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Abstract
Realizing the benefits of SDN for many network man-
agement applications (e.g., traffic engineering, service
chaining, topology reconfiguration) involves addressing
complex optimizations that are central to these problems.
Unfortunately, such optimization problems require (a)
significant manual effort and expertise to express and (b)
non-trivial computation and/or carefully crafted heuris-
tics to solve. Our goal is to simplify the deployment of
SDN applications using general high-level abstractions
for capturing optimization requirements from which we
can efficiently generate optimal solutions. To this end,
we present SOL, a framework that demonstrates that it
is possible to simultaneously achieve generality and ef-
ficiency. The insight underlying SOL is that many SDN
applications can be recast within a unifying path-based
optimization abstraction. Using this, SOL can efficiently
generate near-optimal solutions and device configura-
tions to implement them. We show that SOL provides
comparable or better scalability than custom optimiza-
tion solutions for diverse applications, allows a balancing
of optimality and route churn per reconfiguration, and in-
terfaces with modern SDN controllers.

1 Introduction
Software-defined networking (SDN) is an enabler for
network management applications that may otherwise be
difficult to realize using existing control-plane mecha-
nisms. Recent work has used SDN-based mechanisms to
implement network configuration for a range of manage-
ment tasks: traffic engineering (e.g., [40]), service chain-
ing (e.g., [39]), energy efficiency (e.g., [19]), network
functions virtualization (NFV) (e.g., [14]), and cloud of-
floading (e.g., [44]), among others.

While this body of work has been instrumental in
demonstrating the potential benefits of SDN, realizing
these benefits requires significant effort. In particular, at
the core of many SDN applications are custom optimiza-
tion problems to tackle various constraints and require-
ments that arise in practice (§2). For instance, an SDN
application might need to account for limited TCAM,
link capacities, or middlebox capacities, among other
considerations. Developing such formulations involves
a non-trivial learning curve, a careful understanding of
theoretical and practical issues, and considerable man-
ual effort. Furthermore, when the resulting optimiza-
tion problems are intractable to solve with state-of-the-
art solvers (e.g., CPLEX or Gurobi), heuristic algorithms
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Figure 1: Developers use the SOL high-level APIs to
specify optimization goals and constraints. SOL gen-
erates near-optimal solutions and produces device con-
figurations that are input to the SDN control platform.

must be crafted to ensure that new configurations can
be generated on timescales demanded by the applica-
tion as relevant inputs (e.g., traffic matrix entries) change
(e.g., [19, 29]). Furthermore, without a common frame-
work for representing network optimization tasks, it is
difficult to reuse key ideas across applications or to com-
bine useful features into a custom new application.

Our goal in this work is to raise the level of abstraction
for writing such SDN-based network optimization appli-
cations. To this end, we introduce SOL, a framework
that enables SDN application developers to express high-
level application goals and constraints. Conceptually,
SOL is an intermediate layer that sits between the SDN
optimization applications and the actual control platform
(see Fig. 1). Application developers who want to develop
new network optimization capabilities express their re-
quirements using the SOL API. SOL then generates con-
figurations that meet these goals, which can be deployed
to SDN control platforms.

There are two natural requirements for such a frame-
work: (1) generality to express the requirements for a
broad spectrum of SDN applications (e.g., traffic engi-
neering, policy steering, load balancing, and topology
management); and (2) efficiency to generate (near-) op-
timal configurations on a timescale that is responsive to
application needs. Given the diversity of the application
requirements and the trajectory of prior work in devel-
oping custom solutions (e.g., [39, 24, 23, 19, 29, 14, 8,
46, 40, 20]), generality and efficiency appear individually
difficult, let alone combined. We show that it is indeed
possible to achieve both generality and efficiency.

The key insight in SOL to achieve generality is that
many network optimization problems can be expressed
as path-based formulations. Paths are a natural abstrac-
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tion for application developers to reason about intended
network behaviors and to express policy requirements.
For example, we can use paths to specify service chain-
ing requirements (e.g., each path includes a firewall and
intrusion-detection system, in that order) or redundancy
(e.g., each includes two intrusion-prevention systems, in
case one fails open). Finally, it is easy to model de-
vice (e.g., TCAM space, middlebox CPU) and link re-
source consumption based on the volume of traffic flow-
ing through paths that traverse that device or link.

The natural question is whether the generality of
path-based formulations precludes efficiency. Indeed, if
implemented naively, optimization problems expressed
over the paths that traffic might travel will introduce ef-
ficiency challenges since the number of paths grows ex-
ponentially with the network size. Our key insight is that
by combining infrequent, offline preprocessing with sim-
ple, online path-selection algorithms (e.g., shortest paths
or random paths), we can achieve near-optimal solutions
in practice for all applications we considered. Moreover,
SOL is typically far more efficient than solving the op-
timization problems originally used to express these ap-
plications’ requirements.

We have implemented SOL as a Python-based library
that interfaces with ONOS [5] and OpenDaylight [35]
(§7). We have also prototyped numerous SDN applica-
tions in SOL, including SIMPLE [39], ElasticTree [19],
Panopticon [29], and others of our own design (§6 and
App. B). SOL is open-source; we have released mod-
ules for various applications coded in SOL as well as our
ONOS extensions [22].

Our evaluations on a range of topologies show that:
1) SOL outperforms several applications’ original opti-
mization algorithms by an order of magnitude or more,
and is even competitive with their custom heuristics; 2)
SOL scales better than other network management tools
like Merlin [45]; 3) SOL substantially reduces the effort
required (e.g., in terms of lines of code) for implement-
ing new SDN applications by an order of magnitude; and
4) optional SOL extensions can reduce route churn sub-
stantially across reconfigurations with modest impact on
optimality.

2 Background and Motivation
In this section, we describe representative network ap-
plications that could benefit from a framework such as
SOL. We highlight the need for careful formulation and
algorithm development involved in prior efforts, as well
as the diversity of requirements they entail.

2.1 Traffic engineering
Traffic engineering (TE) is a canonical application that
was an early driving application for SDN [24, 23]. Fig. 2
shows an example where traffic classes C1 and C2 need

to be routed completely while minimizing the load on the
most heavily loaded link. A TE application takes as in-
put traffic demands (e.g., the traffic matrix between WAN
sites), a specification of the traffic classes and priorities,
and the network topology and link capacities. It deter-
mines how to route each class to achieve network-wide
objectives, e.g., minimizing congestion [11] or weighted
max-min fairness [24, 23].

Figure 2: Traffic engineering applications

Challenges: Simple goals like link congestion can be
represented and solved via max-flow formulations [1].
However, the expressivity and efficiency quickly breaks
down for more complex objectives such as max-min
fairness, which multiple research efforts have sought
to address [23, 9, 24]. When max-flow like formula-
tions fail, designers invariably revert to “low-level” tech-
niques such as linear programs (LP) or combinatorial al-
gorithms. Neither is ideal—using/tuning LP solvers is
painful as they expose a very low-level interface, and
combinatorial algorithms require significant theoretical
expertise. Finally, translating the algorithm output into
actual routing rules requires care to install volume-aware
rules to truly reap the benefits of the optimization [47].

