
This paper is included in the Proceedings of the
12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’15).
May 4–6, 2015 • Oakland, CA, USA

ISBN 978-1-931971-218

Open Access to the Proceedings of the
12th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’15)

is sponsored by USENIX

Explicit Path Control in Commodity Data Centers:
Design and Applications

Shuihai Hu and Kai Chen, The Hong Kong University of Science and Technology;
Haitao Wu, Microsoft; Wei Bai, The Hong Kong University of Science and Technology;

Chang Lan, University of California, Berkeley; Hao Wang, The Hong Kong University of
Science and Technology; Hongze Zhao, Duke University; Chuanxiong Guo, Microsoft

https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/hu

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 15

Explicit Path Control in Commodity Data Centers:
Design and Applications

Shuihai Hu1 Kai Chen1 Haitao Wu2 Wei Bai1 Chang Lan3

Hao Wang1 Hongze Zhao4 Chuanxiong Guo2

1SING Group @ Hong Kong University of Science and Technology
2Microsoft, 3UC Berkeley, 4Duke University

Abstract
Many data center network (DCN) applications require
explicit routing path control over the underlying topolo-
gies. This paper introduces XPath, a simple, practical
and readily-deployable way to implement explicit path
control, using existing commodity switches. At its core,
XPath explicitly identifies an end-to-end path with a path
ID and leverages a two-step compression algorithm to
pre-install all the desired paths into IP TCAM tables of
commodity switches. Our evaluation and implementa-
tion show that XPath scales to large DCNs and is readily-
deployable. Furthermore, on our testbed, we integrate
XPath into four applications to showcase its utility.

1 Introduction

Driven by modern Internet applications and cloud com-
puting, data centers are being built around the world. To
obtain high bandwidth and achieve fault tolerance, data
center networks (DCNs) are often designed with multi-
ple paths between any two nodes [3, 4, 13, 17, 18, 31].
Equal Cost Multi-Path routing (ECMP) [23] is the state-
of-the-art for multi-path routing and load-balancing in
DCNs [5, 17, 31].

In ECMP, a switch locally decides the next hop from
multiple equal cost paths by calculating a hash value,
typically from the source and destination IP addresses
and transport port numbers. Applications therefore can-
not explicitly control the routing path in DCNs.

However, many emerging DCN applications such as
provisioned IOPS, fine-grained flow scheduling, band-
width guarantee, etc. [5, 7, 8, 19, 21, 22, 25, 26, 39, 45],
all require explicit routing path control over the underly-
ing topologies (§2).

Many approaches such as source routing [36],
MPLS [35], and OpenFlow [29] can enforce explicit path
control. However, source routing is not supported in the
hardware of the data center switches, which typically
only support destination IP based routing. MPLS needs
a signaling protocol, i.e., Label Distribution Protocol, to
establish the path, which is typically used only for traffic
engineering in core networks instead of application-level

or flow-level path control. OpenFlow in theory can estab-
lish fine-grained routing paths by installing flow entries
in the OpenFlow switches via the controller. But in prac-
tice, there are practical challenges such as limited flow
table size and dynamic flow path setup that need to be
addressed (see §6 for more details).

In order to address the scalability and deployment
challenges faced by the above mentioned approaches,
this paper presents XPath for flow-level explicit path
control. XPath addresses the dynamic path setup chal-
lenge by giving a positive answer to the following ques-
tion: can we pre-install all desired routing paths between
any two nodes? Further, XPath shows that we can pre-
install all these paths using the destination IP based for-
warding TCAM tables of commodity switches1.

One cannot enumerate all possible paths in a DCN as
the number can be extremely large. However, we observe
that DCNs (e.g., [2–4, 17, 18, 20]) do not intend to use
all possible paths but a set of desired paths that are suf-
ficient to exploit the topology redundancy (§2.2). Based
on this observation, XPath focuses on pre-installing these
desired paths in this paper. Even though, the challenge
is that the sheer number of desired paths in large DCNs
is still large, e.g., a Fattree (k = 64) has over 232 paths
among ToRs (Top-of-Rack switches), exceeding the size
of IP table with 144K entries, by many magnitudes.

To tackle the above challenge, we introduce a two-
step compression algorithm, i.e., paths to path sets ag-
gregation and path ID assignment for prefix aggregation,
which is capable of compressing a large number of paths
to a practical number of routing entries for commodity
switches (§3).

To show XPath’s scalability, we evaluate it on various
well-known DCNs (§3.3). Our results suggest that XPath
effectively expresses tens of billions of paths using only
tens of thousands of routing entries. For example, for
Fattree(64), we pre-install 4 billion paths using ∼64K
entries2; for HyperX(4,16,100), we pre-install 17 billion
paths using ∼36K entries. With such algorithm, XPath

1The recent advances in switching chip technology make it ready
to support 144K entries in IP LPM (Longest Prefix Match) tables of
commodity switches (e.g., [1, 24]).

2The largest routing table size among all the switches.

1

16 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

easily pre-installs all desired paths into IP LPM tables
with 144K entries, while still reserving space to accom-
modate more paths.

To demonstrate XPath’s deployability, we implement
it on both Windows and Linux platforms under the um-
brella of SDN, and deploy it on a 3-layer Fattree testbed
with 54 servers (§4). Our experience shows that XPath
can be readily implemented with existing commodity
switches. Through basic experiments, we show that
XPath handles failure smoothly.

To showcase XPath’s utility, we integrate it into
four applications (from provisioned IOPS [25] to Map-
reduce) to enable explicit path control and show that
XPath directly benefits them (§5). For example, for pro-
visioned IOPS application, we use XPath to arrange ex-
plicit path with necessary bandwidth to ensure the IOPS
provisioned. For network update, we show that XPath
easily assists networks to accomplish switch upgrades at
zero traffic loss. For Map-reduce data shuffle, we use
XPath to identify non-contention parallel paths in ac-
cord with the many-to-many shuffle pattern, reducing the
shuffle time by over 3× compared to ECMP.

In a nutshell, the primary contribution of XPath is that
it provides a practical, readily-deployable way to pre-
install all the desired routing paths between any s-d pairs
using existing commodity switches, so that applications
only need to choose which path to use without worry-
ing about how to set up the path, and/or the time cost or
overhead of setting up the path.

To access XPath implementation scripts, please visit:
http://sing.cse.ust.hk/projects/XPath.

The rest of the paper is organized as follows. §2
overviews XPath. §3 elaborates XPath algorithm and
evaluates its scalability. §4 implements XPath and per-
forms basic experiments. §5 integrates XPath into appli-
cations. §6 discusses the related work, and §7 concludes
the paper.

2 Motivation and Overview

2.1 The need for explicit path control

Case #1: Provisioned IOPS: IOPS are input/output op-
erations per second. Provisioned IOPS are designed to
deliver predictable, high performance for I/O intensive
workloads, such as database applications, that rely on
consistent and fast response times. Amazon EBS provi-
sioned IOPS storage was recently launched to ensure that
disk resources are available whenever you need them re-
gardless of other customer activity [25, 34]. In order to
ensure provisioned IOPS, there is a need for necessary
bandwidth over the network. Explicit path control is re-
quired for choosing an explicit path that can provide such
necessary bandwidth (§5.1).

Undesired pathDesired path

X

Figure 1: Example of the desired paths between two
servers/ToRs in a 4-radix Fattree topology.

Case #2: Flow scheduling: Data center networks are
built with multiple paths [4, 17]. To use such multi-
ple paths, state-of-the-art forwarding in enterprise and
data center environments uses ECMP to statically stripe
flows across available paths using flow hashing. Because
ECMP does not account for either current network uti-
lization or flow size, it can waste over 50% of network
bisection bandwidth [5]. Thus, to fully utilize network
bisection bandwidth, we need to schedule elephant flows
across parallel paths to avoid contention as in [5]. Ex-
plicit path control is required to enable such fine-grained
flow scheduling, which benefits data intensive applica-
tions such as Map-reduce (§5.4).

Case #3: Virtual network embedding: In cloud com-
puting, virtual data center (VDC) with bandwidth guar-
antees is an appealing model for cloud tenants due to
its performance predictability in shared environments [7,
19, 45]. To accurately enforce such VDC abstraction
over the physical topology with constrained bandwidth,
one should be able to explicitly dictate which path to use
in order to efficiently allocate and manage the bandwidth
on each path (§5.3).

