
This paper is included in the Proceedings of the 
11th USENIX Symposium on Networked Systems 

Design and Implementation (NSDI ’14).
April 2–4, 2014 • Seattle, WA, USA

ISBN 978-1-931971-09-6

Open access to the Proceedings of the 
11th USENIX Symposium on 

Networked Systems Design and 
Implementation (NSDI ’14) 

is sponsored by USENIX

High Throughput Data Center Topology Design
Ankit Singla, P. Brighten Godfrey, and Alexandra Kolla, 

University of Illinois at Urbana–Champaign

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/singla



USENIX Association  11th USENIX Symposium on Networked Systems Design and Implementation 29

High Throughput Data Center Topology Design

Ankit Singla, P. Brighten Godfrey, Alexandra Kolla
University of Illinois at Urbana–Champaign

Abstract
With high throughput networks acquiring a crucial role in
supporting data-intensive applications, a variety of data
center network topologies have been proposed to achieve
high capacity at low cost. While this work explores a
large number of design points, even in the limited case
of a network of identical switches, no proposal has been
able to claim any notion of optimality. The case of het-
erogeneous networks, incorporating multiple line-speeds
and port-counts as data centers grow over time, intro-
duces even greater complexity.

In this paper, we present the first non-trivial upper-
bound on network throughput under uniform traffic pat-
terns for any topology with identical switches. We then
show that random graphs achieve throughput surpris-
ingly close to this bound, within a few percent at the scale
of a few thousand servers. Apart from demonstrating that
homogeneous topology design may be reaching its lim-
its, this result also motivates our use of random graphs as
building blocks for design of heterogeneous networks.
Given a heterogeneous pool of network switches, we ex-
plore through experiments and analysis, how the distri-
bution of servers across switches and the interconnec-
tion of switches affect network throughput. We apply
these insights to a real-world heterogeneous data center
topology, VL2, demonstrating as much as 43% higher
throughput with the same equipment.

1 Introduction

Data centers are playing a crucial role in the rise of In-
ternet services and big data. In turn, efficient data center
operations depend on high capacity networks to ensure
that computations are not bottlenecked on communica-
tion. As a result, the problem of designing massive high-
capacity network interconnects has become more impor-
tant than ever. Numerous data center network architec-
tures have been proposed in response to this need [2, 10–
15, 20, 23, 25, 26, 30], exploiting a variety of network
topologies to achieve high throughput, ranging from fat
trees and other Clos networks [2, 13] to modified gener-
alized hypercubes [14] to small world networks [21] and
uniform random graphs [23].

However, while this extensive literature exposes sev-
eral points in the topology design space, even in the lim-

ited case of a network of identical switches, it does not
answer a fundamental question: How far are we from
throughput-optimal topology design? The case of hetero-
geneous networks, i.e., networks composed of switches
or servers with disparate capabilities, introduces even
greater complexity. Heterogeneous network equipment
is, in fact, the common case in the typical data cen-
ter: servers connect to top-of-rack (ToR) switches, which
connect to aggregation switches, which connect to core
switches, with each type of switch possibly having a dif-
ferent number of ports as well some variations in line-
speed. For instance, the ToRs may have both 1 Gbps
and 10 Gbps connections while the rest of the network
may have only 10 Gbps links. Further, as the network
expands over the years and new, more powerful equip-
ment is added to the data center, one can expect more
heterogeneity — each year the number of ports sup-
ported by non-blocking commodity Ethernet switches in-
creases. While line-speed changes are slower, the move
to 10 Gbps and even 40 Gbps is happening now, and
higher line-speeds are expected in the near future.

In spite of heterogeneity being commonplace in data
center networks, very little is known about heteroge-
neous network design. For instance, there is no clarity
on whether the traditional ToR-aggregation-core organi-
zation is superior to a “flatter” network without such a
switch hierarchy; or on whether powerful core switches
should be connected densely together, or spread more
evenly throughout the network.

The goal of this paper is to develop an understand-
ing of how to design high throughput network topolo-
gies at limited cost, even when heterogeneous compo-
nents are involved, and to apply this understanding to im-
prove real-world data center networks. This is nontriv-
ial: Network topology design is hard in general, because
of the combinatorial explosion of the number of possible
networks with size. Consider, for example, the related1

degree-diameter problem [9], a well-known graph the-
ory problem where the quest is to pack the largest pos-
sible number of nodes into a graph while adhering to
constraints on both the degree and the diameter. Non-
trivial optimal solutions are known for a total of only

1Designing for low network diameter is related to designing for high
throughput, because shorter path lengths translate to the network using
less capacity to deliver each packet; see discussion in [23].
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seven combinations of degree and diameter values, and
the largest of these optimal networks has only 50 nodes!
The lack of symmetry that heterogeneity introduces only
makes these design problems more challenging.

To attack this problem, we decompose it into sev-
eral steps which together give a high level understand-
ing of network topology design, and yield benefits to
real-world data center network architectures. First, we
address the case of networks of homogeneous servers
and switches. Second, we study the heterogeneous case,
optimizing the distribution of servers across different
classes of switches, and the pattern of interconnection
of switches. Finally, we apply our understanding to a
deployed data center network topology. Following this
approach, our key results are as follows.

(1) Near-optimal topologies for homogeneous net-
works. We present an upper bound on network through-
put for any topology with identical switches, as a func-
tion of the number of switches and their degree (num-
ber of ports). Although designing optimal topologies is
infeasible, we demonstrate that random graphs achieve
throughput surprisingly close to this bound—within a
few percent at the scale of a few thousand servers for ran-
dom permutation traffic. This is particularly surprising in
light of the much larger gap between bounds and known
graphs in the related degree-diameter problem [9]2.

We caution the reader against over-simplifying this re-
sult to ‘flatter topologies are better’: Not all ‘flat’ or
‘direct-connect’ topologies (where all switches connect
to servers) perform equally. For example, random graphs
have roughly 30% higher throughput than hypercubes
at the scale of 512 nodes, and this gap increases with
scale [16]. Further, the notion of ‘flat’ is not even well-
defined for heterogeneous networks.