2.2 Service chaining
Networks today rely on a wide variety of middleboxes
(e.g., IDS, proxy, firewall) for performance, security, and
external compliance capabilities (e.g., [44]). The goal
of service chaining is to ensure that each class of traffic
is routed through the desired sequence of network func-
tions. For example, in Fig. 3, class C1 is required to
traverse a firewall and proxy in order. Such policy rout-
ing rules must be suitably encoded within the available
TCAM on SDN switches [39]. Since middleboxes are
often compute-intensive, they can get easily overloaded
and thus operators would like to balance the load on these
appliances [39, 15]. The key inputs to such applications
are the service chaining requirements of different classes,
traffic demands, and the available middlebox processing
resources. The application then sets up the forwarding
rules such that the service chaining requirements are met
while respecting the switch TCAM and middlebox ca-
pacities. Furthermore, as many of these middleboxes are
stateful, these rules must ensure flow affinity.
Challenges: Service chaining introduces more com-
plex requirements when compared to TE applications.
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Figure 3: Service chaining applications

First, modeling the consumption of switch TCAM intro-
duces discrete components into the optimization, which
impacts scalability [39]. Second, such service process-
ing requirements fall outside the scope of existing net-
work flow abstractions [8]. Third, service chaining high-
lights the complexity of combining different require-
ments; e.g., reasoning about the interaction between the
load balancing algorithm and the switch TCAM con-
straints is non-trivial [25]. Existing service chaining ef-
forts developed custom heuristics [7] or new theoretical
extensions [8]. Furthermore, as observed previously, en-
suring flow affinity can be quite tricky [21, 20].

2.3 Flexible topology management
SDN enables topology modifications that would be dif-
ficult to implement with existing control plane capabil-
ities. For instance, ElasticTree [19] and Response [46]
use SDN to dynamically switch on/off network links and
nodes to make datacenters more energy efficient. In
Fig. 4, these applications might shut down node N3 dur-
ing periods of low utilization, if classes C1 and C2 can
be routed via N4 without significantly impacting end-to-
end performance. Topology reconfiguration is especially
feasible in rich topologies with multiple paths between
every source and destination. Such applications take as
input the demand matrix (similar to the TE task) and then
compute the nodes and links that should be active and
traffic-engineered routes to ensure performance SLAs.

Figure 4: Topology reconfiguration applications

Challenges: The on-off requirement on the switch-
es/links once again introduces discrete constraints, yield-
ing integer-linear optimizations that are theoretically in-
tractable and difficult to express using max-flow like ab-
stractions. Solving such problems requires significant
computation even on small topologies and thus forces de-
velopers to design new, heuristic solving strategies; e.g.,
ElasticTree uses a greedy bin-packing algorithm [19].

2.4 Network function virtualization
Prior work has leveraged SDN capabilities to offload
or outsource network functions to leverage clusters or
clouds [44, 16, 40]. This is especially useful for expen-
sive deep-packet-inspection services [20]. The key de-
cision here is to decide how much of the processing on
each path to offload to the remote datacenter — e.g., in
Fig. 5, how much of class C1 traffic should be routed to
the datacenter between N4 and N5 for IPS processing,
versus processing it at N3. Offloading can increase user-
perceived latency and impose additional load on network
links. Moreover, some active functions (e.g., WAN op-
timizers or IPS) induce changes to the observed traffic
volumes due to their actions. Thus, optimizing such of-
floading must take into account the congestion that might
be introduced, as well as latency impact and any traf-
fic volume changes induced by such outsourced func-
tions. Further generalizations have considered not only
offloading middlebox services but also elastically scaling
them [36, 14, 34, 6], exacerbating these issues.

Figure 5: Offloading network functions

Challenges: Such offloading and elastic scaling oppor-
tunities introduce new dimensions to optimization that
are difficult to capture. For instance, offloading requires
rerouting the traffic and thus optimizations must model
the impact on link loads, downstream nodes, and TE ob-
jectives. If done naively, this can introduce non-linear
dependencies since the actions of downstream nodes de-
pend on control decisions made upstream. The active
changes to traffic volumes by some functions (e.g., com-
pression for redundancy elimination or drops by IPS)
also introduce non-linear dependencies in the optimiza-
tion. Finally, elastic scaling introduces a discrete aspect
to the problem similar to the topology modification ap-
plication, further decaying the problem’s tractability.

2.5 Motivation for SOL
Drawing on the above discussion (and our own experi-
ence), we summarize a few key considerations:
• Network applications have diverse and complex opti-

mization requirements; e.g., service chaining requires
us to reason about valid paths while topology modifi-
cation needs to enable/disable nodes.

• Designers of these applications have to spend signif-
icant effort in expressing and debugging these prob-
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lems using low-level optimization libraries.
• It can take non-trivial expertise to ensure that the

problems can be solved fast enough to be relevant for
operational timescales, e.g., recomputing TE every
few minutes or periodically solving the large integer-
linear programs (ILPs) supporting topology reconfig-
uration (e.g., [19]).

3 SOL Overview
Our overarching vision in developing SOL is to raise the
level of abstraction in developing new SDN applications
and specifically to eliminate some of the black art in de-
veloping SDN-based optimizations, making them more
accessible for deployment by network managers. To do
so, SOL abstracts away low-level details of optimization
solvers and SDN controllers, allowing the developer to
focus on the high-level application goals (recall Fig. 1).
SOL takes as inputs the network topology, traffic pat-
terns, and optimization requirements in the SOL API.
It then translates these into constraints for optimization
solvers such as CPLEX or Gurobi. Finally, SOL inter-
faces with existing SDN control platforms such as ONOS
to install the forwarding rules on the SDN switches. SOL
does not require modifications to the existing control or
data plane components of the network. Our vision for
SOL stands in stark contrast to the state of affairs today,
in which a developer faces programming a new SDN op-
timization either directly for a generic and low-level op-
timization solver such as CPLEX or using a heuristic al-
gorithm designed by hand, after which she must translate
the decision variables of the optimization to device con-
figurations.

Path abstraction: For SOL to be useful and robust, we
need a unifying abstraction that can capture the require-
ments of diverse classes of SDN network optimization
applications described in the previous section. SOL is
built using paths through a network as a core abstrac-
tion for expressing network optimization problems. This
is contrary to how many optimizations are formulated in
the literature — using a more standard edge-centric ap-
proach [1]. In our experience, however, an edge-centric
approach forces complexity when presented with addi-
tional requirements, especially ones that attempt to cap-
ture path properties [29, 19].

In contrast, path-based formulations capture these re-
quirements more naturally. For instance, much of the
complexity in modeling service chaining or network
function offloading applications from §2 is in captur-
ing the path properties that need to be satisfied. With a
path-based abstraction, we can simply define predicates
that specify valid paths — e.g., those that include certain
waypoints or that avoid a certain node (to anticipate that
node’s failure). In addition, we can model path-based
resource use with ease. For example, usage of TCAM

space in a switch corresponds to a traffic-carrying path
traversing that switch (and thus a rule to accommodate
that path). Without the path abstraction, modeling such
constraints is difficult (cf., [39]). Finally, expressing con-
straints on nodes and edges does not introduce increased
difficulty compared to edge-centric approach.

