. Other
strategies, such as signing for rarely updated projects
and pushing projects to sign when uploading a pack-
age, will further help security. While each strategy may
be relatively ineffective on its own, combining all of
these strategies can have minimal usability impact while
greatly increasing the security of PyPI users until the
maximum security model is adopted. The details of this
analysis, as well as our implementation of Diplomat, are
available in our technical report [51]. The Diplomat
source code and standards documents are freely available
at https://theupdateframework.github.io/.

8 Related Work
Role-Based Access Control. Diplomat uses a role-

based access control (RBAC) [72, 73] model. RBAC is a
collection of security models where permissions are as-
sociated with roles. A user may belong to one or more
role and thus possess the permissions those roles provide.
Although delegations in RBAC are well studied [8–10],
ambiguous delegations are not generally studied because
users, permissions, and roles are usually implicitly as-
sumed not to conflict. Schaad [74] used Prolog to de-
tect conflicts in separation of duties between roles, but
discussed no resolution mechanism that is applicable be-
yond RBAC. Stork [20] and OrBAC [14,29] support del-
egation models that allow the simultaneous permission
and prohibition of a privilege, and so could have the same
ambiguity issues as this work. These systems solve the
problem by specifying priorities with every permission
and prohibition. However, unlike Diplomat, these sys-
tems assume that the metadata a party sees cannot be
controlled by the attacker. An attacker that compromises
a community repository can choose to omit, add, or, in
the case of online keys, alter metadata, which is not han-

dled by these schemes.
Trust Management. Although GPG [83] and

X.509 [26] are useful for finding public keys and telling
whether keys have been revoked, they cannot answer
the question [17]: “Is request r authorized by policy P
and credential set C?” In a seminal work [16], Blaze
et al. defined trust management and introduced Pol-
icyMaker, a general trust management engine to en-
force security policies for diverse applications. Policy-
Maker separates secure key distribution (as solved by
GPG or X.509) from distributed authorization. Poli-
cyMaker featured security principles shared by Diplo-
mat such as k-of-n thresholds for authorization, deferred
trust (delegations), local policies, and key revocation.
Later, KeyNote [15] more directly supported public-key
infrastructure-like applications with a simpler syntax and
semantics at the expense of generality. Unlike Diplo-
mat, PolicyMaker and KeyNote do not handle conflict-
ing statements made by apparently equally trustworthy
parties [57]. Like KeyNote, SPKI/SDSI [34] supports
trust management for public key infrastructures (PKI).
SPKI/SDSI chose a delegation model with boolean con-
trol; unlike Diplomat, a key holder can specify the in-
ability to delegate further. SPKI/SDSI considered many
security problems that are relevant to Diplomat: key re-
vocation, the risks of online keys and increased key life-
times, redundancy with a threshold of algorithms or keys,
and applying redundancy to replace root keys. However,
unlike Diplomat, SPKI/SDSI leaves the processing of
delegations, including conflict resolution, to application
developers.

Delegation Logic. Diplomat leverages ideas from
prior work in logic-based distributed authorization.
Much of Diplomat’s functionality may be expressed in
D2LP, an authorization language in delegation logic [44,
56–58]. D2LP extends early works on trust manage-
ment and authorization in distributed systems [1, 52] by
defining a non-monotonic logic that resolves conflicting
conclusions in security policies. D2LP defines a more
general notion of prioritized delegations than in Diplo-
mat. For example, although both allow delegators to con-
strain delegations, D2LP allows delegators to specify ar-
bitrary delegation depth, whereas delegations are always
infinitely deep in Diplomat. Furthermore, D2LP allows
for partial ordering of rules, but Diplomat requires all
delegations to be totally ordered. This means that there
will always be one trusted conclusion for a package’s
metadata, or none at all in case no administrator or de-
veloper has signed for the package.

Secure Software Updates. Problems with software
update security were examined by Bellissimo et al. [13]
and Cappos et al. [21]. More recently, Knockel et al. [46]
observed that man-in-the-middle attacks on third-party
software continue to beleaguer open infrastructure.