Besides the above applications, the need for explicit
path control has permeated almost every corner of data
center designs and applications, from traffic engineering
(e.g., [8, 22]), energy-efficiency (e.g., [21]), to network
virtualization (e.g., [7, 19, 45]), and so on. In §5, we will
study four of them.

2.2 XPath overview
To enable explicit path control for general DCNs, XPath
explicitly identifies an end-to-end path with a path ID
and attempts to pre-install all desired paths using IP LPM
tables of commodity switches, so that DCN applications
can use these pre-installed explicit paths easily without
dynamically setting up them. In what follows, we first
introduce what the desired paths are, and then overview
the XPath framework.

Desired paths: XPath does not try to pre-install all
possible paths in a DCN because this is impossible and
impractical. We observe that when designing DCNs,

2

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 17

operators do not intend to use all possible paths in
the routing. Instead, they use a set of desired paths
which are sufficient to exploit the topology redundancy.
This is the case for many recent DCN designs such as
[2–4, 17, 18, 20, 31]. For example, in a k-radix Fat-
tree [4], they exploit k2/4 parallel paths between any two
ToRs for routing (see Fig. 1 for desired/undesired paths
on a 4-radix Fattree); whereas in an n-layer BCube [18],
they use (n+ 1) parallel paths between any two servers.
These sets of desired paths have already contained suffi-
cient parallel paths between any s-d pairs to ensure good
load-balancing and handle failures. As the first step,
XPath focuses on pre-installing all these desired paths.

XPath framework: Fig. 2 overviews XPath. As many
prior DCN designs [11, 17, 18, 31, 40], in our imple-
mentation, XPath employs a logically centralized con-
troller, called XPath manager, to control the network.
The XPath manager has three main modules: routing
table computation, path ID resolution, and failure han-
dling. Servers have client modules for path ID resolution
and failure handling.

• Routing table computation: This module is the heart
of XPath. The problem is how to compress a large
number of desired paths (e.g., tens of billions) into IP
LPM tables with 144K entries. To this end, we de-
sign a two-step compression algorithm: paths to path
sets aggregation (in order to reduce unique path IDs)
and ID assignment for prefix aggregation (in order to
reduce IP prefix based routing entries). We elaborate
the algorithm and evaluate its scalability in §3.

• Path ID resolution: In XPath, path IDs (in the format
of 32-bit IP, or called routing IPs3) are used for rout-
ing to a destination, whereas the server has its own IP
for applications. This entails path ID resolution which
translates application IPs to path IDs. For this, the
XPath manager maintains an IP-to-ID mapping table.
Before a new communication, the source sends a re-
quest to the XPath manager resolving the path IDs to
the destination based on its application IP. The man-
ager may return multiple path IDs in response, provid-
ing multiple paths to the destination for the source to
select. These path IDs will be cached locally for sub-
sequent communications, but need to be forgotten pe-
riodically for failure handling. We elaborate this mod-
ule and its implementation in §4.1.

• Failure handling: Upon a link failure, the detecting
devices will inform the XPath manager. Then the
XPath manager will in turn identify the affected paths
and update the IP-to-ID table (i.e., disable the affected
paths) to ensure that it will not return a failed path
to a source that performs path ID resolution. The

3We use routing IPs and path IDs interchangeably in this paper.

 

























Figure 2: The XPath system framework.

XPath source server handles failures by simply chang-
ing path IDs. This is because it has cached multiple
path IDs for a destination, if one of them fails, it just
uses a new live one instead. In the meanwhile, the
source will request, from the manager, the updated
path IDs to the destination. Similarly, upon a link re-
covery, the recovered paths will be added back to the
IP-to-ID table accordingly. The source is able to use
the recovered paths once the local cache expires and a
new path ID resolution is performed.
We note that XPath leverages failure detection and re-
covery outputs to handle failures. The detailed fail-
ure detection and recovery mechanisms are orthogo-
nal to XPath, which focuses on explicit path control.
In our implementation (§4.2), we adopt a simple TCP
sequence based approach for proof-of-concept exper-
iments, and we believe XPath can benefit from ex-
isting advanced failure detection and recovery litera-
tures [15, 27].

Remarks: In this paper, XPath focuses on how to pre-
install the desired paths, but it does not impose any con-
straint on how to use the pre-installed paths. On top of
XPath, we can either let each server to select paths in
a distributed manner, or employ an SDN controller to
coordinate path selection between servers or ToRs in a
centralized way (which we have taken in our implemen-
tation of this paper). In either case, the key benefit is that
with XPath we do not need to dynamically modify the
switches.

We also note that XPath is expressive and is able to
pre-install all desired paths in large DCNs into commod-
ity switches. Thus XPath’s routing table recomputation
is performed infrequently, and cases such as link failures
or switch upgrade [26] are handled through changing
path IDs rather than switch table reconfiguration. How-
ever, table recomputation is necessary for extreme cases
like network wide expansion where the network topology
has fundamentally changed.

3

18 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

path1

disjointconvergent divergent

path2

path1 path2

path1 path2

Figure 3: Three basic relations between two paths.

s1 s2

d1 d2

s3

d3

p1 p2 p3 p4 p5 p6 p7 p8 p9 Convergent: {p1, p4, p7}, {p2, p5, p8}, {p3, p6, p9}

Disjoint: {p1, p5, p9}, {p2, p6, p7}, {p3, p4, p8}

Mix of two: {p1, p4, p8}, {p2, p6, p9}, {p2, p5, p7}

Figure 4: Different ways of path aggregation.

3 XPath Algorithm and Scalability

We elaborate the XPath two-step compression algorithm
in §3.1 and §3.2. Then, we evaluate it on various large
DCNs to show XPath’s scalability in §3.3.

3.1 Paths to path sets aggregation (Step I)

The number of desired paths is large. For example, Fat-
tree(64) has over 232 paths between ToRs, more than
what a 32-bit IP/ID can express. To reduce the number
of unique IDs, we aggregate the paths that can share the
same ID without causing routing ambiguity into a non-
conflict path set, identified by a unique ID.

Then, what kinds of paths can be aggregated? Without
loss of generality, two paths have three basic relations be-
tween each other, i.e., convergent, disjoint, and divergent
as shown in Fig. 3. Convergent and disjoint paths can
be aggregated using the same ID, while divergent paths
cannot. The reason is straightforward: suppose two paths
diverge from each other at a specific switch and they have
the same ID path1 = path2 = path id, then there will
be two entries in the routing table: path id → portx and
path id → porty , (x �= y). This clearly leads to am-
biguity. Two paths can be aggregated without conflict if
they do not cause any routing ambiguity on any switch
when sharing the same ID.

Problem 1: Given the desired paths P = {p1, · · · , pn}
of a DCN, aggregate the paths into non-conflict path sets
so that the number of sets is minimized.

We find that the general problem of paths to non-
conflict path sets aggregation is NP-hard since it can be
reduced from the Graph vertex-coloring problem [41].
Thus, we resort to practical heuristics.

Based on the relations in Fig. 3, we can aggregate the
convergent paths, the disjoint paths, or the mix into a
non-conflict path set as shown in Fig. 4. Following this,

Path set Egress port ID assignment (bad) ID assignment (good)

pathset0 0 0 4

pathset1 1 1 0

pathset2 2 2 2

pathset3 0 3 5

pathset4 1 4 1

pathset5 2 5 3

pathset6 0 6 6

pathset7 0 7 7

Table 1: Path set ID assignment.

Path set ID Prefix Egress port

pathset1,4 0, 1 00∗ 1

pathset2,5 2, 3 01∗ 2

pathset0,3,6,7 4, 5, 6, 7 1∗∗ 0

Table 2: Compressed table via ID prefix aggregation.

we introduce two basic approaches for paths to path sets
aggregation: convergent paths first approach (CPF) and
disjoint paths first approach (DPF). The idea is simple. In
CPF, we prefer to aggregate the convergent paths into the
path set first until no more convergent path can be added
in; Then we can add the disjoint paths, if exist, into the
path set until no more paths can be added in. In DPF,
we prefer to aggregate the disjoint paths into the path set
first and add the convergent ones, if exist, at the end.