Scalability: In a pure flow-routing scenario, an edge-
based formulation admits simple algorithms that guaran-
tee polynomial-time execution. Path-based formulations,
on the other hand, are often dismissed because of their
inefficient appearance — after all, in the worst case, the
number of paths in the network is exponential in the net-
work size — or due to the complexity of algorithms to
solve path based formulations (column-generation, de-
compositions, etc. [1]). However, in many practical sce-
narios, the number of valid paths (as defined by the appli-
cation) is likely to be significantly smaller. Furthermore,
multipath routing can provide only so much network di-
versity before its value diminishes [30]. So, the set of
paths that need to be considered is not large.

SOL leverages an off-line path generation step to de-
termine valid paths (step 1 of Fig. 6). Since for most ap-
plications, the set of valid paths is fairly static and does
not need to be recomputed every time the optimization is
run, we expect this step is infrequent. Next, SOL selects
a subset of these paths (step 2) using a selection strategy
(see §5) and runs the optimization with only the selected
paths as input (step 3), to ensure that the optimization
completes quickly. We show in §8 that this strategy still
permits inclusion of sufficiently many paths for the opti-
mization to converge to a (near) optimal value. So, while
the efficiency of path-based optimization is a valid theo-
retical concern, in practice we show that there are practi-
cal heuristics to address this issue.

SOL
Path selection Optimization

Dataplane configuration

2

Rule generation

4

Rules for p1p1

Rules for p2p2

Offline path generation

1 3

Traffic vol on p1p1

Traffic vol on p2p2

Figure 6: SOL architecture, overview of the workflow

Generating device configurations: SOL translates the
decision variables from the SOL optimization to net-
work device configurations to implement appropriate
flow routing (step 4 of Fig. 6). The algorithm utilized
in SOL to perform this translation is based on that in pre-
vious work [47, 20]. However, because the optimization
is path-based, the algorithm is more straightforward and
requires fewer steps.
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nodes: Set of all nodes, part of the topology

links: Set of all links, part of the topology

classes: Set of all traffic classes

paths(c): Paths available for class c ∈ classes; output by
path-selection stage (§5)

Figure 7: Network data input

Var. Description

D
ec

is
io

n

xc,p Fraction of class-c flows allocated to path
p ∈ paths(c); non-integer

bp Is path p used; binary
bv Is node v used; binary
bl Is link l used; binary

capvarr
v Capacity allocated for resource r at node v;

non-integer

D
er

iv
ed

ac Fraction of c’s “demand” routed; non-integer
loadr

l Amount of resource r consumed by flows
routed over link l; non-integer

loadr
v Amount of resource r consumed by flows

routed via node v; non-integer

Figure 8: Variables internal to the optimization

4 SOL Detailed Design
In this section, we present the detailed design of SOL.
We focus on the high-level API that the SDN application
developer would use to express applications via SOL,
and the impact of these API calls on the SOL’s inter-
nal representation of the optimization problem. Note,
however, that the developer “thinks” in terms of the high-
level API rather than low-level details of dealing with the
solver-level variables, how paths are identified, etc.

A developer begins a new optimization in SOL by
instantiating an opt object via the getOptimization
function and then building the optimization using con-
straint templates, which we explain below.

4.1 Preliminaries

Data inputs: There are two basic data inputs that the
developer needs to provide to any network optimization.
First, the network topology is a required input, speci-
fied as a graph with nodes and links. It also contains
metadata of node/edge types or properties; e.g., nodes
can have designated functions like “switch” or “mid-
dlebox”. Second, SOL needs a specification of traffic
classes, where each class c has associated ingress and
egress nodes and some expected traffic volume. Each
class can (optionally) be associated with a specification
of the “processing” required for traffic in this class, e.g.,
service chaining. Finally, to each traffic class c is asso-
ciated a set paths(c) available to route flows in class
c; paths(c) is output by a path-selection preprocessing
step described in §5.

Internal variables: SOL internally defines a set of vari-
ables summarized in Fig. 8. We reiterate that the de-
veloper does not need to reason about these variables
and uses a high-level mental model as discussed earlier.
There are two main kinds of variables:
• Decision variables that identify key optimization con-

trol decisions. The most fundamental decision vari-
able is xc,p, which captures traffic routing decisions
and denotes the fraction of flow for a traffic class c
that path p ∈ paths(c) carries. This variable is cen-
tral to various types of resource management appli-
cations as we will see later. To capture topological
requirements (e.g., §2.3), we introduce three binary
decision variables bp, bv, and bl that denote whether
each path, node or link (respectively) is enabled (= 1)
or disabled (= 0). The variable capvarr

v is the SOL-
assigned allocation of resource-r to node v.

• Derived variables are functions defined over the
above decision variables that serve as convenient
“shorthands”. ac denotes the total fraction of flow for
class c that is carried by all paths. The load variables
loadr

v and loadr
l model the consumption of resource r

on node v and link l, respectively.
There are low-level API calls 1 that return the names of
these internal variables, which can be used to access each
one’s value in a public map of names to values, if needed.

4.2 Routing requirements
Routing constraints control the allocation of flow in the
network. addAllocateFlowConstraint creates the
necessary structure for routing the traffic through a set of
paths for each traffic class. Some network applications
try to satisfy as much of their flow demands as possible
(e.g., max-flow) while others (e.g., TE) want to “satu-
rate” demands. For example, a developer of a TE ap-
plication (§2.1) would like to route all traffic though the
network, and thus she would add the following high-level
routing constraint templates to her empty opt object:
opt.addAllocateFlowConstraint()
opt.addRouteAllConstraint()

In contrast, a simple max-flow would only need
addAllocateFlowConstraint since there is no re-
quirement on saturating demands in that case.

The addEnforceSinglePath(C) constraint forces
a single flow-carrying path per class c ∈ C, preventing
flow-splitting and multipath routing.
Internals: addAllocateFlowConstraint ensures
that the total traffic flow across all chosen paths for the
class c matches the variable ac.

∀c ∈ classes : ∑
p∈paths(c)

xc,p = ac

1We also expose low-level APIs (see Appendix A) for advanced
users.
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Group Function Description

Routing
(C ⊆ classes)

addAllocateFlowConstraint Allocate flow in the network
addRouteAllConstraint Route all traffic demands
addEnforceSinglePath (C) For each c ∈C, at most one p ∈ paths(c) is

enabled.

Capacities

addLinkCapacityConstraint (r, lnCap,
linkCapFn)

If l is in lnCap, then limit utilization of link
resource r on link l to lnCap[l].

addNodeCapacityConstraint (r, ndCap,
nodeCapFn)

If v is in ndCap, then limit utilization of node
resource r on node v to ndCap[v].

addNodeCapacityPerPathConstraint (r,
ndCap, nodeCapFn)

If v is in ndCap, then limit utilization of node
resource r on node v by enabled paths to ndCap[v].

addCapacityBudgetConstraint (r, N, totCap) Limit total type-r resources allocated to nodes in
N ⊆ nodes to totCap. Used when SOL is
allocating capacities.