(2) High-throughput heterogeneous network design.
We use random graphs as building blocks for heteroge-
neous network design by first optimizing the volume of
connectivity between groups of nodes, and then forming
connections randomly within these volume constraints.
Specifically, we first show empirically that in this frame-
work, for a set of switches with different port counts but
uniform line-speed, attaching servers to switches in pro-
portion to the switch port count is optimal.

Next, we address the interconnection of multiple types
of switches. For tractability, we limit our investigation to
two switch types. Somewhat surprisingly, we find that a
wide range of connectivity arrangements provides nearly
identical throughput. A useful consequence of this re-
sult is that there is significant opportunity for cluster-

2For instance, for degree 5 and diameter 4, the best known graph has
only 50% of the number of nodes in the best known upper bound [27].
Further, this gap grows larger with both degree and diameter.

ing switches to achieve shorter cable lengths on aver-
age, without compromising on throughput. Jellyfish [23]
demonstrated this experimentally. Our results provide
the theoretical underpinnings of such an approach.

Finally, in the case of multiple line-speeds, we show
that complex bottleneck behavior may appear and there
may be multiple configurations of equally high capacity.

(3) Applications to real-world network design. The
topology proposed in VL2 [13] incorporates heteroge-
neous line-speeds and port-counts, and has been de-
ployed in Microsoft’s cloud data centers.3 We show
that using a combination of the above insights, VL2’s
throughput can be improved by as much as 43% at the
scale of a few thousand servers simply by rewiring exist-
ing equipment, with gains increasing with network size.

While a detailed treatment of other related work fol-
lows in §2, the Jellyfish [23] proposal merits attention
here since it is also based on random graphs. Despite this
shared ground, Jellyfish does not address either of the
central questions addressed by our work: (a) How close
to optimal are random graphs for the homogeneous case?
and (b) How do we network heterogeneous equipment
for high throughput? In addition, unlike Jellyfish, by an-
alyzing how network metrics like cut-size, path length,
and utilization impact throughput, we attempt to develop
an understanding of network design.

2 Background and Related Work

High capacity has been a core goal of communication
networks since their inception. How that goal manifests
in network topology, however, has changed with systems
considerations. Wide-area networks are driven by geo-
graphic constraints such as the location of cities and rail-
roads. Perhaps the first high-throughput networks not
driven by geography came in the early 1900s. To inter-
connect telephone lines at a single site such as a tele-
phone exchange, nonblocking switches were developed
which could match inputs to any permutation of out-
puts. Beginning with the basic crossbar switch which
requires Θ(n2) size to interconnect n inputs and outputs,
these designs were optimized to scale to larger size, cul-
minating with the Clos network developed at Bell Labs
in 1953 [8] which constructs a nonblocking interconnect
out of Θ(n logn) constant-size crossbars.

In the 1980s, supercomputer systems began to reach
a scale of parallelism for which the topology connect-
ing compute nodes was critical. Since a packet in a su-
percomputer is often a low-latency memory reference
(as opposed to a relatively heavyweight TCP connec-
tion) traversing nodes with tiny forwarding tables, such

3Based on personal exchange, and mentioned publicly at http://
research.microsoft.com/en-us/um/people/sudipta/.

2



USENIX Association  11th USENIX Symposium on Networked Systems Design and Implementation 31

systems were constrained by the need for very simple,
loss-free and deadlock-free routing. As a result the se-
ries of designs developed through the 1990s have simple
and regular structure, some based on non-blocking Clos
networks and others turning to butterfly, hypercube, 3D
torus, 2D mesh, and other designs [17].

In commodity compute clusters, increasing paral-
lelism, bandwidth-intensive big data applications and
cloud computing have driven a surge in data center net-
work architecture research. An influential 2008 paper of
Al-Fares et al. [2] proposed moving from a traditional
data center design utilizing expensive core and aggrega-
tion switches, to a network built of small components
which nevertheless achieved high throughput — a folded
Clos or “fat-tree” network. This work was followed
by several related designs including Portland [20] and
VL2 [13], a design based on small-world networks [21],
designs using servers for forwarding [14, 15, 29], and
designs incorporating optical switches [12, 26].

Jellyfish [23] demonstrated, however, that Clos net-
works are sub-optimal. In particular, [23] constructed a
random degree-bounded graph among switch-to-switch
links, and showed roughly 25% greater throughput than
a fat-tree built with the same switch equipment. In ad-
dition, [23] showed quantitatively that random networks
are easier to incrementally expand — adding equipment
simply involves a few random link swaps. Several chal-
lenges arise with building a completely unstructured net-
work; [23] demonstrated effective routing and conges-
tion control mechanisms, and showed that cable opti-
mizations for random graphs can make cable costs simi-
lar to an optimized fat-tree while still obtaining substan-
tially higher throughput than a fat-tree.

While the literature on homogeneous network design
is sizeable, very little is known about heterogeneous
topology design, perhaps because earlier supercomputer
topologies (which reappeared in many recent data cen-
ter proposals) were generally constrained to be homo-
geneous. VL2 [13] provides a point design, using mul-
tiple line-speeds and port counts at different layers of
its hierarchy; we compare with VL2 later (§7). The
only two other proposals that address heterogeneity are
LEGUP [11] and REWIRE [10]. LEGUP uses an opti-
mization framework to search for the cheapest Clos net-
work achieving desired network performance. Being re-
stricted to Clos networks impairs LEGUP greatly: Jel-
lyfish achieves the same network expansion as LEGUP
at 60% lower cost [23]. REWIRE removes this restric-
tion by using a local-search optimization (over a period
of several days of compute time at the scale of 3200
servers) to continually improve upon an initial feasible
network. REWIRE’s code is not available so a compar-
ison has not been possible. But more fundamentally, all
of the above approaches are either point designs [13] or

heuristics [10, 11] which by their blackbox nature, pro-
vide neither an understanding of the solution space, nor
any evidence of near-optimality.

