
This paper is included in the Proceedings of the
11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).
April 2–4, 2014 • Seattle, WA, USA

ISBN 978-1-931971-09-6

Open access to the Proceedings of the
11th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’14)

is sponsored by USENIX

Building Web Applications on Top
of Encrypted Data Using Mylar

Raluca Ada Popa, MIT/CSAIL; Emily Stark, Meteor, Inc.; Steven Valdez, Jonas Helfer,
Nickolai Zeldovich, and Hari Balakrishnan, MIT/CSAIL

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/popa

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 157

Building web applications on top of encrypted data using Mylar

Raluca Ada Popa, Emily Stark,† Jonas Helfer, Steven Valdez,
Nickolai Zeldovich, M. Frans Kaashoek, and Hari Balakrishnan

MIT CSAIL and †Meteor Development Group

ABSTRACT

Web applications rely on servers to store and process con-
fidential information. However, anyone who gains access
to the server (e.g., an attacker, a curious administrator, or
a government) can obtain all of the data stored there. This
paper presents Mylar, a platform for building web applica-
tions, which protects data confidentiality against attackers
with full access to servers. Mylar stores sensitive data
encrypted on the server, and decrypts that data only in
users’ browsers. Mylar addresses three challenges in mak-
ing this approach work. First, Mylar allows the server
to perform keyword search over encrypted documents,
even if the documents are encrypted with different keys.
Second, Mylar allows users to share keys and encrypted
data securely in the presence of an active adversary. Fi-
nally, Mylar ensures that client-side application code is
authentic, even if the server is malicious. Results with a
prototype of Mylar built on top of the Meteor framework
are promising: porting 6 applications required changing
just 36 lines of code on average, and the performance
overheads are modest, amounting to a 17% throughput
loss and a 50 ms latency increase for sending a message
in a chat application.

1 INTRODUCTION

Using a web application for confidential data requires the
user to trust the server to protect the data from unautho-
rized disclosures. This trust is often misplaced, however,
because there are many ways in which confidential data
could leak from a server. For example, attackers could
exploit a vulnerability in the server software to break
in [42], a curious administrator could peek at the data
on the server [9, 10], or the server operator may be com-
pelled to disclose data by law [20]. Is it possible to build
web applications that protect data confidentiality against
attackers with full access to servers?

A promising approach is to give each user their own
encryption key, encrypt a user’s data with that user’s key
in the web browser, and store only encrypted data on the
server. This model ensures that an adversary would not
be able to read any confidential information on the server,
because they would lack the necessary decryption keys.
In fact, this model has been already adopted by some
privacy-conscious web applications [28, 40].

Unfortunately, this approach suffers from three sig-
nificant security, functionality, and efficiency shortcom-
ings. First, a compromised server could provide malicious
client-side code to the browser and extract the user’s key
and data. Ensuring that the server did not tamper with
the application code is difficult because a web application
consists of many files, such as HTML pages, Javascript
code, and CSS style sheets, and the HTML pages are
often dynamically generated.

Second, this approach does not provide data sharing
between users, a crucial function of web applications.
To address this problem, one might consider encrypting
shared documents with separate keys, and distributing
each key to all users sharing a document via the server.
However, distributing keys via the server is challenging
because a compromised server can supply arbitrary keys
to users, and thus trick a user into using incorrect keys.

Third, this approach requires that all of the application
logic runs in a user’s web browser because it can decrypt
the user’s encrypted data. But this is often impractical:
for instance, doing a keyword search would require down-
loading all the documents to the browser.

This paper presents Mylar, a new platform for building
web applications that stores only encrypted data on the
server. Mylar makes it practical for many classes of ap-
plications to protect confidential data from compromised
servers. It leverages the recent shift in web application
frameworks towards implementing logic in client-side
Javascript code, and sending data, rather than HTML,
over the network [29]; such a framework provides a clean
foundation for security. Mylar addresses the challenges
mentioned above with a combination of systems tech-
niques and novel cryptographic primitives, as follows.

Data sharing. To enable sharing, each sensitive data
item is encrypted with a key available to users who share
the item. To prevent the server from cheating during key
distribution, Mylar provides a mechanism for establishing
the correctness of keys obtained from the server: My-
lar forms certificate paths to attest to public keys, and
allows the application to specify what certificate paths
can be trusted in each use context. In combination with
a user interface that displays the appropriate certificate
components to the user, this technique ensures that even

1

158 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

a compromised server cannot trick the application into
using the wrong key.

Computing over encrypted data. Keyword search is
a common operation in web applications, but it is often
impractical to run on the client because it would require
downloading large amounts of data to the user’s machine.
While there exist practical cryptographic schemes for
keyword search, they require that data be encrypted with
a single key. This restriction makes it difficult to apply
these schemes to web applications that have many users
and hence have data encrypted with many different keys.

Mylar provides the first cryptographic scheme that can
perform keyword search efficiently over data encrypted
with different keys. The client provides an encrypted
word to the server and the server can return all documents
that contain this word, without learning the word or the
contents of the documents.

Verifying application code. With Mylar, code running
in a web browser has access to the user’s decrypted data
and keys, but the code itself comes from the untrusted
server. To ensure that this code has not been tampered
with, Mylar checks that the code is properly signed by
the web site owner. This checking is possible because
application code and data are separate in Mylar, so the
code is static. Mylar uses two origins to simplify code
verification for a web application. The primary origin
hosts only the top-level HTML page of the application,
whose signature is verified using a public key found in
the server’s X.509 certificate. All other files come from a
secondary origin, so that if they are loaded as a top-level
page, they do not have access to the primary origin. Mylar
verifies the hash of these files against an expected hash
contained in the top-level page.

To evaluate Mylar’s design, we built a prototype on
top of the Meteor web application framework [29]. We
ported 6 applications to protect confidential data using
Mylar: a medical application for endometriosis patients,
a web site for managing homework and grades, a chat
application called kChat, a forum, a calendar, and a photo
sharing application. The endometriosis application is
used to collect data from patients with that medical condi-
tion, and was designed under the aegis of the MIT Center
for Gynepathology Research by surgeons at the Newton-
Wellesley hospital (affiliated with the Harvard Medical
School) in collaboration with biological engineers at MIT;
the Mylar-secured version is currently being tested by pa-
tients and is undergoing IRB approval before deployment.

Our results show that Mylar requires little developer
effort: we had to modify an average of just 36 lines of
code per application. We also evaluated the performance
of Mylar on three of the applications above. For example,
for kChat, our results show that Mylar incurs modest

overheads: a 17% throughput reduction and a 50 msec
latency increase for the most common operation (sending
a message). These results suggest that Mylar is a good fit
for multi-user web applications with data sharing.

2 RELATED WORK

Mylar is the first system to protect data confidentiality in
a wide range of web applications against arbitrary server
compromises. In the rest of this section, we relate My-
lar to prior work on securing web applications, building
systems using untrusted servers, and computing over en-
crypted data.