The obtained CPF or DPF path sets have their own
benefits. For example, a CPF path set facilitates many-
to-one communication for data aggregation because such
an ID naturally defines a many-to-one communication
channel. A DPF path set, on the other hand, identifies
parallel paths between two groups of nodes, and such
an ID identifies a many-to-many communication chan-
nel for data shuffle. In practice, users may have their
own preferences to define customized path sets for dif-
ferent purposes as long as the path sets are free of routing
ambiguity.

3.2 ID assignment for prefix aggregation
(Step II)

While unique IDs can be much reduced through Step I,
the absolute value is still large. For example, Fattree(64)
has over 2 million IDs after Step I. We cannot allocate
one entry per ID flatly with 144K entries. To address
this problem, we further reduce routing entries using ID
prefix aggregation. Since a DCN is usually under cen-
tralized control and the IDs of paths can be coordinately
assigned, our goal of Step II is to assign IDs to paths in
such a way that they can be better aggregated using pre-
fixes in the switches.

3.2.1 Problem description

We assign IDs to paths that traverse the same egress port
consecutively so that these IDs can be expressed using

4

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 19

one entry via prefix aggregation. For example, in Ta-
ble 1, 8 path sets go through a switch with 3 ports. A
naı̈ve (bad) assignment will lead to an uncompressable
routing table with 7 entries. However, if we assign the
paths that traverse the same egress port with consecutive
IDs (good), we can obtain a compressed table with 3 en-
tries as shown in Table 2.

To optimize for a single switch, we can easily achieve
the optimal by grouping the path sets according to the
egress ports and encoding them consecutively. In this
way, the number of entries is equal to the number of
ports. However, we optimize for all the switches simul-
taneously instead of one.

Problem 2. Let T = {t1, t2, · · · , t|T |} be the path
sets after solving Problem 1. Assigning (or ordering) the
IDs for these path sets so that, after performing ID prefix
aggregation, the largest number of routing entries among
all switches is minimized.

In a switch, a block of consecutive IDs with the same
egress port can be aggregated using one entry4. We call
this an aggregateable ID block (AIB). The number of
such AIBs indicates routing states in the switch5. Thus,
we try to minimize the maximal number of AIBs among
all the switches through coordinated ID assignment.

To illustrate the problem, we use a matrix M to de-
scribe the relation between path sets and switches. Sup-
pose switches have k ports (numbered as 1...k), then we
use mij ∈ [0, k] (1 ≤ i ≤ |S|, 1 ≤ j ≤ |T |) to indicate
whether tj goes through switch si, and if yes, which the
egress port is. If 1 ≤ mij ≤ k, it means tj goes through
si and the egress port is mij , and 0 otherwise means tj
does not appear on switch si.

M =




t1 t2 t3 . . . t|T |

s1 m11 m12 m13 . . . m1|T |
s2 m21 m22 m23 . . . m2|T |
s3 m31 m32 m33 . . . m3|T |
...

...
...

...
. . .

...
s|S| m|S|1 m|S|2 m|S|3 . . . m|S||T |




To assign IDs to path sets, we use f(tj) = r (1 ≤
r ≤ |T |) to denote that, with an ID assignment f, the ID
for tj is r (or ranks the r-th among all the IDs). With
f, we actually permutate columns on M to obtain N.
Column r in N corresponds to column tj in M, i.e.,

4The consecutiveness has local significance. Suppose path IDs 4, 6,
7 are on the switch (all exit through port p), but 5 are not present, then
4, 6, 7 are still consecutive and can be aggregated as 1∗∗→p.

5Note that the routing entries can be further optimized using subnet-
ting and supernetting [16], in this paper, we just use AIBs to indicate
entries for simplicity, in practice the table size can be even smaller.

[n1r, n2r, · · · , n|S|r]
T = [m1j ,m2j , · · · ,m|S|j]

T.

N =f(M) =




1 2 3 . . . |T |
s1 n11 n12 n13 . . . n1|T |
s2 n21 n22 n23 . . . n2|T |
s3 n31 n32 n33 . . . n3|T |
...

...
...

...
. . .

...
s|S| n|S|1 n|S|2 n|S|3 . . . n|S||T |




With matrix N, we can calculate the number of AIBs
on each switch. To compute it on switch si, we only need
to sequentially check all the elements on the i-th row.
If there exist sequential non-zero elements that are the
same, it means all these consecutive IDs share the same
egress port and belong to a same AIB. Otherwise, one
more AIB is needed. Thus, the total number of AIBs
on switch si is:

AIB(si) = 1 +

|T |−1∑
r=1

(nir ⊕ ni(r+1)) (1)

where u ⊕ v = 1 if u �= v (0 is skipped), and 0 oth-
erwise. With Equation 1, we can obtain the maximal
number of AIBs among all the switches: MAIB =
max

1≤i≤|S|
{AIB(si)}, and our goal is to find an f that min-

imizes MAIB.

3.2.2 Solution

ID assignment algorithm: The above problem is NP-
hard as it can be reduced from the 3-SAT problem [37].
Thus, we resort to heuristics. Our practical solution is
guided by the following thought. Each switch si has its
own local optimal assignment fi. But these individual
local optimal assignments may conflict with each other
by assigning different IDs to a same path set on differ-
ent switches, causing an ID inconsistency on this path
set. To generate a global optimized assignment f from
the local optimal assignments fis, we can first optimally
assign IDs to path sets on each switch individually, and
then resolve the ID inconsistency on each path set in an
incremental manner. In other words, we require that each
step of ID inconsistency correction introduces minimal
increase on MAIB.

Based on the above consideration, we introduce our
ID Assignment(·) in Algorithm 1. The main idea behind
the algorithm is as follows.
• First, we assign IDs to path sets on each switch in-

dividually. We achieve the optimal result for each
switch by simply assigning the path sets that have the
same egress ports with consecutive IDs (lines 1–2).

• Second, we correct inconsistent IDs of each path set
incrementally. After the first step, the IDs for a path

5

20 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

M =




t1 t2 t3 t4 t5 t6

s1 1 1 1 2 1 2
s2 2 1 1 2 3 4
s3 1 2 2 2 3 2


→M′

0 =




t1 t2 t3 t4 t5 t6

s1 1(1) 1(2) 1(3) 2(5) 1(4) 2(6)
s2 2(3) 1(1) 1(2) 2(4) 3(5) 4(6)
s3 1(1) 2(2) 2(3) 2(4) 3(6) 2(5)


→M′

1 =




t1 t2 t3 t4 t5 t6

s1 1(3) 1(2) 1(1) 2(5) 1(4) 2(6)
s2 2(3) 1(1) 1(2) 2(4) 3(5) 4(6)
s3 1(3) 2(2) 2(1) 2(4) 3(6) 2(5)


→

M′
2 =




t1 t2 t3 t4 t5 t6
s1 1(3) 1(2) 1(1) 2(5) 1(4) 2(6)
s2 2(3) 1(2) 1(1) 2(4) 3(5) 4(6)
s3 1(3) 2(2) 2(1) 2(4) 3(6) 2(5)


→ . . . →M′

6 =




t1 t2 t3 t4 t5 t6
s1 1(3) 1(2) 1(1) 2(4) 1(6) 2(5)
s2 2(3) 1(2) 1(1) 2(4) 3(6) 4(5)
s3 1(3) 2(2) 2(1) 2(4) 3(6) 2(5)


→N =




1 2 3 4 5 6

s1 1 1 1 2 2 1
s2 1 1 2 2 4 3
s3 2 2 1 2 2 3




Figure 5: Walk-through example on Algorithm 1: for any element x(y) in M′
k (1 ≤ k ≤ 6), x is the egress port

and y is the ID assigned to a path set tj on switch si, red/green ys mean inconsistent/consistent IDs for path sets.