3 Simulation Methodology

Our experiments measure the capacity of network
topologies. For most of this paper, our goal is to study
topologies explicitly independent of systems-level is-
sues such as routing and congestion control. Thus, we
model network traffic using fluid splittable flows which
are routed optimally. Throughput is then the solution
to the standard maximum concurrent multi-commodity
flow problem [18]. Note that by maximizing the min-
imum flow throughput, this model incorporates a strict
definition of fairness. We use the CPLEX linear program
solver [1] to obtain the maximum flow. Unless otherwise
specified, the workload we use is a random permutation
traffic matrix, where each server sends traffic to (and re-
ceives traffic from) exactly one other server.

In §8, we revisit these assumptions to address systems
concerns. We include results for several other traffic ma-
trices besides permutations. We also show that through-
put within a few percent of the optimal flow values from
CPLEX can be achieved after accounting for packet-
level routing and congestion control inefficiencies.

Any comparisons between networks are made using
identical switching equipment, unless noted otherwise.

Across all experiments, we test a wide range of param-
eters, varying the network size, node degree, and over-
subscription. A representative sample of results is in-
cluded here. Most experiments average results across 20
runs, with standard deviations in throughput being ∼1%
of the mean except at small values of throughput in the
uninteresting cases. Exceptions are noted in the text.

Our simulation tools are publicly available [24].

4 Homogeneous Topology Design

In this setting, we have N switches, each with k ports.
The network is required to support S servers. The sym-
metry of the problem suggests that each switch be con-
nected to the same number of servers. (We assume for
convenience that S is divisible by N.) Intuitively, spread-
ing servers across switches in a manner that deviates
from uniformity will create bottlenecks at the switches
with larger numbers of servers. Thus, we assume that
each switch uses out of its k ports, r ports to connect to
other switches, and k− r ports for servers. It is also as-
sumed that each network edge is of unit capacity.

The design space for such networks is the set of all
subgraphs H of the complete graph over N nodes KN ,
such that H has degree r. For generic, application-
oblivious design, we assume that the objective is to max-
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Figure 1: Random graphs versus the bounds: (a) Throughput
and (b) average shortest path length (ASPL) in random regular
graphs compared to the respective upper and lower bounds for
any graph of the same size and degree. The number of switches
is fixed to 40 throughout. The network becomes denser right-
ward on the x-axis as the degree increases.

imize throughput under a uniform traffic matrix such
as all-to-all traffic or random permutation traffic among
servers. To account for fairness, the network’s through-
put is defined as the maximum value of the minimum
flow between source-destination pairs. We denote such a
throughput measurement of an r-regular subgraph H of
KN under uniform traffic with f flows by TH(N,r, f ). The
average path length of the network is denoted by 〈D〉.

For this scenario, we prove a simple upper bound on
the throughput achievable by any hypothetical network.

Theorem 1. TH(N,r, f )≤ Nr
〈D〉 f .

Proof. The network has a total of Nr edges (counting
both directions) of unit capacity, for a total capacity of
Nr. A flow i whose end points are a shortest path distance
di apart, consumes at least xidi units of capacity in to ob-
tain throughput xi. Thus, the total capacity consumed by
all flows is at least ∑

i
xidi. Given that we defined network

throughput TH(N,r, f ) as the minimum flow throughput,
∀i,xi ≥ TH(N,r, f ). Total capacity consumed is then at
least TH(N,r, f )∑

i
di. For uniform traffic patterns such as

random permutations and all-to-all traffic, ∑
i

di = 〈D〉 f

because the average source-destination distance is the
same as the graph’s average shortest path distance. Also,
total capacity consumed cannot exceed the network’s ca-
pacity. Therefore, 〈D〉 f TH(N,r, f ) ≤ Nr, rearranging
which yields the result.
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Figure 2: Random graphs versus the bounds: (a) Throughput
and (b) average shortest path length (ASPL) in random regular
graphs compared to the respective upper and lower bounds for
any graph of the same size and degree. The degree is fixed to
10 throughout. The network becomes sparser rightward on the
x-axis as the number of nodes increases.

Further, [7] proves a lower bound on the average short-
est path length of any r-regular network of size N:

〈D〉 ≥ d∗ =

k−1

∑
j=1

jr(r−1) j−1 + kR

N −1

where R = N −1−
k−1

∑
j=1

r(r−1) j−1 ≥ 0

and k is the largest integer such that the inequality holds.
This result, together with Theorem 1, yields an up-

per bound on throughput: TH(N,r, f ) ≤ Nr
f d∗ . Next, we

show experimentally that random regular graphs achieve
throughput close to this bound.

A random regular graph, denoted as RRG(N, k, r), is
a graph sampled uniform-randomly from the space of all
r-regular graphs. This is a well-known construct in graph
theory. As Jellyfish [23] showed, RRGs compare favor-
ably against traditional fat-tree topologies, supporting a
larger number of servers at full throughput. However,
that fact leaves open the possibility that there are network
topologies that achieve significantly higher throughput
than even RRGs. Through experiments, we compare the
throughput RRGs achieve to the upper bound we derived
above, and find that our results eliminate this possibility.

Fig. 1(a) and Fig. 2(a) compare throughput achieved
by RRGs to the upper bound on throughput for any topol-
ogy built with the same equipment. Fig. 1(a) shows this
comparison for networks of increasing density (i.e., the
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Figure 3: ASPL in random graphs compared to the lower
bound. The degree is fixed to 4 throughout. The bound shows
a “curved step” behavior. In addition, as the network size in-
creases, the ratio of observed ASPL to the lower bound ap-
proaches 1. The x-tics correspond to the points where the
bound begins new distance levels.

degree r increases, while the number of nodes N remains
fixed at 40) for 3 uniform traffic matrices: a random per-
mutation among servers with 5 servers at each switch,
another with 10 servers at each switch, and an all-to-all
traffic matrix. For the high-density traffic pattern, i.e.,
all-to-all traffic, exact optimal throughput is achieved by
the random graph for degree r ≥ 13. Fig. 2(a) shows a
similar comparison for increasing size N, with r = 10.
Our simulator does not scale for all-to-all traffic be-
cause the number of commodities in the flow problem
increases as the square of the network size for this pat-
tern. Fig. 1(b) and 2(b) compare average shortest path
length in RRGs to its lower bound. For both large net-
work sizes, and very high network density, RRGs are sur-
prisingly close to the bounds (right side of both figures).