578 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

The Stork package manager [20, 22, 23], whose secu-
rity model is also used by popular Linux package man-
agers, addresses a wide array of attacks that involve mali-
cious mirrors. However, this security model assumes that
the repository is trustworthy. TUF [71] is designed to se-
curely handle situations where some or all of a reposi-
tory is compromised. Diplomat leverages the techniques
in TUF to protect against certain types of attacks, such
as attacks that make valid but outdated packages appear
current. However, as was discussed in Section 4, due to
the need for online project registration TUF cannot pro-
tect a community repository against the most impactful
attacks, such providing arbitrarily modified packages.

Revere [55] uses a self-organizing, peer-to-peer over-
lay network to deliver security updates. It is designed to
maximize delivery speed, scalability, high dissemination
assurance, and security. In Revere, each peer indepen-
dently decides on trust relationships with other peers in
the overlay network. Thus from a security standpoint,
Revere functions somewhat like GPG. In contrast, Diplo-
mat works with a central community repository and del-
egates trust to projects which do not host content them-
selves.

Meteor [11] is designed to secure smartphones against
multi-market environments. Relevant to Diplomat is
their assumption that updates can be malicious due to a
compromise of developer keys. They propose indepen-
dent databases of metadata (such as information about
developers, or rating of application binaries by experts)
that users consult to determine whether an application
should be trusted. Baton [12] showed how smartphone
application developers can securely transfer the signing
authority of an application to a new developer key with-
out requiring user intervention and a PKI.

Alhamed et al. [2, 3] studied a different approach to
securing community repositories. They propose a volun-
teer community of independent testers who build bina-
ries from releases, certify that binaries come from trusted
sources, and attach warnings or even praises to binaries.

Secure Software Repository. The Secure Untrusted
Data Repository (SUNDR) [54] addresses a different
threat model from Diplomat. SUNDR assumes that the
software repository itself cannot be trusted with storing
packages. Therefore, each developer checks and signs
the history of all file system operations. Developers com-
pare histories with each other in order to ensure fork con-
sistency, where developers can eventually detect equivo-
cation. SUNDR requires developers and users to mount
a SUNDR file system hosted on the repository, and use
its protocol to verify the file system history.

9 Conclusion
This paper presents an architecture that uses priori-

tized and terminating delegations to secure community

repositories. The architecture demonstrates that it is
possible to have compromise-resilience in a community
repository without sacrificing a defining feature: imme-
diate project registration.

Our system, Diplomat, is flexible enough to enable
community repositories to implement different security
policies and gracefully transition between them. A com-
munity repository can begin with the legacy security
model, which provides sufficiently strong protection, but
does not require any action by developers. The maxi-
mum security model does require that developers sign
their packages (or else, new packages cannot be immedi-
ately released); however, the security gains are substan-
tial. Diplomat’s maximum security model would protect
over 99% of PyPI users, even if an attacker controlled the
repository undetected for a month.

Acknowledgements
We thank our shepherd, Ramakrishna Kotla, as well as

Jon Howell and the anonymous reviewers for their valu-
able comments. We would also like to thank Lois Anne
DeLong and Linda Vigdor for their efforts on this paper,
as well as the Docker, Flynn, Haskell, LEAP, OCaml,
Python, Ruby, and Square communities for their collab-
oration. Our work on Diplomat was supported by U.S.
National Science Foundation grants CNS-1345049 and
CNS-0959138.

References
[1] ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G.

A calculus for access control in distributed systems. ACM Trans.
Program. Lang. Syst. 15, 4 (Sept. 1993), 706–734.

[2] ALHAMED, K., SILAGHI, M. C., HUSSIEN, I., STANSIFER, R.,
AND YANG, Y. ”Stacking the Deck” Attack on Software Up-
dates: Solution by Distributed Recommendation of Testers. In
Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
2013 IEEE/WIC/ACM International Joint Conferences on (2013),
vol. 2, pp. 293–300.

[3] ALHAMED, K., SILAGHI, M. C., HUSSIEN, I., AND YANG, Y.
Security by Decentralized Certification of Automatic-Updates for
Open Source Software controlled by Volunteers. In Workshop on
Decentralized Coordination (2013).

[4] APACHE INFRASTRUCTURE TEAM. apache.org incident report
for 8/28/2009. https://blogs.apache.org/infra/entry/
apache org downtime report, 2009.