Algorithm 1 Coordinated ID assignment algorithm
ID Assignment(M) /* M is initial matrix, N is
output */;

1 foreach row i of M (i.e., switch si) do
2 assign path sets tj(1 ≤ j ≤ |T |) having the

same mij values (i.e., egress ports) with con-
secutive IDs;

/* path sets are optimally encoded on each switch
locally, but one path set may have different IDs as-
signed with respect to different switches */;

3 M′ ← M with IDs specified for each tj in each si;
4 foreach column j of M′ (i.e., path set tj) do
5 if tj has inconsistent IDs then
6 let C = {c1, c2, · · · , ck}, (1 < k ≤ |S|) be

the set of inconsistent IDs;
7 foreach c ∈ C do
8 tentatively use c to correct the inconsis-

tency by swapping ci with c on each rel-
evant switch;

9 compute MAIB;

10 ID(tj) ← c with the minimal MAIB;

11 return N ← f(M′); /* M′ is inconsistency-free */

set on different switches may be different. For any
path set having inconsistent IDs, we resolve this as
follows: we pick one ID out of all the inconsistent IDs
of this path set and let other IDs be consistent with
it provided that such correction leads to the minimal
MAIB (lines 4–10). More specifically, in lines 6–9,
we try each of the inconsistent IDs, calculate the as-
sociated MAIB if we correct the inconsistency with
this ID, and finally pick the one that leads to the min-
imal MAIB. The algorithm terminates after we re-
solve the ID inconsistencies for all the path sets.
In Fig. 5 we use a simple example to walk readers

through the algorithm. Given M with 6 path sets across 3
switches, we first encode each switch optimally. This is
achieved by assigning path sets having the same egress
port with consecutive IDs. For example, on switch s1,
path sets t1, t2, t3, t5 exit from port1 and t4, t6 from
port2, then we encode t1, t2, t3, t5 with IDs 1, 2, 3, 4 and

t4, t6 with 5, 6 respectively. We repeat this on s2 and
s3, and achieve M′

0 with MAIB = 4. However, we
have inconsistent IDs (marked in red) for all path sets.
For example, t1 has different IDs 1, 3, 1 on s1, s2, s3 re-
spectively. Then, we start to correct the inconsistency
for each path set. For t1 with inconsistent IDs 1, 3, 1,
we try to correct with IDs 1 and 3 respectively. To cor-
rect with ID 1, we exchange IDs 3 and 1 for t1 and t2
on switch s2, and get MAIB = 5. To correct with
ID 3, we exchange IDs 1 and 3 for t1 and t3 on switch
s1 and s3, and get MAIB = 4. We thus choose to
correct with ID 3 and achieve M′

1 as it has minimal
MAIB = 4. We perform the same operation for the
remaining path sets one by one and finally achieve M′

6

with MAIB = 4. Therefore, the final ID assignment is
f : (t1, t2, t3, t4, t5, t6) → (3, 2, 1, 4, 6, 5).

We note that the proposed algorithm is not optimal and
has room to improve. However, it is effective in com-
pressing the routing tables as we will show in our eval-
uation. One problem is the time cost as it works on a
large matrix. We intentionally designed our Algorithm 1
to be of low time complexity, i.e., O(|S|2|T |) for the
|S|×|T | matrix M. Even though, we find that when the
network scales to several thousands, it cannot return a re-
sult within 24 hours (see Table 4). Worse, it is possible
that |S|∼104−5 and |T |∼106 or more for large DCNs. In
such cases, even a linear time algorithm can be slow, not
to mention any advanced algorithms.

Speedup with equivalence reduction: To speed up,
we exploit DCN topology characteristics to reduce the
runtime of our algorithm. The observation is that most
DCN topologies are regular and many nodes are equiva-
lent (or symmetric). These equivalent nodes are likely to
have similar numbers of routing states for any given ID
assignment, especially when the path sets are symmetri-
cally distributed. The reason is that for two equivalent
switches, if some path sets share a common egress port
on one switch, most of these path sets, if not all, are likely
to pass through a common egress port on another switch.
As a result, no matter how the path sets are encoded, the
ultimate routing entries on two equivalent switches tend
to be similar. Thus, our hypothesis is that, by picking
a representative node from each equivalence node class,

6

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 21

DCNs Nodes # Links #
Original
paths#

Max. entries #
without compression

Path sets # after
Step I compression

Max. entries # after
Step I compression

Max. entries # after
Step II compression

Fattree(8) 208 384 15,872 944 512 496 116
Fattree(16) 1,344 3,072 1,040,384 15,808 8,192 8,128 968
Fattree(32) 9,472 24,576 66,977,792 257,792 131,072 130,816 7,952
Fattree(64) 70,656 196,608 4,292,870,144 4,160,512 2,097,152 2,096,128 64,544
BCube(4, 2) 112 192 12,096 576 192 189 108
BCube(8, 2) 704 1,536 784,896 10,752 1,536 1,533 522
BCube(8, 3) 6,144 16,384 67,092,480 114,688 16,384 16,380 4,989
BCube(8, 4) 53,248 163,840 5,368,545,280 1,146,880 163,840 163,835 47,731

VL2(20, 8, 40) 1,658 1,760 31,200 6,900 800 780 310
VL2(40, 16, 60) 9,796 10,240 1,017,600 119,600 6,400 6,360 2,820
VL2(80, 64, 80) 103,784 107,520 130,969,600 4,030,400 102,400 102,320 49,640

VL2(100, 96, 100) 242,546 249,600 575,760,000 7,872,500 240,000 239,900 117,550
HyperX(3, 4, 40) 2,624 2,848 12,096 432 192 189 103
HyperX(3, 8, 60) 31,232 36,096 784,896 4,032 1,536 1,533 447
HyperX(4, 10, 80) 810,000 980,000 399,960,000 144,000 40,000 39,996 8,732

HyperX(4, 16, 100) 6,619,136 8,519,680 17,179,607,040 983,040 262,144 262,140 36,164

Table 3: Results of XPath on the 4 well-known DCNs.

we can optimize the routing tables for all the nodes in the
topology while spending much less time.

Based on the hypothesis, we improve the runtime of
Algorithm 1 with equivalence reduction. This speedup
makes no change to the basic procedure of Algorithm 1.
Instead of directly working on M with |S| rows, the key
idea is to derive a smaller M∗ with fewer rows from M
using equivalence reduction, i.e., for all the equivalent
nodes sis in M we only pick one of them into M∗, and
then apply ID Assignment(·) on M∗. To this end, we
first need to compute the equivalence classes among all
the nodes, and there are many fast algorithms available
for this purpose [10, 14, 28]. This improvement enables
our algorithm to finish with much less time for various
well-known DCNs while still maintaining good results
as we will show subsequently.

3.3 Scalability evaluation

Evaluation setting: We evaluate XPath’s scalability on
4 well-known DCNs: Fattree [4], VL2 [17], BCube [18],
and HyperX [3]. Among these DCNs, BCube is a server-
centric structure where servers act not only as end hosts
but also relay nodes for each other. For the other 3 DCNs,
switches are the only relay nodes and servers are con-
nected to ToRs at last hop. For this reason, we consider
the paths between servers in BCube and between ToRs
in Fattree, VL2 and HyperX.

For each DCN, we vary the network size (Table 3). We
consider k2/4 paths between any two ToRs in Fattree(k),
(k + 1) paths between any two servers in BCube(n, k),
DA paths between any two ToRs in VL2(DA, DI , T),
and L paths between any two ToRs in HyperX(L, S, T)6.

6DCNs use different parameters to describe their topologies.
In Fattree(k), k is the number of switch ports; in BCube(n, k),
n is the number of switch ports and k is the BCube lay-
ers; in VL2(DA, DI , T), DA/DI are the numbers of aggrega-
tion/core switch ports and T is the number of servers per rack; in

These paths do not enumerate all possible paths in the
topology, however, they cover all desired paths sufficient
to exploit topology redundancy in each DCN.

Our scalability experiments run on a Windows server
with an Intel Xeon E7-4850 2.00GHz CPU and 256GB
memory.

Main results: Table 3 shows the results of XPath algo-
rithm on the 4 well-known DCNs, which demonstrates
XPath’s high scalability. Here, for paths to path sets ag-
gregation we used CPF.