Topology
control
(C ⊆ classes)

addRequireAllNodesConstraint (C) For each c ∈C and each p ∈ paths(c), p can be
enabled iff all nodes on p are enabled.

addRequireSomeNodesConstraint (C) For each c ∈C and each p ∈ paths(c), p can be
enabled iff some node on p is enabled.

addRequireAllEdgesConstraint (C) For each c ∈C and each p ∈ paths(c), p can be
enabled iff all links on p are enabled.

addPathDisableConstraint (C) For each c ∈C and each p ∈ paths(c), p can carry
traffic only if it is enabled.

addBudgetConstraint (nodeBudgetFn, k) Total cost of enabled nodes, as computed using
nodeBudgetFn, is at most k.

Objective setPredefinedObjective (name) Set one of the predefined functions as the objective
(see Fig. 11).

Figure 9: Selected constraint template functions for building optimizations; see Fig. 10 for linkCapFn,
nodeCapFn, and nodeBudgetFn

Similarly, addRouteAllConstraint implies:

∀c ∈ classes : ac = 1

Due to space limitations, we do not provide the formal
basis for addEnforceSinglePath.

4.3 Resource capacity constraints
As we saw in §2, SDN optimizations have to deal with
a variety of capacity constraints for network resources
such as link bandwidth, switch rules, and middlebox
CPU and memory. SOL allows users to write custom
resource management logic by specifying several “cost”
functions, depicted in Fig. 10. These functions prescribe
how to compute the cost of routing traffic through a link,
a node, or a given path. SOL provides default implemen-
tations of these for common tasks, but allows the user to
specify their own logic, as well, as we will show later
(§6).

These cost functions can then be passed into constraint
templates. For example, to add a constraint that lim-
its link usage, the user can invoke the template function
addLinkCapacityConstraint with a resource that
we are constraining (e.g., ‘bandwidth’), a map of links to
their capacities,2 and optionally, a custom linkCapFn to

2When capacities should be allocated by the optimization itself, a

compute the cost of traffic on a link.

opt.addLinkCapacityConstraint (’bandwidth’,
{(1,2): 10**7, (2,3): 10**7},
defaultLinkFunction)

This indicates that bandwidth should not exceed 10 Mbps
for links 1-2 and 2-3. Note that the default function is
purely for illustration; the developer can write her own
linkCapFn (recall Fig. 10).
addNodeCapacityPerPathConstraint generates

constraints on the nodes that do not depend on the traffic,
but rather on the routing path. That is, the cost of rout-
ing at a node does not depend on the volume or type of
traffic being routed; it depends on the path and its prop-
erties. The best example of such usage is accounting for
the limited rule space on a network switch (e.g., §2.2).
If a path is “active”, the rule must be installed on each
switch to support the path.

Internals: addLinkCapacityConstraint and
addNodeCapacityConstraint rely on linkCapFn
and nodeCapFn, respectively, to compute the cost of us-
ing a particular resource at a link or node if all of the
class-c traffic was routed to it. Internally, the load is
multiplied by the xc,p variable to capture the load accu-

capacity of TBA (meaning To Be Allocated) can be specified, instead.
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linkCapFn(l,c, p,r): Amount of resource type r consumed if all
class-c traffic is allocated to path p � l for link l

nodeCapFn(v,c, p,r): Amount of resource r consumed if all class-c
traffic is allocated to path p � v for node v

nodeBudgetFn(v): Cost of using node v; required with
addBudgetConstraint

routingCostFn(p): Cost of routing along path p; required with
minRoutingCost

predicate(p): Determine whether any given path is valid by
returning True or False

Figure 10: Customizable functions

rately, then the load is capped by a user-provided lnCap
(ndCap), which is a mapping of links (nodes) to capaci-
ties for a given resource r. (Similar node capacity equa-
tions not shown for brevity.)

∀l in lnCap :

loadr
l = ∑

c
∑

p∈paths(c):l∈p
xc,p ×linkCapFn(l,c, p,r)

loadr
l ≤ lnCap[l]

The addNodeCapacityPerPathConstraint func-
tions a bit differently, as it depends on enabled paths:

∀v in ndCap :

loadr
v = ∑

c
∑

p∈paths(c):v∈p
bp ×nodeCapFn(v,c, p,r)

loadr
v ≤ capvarr

v

if ndCap[v] �= TBA then capvarr
v = ndCap[v]

4.4 Node/link activation constraints
Next set of constraints, when used, allow develop-
ers to logically model the act of enabling or dis-
abling nodes, links, and paths; e.g., for managing en-
ergy or other costs (e.g., §2.3). We identify two
possible modes of interactions between these topology
modifiers, and the optimization developer can choose
the one that is most suitable for their context. 1)
addRequireAllNodesConstraint captures the prop-
erty that disabling a node disables all paths that traverse
it; and 2) addRequireSomeNodesConstraint cap-
tures the property that enabling a node permits any path
traversing it to be enabled, as well. The latter version
is suitable when, e.g., a node can still route traffic even
if its other (middlebox) functionality is disabled, and so
a path containing that node is potentially useful as pro-
viding middlebox functions if at least one of its nodes
is enabled. There are analogous constraint templates for
links, but we omit them here for brevity. A third con-
straint template, addPathDisableConstraint, re-
stricts a path to carry traffic only if it is enabled.

For example, a developer trying to implement
the application from §2.3 can model the re-
quirements for shutting off datacenter nodes by
adding the addRequireAllNodesConstraint and
addPathDisableConstraint templates:

opt.addRequireAllNodesConstraint (trafficClasses)
opt.addPathDisableConstraint (trafficClasses)

Other efficiency considerations may enforce a budget
on the number of enabled nodes, to model constraints on
total power consumption of switches/middleboxes, cost
and budget of installing/upgrading particular switches,
etc. These are captured via the addBudgetConstraint
template function.
Internals: Internally, these topology modification tem-
plates are achieved using the binary variables we intro-
duced earlier. Specifically, the above requirements can
be formalized as follows:

∀p ∈ paths(c) :
addRequireAllNodesConstraint ∀v ∈ p : bp ≤ bv
addRequireSomeNodesConstraint bp ≤ ∑v∈p bv
addPathDisableConstraint xc,p ≤ bp

Naturally, similar constraints are constructed for links.
Note that addPathDisableConstraint is crucial
to the correctness of the optimization in that it en-
forces that no traffic traverses a disabled path. For
brevity, we do not provide the formal equations for
addBudgetConstraint.