[5] APACHE INFRASTRUCTURE TEAM. apache.org incident report
for 04/09/2010. https://blogs.apache.org/infra/entry/
apache org 04 09 2010, 2010.

[6] ARCIERI, T. Let’s figure out a way to start signing
RubyGems. http://tonyarcieri.com/lets-figure-out-a-
way-to-start-signing-rubygems, 2014.

[7] ARKIN, B. Adobe to Revoke Code Signing Certifi-
cate. https://blogs.adobe.com/conversations/2012/09/
adobe-to-revoke-code-signing-certificate.html, 2012.

[8] BARKA, E., AND SANDHU, R. Role-based delegation
model/hierarchical roles (RBDM1). In Computer Security Appli-
cations Conference, 2004. 20th Annual (2004), IEEE, pp. 396–
404.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 579

[9] BARKA, E., AND SANDHU, R. Framework for agent-based role
delegation. In Communications, 2007. ICC’07. IEEE Interna-
tional Conference on (2007), IEEE, pp. 1361–1367.

[10] BARKA, E., SANDHU, R., ET AL. A role-based delegation
model and some extensions. In 23rd National Information Sys-
tems Security Conference (2000), Citeseer, pp. 396–404.

[11] BARRERA, D., ENCK, W., AND VAN OORSCHOT, P. C. Meteor:
Seeding a security-enhancing infrastructure for multi-market ap-
plication ecosystems. IEEE Mobile Security Technologies (2012).

[12] BARRERA, D., MCCARNEY, D., CLARK, J., AND VAN
OORSCHOT, P. C. Baton: Key Agility for Android without
a Centralized Certificate Infrastructure. Tech. Rep. TR-13-03,
School of Computer Science, Carleton University.

[13] BELLISSIMO, A., BURGESS, J., AND FU, K. Secure software
updates: disappointments and new challenges. Proceedings of
USENIX Hot Topics in Security (HotSec) (2006).

[14] BEN-GHORBEL-TALBI, M., CUPPENS, F., CUPPENS-
BOULAHIA, N., AND BOUHOULA, A. A delegation model for
extended RBAC. International journal of information security 9,
3 (2010), 209–236.

[15] BLAZE, M., FEIGENBAUM, J., AND KEROMYTIS, A. D.
Keynote: Trust management for public-key infrastructures. In
Security Protocols (1999), Springer, pp. 59–63.

[16] BLAZE, M., FEIGENBAUM, J., AND LACY, J. Decentralized
trust management. In Security and Privacy, 1996. Proceedings.,
1996 IEEE Symposium on (1996), IEEE, pp. 164–173.

[17] BLAZE, M., FEIGENBAUM, J., AND STRAUSS, M. Financial
Cryptography: Second International Conference, FC ’98 An-
guilla, British West Indies February 23–25, 1998 Proceedings.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1998, ch. Com-
pliance checking in the PolicyMaker trust management system,
pp. 254–274.

[18] BRATKO, I. Prolog programming for artificial intelligence. Pear-
son education, 2001.

[19] BROWN, M., AND DYNAMIC NETWORK SERVICES, INC. Pak-
istan hijacks YouTube. http://research.dyn.com/2008/02/
pakistan-hijacks-youtube-1/, 2008.

[20] CAPPOS, J., BAKER, S., PLICHTA, J., NYUGEN, D., HARDIES,
J., BORGARD, M., JOHNSTON, J., AND HARTMAN, J. H.
Stork: package management for distributed VM environments.
In The 21st Large Installation System Administration Conference,
LISA’07 (2007).

[21] CAPPOS, J., SAMUEL, J., BAKER, S., AND HARTMAN, J. H. A
look in the mirror: Attacks on package managers. In Proceedings
of the 15th ACM conference on Computer and communications
security (2008), ACM, pp. 565–574.

[22] CAPPOS, J., SAMUEL, J., BAKER, S., AND HARTMAN, J. H.
Package management security. University of Arizona Technical
Report (2008), 08–02.

[23] CAPPPOS, J. Stork: Secure Package Management for VM Envi-
ronments. Dissertation, University of Arizona, 2008.