2.1 Web application security
Much of the work on web application security focuses
on preventing security vulnerabilities caused by bugs in
the application’s source code, either by statically check-
ing that the code follows a security policy [11, 44], or
by catching policy violations at runtime [18, 24, 46]. In
contrast, Mylar assumes that any part of the server can be
compromised, either as a result of software vulnerabili-
ties or because the server operator is untrustworthy, and
protects data confidentiality in this setting.

On the browser side, prior work has explored tech-
niques to mitigate vulnerabilities in Javascript code that
allow an adversary to leak data or otherwise compromise
the application [1, 16, 45]. Mylar assumes that the de-
veloper does not inadvertently leak data from client-side
code, but in principle could be extended to use these tech-
niques for dealing with buggy client-side code.

There has been some work on using encryption to pro-
tect confidential data in web applications, as we describe
next. Unlike Mylar, none of them can support a wide
range of complex web applications, nor compute over
encrypted data at the server, nor address the problem of
securely managing access to shared data.

A position paper by Christodorescu [12] proposes en-
crypting and decrypting data in a web browser before
sending it to an untrusted server, but lacks any details of
how to build a practical system.

Several data sharing sites encrypt data in the browser
before uploading it to the server, and decrypt it in the
browser when a user wants to download the data [14,
28, 35]. The key is either stored in the URL’s hash frag-
ment [28, 35], or typed in by the user [14], and both the
key and data are accessible to any Javascript code from
the page. As a result, an active adversary could serve
Javascript code to a client that leaks the key. In contrast,
Mylar’s browser extension verifies that the client-side
code has not been tampered with.

Several systems transparently encrypt and decrypt data
sent to a server [7, 13, 33, 34]. These suffer from the same
problems as above: they cannot handle active attacks, and

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 159

cannot compute over encrypted data at the server without
revealing a significant amount of information.

Cryptocat [40], an encrypted chat application, dis-
tributes the application code as a browser extension rather
than a web application, in order to deal with active at-
tacks [39]. Mylar’s browser extension is general-purpose:
it allows verifying the code of web applications without
requiring users to install a separate extension for each
application. Cryptocat could also benefit from Mylar’s
search scheme to perform keyword search over encrypted
data at the server.

2.2 Untrusted servers
SUNDR [25] protects file system integrity, providing fork
consistency in the face of a malicious server. SPORC [15]
and Depot [27] extend SUNDR’s design to build applica-
tions on top of an encrypted server. For example, SPORC
provides conflict resolution using operational transforms,
and consistently handles access control changes. These
systems do not allow an application to perform server-
side computation, such as Mylar’s server-side keyword
search. Furthermore, with SPORC, the application logic
is hard-coded into the client, whereas with Mylar, the
application logic is determined at runtime, based on the
URL that the user visits.

CryptDB [32] protects confidential data in a SQL
database server by running SQL queries over encrypted
data. However, in a typical database-backed web appli-
cation, the application server gets access to unencrypted
data, and receives each user’s key when the user logs
in. Consequently, while CryptDB protects against at-
tacks on the database server, it provides no guarantees
for users logged in during an attack on the application
server. For example, if an administrator with access to all
data is logged in when the application server is compro-
mised, then the attacker can compromise all data. Finally,
CryptDB cannot compute over data encrypted with differ-
ent keys as in Mylar’s multi-key keyword search. On the
other hand, CryptDB allows computing more functions
over encrypted data than Mylar.

2.3 Computation over encrypted data
Theoretical results on fully homomorphic encryption and
functional encryption have shown that it is possible for an
untrusted server to compute arbitrary functions over en-
crypted data [17, 19, 26]. However, such general-purpose
schemes are too slow to be practical.

Many schemes for performing keyword search over
encrypted data have been proposed [21, 36]. All of these
schemes for keyword search have assumed that the data
is encrypted with a single key; Mylar provides the first
practical scheme for performing keyword search over data
encrypted with different keys. Proxy re-encryption [3]
allows switching the key under which some data is en-

crypted in the context of public-key encryption, but this
does not provide an efficient search scheme.

2.4 Trusted hardware
An alternative approach for computing over encrypted
data is to rely on trusted hardware [2, 4, 22]. Such ap-
proaches are complementary to Mylar, and could be used
to extend the kinds of computations that Mylar can per-
form over encrypted data at the server, as long as the
application developer and the users believe that trusted
hardware is trustworthy.

3 MYLAR ARCHITECTURE

There are three different parties in Mylar: the users, the
web site owner, and the server operator. Mylar’s goal is to
help the site owner protect the confidential data of users
in the face of a malicious or compromised server operator.

3.1 System overview
Mylar embraces the trend towards client-side web appli-
cations; Mylar’s design is suitable for platforms that:

1. Enable client-side computation on data received from
the server.

2. Allow the client to intercept data going to the server
and data coming from the server.

3. Separate application code from data, so that the HTML
pages supplied by the server are static.

AJAX web applications with a unified interface for send-
ing data over the network, such as Meteor [29], fit this
model. Such frameworks provide a clean foundation
for security, because they send data separately from the
HTML page that presents the data. In contrast, traditional
server-side frameworks incorporate dynamic data into the
application’s HTML page in arbitrary ways, making it
difficult to encrypt and decrypt the dynamic data on each
page while checking that the fixed parts of the page have
not been tampered with [37].

3.1.1 Mylar’s components

The architecture of Mylar is shown in Figure 1. Mylar
consists of the four following components:

Browser extension. It is responsible for verifying that
the client-side code of a web application that is loaded
from the server has not been tampered with.

Client-side library. It intercepts data sent to and from
the server, and encrypts or decrypts that data. Each user
has a private-public key pair. The client-side library stores
the private key of the user at the server, encrypted with the
user’s password.1 When the user logs in, the client-side

1The private key can also be stored at a trusted third-party server, to
better protect it from offline password guessing attacks and to recover
from forgotten passwords without re-generating keys.

3

160 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Mylar page verification

webpage

user

Mylar client

encrypt/
decrypt/search

principal
library

password

data sharing

data

 client-side
app code

database

principal
graphs

webpage

Mylar serverClient browser
Server

search on
encrypted data

authentication

principal
module

data

data

server-side
app code

IDP

create
account

Figure 1: System overview. Shaded components have access only to encrypted data. Thick borders indicate components introduced by Mylar.

library fetches and decrypts the user’s private key. For
shared data, Mylar’s client creates separate keys that are
also stored at the server in encrypted form.

Server-side library. It performs computation over en-
crypted data at the server. Specifically, Mylar supports
keyword search over encrypted data, because we have
found that many applications use keyword search.

Identity provider (IDP). For some applications, Mylar
needs a trusted identity provider service (IDP) to verify
that a given public key belongs to a particular username.
An application needs the IDP if the application has no
trusted way of verifying the users who create accounts,
and the application allows users to choose whom to share
data with. For example, if Alice wants to share a sensitive
document with Bob, Mylar’s client needs the public key
of Bob to encrypt the document. A compromised server
could provide the public key of an attacker, so Mylar
needs a way to verify the public key. The IDP helps Mylar
perform this verification by signing the user’s public key
and username. An application does not need the IDP if the
site owner wants to protect against only passive attacks
(§3.4), or if the application has a limited sharing pattern
for which it can use a static root of trust (see §4.2).