4.5 Specifying network objectives
The goal of SDN applications is eventually to optimize
some network-wide objective, e.g., maximizing the net-
work throughput, balancing load, or minimizing total
traffic footprint. Fig. 11 lists the most common objective
functions, drawing on the applications considered in §2.
For instance, the developer of a TE application may want
to implement the objective of minimizing the maximum
link load and thus add the following code snippet:

opt.setPredefinedObjective (minMaxLinkLoad,
’bandwidth’)

Other optimizations (e.g., §2.4) may need to minimize
the total routing cost and include a minRoutingCost
objective. This objective is parameterized with
routingCostFn(p); i.e., developers can plugin their
own cost metrics such as number of hops or link weights.
As shown, we also provide a range of natural load-
balancing templates. SOL also exposes a low-level API
for specifying other complex objective functions, which
we describe in Appendix A.

5 Path generation and selection
Given these constraint templates, the remaining ques-
tion is how we populate the path set paths(c) for each
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maxAllFlow maximize ∑
c∈classes

ac

minMaxNodeLoad (r) minimize max
v∈nodes

loadr
v

minMaxLinkLoad (r) minimize max
l∈links

loadr
l

minRoutingCost ∑
c,p

routingCostFn(p)× xc,p

Figure 11: Common objective functions

traffic class c to meet two requirements. First, each
p ∈ paths(c) should satisfy the desired policy specifi-
cation for the class c. Second, paths(c) should contain
paths for each class c that make the formulation tractable
and yet yield near-optimal results. We describe how we
address each concern next.

Generation: First, to populate the paths, SOL does an
offline enumeration of all simple (i.e., no loops) paths
per class.3 Given this set, we filter out the paths that do
not satisfy the user-defined predicate predicate, i.e.,
where predicate(p) =True only if p is a valid path.
(We can generalize this to allow different predicates per
class; not shown for brevity.)

In practice, we implement the predicate as a flexible
Python callable function rather than constrain ourselves
to specific notions of path validity (e.g., regular expres-
sions as in prior work [45]). Using this predicate gives
the user flexibility to capture a range of possible require-
ments. Examples include waypoint enforcement (forcing
traffic through a series of middleboxes in order); enforc-
ing redundant processing (e.g., through multiple IDS, in
case one fails open); and limiting network latency by
mandating shorter paths.

Selection: Using all valid paths per class may be in-
efficient since the number of paths grows exponentially
with the size of the network, meaning that the LP/ILP
that SOL generates will quickly become too large to
solve in reasonable time. SOL thus provides path selec-
tion algorithms that choose a subset of valid paths (num-
ber of paths denoted as selectNumber) that are still
likely to yield near-optimal results in practice. Specifi-
cally, two natural methods work well across the spectrum
of applications we have considered: (1) shortest paths
for latency-sensitive applications (selectStrategy =
shortest) or (2) random paths for applications involv-
ing load balancing (selectStrategy = random). SOL
is flexible to incorporate other selection strategies, e.g.,
picking paths with minimal node overlap for fault toler-
ance. We find random works well for many applications
that require load balancing. We conjecture this is be-
cause choosing random paths on sufficiently rich topolo-
gies yields a high degree of edge-disjointedness among
the chosen paths, yielding sufficient degrees of freedom

3This is to simplify the forwarding rules without resorting to tun-
neling or packet tagging [39].

1 SIMPLE_predicate = functools.partial(waypointMboxPredicate
, order=(’fw’,’ids’))

2 def SIMPLE_NodeCapFunc(node,tc,path,resource,nodeCaps):
3 if resource==’cpu’ and node in nodeCaps[’cpu’]:
4 return tc.volFlows*tc.cpuCost/nodeCaps[resource][node]

5 capFunc = functools.partial(SIMPLE_NodeCapFunc, nodeCaps=
nodeCaps)

7 def SIMPLE_TCAMFunc(node, tc, path, resource):
8 return 1
9 # Path generation, typically run once in a precomputation

phase
10 opt = getOptimization()
11 pptc = generatePathsPerTrafficClass(topo, trafficClasses,

SIMPLE_predicate, 10, 1000,
functools.partial(useMboxModifier, chainLength=2))

12 # Allocate traffic to paths
13 pptc = chooserand(pptc, 5)
14 opt.addDecisionVariables(pptc)
15 opt.addBinaryVariables(pptc, topo, [’path’,’node’])
16 opt.addAllocateFlowConstraint(pptc)
17 opt.addRouteAllConstraint(pptc)
18 opt.addLinkCapacityConstraint(pptc, ’bandwidth’, linkCaps,

defaultLinkFuncNoNormalize)
19 opt.addNodeCapacityConstraint(pptc, ’cpu’,

{node: 1 for node in topo.nodes() if ’fw’ or
’ids’ in topo.getServiceTypes(node)}, capFunc)

20 opt.addNodeCapacityPerPathConstraint(pptc, ’tcam’,
nodeCaps[’tcam’], SIMPLE_TCAMFunc)

21 opt.setPredefinedObjective(’minmaxnodeload’,’cpu’)
22 opt.solve()
23 obj = opt.getSolvedObjective()
24 pathFractions = opt.getPathFractions(pptc)
25 c = controller()
26 c.pushRoutes(c.getRoutes(pathFractions))

Figure 12: Code to express SIMPLE [39] in SOL

for balancing loads.

Developer API: The developer can specify the path
predicate and selection strategy, but she does not need
to be involved in the low-level details of generation and
selection. SOL also provides APIs for developers to add
their own logic for generation and selection; we do not
discuss these due to space limitations.

6 Examples
Next, we show end-to-end examples to highlight the
ease of using the SOL APIs to write existing and novel
SDN network optimizations. These examples are ac-
tual Python code that can be run, not just pseudocode.
By comparison, the code is significantly higher-level and
more readable than the equivalent CPLEX code would be,
as it does not need to deal with large numbers of under-
lying variables and constraints.

Service chaining (§2.2): As a concrete instance of the
service chaining example, we consider SIMPLE [39].
SIMPLE involves the following requirements: route all
traffic through the network, enforce the service chain
(e.g., “firewall followed by IDS”) policy for all traf-
fic, load balance across middleboxes, and do so while
respecting CPU, TCAM, and bandwidth requirements.
Fig. 12 shows how the SIMPLE optimization can be writ-
ten in ≈ 25 lines of code. This listing assumes that topol-
ogy and traffic classes have been set up, in the topo and
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trafficClasses objects, respectively.
The first part of the figure shows function definitions

and the path generation step, which would typically be
performed once as a precomputation step. We start
by defining a path predicate (line 1) for basic enforce-
ment through middleboxes by using the SOL-provided
function with the middlebox order. The next few lines
(lines 2–4) show a custom node capacity function to nor-
malize the CPU load between 0 and 1. This computes
the processing cost per traffic class (number of flows
times CPU cost) normalized by the current node’s capac-
ity. Similarly, the TCAM capacity function captures that
each path consumes a single rule per switch (line 7). The
user gets the optimization object (line 10), and generates
the paths (line 11), obtaining the “paths per traffic class”
(pptc) object. The path generation algorithm is parame-
terized with the custom SIMPLE_predicate, a limit on
path length of 10 nodes, and a limit on the number of
paths per class of 1000. It is also instructed to evaluate
every possible use of two middleboxes on a routing path
for inclusion as a distinct path in the output.