The curve in Fig. 2(b) has two interesting features.
First, there is a “curved step” behavior, with the first step
at network size up to N = 101, and the second step be-
ginning thereafter. To see why this occurs, observe that
the bound uses a tree-view of distances from any node
— for a network with degree d, d nodes are assumed to
be at distance 1, d(d −1) at distance 2, d(d −1)2 at dis-
tance 3, etc. While this structure minimizes path lengths,
it is optimistic — in general, not all edges from nodes at
distance k can lead outward to unique new nodes4. As
the number of nodes N increases, at some point the low-
est level of this hypothetical tree becomes full, and a new
level begins. These new nodes are more distant, so aver-
age path length suddenly increases more rapidly, corre-
sponding to a new “step” in the bound. A second feature
is that as N →∞, the ratio of observed ASPL to the lower
bound approaches 1. This can be shown analytically by
dividing an upper bound on the random regular graph’s
diameter [6] (which also upper-bounds its ASPL) by the
lower bound of [7]. For greater clarity, we show in Fig. 3
similar behavior for degree d = 4, which makes it easier
to show many “steps”.

4In fact, prior work shows that graphs with this structure do not
exist for d ≥ 3 and diameter D ≥ 3 [19].

The near-optimality of random graphs demonstrated
here leads us to use them as a building block for the more
complicated case of heterogeneous topology design.

5 Heterogeneous Topology Design

With the possible exception of a scenario where a new
data center is being built from scratch, it is unreasonable
to expect deployments to have the same, homogeneous
networking equipment. Even in the ‘greenfield’ set-
ting, networks may potentially use heterogeneous equip-
ment. While our results above show that random graphs
achieve close to the best possible throughput in the ho-
mogeneous network design setting, we are unable, at
present, to make a similar claim for heterogeneous net-
works, where node degrees and line-speeds may be dif-
ferent. However, in this section, we present for this
setting, interesting experimental results which challenge
traditional topology design assumptions. Our discussion
here is mostly limited to the scenario where there are two
kinds of switches in the network; generalizing our results
for higher diversity is left to future work.

5.1 Heterogeneous Port Counts
We consider a simple scenario where the network is
composed of two types of switches with different port
counts (line-speeds being uniform throughout). Two nat-
ural questions arise that we shall explore here: (a) How
should we distribute servers across the two switch types
to maximize throughput? (b) Does biasing the topology
in favor of more connectivity between larger switches in-
crease throughput?

First, we shall assume that the interconnection is an
unbiased random graph built over the remaining con-
nectivity at the switches after we distribute the servers.
Later, we shall fix the server distribution but bias the ran-
dom graph’s construction. Finally we will examine the
combined effect of varying both parameters at once.

Distributing servers across switches: We vary the
numbers of servers apportioned to large and small
switches, while keeping the total number of servers and
switches the same5. We then build a random graph over
the ports that remain unused after attaching the servers.
We repeat this exercise for several parameter settings,
varying the numbers of switches, ports, and servers. A
representative sample of results is shown in Fig. 4. The
particular configuration in Fig. 4(a) uses 20 larger and 40
smaller switches, with the port counts for the three curves
in the figure being 30 and 10 (3:1), 30 and 15 (2:1), and
30 and 20 (3:2) respectively. Fig. 4(b) uses 20 larger
switches (30 ports) and 20, 30 and 40 smaller switches

5Clearly, across the same type of switches, a non-uniform server-
distribution will cause bottlenecks and sub-optimal throughput.
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Figure 4: Distributing servers across switches: Peak throughput is achieved when servers are distributed proportionally to port
counts i.e., x-axis=1, regardless of (a) the absolute port counts of switches; (b) the absolute counts of switches of each type; and
(c) oversubscription in the network.
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Figure 5: Distributing servers across switches: Switches have
port-counts distributed in a power-law distribution. Servers
are distributed in proportion to the β th power of switch port-
count. Distributing servers in proportion to degree (β = 1) is
still among the optimal configurations.

(20 ports) respectively for its three curves. Fig. 4(c)
uses the same switching equipment throughout: 20 larger
switches (30 ports) and 30 smaller switches (20 ports),
with 480, 510, and 540 servers attached to the network.
Along the x-axis in each figure, the number of servers
apportioned to the larger switches increases. The x-axis
label normalizes this number to the expected number of
servers that would be apportioned to large switches if
servers were spread randomly across all the ports in the
network. As the results show, distributing servers in pro-
portion to switch degrees (i.e., x-axis= 1) is optimal.

This result, while simple, is remarkable in the light
of current topology design practices, where top-of-rack
switches are the only ones connected directly to servers.

Next, we conduct an experiment with a diverse set
of switch types, rather than just two. We use a set of
switches such that their port-counts ki follow a power law
distribution. We attach servers at each switch i in pro-
portion to kβ

i , using the remaining ports for the network.
The total number of servers is kept constant as we test
various values of β . (Appropriate distribution of servers
is applied by rounding where necessary to achieve this.)
β = 0 implies that each switch gets the same number of
servers regardless of port count, while β = 1 is the same
as port-count-proportional distribution, which was opti-
mal in the previous experiment. The results are shown in

Fig. 5. β = 1 is optimal (within the variance in our data),
but so are other values of β such as 1.2 and 1.4. The
variation in throughput is large at both extremes of the
plot, with the standard deviation being as much as 10%
of the mean, while for β ∈ {1,1.2,1.4} it is < 4%.