An IDP can be shared by many applications, similar
to an OpenID provider [30]. The IDP does not store per-
application state, and Mylar contacts the IDP only when a
user first creates an account in an application; afterwards,
the application server stores the certificate from the IDP.

3.2 Mylar for developers
The developer starts with a regular (non-encrypted) web
application implemented in Mylar’s underlying web plat-
form (Meteor in our prototype). To secure this application
with Mylar, a developer uses Mylar’s API (Figure 2), as
we explain in the rest of this paper. First, the developer
uses Mylar’s authentication library for user login and ac-
count creation. If the application allows a user to choose

what other users to share data with, the developer should
also specify the URL and public key of a trusted IDP.

Second, the developer specifies which data in the appli-
cation should be encrypted, and who should have access
to it. Mylar uses principals for access control; a principal
corresponds to a public/private key pair, and represents
an application-level access control entity, such as a user,
a group, or a shared document. In our prototype, all data
is stored in MongoDB collections, and the developer an-
notates each collection with the set of fields that contain
confidential data and the name of the principal that should
have access to that data (i.e., whose key should be used).

Third, the developer specifies which principals in the
application have access to which other principals. For
example, if Alice wants to invite Bob to a confidential
chat, the application must invoke the Mylar client to grant
Bob’s principal access to the chat room principal.

Fourth, the developer changes their server-side code
to invoke the Mylar server-side library when performing
keyword search. Our prototype’s client-side library pro-
vides functions for common operations such as keyword
search over a specific field in a MongoDB collection.

Finally, as part of installing the web application, the
site owner generates a public/private key pair, and signs
the application’s files with the private key using Mylar’s
bundling tool. The web application must be hosted using
https, and the site owner’s public key must be stored in
the web server’s X.509 certificate. This ensures that even
if the server is compromised, Mylar’s browser extension
will know the site owner’s public key, and will refuse to
load client-side code if it has been tampered with.

3.3 Mylar for users
To obtain the full security guarantees of Mylar, a user
must install the Mylar browser extension, which detects
tampered code. However, if a site owner wants to protect
against only passive attacks (§3.4), users don’t have to
install the extension and their browsing experience is
entirely unchanged.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 161

Function Semantics

idp_config(url, pubkey) Declares the url and pubkey of the IDP and returns the
principal corresponding to the IDP.

create_user(uname, password, auth_princ) Creates an account for user uname which is certified by
principal auth_princ.

login(uname, password) Logs in user uname.
logout() Logs out the currently logged-in user.

collection.encrypted({field: princ_field}, . . .) Specify that field in collection should be encrypted for
the principal in princ_field.

collection.auth_set([princ_field, fields], . . .) Authenticate the set of fields with principal in princ_field.
collection.searchable(field) Mark field in collection as searchable.
collection.search(word, field, princ, filter, proj) Search for word in field of collection, filter results by filter

and project only the fields in proj from the results. Use
princ’s key to generate the search token.

princ_create(name, creator_princ) Create principal named name, sign the principal with
creator_princ, and give creator_princ access to it.

princ_create_static(name, password) Create a static principal called name, hardcode it in the
application, and wrap its secret keys with password.

princ_static(name, password) Return the static principal name; if a correct password is
specified, also load the secret keys for this principal.

princ_current() Return the principal of currently logged in user.
princ_lookup(name1, . . . , namek, root) Look up principal named name1 as certified by a chain of

principals named namei rooted in root (e.g., the IDP).
granter.add_access(grantee) Give the grantee principal access to the granter principal.
grantee.allow_search(granter) Allow matching keywords from grantee on granter’s data.

Figure 2: Mylar API for application developers split in three sections: authentication, encryption/integrity annotations, and access
control. All of the functions except princ_create_static and searchable run in the client browser. This API assumes a
MongoDB storage model where data is organized as collections of documents, and each document consists of fieldname-and-value
pairs. Mylar also preserves the generic functionality for unencrypted data of the underlying web framework.

3.4 Threat model
Threats. Both the application and the database servers
can be fully controlled by an adversary: the adversary
may obtain all data from the server, cause the server to
send arbitrary responses to web browsers, etc. This model
subsumes a wide range of real-world security problems,
from bugs in server software to insider attacks.

Mylar also allows some user machines to be controlled
by the adversary, and to collude with the server. This may
be either because the adversary is a user of the application,
or because the adversary broke into a user’s machine.

We call this adversary active, in contrast to a passive
adversary that eavesdrops on all information at the server,
but does not make any changes, so that the server responds
to all client requests as if it were not compromised.

Guarantees. Mylar protects a data item’s confidential-
ity in the face of arbitrary server compromises, as long
as none of the users with access to that data item use a
compromised machine. Mylar does not hide data access
patterns, or communication and timing patterns in an ap-
plication. Mylar provides data authentication guarantees,

but does not guarantee the freshness or correctness of
results from the computation at the server.

Assumptions. To provide the above guarantees, Mylar
makes the following assumptions. Mylar assumes that
the web application as written by the developer will not
send user data or keys to untrustworthy recipients, and
cannot be tricked into doing so by exploiting bugs (e.g.,
cross-site scripting). Our prototype of Mylar is built on
top of Meteor, a framework that helps programmers avoid
many common classes of bugs in practice.

Mylar also assumes that the IDP correctly verifies each
user’s identity (e.g., email address) when signing certifi-
cates. To simplify the job of building a trustworthy IDP,
Mylar does not store any application state at the IDP, con-
tacts the IDP only when a user first registers, and allows
the IDP to be shared across applications.

Finally, Mylar assumes that the user checks the web
browser’s security indicator (e.g., the https shield icon)
and the URL of the web application they are using, before
entering any sensitive data. This assumption is identical to
what users must already do to safely interact with a trusted
server. If the user falls for a phishing attack, neither Mylar

5

162 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

nor a trusted server can prevent the user from entering
confidential data into the adversary’s web application.

3.5 Security overview
At a high level, Mylar achieves its goal as follows. First, it
verifies the application code running in the browser (§6),
so that it is safe to give client-side code access to keys
and plaintext data. Then, the client code encrypts the data
marked sensitive before sending it to the server. Since
users need to share data, Mylar provides a mechanism to
securely share and look up keys among users (§4). Finally,
to perform server-side processing, Mylar introduces a new
cryptographic scheme that can perform keyword search
over documents encrypted with many different keys, with-
out revealing the content of the encrypted documents or
the word being searched for (§5).

4 SHARING DATA BETWEEN USERS

Many web applications share data between users accord-
ing to some policy. A simple example is a chat application,
where messages are shared between the sender and the
recipients. In Mylar’s threat model, an application cannot
trust the server to enforce the sharing policy, because the
server is assumed to be compromised. As a result, the
application must encrypt shared data using a key that will
be accessible to just the right set of users.

Mylar allows an application to specify its security pol-
icy in terms of application-defined principals. In partic-
ular, each principal has an application-chosen name, a
public key used to encrypt data for that principal, and a
private key used to decrypt that principal’s data.