[24] CLARK, E. [tor-talk] Another fake key for my email
address. https://lists.torproject.org/pipermail/tor-
talk/2014-March/032308.html, 2014.

[25] CLOUDFLARE, INC. Answering the Critical Ques-
tion: Can You Get Private SSL Keys Using Heartbleed?
https://blog.cloudflare.com/answering-the-critical-
question-can-you-get-private-ssl-keys-using-
heartbleed/, 2014.

[26] COOPER, D., SANTESSON, S., FARRELL, S., BOEYEN, S.,
HOUSLEY, R., AND POLK, W. RFC 5280: Internet X.509 Pub-
lic Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile. The Internet Society (2008). https://tools.
ietf.org/html/rfc5280.

[27] CORBET, J. An attempt to backdoor the kernel. http://lwn.
net/Articles/57135/, 2003.

[28] CORBET, J. The cracking of kernel.org. http:
//www.linuxfoundation.org/news-media/blogs/browse/
2011/08/cracking-kernelorg, 2011.

[29] CUPPENS, F., CUPPENS-BOULAHIA, N., AND GHORBEL,
M. B. High level conflict management strategies in advanced
access control models. Electronic Notes in Theoretical Computer
Science 186 (2007), 3–26.

[30] DEBIAN. Debian Investigation Report after Server Compromises.
https://www.debian.org/News/2003/20031202, 2003.

[31] DEBIAN. Security breach on the Debian wiki 2012-
07-25. https://wiki.debian.org/DebianWiki/
SecurityIncident2012, 2012.

[32] DOCKER INC. Docker Hub. https://hub.docker.com/.

[33] EKLEKTIX, INC. Docker image ”verification”. https://lwn.
net/Articles/628343/, 2015.

[34] ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R.,
THOMAS, B., AND YLONEN, T. RFC 2693: SPKI certificate
theory. https://tools.ietf.org/html/rfc2693.

[35] FRIELDS, P. W. Infrastructure report, 2008-08-22 UTC 1200.
https://www.redhat.com/archives/fedora-announce-
list/2008-August/msg00012.html, 2008.

[36] GENTOO LINUX. rsync.gentoo.org: rotation server com-
promised. https://security.gentoo.org/glsa/200312-01,
2003.

[37] GEORGIEV, M., IYENGAR, S., JANA, S., ANUBHAI, R.,
BONEH, D., AND SHMATIKOV, V. The most dangerous code in
the world: validating SSL certificates in non-browser software.
In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 38–49.

[38] GESBERT, L., AND MEHNERT, H. Signing the OPAM repos-
itory. http://opam.ocaml.org/blog/Signing-the-opam-
repository/, 2015.

[39] GITHUB, INC. Public Key Security Vulnerability and
Mitigation. https://github.com/blog/1068-public-key-
security-vulnerability-and-mitigation, 2012.

[40] GNU SAVANNAH. Compromise2010. https://savannah.gnu.
org/maintenance/Compromise2010/, 2010.

[41] GOODIN, D. Attackers sign malware using crypto certifi-
cate stolen from Opera Software. http://arstechnica.
com/security/2013/06/attackers-sign-malware-using-
crypto-certificate-stolen-from-opera-software/,
2013.

[42] GOOGLE, INC. Open Client Update Protocol. http://omaha.
googlecode.com/svn/wiki/cup.html.

[43] GOSTEV, A. ‘Gadget’ in the middle: Flame malware spread-
ing vector identified. https://www.securelist.com/en/
blog/208193558/Gadget in the middle Flame malware
spreading vector identified, 2012.

[44] GROSOF, B. N. Prioritized conflict handling for logic programs.
In ILPS (1997), vol. 97, pp. 197–211.

[45] INCI, M. S., GULMEZOGLU, B., IRAZOQUI, G., EISENBARTH,
T., AND SUNAR, B. Seriously, get off my cloud! Cross-VM RSA
Key Recovery in a Public Cloud. Cryptology ePrint Archive, Re-
port 2015/898, 2015. http://eprint.iacr.org/.

[46] KNOCKEL, J., AND CRANDALL, J. R. Protecting Free and Open
Communications on the Internet Against Man-in-the-Middle At-
tacks on Third-Party Software: We’re FOCI’d. In Presented as
part of the 2nd USENIX Workshop on Free and Open Communi-
cations on the Internet (Berkeley, CA, 2012), USENIX.