We find that XPath can effectively pre-install up to
tens of billions of paths using tens of thousands of rout-
ing entries for very large DCNs. Specifically, for Fat-
tree(64) we express 4 billion paths with 64K entries; for
BCube(8,4) we express 5 billion paths with 47K entries;
for VL2(100,96,100) we express 575 million paths with
117K entries; for HyperX(4,16,100) we express 17 bil-
lion paths with 36K entries. These results suggest that
XPath can easily pre-install all desired paths into IP LPM
tables with 144K entries, and in the meanwhile XPath
is still able to accommodate more paths before reaching
144K.

Understanding the ID assignment: The most difficult
part of the XPath compression algorithm is Step II (i.e.,
ID assignment), which eventually determines if XPath
can pre-install all desired paths using 144K entries. The
last two columns of Table 3 contrast the maximal entries
before and after our coordinated ID assignment for each
DCN.

We find that XPath’s ID assignment algorithm can ef-
ficiently compress the routing entries by 2× to 32× for
different DCNs. For example, before our coordinated ID
assignment, there are over 2 million routing entries in the
bottleneck switch (i.e., the switch with the largest rout-
ing table size) for Fattree(64), and after it, we achieve

HyperX(L, S, T), L is the number of dimensions, S is the number of
switches per dimension, and T is the number of servers per rack.

7

22 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

DCNs
Time cost (Second)

No equivalence reduction Equivalence reduction

Fattree(16) 8191.121000 0.078000
Fattree(32) >24 hours 4.696000
Fattree(64) >24 hours 311.909000
BCube(8, 2) 365.769000 0.046000
BCube(8, 3) >24 hours 6.568000
BCube(8, 4) >24 hours 684.895000

VL2(40, 16, 60) 227.438000 0.047000
VL2(80, 64, 80) >24 hours 3.645000

VL2(100, 96, 100) >24 hours 28.258000
HyperX(3, 4, 40) 0.281000 0.000000

HyperX(4, 10, 80) >24 hours 10.117000
HyperX(4, 16, 100) >24 hours 442.379000

Table 4: Time cost of ID assignment algorithm with
and without equivalence reduction for the 4 DCNs.

64K entries via prefix aggregation. In the worst case, we
still compress the routing states from 240K to 117K in
VL2(100,96,100). Furthermore, we note that the rout-
ing entries can be further compressed using traditional
Internet IP prefix compression techniques, e.g., [16], as
a post-processing step. Our ID assignment algorithm
makes this prefix compression more efficient.

We note that our algorithm has different compression
effects on different DCNs. As to the 4 largest topolo-
gies, we achieve a compression ratio of 2,096,128

64,544 =32.48

for Fattree(64), 262,140
36,164 = 7.25 for HyperX(4,16,100),

163,835
47,731 = 3.43 for BCube(8,4), and 239,900

117,550 = 2.04 for
VL2(100,96,100) respectively. We believe one important
decisive factor for the compression ratio is the density of
the matrix M. According to Equation 1, the number of
routing entries is related to the non-zero elements in M.
The sparser the matrix, the more likely we achieve better
results. For example, in Fattree(64), a typical path set tra-
verses 1

32 aggregation switches and 1
1024 core switches,

while in VL2(100,96,100), a typical path set traverses
1
2 aggregation switches and 1

50 core switches. This in-
dicates that MFattree is much sparser than MVL2, which
leads to the effect that the compression on Fattree is bet-
ter than that on VL2.

Time cost: In Table 4, we show that equivalence re-
duction speeds up the runtime of the ID assignment al-
gorithm. For example, without equivalence reduction, it
cannot return an output within 24 hours when the net-
work scales to a few thousands. With it, we can get re-
sults for all the 4 DCNs within a few minutes even when
the network becomes very large. This is acceptable be-
cause it is one time pre-computation and we do not re-
quire routing table re-computation as long as the network
topology does not change.

Effect of equivalence reduction: In Fig. 6, we compare
the performance of our ID assignment with and without
equivalence reduction. With equivalence reduction, we
use M∗ (i.e., part of M) to perform ID assignment, and it

100

101

102

103

104

Fattre
e(8)

Fattre
e(16)

Bcube(4,2)

Bcube(8,2)

VL2(10,4,20)

VL2(20,8,40)

HyperX(2,4,20)

HyperX(3,4,40)

N
um

be
r o

f e
nt

rie
s

No equivalence reduction
Equivalene reduction

Figure 6: Effect of ID assignment algorithm with and
without equivalence reduction for the 4 DCNs.

turns out that the results are similar to that without equiv-
alence reduction. This partially validates our hypothesis
in §3.2.2. Furthermore, we note that the algorithm with
equivalence reduction can even slightly outperform that
without it in some cases. This is not a surprising result
since both algorithms are heuristic solutions to the origi-
nal problem.

Results on randomized DCNs: We note that most
other DCNs such as CamCube [2] and CiscoDCN [13]
are regular and XPath can perform as efficiently as
above. In recent work such as Jellyfish [39] and
SWDC [38], the authors also discussed random graphs
for DCN topologies. XPath’s performance is indeed un-
predictable for random graphs. But for all the Jellyfish
topologies we tested, in the worst case, XPath still man-
ages to compress over 1.8 billion paths with less than
120K entries. The runtime varies from tens of minutes to
hours or more depending on the degree of symmetry of
the random graph.

4 Implementation and Experiments

We have implemented XPath on both Windows and
Linux platforms, and deployed it on a 54-server Fat-
tree testbed with commodity switches for experiments.
This paper describes the implementation on Windows. In
what follows, we first introduce path ID resolution (§4.1)
and failure handling (§4.2). Then, we present testbed
setup and basic XPath experiments (§4.3).

4.1 Path ID resolution

As introduced in §2.2, path ID resolution addresses how
to resolve the path IDs (i.e., routing IPs) for a destina-
tion. To achieve fault-tolerant path ID resolution, there
are two issues to consider. First, how to distribute the
path IDs of a destination to the source. The live paths to
the destination may change, for example, due to link fail-
ures. Second, how to choose the path for a destination,
and enforce such path selection in existing networks.

8

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 23

Application XPath
User Mode Daemon

XPath Kernel Driver

User
Kernel

NDIS Filter Driver

XPath User Mode Daemon

Flow Table

Packet Header Modifier

Packet Header
Parser

Path Selection

TCP/IP

NIC Driver

Figure 7: The software stacks of XPath on servers.

These two issues look similar to the name resolution in
existing DNS. In practice, it is possible to return multiple
IPs for a server, and balance the load by returning differ-
ent IPs to the queries. However, integrating the path ID
resolution of XPath into existing DNS may challenge the
usage of IPs, as legacy applications (on socket commu-
nication) may use IPs to differentiate the servers instead
of routing to them. Thus, in this paper, we develop a
clean-slate XPath implementation on the XPath manager
and end servers. Each server has its original name and IP
address, and the routing IPs for path IDs are not related
to DNS.

To enable path ID resolution, we implemented a XPath
software module on the end server, and a module on the
XPath manager. The end server XPath software queries
the XPath manager to obtain the updated path IDs for a
destination. The XPath manager returns the path IDs by
indexing the IP-to-ID mapping table. From the path IDs
in the query response, the source selects one for the cur-
rent flow, and caches all (with a timeout) for subsequent
communications.

To maintain the connectivity to legacy TCP/IP stacks,
we design an IP-in-IP tunnel based implementation.
The XPath software encapsulates the original IP packets
within an IP tunnel: the path ID is used for the tunnel IP
header and the original IP header is the inner one. After
the tunnel packets are decapsulated, the inner IP packets
are delivered to destinations so that multi-path routing
by XPath is transparent to applications. Since path IDs
in Fattree end at the last hop ToR, the decapsulation is
performed there. The XPath software may switch tunnel
IP header to change the paths in case of failures, while
for applications the connection is not affected. Such IP-
in-IP encapsulation also eases VM migration as VM can
keep the original IP during migration.

We note that if VXLAN [42] or NVGRE [32] is intro-
duced for tenant network virtualization, XPath IP header
needs to be the outer IP header and we will need 3 IP
headers which looks awkward. In the future, we may
consider more efficient and consolidated packet format.
For example, we may put path ID in the outer NVGRE
IP header and the physical IP in NVGRE GRE Key field.
Once the packet reaches the destination, the host OS then
switches the physical IP and path ID.