In addition to allowing the application to create prin-
cipals, and to use the principals’ keys to encrypt and
decrypt data, Mylar provides two critical operations to
the application for managing principals:

• Find a principal so that the application can use the
corresponding private key to decrypt data. The goal is
to ensure that only authorized users can get access to
the appropriate private key.

• Find a principal so that the application can use the
corresponding public key to encrypt or share data with
other users. The goal is to ensure that a malicious
server cannot trick Mylar into returning the wrong
public key, which could lead the application to share
confidential data with the adversary.

Mylar cryptographically enforces the above goals by form-
ing two graphs on top of principals: an access graph,
which uses key chains to distribute the private keys of
shared principals to users, and a certification graph, which
uses certificate chains to attest to the mapping between a
principal name and its public key.

�����
������

����������
‘work’�

����������
boss won’t�

���������������
������

��������
���������

�����
����

�����
�����

����������
‘party’�

Figure 3: Example access graph for a chat application. Rounded
rectangles represent principals, and arrows represent access
relationships. Alice and Bob share the chat room “party” so
they both have access to the principal for this room. Messages
in each chat room are encrypted with the key of the room’s
principal.

4.1 Access graph
To ensure that only authorized users can access the pri-
vate key of a principal, Mylar requires the application to
express its access control policy in terms of access rela-
tionships between principals. Namely, if principal A can
access principal B’s private key, then we say A has access
to B. The has access to relation is transitive: if B in turn
has access to C, then A can access C’s private key as well.
To express the application’s policy in the access graph,
the application must create appropriate has access to re-
lationships between principals. The application can also
create intermediate principals to represent, say, groups of
users that all should have access to the same private keys.

As an example, consider a chat application where mes-
sages in each chat room should be available only to that
room’s participants. Figure 3 shows the access graph for
this scenario. Both Alice and Bob have access to the key
encrypting the “party” room, but the boss does not.

Key chaining. To enforce the access graph cryptograph-
ically, Mylar uses key chaining, as in CryptDB [32].
When an application asks to add a new has access to
edge from principal A to principal B, Mylar creates a
wrapped key: an encryption of B’s private keys under the
public key of principal A. This ensures that a user with
access to A’s private key can decrypt the wrapped key
and obtain B’s private key. For example, in Figure 3, the
private key of the “party” chat room is encrypted under
the public key of Alice, and separately under the public
key of Bob as well. The server stores these wrapped keys,
which is safe since the keys are encrypted.

In practice, has access to relationships are rooted in
user principals, so that a user can gain access to all of their
data when they initially log in and have just the private
key of their own user principal. When Mylar needs to
decrypt a particular data item, it first looks up that data
item’s principal, as specified by the encrypted annotation
(Figure 2). Mylar then searches for a chain of wrapped
keys, starting from the principal of the currently logged
in user, and leading to the data item’s principal.

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 163

4.2 Certification graph
Mylar applications must look up public keys of principals
when sharing data, for two broad purposes: either to en-
crypt data with that key, or to give some principal access
to that key. In both cases, if a compromised server tricks
the client application into using the public key of the ad-
versary, the adversary will gain access to confidential data.
For example, in the chat example, suppose Bob wants to
send a confidential message to the “work” chat room. If
the server supplies the adversary’s public key for the chat
room principal and the application client uses it, the ad-
versary will be able to decrypt the message. Preventing
such attacks is difficult because all of the wrapped keys
are stored at the server, and the server may be malicious.

To prevent such attacks, Mylar relies on a certification
graph, which allows one principal to vouch for the name
and the public key of another principal. The nodes of this
graph are principals from the access graph together with
some authority principals, which are principals providing
the root of trust (described in §4.3). Applications create
certificate chains for principals, rooted in an authority
principal. For instance, in the chat example, the applica-
tion can sign the “chatroom:work” principal with the key
of the “user:boss” principal that created the chat room.
Using the certification graph, applications can look up
the public key of a principal by specifying the name of
the principal they are looking for, along with a chain of
certifications they expect to find.

Since the server is not trusted, there is no single au-
thority to decide on the public key for a given principal
name: in our chat example, both the real boss and a mali-
cious server may have created chat rooms named “work.”
To prevent such naming ambiguity, one approach is to
display the names in a certification chain to the user, sim-
ilar to how web browsers display the hostname from an
X.509 certificate for https web sites. As we describe
later in §8, if the chat application displays the email ad-
dress of the chat room creator (who signed the chat room
principal), in addition to the name of the chat room, the
user could distinguish a correct “work” chat room, cre-
ated by the boss, from an impostor created by an attacker.
This requires Mylar applications to unambiguously map
human-meaningful names, such as the “work” chat room
and the identity of the Boss user, onto principal names,
such as “chatroom:work” and “user:boss.”

Mylar’s certificate chains are similar to X.509; the
difference is that X.509 typically has fixed roots of trust
and fixed rules for what certificate chains are allowed,
whereas Mylar allows the application to specify different
roots of trust and acceptable chains for each lookup.

4.3 Principals providing the root of trust
The authority principals can be either the IDP or static
principals. Static principals are access control entities

fixed in the application’s logic. For example, the en-
dometriosis medical application has a group called “sur-
geons” representing the surgeons that have access to all
patient data. Similarly, the homework submission applica-
tion has a group called “staff” representing staff members
with access to all student homework submissions and
grades. In these applications, static principals can alto-
gether remove the need for an IDP.

A developer can create a static principal by running
princ_create_static(name, password) with the help of
a command-line tool. This generates fresh keys for a
principal, and encrypts the secret keys with password,
so they can be retrieved only by providing password to
princ_static. The resulting public key and encrypted
secret key are hardcoded into the application’s source
code. This allows the application to refer to the static
principal by name without relying on the IDP.

Static principals can also certify other principals. For
example, in the endometriosis application, all user ac-
counts are manually created by surgeons. This allows
all user principals to be certified by the static “surgeons”
principal, avoiding the need for an IDP to do the same.

4.4 User principals
To create an account for a new user, the application must
invoke create_user, as shown in Figure 2. This causes
the Mylar client to generate a new principal for the user,
encrypt the secret key with the user’s password, and store
the principal with the encrypted secret key on the server.

To enable the application to later look up this user’s
public key, in the presence of active adversaries, the prin-
cipal must be certified. To do this, the application supplies
the auth_princ argument to create_user. This is typically
either a static principal or the IDP. For static principals,
the certificate is generated directly in the browser that
calls create_user; the creator must have access to the pri-
vate key of auth_princ. For example, the endometriosis
application, where all users are manually created by a
surgeon, follows this model. If auth_princ is the IDP, the
Mylar client interprets uname as the user’s email address,
and contacts the IDP, which verifies the user’s email ad-
dress and signs a certificate containing the user’s public
key and email address.

Even though multiple applications can share the IDP,
a buggy or malicious application will not affect other
applications that use the same IDP (unless users share
passwords across applications). This property is ensured
by never sending passwords or secret keys to the IDP,
and explicitly including the application’s origin in the
certificate generated by the IDP.

4.5 Data integrity
To prevent an attacker from tampering with the data, My-
lar provides two ways to authenticate data, as follows.