The remaining lines show what would be executed
whenever a new allocation of traffic to paths is desired.
Line 13 selects 5 random paths per traffic class; lines 14–
20 add the routing and capacity constraints. We use the
default link capacity function for bandwidth constraints,
and our own functions for CPU and TCAM capacity. Be-
cause the CPU capacity function normalizes the load, the
capacity of each node is now 1 (line 19). The program
selects a predefined objective to minimize the CPU load
(line 21) and calls the solver (line 22). Finally, the pro-
gram gets the results and interacts with the SDN con-
troller to automatically install the rules (line 26).

ElasticTree [19]: Due to space limitations we only
show the most important differences between Elastic-
Tree and SIMPLE. There is no requirement on paths,
and so nullPredicate is used for path generation.
We use link binary variables (see line 1 below) and the
node/link activation constraints (lines 2–4). Finally, we
use the low-level API (see App. A) to define power con-
sumption for switches and links (lines 5, 6, wherein
“opt.bn(node)” and “opt.be(u,v)” retrieve the names
of variables bnode and b(u,v) from Fig. 8, respectively) and
use these variables to define a custom objective function
(line 7).

1 opt.addBinaryVariables(pptc,topo,[’path’,’node’,’edge’])
2 opt.addRequireAllNodesConstraint(pptc)
3 opt.addRequireAllEdgesConstraint(pptc)
4 opt.addPathDisableConstraint(pptc)
5 opt.defineVar(’SwitchPower’, {opt.bn(node):switchPower[

node] for node in topo.nodes()})
6 opt.defineVar(’LinkPower’, {opt.be(u, v): linkPower[(u, v

)] for u, v in topo.links()})
7 opt.setObjectiveCoeff({’SwitchPower’: .75, ’LinkPower’:

.25}, ’min’)

We refer the reader to Appendix B for other examples
that include new and more complex applications.

7 Implementation

Developer interface: We currently provide a Python
API for SDN optimization that is an extended version of
the interface described in §4.

Invoking solvers: We use CPLEX (via its existing
Python API) as our underlying solver. This choice
largely reflects our familiarity with the tool, and we could
substitute CPLEX with other solvers like Gurobi. SOL
offers APIs to exploit solver capabilities to use a previ-
ously computed solution and incrementally find a new
solution. This approach is typically faster than starting
from scratch and so is useful for faster reconfigurations.
SOL also allows hard-limiting of the optimization run-
time, albeit affecting the optimality of the solution.

Path generation: Path generation is an inherently par-
allelizable process; we simply launch separate Python
processes for different traffic classes. We currently
support two path selection algorithms: random and
shortest. It is easy to add more algorithms as new
applications emerge.

Rule generation and control interface: We implement
applications for ONOS [5] and use custom REST API to
allow remote batch installation of the relevant rules. We
generate the rules based on the optimization output, us-
ing network prefix splitting to implement the fractional
responsibilities represented by the xc,p variables. This
step is similar to prior work that map fractional process-
ing and forwarding responsibilities onto network flows
(e.g., [47, 20]), and so we do not repeat it here. With
ONOS, we leverage path intents [5]: while not required, it
facilitates easier integration.

Minimizing reconfiguration changes: Networks are in
flux during reconfigurations with potential performance
or consistency implications, and thus it is desirable to
minimize unnecessary configuration changes. SOL sup-
ports constraints that bound (or minimize) the logical dis-
tance between a previous solution and the new solution
to help minimize the number of flows that have to be
assigned a new route. In this way, SOL supports path
selection that gives priority to previously selected paths.

8 Evaluation
In this section we show that SOL
• performs well with the ONOS controller;
• computes optimal solutions for published applications

order(s) of magnitude faster than their original opti-
mizations; allows to minimize traffic churn

• is either faster or has richer functionality than state-
of-the-art related work;
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(a) Time for SOL to configure
the network using the ONOS
controller for a traffic engi-
neering application.

(b) Route generation & in-
stallation time of SOL traffic
engineering app vs. ONOS all-
pair shortest paths

Figure 13: Deployment benchmarks using the ONOS
controller

• significantly reduces development effort in compari-
son to manually coding optimization applications; and

• scales well, because it computes near-optimal solu-
tions using few paths per traffic class.

Setup: We evaluate the effect of using SOL to imple-
ment three existing SDN applications: ElasticTree [19],
SIMPLE [39], and Panopticon [29]. For each applica-
tion, we implemented the original formulation presented
in prior work or obtained the original source code. We
refer to these as “original” formulations (and solutions).
We chose topologies of various sizes from the Topolo-
gyZoo dataset [28]; when indicating a topology, we gen-
erally include the number of nodes in the topology in
parentheses, e.g., “Abilene (11)” for the 11-node Abilene
topology. For ElasticTree, we also constructed FatTree
topologies of various sizes [2]. We synthetically gen-
erated traffic matrices using a uniform traffic matrix for
the FatTree networks and a gravity-based model [43] for
the TopologyZoo topologies. We used randomly sam-
pled values from a log-normal distribution as “popula-
tions” for the gravity model. Unless otherwise spec-
ified, we used 5 paths per traffic class when running
SOL. All times below refer to computation on comput-
ers with 2.4GHz cores and 128GB of RAM. For deploy-
ment benchmarks, we used the default Mininet [31] vir-
tual machine to emulate topologies.

8.1 Deployment benchmarks
We setup a variety of emulated networks using Mininet
and ONOS. We measured time for SOL to run the op-
timization for a traffic engineering goal and compute
and install network routes. Fig. 13a shows the times
to perform each step. SOL exhibits low optimization
and route generation times, making route installation the
most time-consuming part of the configuration process.
This bottleneck is caused by the number of rules that
must be installed and by the controller platform. Fig. 13b
shows the time to generate and install routes for a traf-
fic engineering application using SOL, in contrast to in-
stalling shortest path routes using methods available in
ONOS. The difference is insignificant, and exists due to

Figure 14: Optimization runtime of SOL and original
formulations; gray regions show where original formu-
lation could not be solved within 30 mins
the additional optimization time and because of the mul-
tiple paths per source-destination pair in the SOL case.

8.2 Optimality and scalability

Comparing to optimal: Next, we examine how well
SOL’s results match original solutions, which are opti-
mal (by definition). In all cases except ElasticTree, SOL
finds the optimal solution. Due to complexity of Elastic-
Tree’s optimization, SOL suffers a 10% optimality gap:
the relative error in the objective value computed by SOL
(i.e., relative to the true optimal objective value).

SOL solution times are at least one order of magnitude
faster than solving the original formulations, and are of-
ten two or even three orders of magnitude faster. Fig. 14
shows run times to find original solutions. The runtime
was capped at 30 min (1800 s), after which the execu-
tion was aborted. Several original formulations did not
complete in that time, such as SIMPLE for topologies
Bellcanada and larger, and Panopticon for Ion and larger.
The topologies for which original solutions could not be
found are indicated in the gray regions in Fig. 14.