In our implementation, the XPath software on end

servers consists of two parts: a Windows Network Driver
Interface Specification (NDIS) filter driver in kernel
space and a XPath daemon in user space. The soft-
ware stacks of XPath are shown in Fig. 7. The XPath
filter driver is between the TCP/IP and the Network In-
terface Card (NIC) driver. We use the Windows filter
driver to parse the incoming/outgoing packets, and to in-
tercept the packets that XPath is interested in. The XPath
user mode daemon is responsible for path selection and
packet header modification. The function of the XPath
filter driver is relatively fixed, while the algorithm mod-
ule in the user space daemon simplifies debugging and
future extensions.

In Fig. 7, we observe that the packets are transferred
between the kernel and user space, which may degrade
the performance. Therefore, we allocate a shared mem-
ory pool by the XPath driver. With this pool, the packets
are not copied and both the driver and the daemon oper-
ate on the same shared buffer. We tested our XPath im-
plementation (with tunnel) and did not observe any visi-
ble impact on TCP throughput at Gigabit line rate.

4.2 Failure handling

As introduced in §2.2, when a link fails, the devices on
the failed link will notify the XPath manager. In our im-
plementation, the communication channel for such no-
tification is out-of-band. Such out-of-band control net-
work and the controller are available in existing produc-
tion DCNs [44].

The path IDs for a destination server are distributed us-
ing a query-response based model. After the XPath man-
ager obtains the updated link status, it may remove the
affected paths or add the recovered paths, and respond to
any later query with the updated paths.

For proof-of-concept experiments, we implemented a
failure detection method with TCP connections on the
servers. In our XPath daemon, we check the TCP se-
quence numbers and switch the path ID once we detect
that the TCP has retransmitted a data packet after a TCP
timeout. The motivation is that the TCP connection is
experiencing bad performance on the current path (ei-
ther failed or seriously congested) and the XPath driver
has other alternative paths ready for use. We note that
this TCP based approach is sub-optimal and there are
faster failure detection mechanisms such as BFD [15] or
F10 [27] that can detect failures in 30µs, which XPath
can leverage to perform fast rerouting (combining XPath
with these advanced failure detection schemes is our fu-
ture work). A key benefit of XPath is that it does not re-
quire route re-convergence and is loop-free during failure
handling. This is because XPath pre-installs the backup
paths and there is no need to do table re-computation un-
less all backup paths are down.

9

24 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

C1 C2 C3 C4

ToR

Agg

Core

A fat-tree testbed with 18 ToR/Agg switches and 9 Core switches

T1 T2 T3

A1 A2 A3

T4 T5 T6

A4 A5 A6

T7 T8 T9

A7 A8 A9

T10 T11 T12

A10 A11 A12

T13 T14 T15

A13 A14 A15

T16 T17 T18

A16 A17 A18

C5 C6 C7 C8 C9

Figure 8: Fattree(6) testbed with 54 servers. Each
ToR switch connects 3 servers (not drawn).

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Path ID resolution time (ms)

C
D

F

Figure 9: The CDF of path ID resolution time.

4.3 Testbed setup and basic experiments

Testbed setup: We built a testbed with 54 servers con-
nected by a Fattree(6) network (as shown in Fig. 8) using
commodity Pronto Broadcom 48-port Gigabit Ethernet
switches. On the testbed, there are 18 ToR, 18 Agg, and
9 Core switches. Each switch has 6 GigE ports. We
achieve these 45 virtual 6-port GigE switches by par-
titioning the physical switches. Each ToR connects 3
servers; and the OS of each server is Windows Server
2008 R2 Enterprise 64-bit version. We deployed XPath
on this testbed for experimentation.

IP table configuration: On our testbed, we consider
2754 explicit paths between ToRs (25758 paths between
end hosts). After running the two-step compression al-
gorithm, the number of routing entries for the switch IP
tables are as follows, ToR: 31∼33, Agg: 48, and Core:
6. Note that the Fattree topology is symmetric, the num-
bers of routing entries after our heuristic are almost the
same for the switches at the same layer, which confirms
our hypothesis in §3.2.2 that equivalent nodes are likely
to have similar numbers of entries.

Path ID resolution time: We measure the path ID reso-
lution time at the XPath daemon on end servers: from the
time when the query message is generated to the time the
response from the XPath manager is received. We repeat
the experiment 4000 times and depict the CDF in Fig. 9.
We observe that the 99-th percentile latency is 4ms. The
path ID resolution is performed for the first packet to a
destination server that is not found in the cache, or cache
timeout. A further optimization is to perform path ID
resolution in parallel with DNS queries.

XPath routing with and without failure: In this exper-
iment, we show basic routing of XPath, with and with-
out link failures. We establish 90 TCP connections from
the 3 servers under ToR T1 to the 45 servers under ToRs

0 20 40 60 80 100 120
15

20

25

30

35

40

Time (seconds)

TC
P

go
od

pu
t (

M
bp

s)

flow 1
flow 2
flow 3

Figure 10: TCP goodput of three connections versus
time on three phases: no failure, in failure, and recov-
ered.

T4 to T18. Each source server initiates 30 TCP connec-
tions in parallel, and each destination server hosts two
TCP connections. The total link capacity from T1 is
3×1G=3G, shared by 90 TCP connections.

Given the 90 TCP connections randomly share 3 up
links from T1, the load should be balanced overall. At
around 40 seconds, we disconnect one link (T1 to A1).
We use TCP sequence based method developed in §4.2
for automatic failure detection and recovery in this ex-
periment. We then resume the link at time around 80
seconds to check whether the load is still balanced. We
log the goodput (observed by the application) and show
the results for three connections versus time in Fig. 10.
Since we find that the throughput of all 90 TCP connec-
tions are very similar, we just show the throughput of one
TCP connection for each source server.

We observe that all the TCP connections can share the
links fairly with and without failure. When the link fails,
the TCP connections traversing the failed link (T1 to A1)
quickly migrate to the healthy links (T1 to A2 and A3).
When the failed link recovers, it can be reused on a new
path ID resolution after the timeout of the local cache. In
our experiment, we set the cache timeout value as 1 sec-
ond. However, one can change this parameter to achieve
satisfactory recovery time for resumed links. We also run
experiments for other traffic patterns, e.g., ToR-to-ToR
and All-to-ToR, and link failures at different locations,
and find that XPath works as expected in all cases.

5 XPath Applications

To showcase XPath’s utility, we use it for explicit path
support in four applications. The key is that, built on
XPath, applications can freely choose which path to use
without worrying about how to set up the path and the
time cost or overhead of setting up the path. In this re-
gard, XPath emerges as an interface for applications to
use explicit paths conveniently, but does not make any
choice on behalf of them.

10

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 25

Average IOPS

ECMP 4547
15274XPath

(a) Remaining bandwidth on P1,
P2, P3 is 300, 100, 100 Mbps.

(b) Throughput and completion time of XPath and ECMP.

(c) Average IOPS.

XPath

Figure 11: XPath utility case #1: we leverage XPath
to make necessary bandwidth easier to implement for
provisioned IOPS.

5.1 XPath for provisioned IOPS

In cloud services, there is an increasing need for provi-
sioned IOPS. For example, Amazon EBS enforces pro-
visioned IOPS for instances to ensure that disk resources
can be accessed with high and consistent I/O perfor-
mance whenever you need them [25]. To enforce such
provisioned IOPS, it should first provide necessary band-
width for the instances [9]. In this experiment, we show
XPath can be easily leveraged to use the explicit path
with necessary bandwidth.

As shown in Fig. 11(a), we use background UDP flows
to stature the ToR-Agg links and leave the remaining
bandwidth on 3 paths (P1, P2 and P3) between X-Y as
300Mpbs, 100Mbps, and 100Mbps respectively. Sup-
pose there is a request for provisioned IOPS that requires
500Mbps necessary bandwidth (The provisioned IOPS is
about 15000 and the chunk size is 4KB.). We now lever-
age XPath and ECMP to write 15GB data (≈4 million
chunks) through 30 flows from X to Y, and measure the
achieved IOPS respectively. The storage we used for the
experiment is Kingston V+200 120G SSD, and the I/O
operations on the storage are sequential read and sequen-
tial write.