7

164 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

First, all encrypted data is authenticated with a MAC
(message authentication code),2 which means that clients
will detect any tampering with the ciphertext. However,
an adversary can still replace the ciphertext of one field in
a document with any other ciphertext that was encrypted
using the same key.

To protect against such attacks, developers can spec-
ify an authentication set of fields whose values must be
consistent with one other, using the auth_set annotation.
This annotation guarantees that if a client receives some
document, then all fields in each authentication set were
consistent at some point, according to the corresponding
principal. Mylar enforces authentication sets by comput-
ing a MAC over the values of all fields in each set.

For example, in a chat room application, each message
has several fields, including the message body and the
(client-generated) timestamp. By putting these two fields
into an authentication set, the developer ensures that an
adversary cannot splice together the body of one message
with the timestamp from another message.

Mylar does not guarantee data freshness, or correctness
of query results. An adversary can roll back the entire
authentication set to an earlier version without detection,
but cannot roll back a subset of an authentication set.

5 COMPUTING ON ENCRYPTED DATA

The challenge facing Mylar in computing over encrypted
data is that web applications often have many users, result-
ing in data encrypted with many different keys. Existing
efficient encryption schemes for computation over en-
crypted data, such as keyword search, assume that all data
is encrypted with a single key [21, 36]. Using such a
scheme in Mylar would require computation over one key
at a time, which is inefficient.

For example, consider a user with access to N doc-
uments, where each document is encrypted with a dif-
ferent key (since it can be shared with a different set of
users). Searching for a keyword in all of these docu-
ments would require the user to generate N distinct cryp-
tographic search tokens, and to send all of them to the
server. Even for modest values of N, such as 1000, this
can result in noticeable computation and network costs
for the user’s machine. Moreover, if the N keys are not
readily available in the client browser, fetching these keys
may bring further overhead.

To address this limitation, Mylar introduces a multi-key
search scheme, as described in the rest of this section.

5.1 Multi-key search
Mylar’s multi-key search scheme provides a simple ab-
straction. If a user wants to search for a word in a set of
documents on a server, each encrypted with a different

2For efficiency, Mylar uses authenticated encryption, which concep-
tually computes both the ciphertext and the MAC tag in one pass.

key, the user’s machine needs to provide only a single
search token for that word to the server. The server, in
turn, returns each encrypted document that contains the
user’s keyword, as long as the user has access to that
document’s key.

The intuition for our scheme is as follows. Say that the
documents that a user has access to are encrypted under
keys k1, . . . ,kn and the user’s own key is uk. The user’s
machine computes a search token for a word w using key
uk, denoted tkw

uk. If the server had tkw
k1
, . . . , tkw

kn
instead

of tkw
uk, the server could match the search token against

the encrypted documents using an existing searchable
encryption scheme.

Our idea is to enable the server to compute these tokens
by itself; that is, to adjust the initial tkw

uk to tkw
ki

for each
i. To allow the server to perform the adjustment, the
user’s machine must initially compute deltas, which are
cryptographic values that enable a server to adjust a token
from one key to another key. We use Δuk→ki to denote
the delta that allows a server to adjust tkw

uk to tkw
ki

. These
deltas represent the user’s access to the documents, and
crucially, these deltas can be reused for every search, so
the user’s machine needs to generate the deltas only once.
For example, if Alice has access to Bob’s data, she needs
to provide one delta to the server, and the server will be
able to adjust all future tokens from Alice to Bob’s key.

In terms of security, our scheme guarantees that the
server does not learn the word being searched for, and
does not learn the content of the documents. All that
the server learns is whether the word in the search token
matched some word in a document, and in the case of
repeated searches, whether two searches were for the
same word. Knowing which documents contain the word
being searched for is desirable in practice, to avoid the
overhead of returning unnecessary documents.

This paper presents the multi-key search scheme at a
high level, with emphasis on its interface and security
properties as needed in our system. We provide a rigorous
description and a cryptographic treatment of the scheme
(including formal security definitions and proofs) in a
technical report [31]. Readers that are not interested in
cryptographic details can skip to §5.3.

5.2 Cryptographic construction

We construct the multi-key search scheme using bilin-
ear maps on elliptic curves, which, at a high level, are
functions e : G1 ×G2 →GT , where G1, G2, and GT are
special groups of prime order p on elliptic curves. Let
g be a generator of G2. Let H and H2 be certain hash
functions on the elliptic curves. e has the property that
e(H(w)a,gb) = e(H(w),g)ab. Figure 4 shows pseudo-
code for our multi-key search scheme.

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 165

Client-side operations:
procedure KEYGEN() � Generate a fresh key

key ← random value from Zp
return key

procedure ENC(key, word)
r ← random value from GT
c ← �r,H2(r,e(H(word),g)key)�
return c

procedure TOKEN(key, word)
� Generate search token for matching word

tk ← H(word)key in G1
return tk

procedure DELTA(key1, key2)
� Allow adjusting search token from key1 to key2

Δkey1→key2 ← gkey2/key1 in G2
return Δkey1→key2

Server-side operations:
procedure ADJUST(tk, Δk1→k2)

� Adjust search token tk from k1 to k2
atk ← e(tk,Δk1→k2) in GT
return atk

procedure MATCH(atk, c = �r,h�)
� Return whether c and atk refer to same word

h� ← H2(r,atk)

return h� ?
= h

Figure 4: Pseudo-code for Mylar’s multi-key search scheme.

5.3 Indexing search

One efficiency issue with this algorithm is that the server
has to scan through every word of every document to
identify a match. This can be slow if the documents are
large, but is unavoidable if the encryption of each word is
randomized with a different r, as in Figure 4.

To enable the construction of an efficient index over the
words in a searchable document, Mylar supports an index-
able version of this multi-key search scheme. The idea
is to remove randomness without compromising security.
Intuitively, randomness is needed to hide whether two
words encrypted under the same key are equal. But for
words within one document, Mylar can remove the dupli-
cates at the time the document is encrypted, so per-word
randomness is not needed within a document.

Therefore, to encrypt a document consisting of words
w1, . . . ,wn, the client removes duplicates, chooses one
random value r, and then uses the same r when encrypting
each of the words using ENC().

When searching for word w in a document, the server
performs the adjustment as before and obtains atk. It
then computes v ← COMBINE(r,atk) = �r,H2(r,atk)� us-
ing the document’s randomness r. If one of the words
in the document is w, its encryption will be equal to v,

because they use the same randomness r. Therefore, the
server can perform direct equality checks on encrypted
words. This means that it can build an index over the
encrypted words in the document (e.g., a hash table), and
then use that index and v to figure out in constant time if
there is a match without scanning the document.

A limitation is that the server has to use an index per
unique key rather than one holistic index.

5.4 Integrating search with the principal graph
Mylar integrates the multi-key search scheme with the
principal graph as follows. When a principal P is cre-
ated, Mylar generates a key kP using KEYGEN (Figure 4).
Whenever P receives access to some new principal A, My-
lar includes kA in the wrapped key for P. The first time
a user with access to P comes online, the Mylar client
in that user’s browser retrieves kA from the wrapped key,
computes ΔkP→kA ←DELTA(kP, kA), and stores it at the
server. This delta computation happens just once for a
pair of principals.