Switch interconnection: We repeat experiments sim-
ilar to the above, but instead of using a uniform ran-
dom network construction, we vary the number of con-
nections across the two clusters of (large and small)
switches6. The distribution of servers is fixed through-
out to be in proportion to the port counts of the switches.

As Fig. 6 shows, throughput is surprisingly stable
across a wide range of volumes of cross-cluster connec-
tivity. x-axis = 1 represents the topology with no bias
in construction, i.e., vanilla randomness; x < 1 means
the topology is built with fewer cross-cluster connec-
tions than expected with vanilla randomness, etc. Re-
gardless of the absolute values of the parameters, when
the interconnect has too few connections across the two
clusters, throughput drops significantly. This is perhaps
unsurprising – as our experiments in §6.1 will confirm,
the cut across the two clusters is the limiting factor for
throughput in this regime. What is surprising, however,
is that across a wide range of cross-cluster connectivity,
throughput remains stable at its peak value. Our theoret-
ical analysis in §6.2 will address this behavior.

Combined effect: The above results leave open the pos-
sibility that joint optimization across the two parameters
(server placement and switch connectivity pattern) can
yield better results. Thus, we experimented with varying
both parameters simultaneously as well. Two representa-
tive results from such experiments are included here. All
the data points in Fig. 7(a) use the same switching equip-
ment and the same number of servers. Fig. 7(b), likewise,
uses a different set of equipment. Each curve in these
figures represents a particular distribution of servers. For
instance, ‘16H, 2L’ has 16 servers attached to each larger

6Note that specifying connectivity across the clusters automatically
restricts the remaining connectivity to be within each cluster.
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Figure 6: Interconnecting switches: Peak throughput is stable to a wide range of cross-cluster connectivity, regardless of (a) the
absolute port counts of switches; (b) the absolute counts of switches of each type; and (c) oversubscription in the network.
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Figure 7: Combined effect of server distribution and cross-
cluster connectivity: Multiple configurations are optimal, but
proportional server distribution with a vanilla random inter-
connect is among them. (a) 20 large, 40 small switches, with
30 and 10 ports respectively. (b) 20 large, 40 small switches,
with 30 and 20 ports respectively. Results from 10 runs.

switch and 2 to each of the smaller ones. On the x-
axis, we again vary the cross-cluster connectivity (as in
Fig. 6(a)). As the results show, while there are indeed
multiple parameter values which achieve peak through-
put, a combination of distributing servers proportionally
(corresponding to ‘12H, 4L’ and ‘14H, 7L’ respectively
in the two figures) and using a vanilla random intercon-
nect is among the optimal solutions. Large deviations
from these parameter settings lead to lower throughput.

5.2 Heterogeneous Line-speeds

Data center switches often have ports of different line-
speeds, e.g., tens of 1GbE ports, with a few 10GbE ports.
How does this change the above analysis change?

To answer this question, we modify our scenario such
that the small switches still have only low line-speed
ports, while the larger switches have both low line-speed
ports and high line-speed ports. The high line-speed
ports are assumed to connect only to other high line-
speed ports. We vary both the server distribution and
the cross-cluster connectivity and evaluate these config-
urations for throughput. As the results in Fig. 8(a) in-
dicate, the picture is not as clear as before, with mul-
tiple configurations having nearly the same throughput.
Each curve corresponds to one particular distribution of
servers across switches. For instance, ‘36H, 7L’ has 36
servers attached to each large switch, and 7 servers at-
tached to each small switch. The total number of servers
across all curves is constant. While we are unable to
make clear qualitative claims of the nature we made for
scenarios with uniform line-speed, our simulation tool
can be used to determine the optimal configuration for
such scenarios.

We also investigate the impact of the number and
the line-speed of the high line-speed ports on the large
switches. For these tests, we fix the server distribu-
tion, and vary cross-cluster connectivity. We measure
throughput for various ‘high’ line-speeds (Fig. 8(b)) and
numbers of high line-speed links (Fig. 8(c)). While
higher number or line-speed does increase throughput,
its impact diminishes when cross-cluster connectivity is
too small. This is expected: as the bottlenecks move to
the cross-cluster edges, having high capacity between the
large switches does not increase the minimum flow.

In the following, we attempt to add more than just the
intuition for our results. We seek to explain throughput
behavior by analyzing factors such as bottlenecks, total
network utilization, shortest path lengths between nodes,
and the path lengths actually used by the network flows.

6 Explaining Throughput Results

We investigate the cause of several of the throughput ef-
fects we observed in the previous section. First, in §6.1,

7
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Figure 8: Throughput variations with the amount of cross-cluster connectivity: (a) various server distributions for a network with
20 large and 20 small switches, with 40 and 15 low line-speed ports respectively, with the large switches having 3 additional 10×
capacity connections; (b) with different line-speeds for the high-speed links keeping their count fixed at 6 per large switch; and (c)
with different numbers of the high-speed links at the big switches, keeping their line-speed fixed at 4 units.

we break down throughput into component factors —
network utilization, shortest path length, and “stretch”
in paths — and show that the majority of the through-
put changes are a result of changes in utilization, though
for the case of varying server placement, path lengths are
a contributing factor. Note that a decrease in utilization
corresponds to a saturated bottleneck in the network.

Second, in §6.2, we explain in detail the surprisingly
stable throughput observed over a wide range of amounts
of connectivity between low- and high-degree switches.
We give an upper bound on throughput, show that it is
empirically quite accurate in the case of uniform line-
speeds, and give a lower bound that matches within a
constant factor for a restricted class of graphs. We show
that throughput in this setting is well-described by two
regimes: (1) one where throughput is limited by a sparse
cut, and (2) a “plateau” where throughput depends on
two topological properties: total volume of connectiv-
ity and average path length 〈D〉. The transition between
the regimes occurs when the sparsest cut has a fraction
Θ(1/〈D〉) of the network’s total connectivity.