From Fig. 11(c), it can be seen that using ECMP we
cannot provide the necessary bandwidth between X-Y
for the provisioned IOPS although the physical capac-
ity is there. Thus, the actual achieved IOPS is only 4547,
and the write under ECMP takes much longer time than
that under XPath as shown in Fig. 11(c). This is be-
cause ECMP performs random hashing and cannot spec-
ify the explicit path to use, hence it cannot accurately
make use of the remaining bandwidth on each of the
multiple paths for end-to-end bandwidth provisioning. In
contrast, XPath can be easily leveraged to provide the re-
quired bandwidth due to its explicit path control. With
XPath, we explicitly control how to use the three paths
and accurately provide 500Mbps necessary bandwidth,
achieving 15274 IOPS.





























(a) Path P1: T1 →A1 →T3; P2: T1 →A2 →T3; P3:
T1 →A3 →T3

Time (seconds)
0 50 100 150 200 250 300 350 400

Li
nk

 u
til

iz
at

io
n

0

0.2

0.4

0.6

0.8

1

P1
P2
P3t1 t2 t3 t4

(b) Time t1: move f3 from P2 to P3; t2: move f1 from P1

to P2; t3: move f1 from P2 to P1; t4: move f3 from P3 to
P2.

Figure 12: XPath utility case #2: we leverage XPath
to assist zUpdate [26] to accomplish DCN update with
zero loss.

5.2 XPath for network updating
In production data centers, DCN update occurs fre-
quently [26]. It can be triggered by the operators, ap-
plications and various networking failures. zUpdate [26]
is an application that aims to perform congestion-free
network-wide traffic migration during DCN updates with
zero loss and zero human effort. In order to achieve its
goal, zUpdate requires explicit routing path control over
the underlying DCNs. In this experiment, we show how
XPath assists zUpdate to accomplish DCN update and
use a switch firmware upgrade example to show how traf-
fic migration is conducted with XPath.

In Fig. 12(a), initially we assume 4 flows (f1, f2, f3
and f4) on three paths (P1, P2 and P3). Then we move f1
away from switch A1 to do a firmware upgrade for switch
A1. However, neither P2 nor P3 has enough spare band-
width to accommodate f1 at this point of time. Therefore
we need to move f3 from P2 to P3 in advance. Finally,
after the completion of firmware upgrade, we move all
the flows back to original paths. We leverage XPath to
implement the whole movement.

In Fig. 12(b), we depict the link utilization dynamics.
At time t1, when f3 is moved from P2 to P3, the link uti-
lization of P2 drops from 0.6 to 0.4 and the link utiliza-
tion of P3 increases from 0.7 to 0.9. At time t2, when f1
is moved from P1 to P2, the link utilization of P1 drops
from 0.5 to 0 and the link utilization of P2 increases from
0.4 to 0.9. The figure also shows the changes of the link
utilization at time t3 and t4 when moving f3 back to P2

and f1 back to P1. It is easy to see that with the help of
XPath, P1, P2 and P3 see no congestion and DCN update
proceeds smoothly without loss.

11

26 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association



 

   
















































Figure 13: XPath utility case #3: we leverage XPath
to accurately enforce VDC with bandwidth guaran-
tees.

5.3 Virtual network enforcement with
XPath

In cloud computing, virtual data center (VDC) abstrac-
tion with bandwidth guarantees is an appealing model
due to its performance predictability in shared environ-
ments [7, 19, 45]. In this experiment, we show XPath
can be applied to enforce virtual networks with band-
width guarantees. We assume a simple SecondNet-based
VDC model with 4 virtual links, and the bandwidth re-
quirements on them are 50Mbps, 200Mbps, 250Mbps
and 400Mbps respectively as shown in Fig. 13(a). We
then leverage XPath’s explicit path control to embed this
VDC into the physical topology.

In Fig. 13(b), we show that XPath can easily be em-
ployed to use the explicit paths in the physical topology
with enough bandwidth to embed the virtual links. In
Fig. 13(c), we measure the actual bandwidth for each
virtual link and show that the desired bandwidth is accu-
rately enforced. However, we found that ECMP cannot
be used to accurately enable this because ECMP cannot
control paths explicitly.

5.4 Map-reduce data shuffle with XPath

In Map-reduce applications, many-to-many data shuf-
fle between the map and reduce stages can be time-
consuming. For example, Hadoop traces from Facebook
show that, on average, transferring data between suc-
cessive stages accounts for 33% of the running times of
jobs [12]. Using XPath, we can explicitly express non-
conflict parallel paths to speed up such many-to-many
data shuffle. Usually, for a m-to-n data shuffle, we can
use (m+n) path IDs to express the communication pat-
terns. The shuffle patterns can be predicted using exist-
ing techniques [33].

In this experiment, we selected 18 servers in two pods
of the Fattree to emulate a 9-to-9 data shuffle by letting

40.5 81 121.5 162 202.5 243 283.5 324 364.5 405
0

500

1000

1500

2000

Data size(GB)

S
h
u
ff
le

 t
im

e
 (

s
e
c
o
n
d
s
)

ECMP

XPath

Figure 14: XPath utility case #4: we leverage XPath
to select non-conflict paths to speed up many-to-many
data shuffle.

9 servers in one pod send data to 9 servers in the other
pod. We varied the data volume from 40G to over 400G.
We compared XPath with ECMP.

In Fig. 14, it can be seen that by using XPath for data
shuffle, we can perform considerably better than random-
ized ECMP hash-based routing. More specifically, it re-
duces the shuffle time by over 3× for most of the exper-
iments. The reason is that XPath’s explicit path IDs can
be easily leveraged to arrange non-interfering paths for
shuffling, thus the network bisection bandwidth is fully
utilized for speedup.

6 Related Work

The key to XPath is explicit path control. We note
that many other approaches such as source routing [36],
MPLS [35], OpenFlow [29] and the like, can also enable
explicit path control. However, each of them has its own
limitation.

OpenFlow [29] has been used in many recent pro-
posals (e.g., [5, 8, 21, 22, 26]) to enable explicit path
control. OpenFlow can establish fine-grained explicit
routing path by installing flow entries in the switches
via the OpenFlow controller. But in current practice,
there are still challenges such as small flow table size
and dynamic flow entries setup that need to be solved.
For example, the on-chip OpenFlow forwarding rules in
commodity switches are limited to a small number, typ-
ically 1–4K. To handle this limitation, recent solutions,
e.g. [22], dynamically change, based on traffic demand,
the set of live paths available in the network at different
times through dynamic flow table configurations, which
could potentially introduce non-trivial implementation
overhead and performance degradation. XPath addresses
such challenge by pre-installing all desired paths into IP
LPM tables. In this sense, XPath complements exist-
ing OpenFlow-based solutions in terms of explicit path
control, and in the meanwhile, the OpenFlow framework
may still be able to be used as a way for XPath to pre-
configure the switches and handle failures.

12

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) 27

Source routing is usually implemented in software and
slow paths, and not supported in the hardware of the data
center switches, which typically only support destination
IP based routing. Compared to source routing, XPath
is readily deployable without waiting for new hardware
capability; and XPath’s header length is fixed while it is
variable for source routing with different path lengths.

With MPLS, paths can also be explicitly set up before
data transmission using MPLS labels. However, XPath is
different from MPLS in following aspects. First, because
MPLS labels only have local significance, it requires a
dynamic Label Distribution Protocol (LDP) for label as-
signments. In contrast, XPath path IDs are unique, and
we do not need such a signaling protocol. Second, MPLS
is based on exact matching (EM) and thus MPLS labels
cannot be aggregated, whereas XPath is based on longest
prefix matching (LPM) and enables more efficient rout-
ing table compression. Furthermore, MPLS is typically
used only for traffic engineering in core networks instead
of application-level or flow-level path control. In addi-
tion, it is reported [6, 22] that the number of tunnels that
existing MPLS routers can support is limited.

SPAIN [30] builds a loop-free tree per VLAN and uti-
lizes multiple paths across VLANs between two nodes,
which increases the bisection bandwidth over the tradi-
tional Ethernet STP. However, SPAIN does not scale well
because each host requires an Ethernet table entry per
VLAN. Further, its network scale and path diversity are
also restricted by the number of VLANs supported by
Ethernet switches, e.g., 4096.