580 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) USENIX Association

[47] KRAH, S. [Python-Dev] pip: cdecimal an externally hosted
file and may be unreliable [sic]. https://mail.python.org/
pipermail/python-dev/2014-May/134453.html, 2014.

[48] KUHN, B. M. News: IMPORTANT: Information Regarding Sa-
vannah Restoration for All Users. https://savannah.gnu.org/
forum/forum.php?forum id=2752, 2003.

[49] KUPPUSAMY, T. K., DIAZ, V., STUFFT, D., AND CAPPOS, J.
PEP 458 – Securing the Link from PyPI to the End User. https:
//www.python.org/dev/peps/pep-0458/, 2013.

[50] KUPPUSAMY, T. K., DIAZ, V., STUFFT, D., AND CAPPOS, J.
PEP 480 – Surviving a Compromise of PyPI. https://www.
python.org/dev/peps/pep-0480/, 2014.

[51] KUPPUSAMY, T. K., TORRES-ARIAS, S., DIAZ, V., AND CAP-
POS, J. Diplomat: Using Delegations to Protect Community
Repositories. Tech. Rep. TR-CSE-2016-01, Computer Science
and Engineering, Tandon School of Engineering, New York Uni-
versity.

[52] LAMPSON, B., ABADI, M., BURROWS, M., AND WOBBER, E.
Authentication in distributed systems: Theory and practice. ACM
Trans. Comput. Syst. 10, 4 (Nov. 1992), 265–310.

[53] LEAP ENCRYPTION ACCESS PROJECT. New releases for a new
year - LEAP. https://leap.se/en/2014/darkest-night,
2014.

[54] LI, J., KROHN, M., MAZIÈRES, D., AND SHASHA, D. Secure
untrusted data repository (SUNDR). In Proceedings of the 6th
conference on Symposium on Opearting Systems Design & Im-
plementation - Volume 6 (Berkeley, CA, USA, 2004), OSDI’04,
USENIX Association, pp. 9–9.

[55] LI, J., REIHER, P., AND POPEK, G. J. Resilient self-organizing
overlay networks for security update delivery. Selected Areas in
Communications, IEEE Journal on 22, 1 (2004), 189–202.

[56] LI, N. Delegation Logic: A Logic-based Approach to Distributed
Authorization. PhD thesis, New York University, 2000.

[57] LI, N., FEIGENBAUM, J., AND GROSOF, B. N. A logic-based
knowledge representation for authorization with delegation. In
Computer Security Foundations Workshop, 1999. Proceedings of
the 12th IEEE (1999), IEEE, pp. 162–174.

[58] LI, N., GROSOF, B. N., AND FEIGENBAUM, J. A
Nonmonotonic Delegation Logic with Prioritized Conflict
Handling. https://www.cs.purdue.edu/homes/ninghui/
papers/old/d2lp.pdf, 2000.

[59] MAGNUSSON, H. The PHP project and Code Re-
view. http://bjori.blogspot.com/2010/12/php-project-
and-code-review.html, 2010.

[60] MICROSOFT, INC. Order of Windows Firewall with Advanced
Security Rules Evaluation. https://technet.microsoft.com/
en-us/library/cc755191%28v=ws.10%29.aspx, 2009.

[61] MICROSOFT, INC. Flame malware collision attack explained.
http://blogs.technet.com/b/srd/archive/2012/06/06/
more-information-about-the-digital-certificates-
used-to-sign-the-flame-malware.aspx, 2012.

[62] MULLENWEG, M. Passwords Reset. https://wordpress.org/
news/2011/06/passwords-reset/, 2011.

[63] MÓNICA, D., AND DOCKER, INC. Introducing Docker Content
Trust. https://blog.docker.com/2015/08/content-trust-
docker-1-8/, 2015.

[64] PHILIPS, B. Evaluate The Update Framework. https://
github.com/appc/spec/issues/211, 2015.

[65] PRIME DIRECTIVE, INC. Development - Flynn. https://
flynn.io/docs/development, 2015.

[66] PYTHON SOFTWARE FOUNDATION. PyPI - the Python Pack-
age Index: Python Package Index. https://pypi.python.org/
pypi.