Comparing to specialized heuristics: We found that
SOL performs fairly well even compared to specialized
heuristics. Specifically, we compared the performance of
SOL to the custom heuristic for SIMPLE, obtained from
its authors. The runtime of SOL is comparable to that
of the SIMPLE heuristic algorithm, with a performance
gap of at most 3 seconds on the largest topologies we
considered (up 58 nodes, namely the “Dfn” topology).
We believe the benefit of not having to design custom
heuristics outweighs this performance gap.

Responding to traffic changes: We explore the ben-
efits of the reconfiguration minimization capabilities of
SOL, for simplicity dubbed “mindiff.” We first computed
an optimal solution for a traffic engineering application;
then, a random permutation of the traffic matrix triggered
the re-computation with mindiff enabled. When com-
puting the new solution, we assigned 4× greater priority
to the TE objective than the mindiff objective. Fig. 15a
shows that with mindiff enabled, up to an additional 35%
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(a) Fraction of traffic reas-
signed to different paths with
and without “mindiff”

(b) Optimality gap when us-
ing “mindiff”

Figure 15: Traffic shift and optimality gap when using
reconfiguration minimization capabilities of SOL

(a) Optimization runtimes of
SOL and Merlin; gray re-
gion indicates where Merlin
did not complete in 30 mins

(b) Optimization runtimes of
SOL and DEFO, for a traffic
engineering application

Figure 16: Runtime of SOL vs. state-of-the-art opti-
mization frameworks

of total traffic stays on its original paths across reconfigu-
rations, versus being reassigned to new paths by the opti-
mal solution. Naturally, SOL sacrifices some optimality
in the original TE objective (shown in Fig. 15b).

8.3 Comparison to Merlin and DEFO
Merlin [45] tackles problems of network resource man-
agement similar to SOL. While the goals and formula-
tions of Merlin and SOL are quite different, we use this
comparison to highlight the generality of SOL and the
power of its path abstraction. Specifically, Merlin uses
a more heavyweight optimization that is always an ILP
and operates on a graph that is substantially larger than
the physical network. We implemented the example ap-
plication taken from the Merlin paper using both SOL
and Merlin. Fig. 16a shows that SOL outperforms Mer-
lin by two or more orders of magnitude.

DEFO [18] is an optimization framework that aims to
simplify traffic engineering [18]. We obtained the DEFO
authors’ implementation and compared the optimization
times of DEFO and SOL on a simple traffic engineering
application. DEFO and SOL exhibit comparable run-
times (see Fig. 16b). However, DEFO lacks the ability
to express more complex applications and objectives and
to filter paths by arbitrary predicates.

8.4 Developer benefits
SOL is a much simpler framework for encoding SDN op-
timization tasks, versus developing custom solutions by
hand. In an effort to demonstrate this simplicity some-
what quantitatively, Table 1 shows the number of lines
of code (LOC) in our SOL implementations of various
applications (“SOL lines of code”), and the ratio of the
LOC of the original formulations to the LOC for our

SOL implementations (“Estimated improvement”). We
acknowledge that lines-of-code comparisons are inexact,
but we do not know of other ways of comparing “devel-
opment effort” without conducting user studies.

Name SOL lines
of code

Estimated
improvement

ElasticTree 16 21.8×
Panopticon 13 25.7×
SIMPLE 21 18.6×

Table 1: Development effort benefits provided by SOL

We believe that the improvements in Table 1 are con-
servative. First, producing original formulations is a
much more complex and delicate process than writing
SOL code. We primarily attribute this difference to need-
ing to account for CPLEX (or other solvers, e.g., [17, 33])
particulars at all; with SOL, these particulars are com-
pletely hidden from the developer. Second, SOL trans-
lates its optimization results to device configurations,
whereas this functionality is not even included in our
scripts for producing original formulations. Producing
device configurations from original solutions would re-
quire designing an extra algorithm to map the variables
in each formulation to relevant device configurations.

8.5 Sensitivity
SOL solutions require the specification of both the num-
ber (selectNumber) and type (shortest or random)
of paths to select per traffic class. In this section, we
quantify how sensitive SOL is to these parameters.

Number of Paths: Fig. 17 shows the SOL’s runtime and
optimality gap as a function of the number of paths per
class for two applications: SIMPLE and Panopticon. Un-
surprisingly, with a larger number of paths, SOL’s run-
time increases. However, this is not a significant concern,
since we find optimal solutions at selectNumber as low
as 5. These numbers are representative of all applications
and topologies we have considered.

Figure 17: Runtime and optimality gap as function of
paths; optimality is achieved in most cases with as few
as 5 paths per class

Path selection strategy: We evaluated different selec-
tion strategies across topologies and applications (omit-
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ted for brevity). Our results were consistent with our ex-
periences more generally that most problems lend them-
selves to a fairly obvious path selection strategy: those
with need for load balancing are likely to benefit from
random and those that are latency-sensitive benefit from
shortest. If in doubt, however, both strategies can be
attempted.
Path selection and generation costs: Since path se-
lection is part of the optimization cycle, we ensure that
path selection times are small, ranging from 0.1 to 3 sec-
onds across topologies. Path selection is preceded by a
path generation phase that enumerates the simple paths
per class. Path generation is moderately costly for large
topologies, e.g., taking <300 s for the largest presented
topology, when parallelized to 60 threads. However, we
emphasize that path generation can be relegated to an of-
fline precomputation phase that is only performed once.

9 Discussion
Expressiveness of SOL: We make no claim that SOL
is a panacea, capable of expressing any optimization,
nor do we have a formal way to decide if a problem
fits the SOL paradigm. We can provide guidelines as to
which problems are well-suited (or not) for SOL. Opti-
mizations with complex path predicates benefit greatly
from SOL, as path generation and validation is per-
formed offline, not during optimization. So do prob-
lems with resource constraints dependent on paths (e.g.,
SIMPLE with its TCAM constraints). Problems with no
path predicates and very large interconnected topologies
(i.e., large datacenter networks) are less likely to benefit
from SOL. However, we plan to explore alternative ap-
proaches (e.g., hierarchical optimization) approaches to
provide benefits in that space as well.
Analytical guarantees: While our empirical results
suggest that random or shortest paths yield near-
optimal solutions with a small selectNumber, they also
raise interesting theoretical questions: can we prove that
these selection strategies permit near-optimal solutions
for specific classes of problems?
Very large/dynamic networks: For very large networks
(>100 nodes) SOL might not perform as well as heuris-
tic solutions, especially for applications that require an
ILP, since the number of paths grows very large. In such
cases, we can utilize general approximation heuristics,
such as randomized rounding, to maintain its ability to
react to network changes quickly.
Composition: Having a unified optimization layer atop
SDN controllers exposes opportunities to compose appli-
cations. We plan to explore these in future work.
10 Related Work
We already discussed the optimization applications that
motivated SOL. Here we focus on other related work.

Higher-layer abstractions for SDN: This work in-
cludes new programming languages (e.g., [41, 12]), test-
ing and verification tools (e.g, [27]), semantics for net-
work updates (e.g., [42]), compilers for rule generation
(e.g., [26]), abstractions for handling control conflicts
(e.g., [4]), and APIs for users to express requirements
(e.g., [10]). These works do not address the optimization
component, which is the focus of SOL.