Note that bisection bandwidth, a commonly-used mea-
sure of network capacity which is equivalent to the spars-
est cut in this case, begins falling as soon as the cut be-
tween two equal-sized groups of switches has less than 1

2
the network connectivity. Thus, our results demonstrate
(among other things) that bisection bandwidth is not a
good measure of performance7, since it begins falling
asymptotically far away from the true point at which
throughput begins to drop.

6.1 Experiments

Throughput can be exactly decomposed as the product of
four factors:

T =
C ·U

〈D〉 ·AS
=C ·U · 1

〈D〉 ·
1

AS

7This result is explored further in followup work [16], where we
point out problems with bisection bandwidth as a performance metric.

where C is the total network capacity, U is the average
link utilization, 〈D〉 is the average shortest path length,
and AS is the average stretch, i.e., the ratio between av-
erage length of routed flow paths8 and 〈D〉. Throughput
may change due to any one of these factors. For example,
even if utilization is 100%, throughput could improve
if rewiring links reduces path length (this explained the
random graph’s improvement over the fat-tree in [23]).
On the other hand, even with very low 〈D〉, utilization
and therefore throughput will fall if there is a bottleneck
in the network.

We investigate how each of these factors influences
throughput (excluding C which is fixed). Fig. 9 shows
throughput (T ), utilization (U), inverse shortest path
length (1/〈D〉), and inverse stretch (1/AS). An increase
in any of these quantities increases throughput. To ease
visualization, for each metric, we normalize its value
with respect to its value when the throughput is highest
so that quantities are unitless and easy to compare.

Across experiments, our results (Fig. 9) show that
high utilization best explains high throughput. Fig. 9(a)
analyzes the throughput results for ‘480 Servers’ from
Fig. 4(c), Fig. 9(b) corresponds to ‘500 Servers’ in
Fig. 6(c), and Fig. 9(c) to ‘3 H-links’ in Fig. 8(c). Note
that it is not obvious that this should be the case: Net-
work utilization would also be high if the flows took long
paths and used capacity wastefully. At the same time,
one could reasonably expect ‘Inverse Stretch’ to also cor-
relate with throughput well — if the paths used are close
to shortest, then the flows are not wasting capacity. Path
lengths do play a role — for example, the right end of
Fig. 9(a) shows an increase in path lengths, explaining
why throughput falls about 25% more than utilization
falls — but the role is less prominent than utilization.

Given the above result on utilization, we examined
where in the network the corresponding bottlenecks oc-
cur. From our linear program solver, we are able to
obtain the link utilization for each network link. We

8This average is weighted by amount of flow along each route.
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averaged link utilization for each link type in a given
network and flow scenario i.e., computing average uti-
lization across links between small and large switches,
links between small switches only, etc. The movement
of under-utilized links and bottlenecks shows clear cor-
respondence to our throughput results. For instance, for
Fig. 6(c), as we move leftward along the x-axis, the num-
ber of links across the clusters decreases, and we can
expect bottlenecks to manifest at these links. This is ex-
actly what the results show. For example, for the leftmost
point (x = 1.67, y = 1.67) on the ‘500 Servers’ curve in
Fig. 6(c), links inside the large switch cluster are on aver-
age < 20% utilized while the links between across clus-
ters are close to fully utilized (> 90% on average). On
the other hand, for the points with higher throughput, like
(x = 1, y = 0.49), all network links show uniformly high
utilization (∼100%). Similar observations hold across
all our experiments.

6.2 Analysis

Fig. 6 shows a surprising result: network throughput is
stable at its peak value for a wide range of cross-cluster
connectivity. In this section, we provide upper and lower
bounds on throughput to explain the result. Our upper
bound is empirically quite close to the observed through-
put in the case of networks with uniform line-speed. Our
lower bound applies to a simplified network model and
matches the upper bound within a constant factor. This
analysis allows us to identify the point (i.e., amount of
cross-cluster connectivity) where throughput begins to
drop, so that our topologies can avoid this regime, while
allowing flexibility in the interconnect.

Upper-bounding throughput. We will assume the
network is composed of two “clusters”, which are sim-
ply arbitrary sets of switches, with n1 and n2 attached
servers respectively. Let C be the sum of the capaci-
ties of all links in the network (counting each direction
separately), and let C̄ be that of the links crossing the
clusters. To simplify this exposition, we will assume
the number of flows crossing between clusters is ex-
actly the expected number for random permutation traf-
fic: n1

n2
n1+n2

+ n2
n1

n1+n2
= 2n1n2

n1+n2
. Without this assump-

tion, the bounds hold for random permutation traffic with
an asymptotically insignificant additive error.

Our upper bound has two components. First, recall our
path-length-based bound from §4 shows the throughput
of the minimal-throughput flow is T ≤ C

〈D〉 f where 〈D〉 is
the average shortest path length and f is the number of
flows. For random permutation traffic, f = n1 +n2.

Second, we employ a cut-based bound. The cross-
cluster flow is ≥ T 2n1n2

n1+n2
. This flow is bounded above

by the capacity C̄ of the cut that separates the clusters, so
we must have T ≤ C̄ n1+n2

2n1n2
.
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Figure 10: Our analytical throughput bound from Eqn. 1 is
close to the observed throughput for the uniform line-speed sce-
nario (a) for which the bound and the corresponding through-
put are shown for two representative configurations A and B,
but can be quite loose with non-uniform line-speeds (b).

Combining the above two upper bounds, we have

T ≤ min
{

C
〈D〉(n1 +n2)

,
C̄(n1 +n2)

2n1n2

}
(1)

Fig. 10 compares this bound to the actual observed
throughput for two cases with uniform line-speed
(Fig. 10(a)) and a few cases with mixed line-speeds
(Fig. 10(b)). The bound is quite close for the uni-
form line-speed setting, both for the cases presented here
and several other experiments we conducted, but can be
looser for mixed line-speeds.