To encrypt a document for some principal A, the user’s
browser encrypts each word w in the document separately
using ENC(kA, w). Since the multi-key search scheme
does not support decryption, Mylar encrypts all search-
able documents twice: once with the multi-key search
scheme, for searching, and once with a traditional encryp-
tion scheme like AES, for decryption.

To search for a word w with principal P, the user’s
client uses TOKEN(kP, w) to compute a token tk, and
sends it to the server. To search over data encrypted
for principal A, the server obtains ΔkP→kA , and uses
ADJUST(tk, ΔkP→kA) to adjust the token from kP to kA,
obtaining the adjusted token atkA. Then, for each docu-
ment encrypted under kA with randomness r, the server
computes v ← COMBINE(r,atkA) and checks if v exists
in the document using an index. The server repeats the
same process for all other principals that P has access to.

Integrating the access graph with keyword search
brings up two challenges. The first comes from the fact
that our multi-key search scheme allows adjusting tokens
just once. In the common case of an access graph where
all paths from a user to the data’s encryption key consist
of one edge (such as the graph in Figure 3), Mylar asso-
ciates the search delta with the edge, and stores it along
with the wrapped key. In our chat example, this allows a
user’s browser to search over all chat rooms that the user
has access to, by sending just one search token.

Some applications can have a more complex access
graph. For example, in the endometriosis application, all
doctors have access to the staff principal, which in turn
has access to all patient principals. Here, the optimal
approach is to use the ADJUST() function on the server
between principals with the largest number of edges, so as
to maximize the benefit of multi-key search. For instance,

9

166 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

if a doctor wanted to search over patient records, the doc-
tor’s browser should fetch the staff principal it has access
to, and produce a search token using the staff principal’s
private key. The server would then use ADJUST() to look
for matches in documents encrypted with each patient’s
key. Because most of our applications have simple access
graphs, our prototype does not automate this step, and a
developer must choose the principal with which to search.

The second challenge comes from the fact that search-
ing over data supplied by an adversary can leak the word
being searched for. For example, suppose an adversary
creates a document containing all the words in a dictio-
nary, and gives the user access to that document. If the
user searches for a word w in all of the documents he has
access to, including the one from the adversary, the server
will see which of the words in the adversary’s document
matches the user’s token, and hence will know which
dictionary word the user searched for. To prevent this,
users must explicitly accept access to a shared document,
and developers must invoke the allow_search function,
provided by Mylar for this purpose, as appropriate.

6 VERIFYING CLIENT-SIDE CODE

Although Mylar uses encryption to protect confidential
data stored on the untrusted server, the cryptographic keys
and the plaintext data are both available to code executing
in the user’s web browser. The same-origin policy [47]
ensures that applications from other origins running in the
browser do not access the data in the Mylar application.
However, Mylar must also ensure that code running in the
application’s origin has not been tampered with.

Since the code in a web page is static in Mylar, a straw-
man solution is to sign this code and verify the signature
in the browser. The strawman does not suffice because
of a combination of two factors. On the one hand, most
web applications (including those using Mylar) consist
of multiple files served by the web server. On the other
hand, the only practical way to control what is loaded in
a browser is to interpose on individual HTTP requests.

The problem arises because at the level of individual
HTTP requests, it is difficult to reason about what code the
browser will execute. For example, if an image is loaded
in the context of an tag, it will not exe-
cute Javascript code. But if the same image is loaded as a
top-level page, the browser’s content-sniffing algorithm
may decide the file is actually HTML, and potentially
execute Javascript code embedded in the image [6]. Thus,
a well-meaning developer must be exceedingly careful
when including any content, such as images, in their web
application. If the developer inadvertently includes a mali-
cious image file in the application, an adversary can cause
the browser to load that file as a top-level page [5] and
trigger this attack. Similar problems can arise with other
content types, including CSS style sheets, PDF files, etc.

procedure PROCESSRESPONSE(url, cert, response)
� url is the requested URL

� cert is server’s X.509 certificate
if cert contains attribute mylar_pubkey then

pk ← cert.mylar_pubkey
sig ← response.header["Mylar-Signature"]
if not VERIFYSIG(pk, response, sig) then

return ABORT

if url contains parameter “mylar_hash=h” then
if hash(response) �= h then return ABORT

return PASS

Figure 5: Pseudo-code for Mylar’s code verification extension.

Two-origin signing. To address this problem, Mylar
uses two origins to host an application. The primary
origin hosts exactly one file: the application’s top-level
HTML page. Consequently, this is the only page that
can gain access to the application’s encryption keys and
plaintext data in the browser. All other files, such as
images, CSS style sheets, and Javascript code, are loaded
from the secondary origin. Mylar verifies the authenticity
of these files to prevent tampering, but if an adversary
tries to load one of these files as a top-level page, it will
run with the privileges of the secondary origin, and would
not be able to access the application’s keys and data.

To verify that the application code has not been tam-
pered with, Mylar requires the site owner to create a
public/private key pair, and to sign the application’s top-
level HTML page (along with the corresponding HTTP
headers) with the private key. Any references to other
content must refer to the secondary origin, and must be
augmented to include a mylar_hash=h parameter in the
query string, specifying the expected hash of the response.
The hash prevents an adversary from tampering with that
content or rolling it back to an earlier version. Rollback
attacks are possible on the top-level HTML page (because
signatures do not guarantee freshness), but in that case,
the entire application is rolled back: hashes prevent the
adversary from rolling back some but not all of the files,
which could confuse the application.

This signing mechanism can verify only the parts of
an application that are static and supplied by the web site
owner ahead of time. It is up to the application code to
safely handle any content dynamically generated by the
server at runtime (§3.4). This model is a good fit for
AJAX web applications, in which the dynamic content is
only data, rather than HTML or code.

Browser extension. Each user of Mylar applications
should install the Mylar browser extension in their web
browser, which verifies that Mylar applications are prop-
erly signed before running them. Figure 5 shows the
pseudo-code for the Mylar browser extension. The site
owner’s public key is embedded in the X.509 certificate

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 167

of the web server hosting the web application. Mylar
assumes that certificate authorities will sign certificates
for the web application’s hostname only on behalf of the
proper owner of the web application’s domain (i.e., the
site owner). Thus, as long as the site owner includes the
public key in all such certificates, then users visiting the
correct web site via https will obtain the owner’s public
key, and will verify that the page was signed by the owner.

7 IMPLEMENTATION

We implemented a prototype of Mylar by building on
top of the Meteor web application framework [29]. Me-
teor allows client-side code to read and update data via
MongoDB operations, and also to issue RPCs to the server.
Mylar intercepts and encrypts/decrypts data accessed via
the MongoDB interface, but requires developers to explic-
itly handle data passed via RPCs. We have not found this
to be necessary in our experience.