Languages for optimization: There are several mod-
eling frameworks such as AMPL [13], Mosek [33],
PyOpt [37], and PuLP [32] for expressing optimization
tasks. However, these do not specifically simplify net-
work optimization. SOL is a domain-specific library that
operates at a higher level of semantics than these “wrap-
pers”. SOL offers a path-based abstraction for writing
network optimizations, exploits this structure to solve
these optimizations quickly, and generates network de-
vice configurations that implement its solutions.

Network resource management: Merlin is a language
for network resource management [45]. In terms of the
applications that it can support, Merlin is restricted to
using path predicates expressed as regular expressions.
Our experiments suggest that SOL is three orders of
magnitude faster than Merlin using the same underly-
ing solvers. That said, Merlin’s “language-based” ap-
proach provides other capabilities (e.g., verified delega-
tion) that SOL does not (try to) offer. DEFO is another
optimization framework that focuses on traffic engineer-
ing and service chaining applications [18]. Their goal is
not to develop a general framework, but rather to support
easy management of carrier-grade networks, which they
accomplish using a two-layer architecture and support
for networks that are not OpenFlow-enabled via segment
routing. Other works focus on traffic-steering optimiza-
tion (e.g., [39, 7]). SOL offers a unifying abstraction that
covers many network management applications.

11 Conclusion
While network optimization is central to many SDN
applications, few efforts attempt to make it accessible.
Our vision is a general, efficient framework for express-
ing and solving network optimizations. Our framework,
SOL, achieves both generality and efficiency via a path-
centric abstraction. We showed that SOL can concisely
express applications with diverse goals (traffic engineer-
ing, offloading, topology modification, service chain-
ing, etc.) and yields optimal or near-optimal solutions
with often better performance than custom formulations.
Thus, SOL can lower the barrier to entry for novel SDN
network optimization applications.
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A Advanced users and low-level interface
While the SOL API described in §4 is general and ex-
pressive enough to capture the diverse requirements of
the broad spectrum of applications, we also expose a
low-level API that gives more control to the user by giv-
ing access to the SOL internal variables. Advanced users
can use this API for further customization.

For instance, API calls enable the names of the in-
ternal variables in Fig. 8 to be retrieved and their val-
ues determined. Similarly, using the defineVar (name,
coeffs, lb, ub) function, the user can create a new vari-
able with name name, specify numeric lower and upper
bounds (lb and ub), and equate it to a linear combina-
tion of any other existing variables as specified by coeffs,
a map from variable names to numeric coefficients. This
is a useful primitive when specifying complex objectives.
SOL also allows setting a custom objective function that
is a linear combination of any existing variables, allow-
ing for multi-objective optimization. This is done using
the setObjective (coeffs, dir) function call, which ac-
cepts a mapping coeffs of variable names to their coeffi-
cients. The binary input dir indicates whether the objec-
tive should be minimized or maximized.

B Additional applications

New elastic scaling capabilities: Here, we show SOL
can be used for novel SDN applications. Specifically,
we consider an elastic NFV setting [14] that places mid-
dleboxes in the network and allocates capacities in re-
sponse to observed demand. There could be additional
constraints, such as the total number of such VM loca-
tions. As a simple objective, we consider an upper bound
on the number of nodes used while still load balancing
across virtual middlebox instances. We can easily add
other objectives such as minimizing number of VMs. For
brevity we highlight only the key parts of building such
a novel application.

1 predicate = hasMboxPredicate
2 opt.addBinaryVariables(pptc, topo, [’path’, ’node’])
3 opt.addNodeCapacityConstraint(pptc, ’cpu’, {node: ’TBA’

for node in topo.nodes()}, lambda node, tc, path,
resource: tc.volFlows * tc.cpuCost)

4 opt.addRequireSomeNodesConstraint(pptc)
5 opt.addPathDisableConstraint(pptc)
6 opt.addBudgetConstraint(topo, lambda node: 1, topo.

getNumNodes()/2)
7 opt.setPredefinedObjective(’minmaxnodeload’, resource=’

cpu’)

First, we define a valid path to be one that goes though
a middlebox; SOL provides a predicate for that (line 1).
The main difference here is the definition of capacities
with the TBA value on line 3; this indicates that our
optimization must allocate the capacities to the nodes.
(SOL ensures that disabled nodes have 0 capacity al-
located.) Thus we require at least one enabled node
per path (lines 4, 5), limit the number of enabled nodes

1 def _MaxMinFairness_MCF(topology, pptc, unstaturated,
saturated, allocation, linkCaps):

2 opt = getOptimization()
3 opt.addDecisionVariables(pptc)
4 # setup flow constraints
5 opt.addAllocateFlowConstraint({tc: pptc[tc] for tc in

unstaturated})
6 for i in saturated:
7 opt.addAllocateFlowConstraint({tc: pptc[tc] for

tc in pptc[i]}, allocation[i])
8 # setup link capacities:
9 def linkcapfunc(link, tc, path, resource):

10 return tc.volBytes
11 opt.addLinkCapacityConstraint(pptc, ’bandwidth’,

linkCaps, linkcapfunc)
12 opt.setPredefinedObjective("maxallflow")
13 opt.solve()
14 return opt

16 def iterateMaxMinFairness(topology, pptc, linkCaps):
17 # Setup saturated and unsaturated commodities
18 saturated = defaultdict(lambda: [])
19 unsaturated = set(pptc.keys())
20 paths = defaultdict(lambda: [])

22 t = [] # allocation values per each iteration
23 i = 0 # iteration index
24 while unsaturated:
25 # Run slightly modified multi-commodity flow
26 opt = _MaxMinFairness_MCF(topology, pptc,

unsaturated, saturated, t, linkCaps)
27 if not opt.isSolved():
28 raise FormulationException(’No solution’)
29 alloc = opt.getSolvedObjective()
30 t.append(alloc)
31 # Check if commodity is saturated, if so move it

to saturated list
32 for tc in list(unsaturated):
33 # NOTE: this is an inefficient non-blocking

test, based on dual variables
34 # More efficient methods are available
35 dual = opt.getDualValue(opt.al(tc))
36 if dual > 0:
37 unsaturated.remove(tc)
38 saturated[i].append(tc)
39 paths[tc] = opt.getPathFractions()[tc]
40 i += 1
41 return paths

Figure 18: Python code for Max-min fairness opti-
mization
(line 6), and set the objective (line 7).
Complex multi-part optimizations: We also show how
one can model more complex optimizations, using SOL
as a primitive to express certain blocks of the optimiza-
tion. Fig. 18 provides code for solving a max-min fair-
ness problem. It relies on expressing intermediate multi-
commodity flow problems using SOL (see function
_MaxMinFairness_MCF) and writing a small iterative
algorithm (see function iterateMaxMinFairness) for
arriving at the optimal solution. We model our code af-
ter the algorithm suggested by Pióro et al. [38], however
there are more recent and efficient proposals that can also
be expressed in SOL (e.g., [3, 9]).
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