The above throughput bound begins to drop when the
cut-bound begins to dominate. In the special case that
the two clusters have equal size, this point occurs when

C̄ ≤ C
2〈D〉 . (2)

A drop in throughput when the cut capacity is in-
versely proportional to average shortest path length has
an intuitive explanation. In a random graph, most flows
have many shortest or nearly-shortest paths. Some flows
might cross the cluster boundary once, others might cross
back and forth many times. In a uniform-random graph
with large C̄, near-optimal flow routing is possible with
any of these route choices. As C̄ diminishes, this flexi-
bility means we can place some restriction on the choice
of routes without impacting the flow. However, the flows

9
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Figure 9: The dependence of throughput on all three relevant factors: inverse path length, inverse stretch, and utilization. Across
experiments, total utilization best explains throughput, indicating that bottlenecks govern throughput.

which cross clusters must still utilize at least one cross-
cluster hop, which is on average a fraction 1/〈D〉 of their
hops. Therefore in expectation, since 1

2 of all (random-
permutation) flows cross clusters, at least a fraction 1

2〈D〉
of the total traffic volume will be cross-cluster. We
should therefore expect throughout to diminish once less
than this fraction of the total capacity is available across
the cut, which recovers the bound of Equation 2.

However, while Equation 2 determines when the up-
per bound on throughput drops, it does not bound the
point at which observed throughput drops: since the up-
per bound might be loose, throughput may drop earlier
or later. However, given a peak throughput value, we can
construct a bound based on it. Say the peak throughput
in a configuration is T ∗. T ∗ ≤ C̄ n1+n2

2n1n2
implies throughput

must drop below T ∗ when C̄ is less than C∗ := T ∗ 2n1n2
n1+n2

.
If we are able to empirically estimate T ∗ (which is not
unreasonable, given its stability), we can determine the
value of C̄∗ below which throughput must drop.

Fig. 11 has 18 different configurations with two clus-
ters with increasing cross-cluster connectivity (equiva-
lently, C̄). The one point marked on each curve cor-
responds to the C̄∗ threshold calculated above. As pre-
dicted, below C̄∗, throughput is less than its peak value.

Lower-bounding throughput. For a restricted class of
random graphs, we can lower-bound throughput as well,
and thus show that our throughput bound (Eqn. 1), and
the drop point of Eqn. 2, are tight within constant factors.

We restrict this analysis to networks G = (V,E) with
n nodes each with constant degree d. All links have unit
capacity in each direction. The vertices V are grouped
into two equal size clusters V1,V2, i.e., |V1| = |V2| = 1

2 n.
Let p,n be such that each node has pn neighbors within
its cluster and qn neighbors in the other cluster, so that
p+q = d/n = Θ(1/n). Under this constraint, we choose
the remaining graph from the uniform distribution on
all d-regular graphs. Thus, for each of the graphs un-
der consideration, the total inter-cluster connectivity is
C̄ = 2q · |V1| · |V2| = q · n2

2 . Decreasing q corresponds to
decreasing the cross-cluster connectivity and increasing
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Figure 11: Throughput shows a characteristics profile with
respect to varying levels of cross-cluster connectivity. The one
point marked on each curve indicates our analyticallly de-
termined threshold of cross-cluster connectivity below which
throughput must be smaller than its peak value.

the connectivity within each cluster. Our result below
holds with high probability (w.h.p.) over the random
choice of the graph. Let T (q) be the throughput with
the given value of q, and let T ∗ be the throughput when
p = q (which will also be the maximum throughput).

Our main result is the following theorem, which ex-
plains the throughput results by proving that while q ≥
q∗, for some value q∗ that we determine, the throughput
T (q) is within a constant factor of T ∗. Further, when
q < q∗, T (q) decreases roughly linearly with q. We refer
the reader to our technical report [22] for the proof.

Theorem 2. There exist constants c1,c2 such that if q∗ =
c1

1
〈D〉 p, then for q ≥ q∗ w.h.p. T (q)≥ c2T ∗. For q < q∗,

T (q) = Θ(q).

7 Improving VL2

In this section, we apply the lessons learned from our
experiments and analysis to improve upon a real world
topology. Our case study uses the VL2 [13] topology
deployed in Microsoft’s data centers. VL2 incorporates
heterogeneous line-speeds and port-counts and thus pro-
vides a good opportunity for us to test our design ideas.

VL2 Background: VL2 [13] uses three types of
switches: top-of-racks (ToRs), aggregation switches, and

10
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Figure 12: Improving VL2: (a) The number of servers our topology supports in comparison to VL2 by rewiring the same equip-
ment; (b) Throughput under various chunky traffic patterns; and (c) The number of servers our topology can support in comparison
to VL2 when we require it to achieve full throughput for all-to-all traffic, permutation traffic, and chunky traffic.

core switches. Each ToR is connected to 20 1GbE
servers, and has 2 10GbE uplinks to different aggregation
switches. The rest of the topology is a full bipartite inter-
connection between the core and aggregation switches.
If aggregation switches have DA ports each, and core
switches have DI ports each, then such a topology sup-
ports DA.DI

4 ToRs at full throughput.

Rewiring VL2: As results in §5.1 indicate, connecting
ToRs to only aggregation switches, instead of distribut-
ing their connectivity across all switches is sub-optimal.
Further, the results on the optimality of random graphs in
§4 imply further gains from using randomness in the in-
terconnect as opposed to VL2’s complete bipartite inter-
connect. In line with these observations, our experiments
show significant gains obtained by modifying VL2.

In modifying VL2, we distribute the ToRs over aggre-
gation and core switches in proportion to their degrees.
We connect the remaining ports uniform randomly. To
measure our improvement, we calculate the number of
ToRs our topology can support at full throughput com-
pared to VL2. By ‘supporting at full throughput’, we
mean observing full 1 Gbps throughput for each flow
in random permutation traffic across each of 20 runs.
We obtain the largest number of ToRs supported at full
throughput by doing a binary search. As Fig. 12(a)
shows, we gain as much as a 43% improvement in the
number of ToRs (equivalently, servers) supported at full
throughput at the largest size. Note that the largest size
we evaluated is fairly small – 2,400 servers for VL2 –
and our improvement increases with the network’s size.