We use the SJCL library [38] to perform much of our
cryptography in Javascript, and use elliptic curves for
most public-key operations, owing to shorter ciphertexts
and higher performance. As in previous systems, Mylar
uses faster symmetric-key encryption when possible [32].
For bilinear pairings, we use the PBC C++ library to
improve performance, which runs either as a Native Client
module (for Chrome), as a plugin (for Firefox), or as
an NDK-based application (for Android phones). To
verify code in the user’s browser, we developed a Firefox
extension. Mylar comprises ∼9,000 lines of code in total.

When looking up paths in the principal graphs, Mylar
performs breadth-first search. We have not found this to
be a bottleneck in our experience so far, but more efficient
algorithms, such as meet-in-the-middle, are possible.

8 BUILDING A MYLAR APPLICATION

To demonstrate how a developer can build a Mylar appli-
cation, we show the changes that we made to the kChat
application to encrypt messages. In kChat, users can cre-
ate chat rooms, and existing members of a chat room can
invite new users to join. Only invited users have access
to the messages from the room. A user can search over
data from the rooms he has access to. Figure 6 shows the
changes we made to kChat, using Mylar’s API (Figure 2).

The call to Messages.encrypted specifies that data in
the “message” field of that collection should be encrypted.
This data will be encrypted with the public key of the
principal specified in the “roomprinc” field. All future
accesses to the Messages collection will be transparently
encrypted and decrypted by Mylar from this point. The
call to Messages.searchable specifies that clients will
need to search over the “message” field; consequently,
Mylar will store a searchable encryption of each message
in addition to a standard ciphertext.

// On both the client and the server:
idp = idp_config(url, pubkey);
Messages.encrypted({"message": "roomprinc"});
Messages.auth_set(["roomprinc", ["id", "message",

"room", "date"]]);
Messages.searchable("message");

// On the client:
function create_user(uname, password):

create_user(uname, password, idp);
function create_room(roomtitle):

princ_create(roomtitle, princ_current());
function invite_user(username):

global room_princ;
room_princ.add_access(princ_lookup(username, idp));

function join_room(room):
global cur_room, room_princ;
cur_room = room;
room_princ = princ_lookup(room.name,

room.creator, idp);
function send_message(msg):

global cur_room, room_princ;
Messages.insert({message: msg, room: cur_room.id,

date: new Date().toString(),
roomprinc: room_princ});

function search(word):
return Messages.search(word, "message",

princ_current(), all, all);

Figure 6: Pseudo-code for changes to the kChat application to
encrypt messages. Not shown is unchanged code for managing
rooms, receiving and displaying messages, and login/logout
(Mylar provides wrappers for Meteor’s user accounts API).

When a user creates a new room (create_room), the
application in turn creates a new principal, named after
the room title and signed by the creator’s principal. To
invite a user to a room, the application needs to give the
new user access to the room principal, which it does by
invoking add_access in invite_user.

When joining a room (join_room), the application must
look up the room’s public key, so that it can encrypt
messages sent to that room. The application specifies
both the expected room title as well as the room creator
as arguments to princ_lookup, to distinguish between
rooms with the same title. By displaying both the room
title and the creator email address, as in Figure 7, the
application helps the user distinguish the correct room
from an identically named room that an adversary created.

To send a message to a chat room, kChat needs to
specify a principal in the roomprinc field of the newly
inserted document. In this case, the application keeps the
current room’s principal in the room_princ global vari-
able. Similarly, when searching for messages containing
a word, the application supplies the principal whose key
should be used to generate the search token. In this case,
kChat uses the current user principal, princ_current().

11

168 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Application LoC LoC added Number and types of fields secured Existed Keyword
before for Mylar before? search on

kChat [23] 793 45 1 field: chat messages Yes messages
endometriosis 3659 28 tens of medical fields: mood, pain, surgery, . . . Yes N/A
submit 8410 40 3 fields: grades, homework, feedback Yes homework
photo sharing 610 32 5 fields: photos, thumbnails, captions, . . . Yes N/A
forum 912 39 9 fields: posts body, title, creator, user info, . . . No posts
calendar 798 30 8 fields: event body, title, date, user info, . . . No events

WebAthena [8] 4800 0 N/A: used for code authentication only Yes N/A

Figure 8: Applications ported to Mylar. “LoC before” reports the number of lines of code in the unmodified application, not
including images or Meteor packages. “Existed before” indicates whether the application was originally built independent of Mylar.

Figure 7: Two screenshots from kChat. On the top, Alice
is chatting with Bob as intended. On the bottom, the server
provided a fake “sensitive” chat room created by the adversary;
Alice can detect this by checking the creator’s email address.

9 EVALUATION

This section answers two main questions: first, how much
developer effort is required to use Mylar, and second,
what are the performance overheads of Mylar?

9.1 Developer effort
To measure the amount of developer effort needed to use
Mylar, we ported 6 applications to Mylar. Two of these
applications plan to start using Mylar in production in the
near future: a medical application in which endometriosis
patients record their symptoms, and a web site for man-
aging homework and grades for a class at MIT. We also
ported an existing chat application called kChat, in which
users share chat rooms by invitation and exchange pri-
vate messages, and a photo sharing application. We also
built a Meteor-based forum and calendar, which we then
ported to Mylar. Finally, to demonstrate the generality of
Mylar’s code verification, we used it to verify the code for
WebAthena [8], an in-browser Javascript Kerberos client.

Figure 8 summarizes the fields we secured with Mylar
in the above applications, along with how much code the

developer had to change. In the case of the endometriosis
application, fields were stored in the database as field
name and field value pairs, so encrypting the generic
“value” field secured tens of different kinds of data. In the
other apps, a field corresponded to one kind of sensitive
data. The results show that Mylar requires little devel-
oper effort to protect a wide range of confidential data,
averaging 36 lines of code per application.

9.2 Performance
Mylar’s performance goal is to avoid significantly affect-
ing the user experience with the web application. To
evaluate whether Mylar meets this goal, we answer the
following questions:

• How much latency does Mylar add to the web applica-
tion’s overall user interface?

• How much throughput overhead does Mylar impose
on a server?

• Is Mylar’s multi-key search important to achieve good
performance?

• How much storage overhead does Mylar impose?

To answer these questions, we measured the performance
of kChat, the homework submission application (“sub-
mit”), and the endometriosis application. Although kChat
has only one encrypted field, every message sent exercises
this field. We used two machines running recent versions
of Debian Linux to perform our experiments. The server
had an Intel Xeon 2.8 GHz processor and 4 GB of RAM;
the client had eight 10-core Intel Xeon E7-8870 2.4 GHz
processors with 256 GB of RAM. The client machine
is significantly more powerful to allow us to run enough
browsers to saturate the server. For browser latency ex-
periments, we simulate a 5 Mbit/s client-server network
with 20 msec round-trip latency. All experiments were
done over https, using nginx as an https reverse proxy
on the server. We used Selenium to drive a web browser
for all experiments. We also evaluated Mylar on Android
phones and found that performance remained acceptable,
but we omit these results for brevity.

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 169

 0
 100
 200
 300
 400
 500
 600
 700

transmit

join room

search
invite

T
im

e
(m

se
c)

kChat
kChat+Mylar

Figure 9: End-to-end latency of four operations in kChat. Trans-
mit includes the time from when one user sends a message to
when another user receives it.