[67] RED HAT, INC. Infrastructure report, 2008-08-22 UTC
1200. https://rhn.redhat.com/errata/RHSA-2008-0855.
html, 2008.

[68] RUBYGEMS.ORG. RubyGems.org — your community gem host.
https://rubygems.org/.

[69] RUBYGEMS.ORG. Security. http://guides.rubygems.org/
security/.

[70] RUBYGEMS.ORG. Data Verification. http://blog.rubygems.
org/2013/01/31/data-verification.html, 2013.

[71] SAMUEL, J., MATHEWSON, N., CAPPOS, J., AND DINGLE-
DINE, R. Survivable key compromise in software update sys-
tems. In Proceedings of the 17th ACM conference on Computer
and communications security (2010), ACM, pp. 61–72.

[72] SANDHU, R. S. Role-based access control. Advances in comput-
ers 46 (1998), 237–286.

[73] SANDHU, R. S., COYNE, E. J., FEINSTEIN, H. L., AND
YOUMAN, C. E. Role-based access control models. Computer
29, 2 (1996), 38–47.

[74] SCHAAD, A. Detecting conflicts in a role-based delegation
model. In Computer Security Applications Conference, 2001.
ACSAC 2001. Proceedings 17th Annual (2001), IEEE, pp. 117–
126.

[75] SHAY, X., AND SQUARE, INC. Securing RubyGems with TUF,
Part 1. https://corner.squareup.com/2013/12/securing-
rubygems-with-tuf-part-1.html, 2013.

[76] SHAY, X., AND SQUARE, INC. Securing RubyGems with TUF,
Part 2. https://corner.squareup.com/2013/12/securing-
rubygems-with-tuf-part-2.html, 2013.

[77] SHAY, X., AND SQUARE, INC. Securing RubyGems with TUF,
Part 3. https://corner.squareup.com/2013/12/securing-
rubygems-with-tuf-part-3.html, 2013.

[78] SLASHDOT MEDIA. About. http://sourceforge.net/about.

[79] SLASHDOT MEDIA. phpMyAdmin corrupted copy on Korean
mirror server. https://sourceforge.net/blog/phpmyadmin-
back-door/, 2012.

[80] SMITH, J. K. Security incident on Fedora infrastructure on 23
Jan 2011. https://lists.fedoraproject.org/pipermail/
announce/2011-January/002911.html, 2011.

[81] STEWART, J. DNS cache poisoning–the next genera-
tion. http://www.secureworks.com/research/articles/
dns-cache-poisoning, 2003.

[82] THE FREEBSD PROJECT. FreeBSD.org intrusion announced
November 17th 2012. http://www.freebsd.org/news/2012-
compromise.html, 2012.

[83] THE GNUPG PROJECT. The GNU Privacy Guard. https://
gnupg.org/.

[84] THE MITRE CORPORATION. CVE 2008-0166.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2008-0166, 2008.

[85] THE MITRE CORPORATION. CVE 2014-0092.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2014-0092, 2014.

[86] THE PHP GROUP. php.net security notice. http://www.php.
net/archive/2011.php#id2011-03-19-1, 2011.

[87] THE PHP GROUP. A further update on php.net. http://php.
net/archive/2013.php#id2013-10-24-2, 2013.

USENIX Association 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’16) 581

[88] THE UPDATE FRAMEWORK. Developer Tools. https:
//github.com/theupdateframework/tuf/blob/develop/
tuf/README-developer-tools.md.

[89] THE UPDATE FRAMEWORK. Repository Management.
https://github.com/theupdateframework/tuf/blob/
develop/tuf/README.md.

[90] VOSS, L. Newly Paranoid Maintainers. http://blog.npmjs.
org/post/80277229932/newly-paranoid-maintainers,

2014.

[91] WELL-TYPED LLP. Improving Hackage security.
http://www.well-typed.com/blog/2015/04/improving-
hackage-security/, 2015.

[92] WOBBER, E., ABADI, M., BURROWS, M., AND LAMPSON, B.
Authentication in the Taos operating system. ACM Transactions

on Computer Systems (TOCS) 12, 1 (1994), 3–32.