PAST [40] implements a per-address spanning tree
routing for data center networks using the MAC table.
PAST supports more spanning trees than SPAIN, but
PAST does not support multi-paths between two servers,
because a destination has only one tree. This is decided
by the MAC table size and its exact matching on flat
MAC addresses.

Both SPAIN and PAST are L2 technologies. Rela-
tive to them, XPath builds on L3 and harnesses the fast-
growing IP LPM table of commodity switches. One rea-
son we choose IP instead of MAC is that it allows prefix
aggregation. It is worth noting that our XPath frame-
work contains both SPAIN and PAST. XPath can express
SPAIN’s VLAN or PAST’s spanning tree using CPF, and
it can also arrange paths using DPF and perform path ID
encoding and prefix aggregation for scalability.

Finally, there are various DCN routing schemes that
come with specific topologies, such as those introduced
in Fattree [4], PortLand [31], BCube [18], VL2 [17],
ALIAS [43], and so on. For example, PortLand [31]
leverages Fattree topology to assign hierarchical Pseudo-
MACs to end hosts, while VL2 [17] exploits folded Clos
network to allocate location-specific IPs to ToRs. These
topology-aware addressing schemes generally benefit

prefix aggregation and can lead to very small routing ta-
bles, however they do not enable explicit path control
and still rely on ECMP [31] or Valiant Load Balanc-
ing (VLB) [17] for traffic spreading over multiple paths.
Relative to them, XPath enables explicit path control for
general DCN topologies.

7 Conclusion

XPath is motivated by the need for explicit path control
in DCN applications. At its very core, XPath uses a path
ID to identify an end-to-end path, and pre-installs all the
desired path IDs between any s-d pairs into IP LPM ta-
bles of commodity switches using a two-step compres-
sion algorithm. Through extensive evaluation and imple-
mentation, we show that XPath is scalable and easy to
implement with existing commodity switches. Finally,
we used testbed experiments to show that XPath can di-
rectly benefit many popular DCN applications.

Acknowledgements

This work was supported by the Hong Kong RGC ECS
26200014 and China 973 Program under Grant No.
2014CB340303. Chang Lan and Hongze Zhao were in-
terns with Microsoft Research Asia when they worked
on this project. We would like to thank our shepherd
George Porter and the anonymous NSDI reviewers for
their feedback and suggestions.

References

[1] Arista 7050QX. http://www.aristanetworks.com/media/
system/pdf/Datasheets/7050QX-32 Datasheet.pdf.

[2] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and
A. Donnelly, “Symbiotic Routing in Future Data Cen-
ters,” in SIGCOMM, 2010.

[3] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S.
Schreiber, “HyperX: Topology, Routing, and Packaging
of Efficient Large-Scale Networks,” in SC, 2009.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A Scalable,
Commodity Data Center Network Architecture,” in ACM
SIGCOMM, 2008.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat, “Hedera: Dynamic Flow Scheduling for
Data Center Networks,” in NSDI, 2010.

[6] D. Applegate and M. Thorup, “Load optimal MPLS rout-
ing with N + M labels,” in INFOCOM, 2003.

[7] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Towards Predictable Datacenter Networks,” in SIG-
COMM, 2011.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang, “Mi-
croTE: Fine Grained Traffic Engineering for Data Cen-
ters,” in CoNEXT, 2010.

13

28 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’15) USENIX Association

[9] I/O Characteristics. http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/ebs-io-characteristics.html.

[10] K. Chen, C. Guo, H. Wu, J. Yuan, Z. Feng, Y. Chen, S. Lu,
and W. Wu, “Generic and Automatic Address Configura-
tion for Data Centers,” in SIGCOMM, 2010.

[11] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu,
Y. Zhang, X. Wen, and Y. Chen, “OSA: An Optical
Switching Architecture for Data Center Networks with
Unprecedented Flexibility,” in NSDI, 2012.

[12] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Sto-
ica, “Managing Data Transfers in Computer Clusters with
Orchestra,” in SIGCOMM’11.

[13] Cisco, “Data center: Load balancing data center ser-
vices,” 2004.

[14] P. T. Darga, K. A. Sakallah, and I. L. Markov, “Faster
Symmetry Discovery using Sparsity of Symmetries,” in
45st DAC, 2008.

[15] Bidirectional Forwarding Detection. http://www.cisco.
com/c/en/us/td/docs/ios/12 0s/feature/guide/fs bfd.html.

[16] R. Draves, C. King, S. Venkatachary, and B. Zill, “Con-
structing optimal IP routing tables,” in INFOCOM, 1999.

[17] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta,
“VL2: A Scalable and Flexible Data Center Network,” in
ACM SIGCOMM, 2009.

[18] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu, “BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers,” in SIGCOMM, 2009.

[19] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun,
W. Wu, and Y. Zhang, “SecondNet: A Data Center Net-
work Virtualization Architecture with Bandwidth Guar-
antees,” in CoNEXT, 2010.

[20] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu,
“DCell: A scalable and fault-tolerant network structure
for data centers,” in SIGCOMM’08.

[21] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis,
P. Sharma, S. Banerjee, and N. McKeown, “ElasticTree:
Saving Energy in Data Center Networks,” in NSDI, 2010.

[22] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utiliza-
tion using software-driven WAN,” in ACM SIGCOMM,
2013.

[23] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algo-
rithm,” RFC 2992, 2000.

[24] Broadcom Strata XGS Trident II. http://www.broadcom.
com.

[25] Provisioned I/O-EBS. https://aws.amazon.com/ebs/
details.

[26] H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz, “zUpdate: Updating Data Center Networks
With Zero Loss,” in ACM SIGCOMM, 2013.

[27] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson,
“F10: A Fault-Tolerant Engineered Network,” in NSDI,
2013.

[28] B. D. McKay, “Practical graph isomorphism,” in Con-
gressus Numerantium, 1981.

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: Enabling innovation in campus networks,” ACM
CCR, 2008.

[30] J. Mudigonda, P. Yalagandula, and J. Mogul, “SPAIN:
COTS Data-Center Ethernet for Multipathing over Arbi-
trary Topologies,” in NSDI, 2010.

[31] R. N. Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vah-
dat, “PortLand: A Scalable Fault-Tolerant Layer 2 Data
Center Network Fabric,” in SIGCOMM, 2009.

[32] NVGRE. http://en.wikipedia.org/wiki/NVGRE.

[33] Y. Peng, K. Chen, G. Wang, W. Bai, Z. Ma, and L. Gu,
“HadoopWatch: A First Step Towards Comprehensive
Traffic Forecasting in Cloud Computing,” in INFOCOM,
2014.

[34] Announcing provisioned IOPS. http://aws.
amazon.com/about-aws/whats-new/2012/07/31/
announcing-provisioned-iops-for-amazon-ebs/.

[35] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol
Label Switching Architecture,” RFC 3031, 2001.

[36] Source Routing. http://en.wikipedia.org/wiki/
Source routing.

[37] Boolean satisfiability problem. http://en.wikipedia.org/
wiki/Boolean satisfiability problem.

[38] J.-Y. Shin, B. Wong, and E. G. Sirer, “Small-World Data-
centers,” in ACM SoCC, 2011.

[39] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jel-
lyfish: Networking Data Centers Randomly,” in NSDI,
2012.

[40] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,
“PAST: Scalable Ethernet for Data Centers,” in CoNEXT,
2012.

[41] Graph vertex coloring. http://en.wikipedia.org/wiki/
Graph coloring.

[42] VXLAN. http://en.wikipedia.org/wiki/Virtual
Extensible LAN.

[43] M. Walraed-Sullivan, R. N. Mysore, M. Tewari, Y. Zhang,
K. Marzullo, and A. Vahdat, “ALIAS: Scalable, Decen-
tralized Label Assignment for Data Centers,” in SoCC,
2011.

[44] X. Wu, D. Turner, G. Chen, D. Maltz, X. Yang, L. Yuan,
and M. Zhang, “NetPilot: Automating Datacenter Net-
work Failure Mitigation,” in SIGCOMM, 2012.

[45] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The Only
Constant is Change: Incorporating Time-Varying Net-
work Reservations in Data Centers,” in SIGCOMM, 2012.

14