8 In Practice

In this section, we address two practical concerns: (a)
performance with a more diverse set of traffic matri-
ces beyond the random permutations we have used so
far; and (b) translating the flow model to packet-level
throughput without changing the results significantly.

8.1 Other Traffic Matrices

We evaluate the throughput of our VL2-like topology
under other traffic matrices besides random permuta-
tions. For these experiments, we use the topologies cor-
responding to the ‘28 Agg Switches (DI=28)’ curve in
Fig. 12(a). (Thus, by design, the throughput for ran-
dom permutations is expected, and verified, to be 1.)
In addition to the random permutation, we test the fol-
lowing other traffic matrices: (a) All-to-all: where each
server communicates with every other server; and (b) x%
Chunky: where each of x% of the network’s ToRs sends
all of its traffic to one other ToR in this set (i.e., a ToR-
level permutation), while the remaining (100−x)% ToRs
are engaged in a server-level random permutation work-
load among themselves.

Our experiments showed that using the network to in-
terconnect the same number of servers as in our earlier
tests with random permutation traffic, full throughput is
still achieved for all but the chunky traffic pattern. In
Fig. 12(b), we present results for 5 chunky patterns. Ex-
cept when a majority of the network is engaged in the
chunky pattern, throughput is within a few percent of
full throughput. We note that 100% Chunky is a hard
to route traffic pattern which is easy to avoid. Even as-
signing applications to servers randomly will ensure that
the probability of such a pattern is near-zero.

Even so, we repeat the experiment from Fig. 12(a)
where we had measured the number of servers our mod-
ified topology supports at full throughput under random
permutations. In this instance, we require our topology
to support full throughput under the 100% Chunky traffic
pattern. The results in Fig. 12(c) show that the gains are
smaller, but still significant, 22% at the largest size, and
increasing with size. It is also noteworthy that all-to-all
traffic is easier to route than both the other workloads.

8.2 From Flows to Packets

Following the method used by Jellyfish [23], we use
Multipath TCP (MPTCP [28]) in a packet level simu-
lation to test if the throughput of our modified VL2-like
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Figure 13: Packet level simulations of random permutation
traffic over our topology show that throughput within a few per-
cent of the optimal flow-level throughput can be achieved using
MPTCP over the shortest paths.

topology is similar to what flow simulations yield. We
use MPTCP with the shortest paths, using as many as
8 MPTCP subflows. The results in Fig. 13 show that
throughput within a few percent (6% gap at the largest
size) of the flow-level simulations is achievable. Note
that we deliberately oversubscribed the topologies so that
the flow value was close to, but less than 1. This makes
sure that we measure the gap between the flow and packet
models accurately — if the topology is overprovisioned,
then even inefficient routing and congestion control may
possibly yield close to full throughput.

9 Discussion

Why these traffic matrices? In line with the design ob-
jective of hosting arbitrary applications at high through-
put, the approach we have taken is to study difficult traf-
fic matrices, rather than TMs specific to particular envi-
ronments. We show in [16] that an all-to-all workload
bounds performance under any workload within a factor
of 2. As such, testing this TM is more useful than any
other specific, arbitrary choice. In addition, we evalu-
ate other traffic matrices which are even harder to route
(Fig. 12(c)). Further, our code is available [24], and is
easy to augment with arbitrary traffic patterns to test.

What about latency? We include a rigorous analysis of
latency in terms of path length (Fig. 1(b), 2(b)), showing
that average shortest path lengths are close to optimal in
random graphs. Further, Jellyfish [23] showed that even
worst-case path length (diameter) in random graphs is
smaller than or similar to that in fat-trees. Beyond path
length, latency depends on the transport protocol’s ability
to keep queues small. In this regard, we note that tech-
niques being developed for low latency transport (such
as DCTCP [3], HULL [4], pFabric [5]) are topology ag-
nostic.

But randomness?! ‘Random’ � ‘inconsistent perfor-
mance’: the standard deviations in throughput are ∼1%

of the mean (and even smaller for path length). Also,
by ‘maximizing the minimum flow’ to measure through-
put, we impose a strict definition of fairness, eliminat-
ing the possibility of randomness skewing results across
flows. Further, Jellyfish [23] showed that random graphs
achieve flow-fairness comparable to fat-trees under a
practical routing scheme. Simple and effective physical
cabling methods were also shown in [23].

Limitations: While we have presented here founda-
tional results on the design of both homogeneous and
heterogeneous topologies, many interesting problems
remain unresolved, including: (a) a non-trivial upper
bound on the throughput of heterogeneous networks; (b)
theoretical support for our §5.1 result on server distribu-
tion; and (c) generalizing our results to arbitrarily diverse
networks with multiple switch types.

Lastly, we note that this work does not incorporate
functional constraints such as those imposed by middle-
boxes, for instance, in its treatment of topology design.

10 Conclusion

Our result on the near-optimality of random graphs for
homogeneous network design implies that homogeneous
topology design may be reaching its limits, particularly
when uniformly high throughput is desirable. The re-
search community should perhaps focus its efforts on
other aspects of the problem, such as joint optimization
with cabling, or topology design for specific traffic pat-
terns (or bringing to practice research proposals on the
use of wireless and/or optics for flexible networks that
adjust to traffic patterns), or improvements to heteroge-
neous network design beyond ours.

Our work also presents the first systematic approach to
the design of heterogeneous networks, allowing us to im-
prove upon a deployed data center topology by as much
as 43% even at the scale of just a few thousand servers,
with this improvement increasing with size. In addition,
we further the understanding of network throughput by
showing how cut-size, path length, and utilization affect
throughput.

While significant work remains in the space of design-
ing and analyzing topologies, this work takes the first
steps away from the myriad point solutions and towards
a theoretically grounded approach to the problem.
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