End-to-end latency. Figure 9 shows the end-to-end la-
tency Mylar introduces for four main operations in kChat:
transmitting a message, joining a room, searching for a
word in all rooms, and inviting a user to a room. For
message transmission, we measured the time from the
sender clicking “send” until the message renders in the
recipient’s browser. This is the most frequent operation
in kChat, and Mylar adds only 50 msec of latency to it.
This difference is mostly due to searchable encryption,
which takes 43 msec. The highest overhead is for invit-
ing a user, due to principal operations: looking up and
verifying a user principal (218 msec) and wrapping the
key (167 msec). Overall, we believe the resulting latency
is acceptable for many applications, and subjectively the
application still feels responsive.

We also measured the latency of initially loading a
page. The original kChat application loads in 291 msec.
The Mylar version of kChat, without the code verification
extension, loads in 356 msec, owing to Mylar’s additional
code. Enabling the code verification extension increases
the load time to 1109 msec, owing to slow signature veri-
fication in the Javascript-based extension. Using native
code for signature verification, as we did for bilinear
pairings, would reduce this overhead. Note that users ex-
perience the page load latency only when first navigating
to the application; subsequent clicks are handled by the
application without reloading the page.

We also measured the end-to-end latency of the most
common operations in the endometriosis application
(completing a medical survey and reading such a sur-
vey), and the submit application (a student uploading an
assignment, and a staff member reading such a submis-
sion); the results are shown in Figure 11. For the submit
application, we used real data from 122 students who
used this application during the fall of 2013 in MIT’s
6.858 class. Submit’s latency is higher than that of other
applications because the amount of data (student submis-
sions) is larger, so encryption with search takes longer.

 0

 500

 1000

 1500

 2000

 2500

 0 5 10 15 20 25 30 35 40

M
es

sa
ge

s
/ m

in
ut

e

Number of clients

kChat
kChat+Mylar

Figure 10: Server throughput for kChat.

For comparison, we also show the latency of submit when
search is turned off. The search encryption can happen
asynchronously so the user does not have to wait for it.

Throughput. To measure Mylar’s impact on server
throughput, we used kChat, and we set up many pairs
of browsers—a sender and a receiver—where the sender
continuously sends new messages. Receivers count the
total number of messages received during a fixed interval.
Figure 10 shows the results, as a function of the total num-
ber of clients (each pair of browsers counts as 2 clients).
Mylar decreases the maximum server throughput by 17%.
Since the server does not perform any cryptographic oper-
ations, Mylar’s overhead is due to the increase in message
size caused by encryption, and the encrypted search index
that is added to every message to make it searchable.

Figure 11 also shows the server throughput of the en-
dometriosis and class submit application when clients
perform representative operations.

Search. To evaluate the importance of Mylar’s multi-
key search, we compare it to two alternative approaches
for secure search. The first alternative is single-key server-
side search, in which the client generates a token for every
key by directly computing the adjusted token from our
multi-key search. This alternative is similar to prior work
on encrypted keyword search. In this case, the client
looks up the principal for every room, computes a token
for each, and the server uses one token per room. The
second alternative is to perform the search entirely at the
client, by downloading all messages. In this case, the
client still needs to look up the principal for each room so
that it can decrypt the data.

Figure 12 shows the time taken to search for a word
in kChat for a fixed number of total messages spread
over a varying number of rooms, using multi-key search
and the two alternatives described above. We can see
that multi-key search is much faster than either of the
two alternatives, even with a small number of rooms.
The performance of the two alternatives is dominated by

13

170 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Application Operation Latency Latency Throughput Throughput Throughput
for latency w/o Mylar with Mylar w/o Mylar with Mylar units

submit send and read a
65 msec

606 msec
723

394
submissions/min

submit w/o search submission 70 msec 595

endometriosis fill in/read survey 1516 msec 1582 msec 6993 6130 field updates/min

Figure 11: Latency and throughput of different applications with and without Mylar. The latency is the end-to-end time to perform
the most common operation in that application. For submit, the latency is the time from one client submitting an assignment until
another client obtains that submission. For endometriosis, the latency is the time from one client filling out a survey until another
client obtains the survey.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100

T
im

e
(m

s)

Number of rooms

Client download
Server single-key
Server multi-key

Figure 12: End-to-end latency of keyword search in kChat,
searching over 100 6-word messages, spread over a varying
number of rooms.

Encrypt Delta Token Adjust Match

6.5 ms 7.1 ms 0.9 ms 5.6 ms 0.007 ms

Figure 13: Time taken to run each multi-key search operation.

the cost of looking up the principal for each room and
obtaining its private key. Multi-key search does not need
to do this, because the server directly uses the deltas, and
it achieves good performance because both ADJUST and
MATCH are fast, as shown in Figure 13.

Storage overhead. For kChat, the server storage over-
head after inserting 1,000 messages with Mylar was 4×
that of unmodified kChat. This is due to three factors:
principal graphs (storing certificates and wrapped keys),
symmetric key encryption, and searchable encryption.
Our prototype stores ciphertexts in base-64 encoding; us-
ing a binary encoding would reduce storage overheads.

10 DISCUSSION

Mylar focuses on protecting confidential data in web ap-
plications. However, Mylar’s techniques for searching
over encrypted data and for verifying keys are equally
applicable to desktop and mobile phone applications; the
primary difference is that code verification becomes sim-
pler, since applications are explicitly installed by the user,
instead of being downloaded at application start time.

Mylar relies on X.509 certificates to supply the web
site owner’s public key for code verification. Alternative
schemes could avoid the need for fully trusted certificate
authorities [41, 43], and the Mylar extension could al-
low users to manually specify site owner public keys for
especially sensitive web sites.

Revoking access to shared data is difficult, because
Mylar cannot trust the server to forget a wrapped key.
Complete revocation requires re-encrypting shared data
under a new key, and giving legitimate users access to the
new key. In less sensitive situations, it may suffice to try
deleting the key from the server, which would work if the
server is not compromised at the time of the deletion.

11 CONCLUSION

Mylar is a novel web application framework that enables
developers to protect confidential data in the face of ar-
bitrary server compromises. Mylar leverages the recent
shift to exchanging data, rather than HTML, between the
browser and server, to encrypt all data stored on the server,
and decrypt it only in users’ browsers. Mylar provides a
principal abstraction to securely share data between users,
and uses a browser extension to verify code downloaded
from the server that runs in the browser. For keyword
search, which is not practical to run in the browser, Mylar
introduces a cryptographic scheme to perform keyword
search at the server over data encrypted with different
keys. Experimental results show that using Mylar requires
few changes to an application, and that the performance
overheads of Mylar are modest.

Mylar and the applications discussed in this paper are
available at http://css.csail.mit.edu/mylar/.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd,
Mike Freedman, for their feedback. We also thank Linda
Griffith, John Guttag, Nicolaas Kaashoek, and Michelle
Park for providing a real medical use case for Mylar with
their endometriosis application. This research was sup-
ported by NSF award IIS-1065219, by DARPA CRASH
under contracts #N66001-10-2-4088 and #N66001-10-2-
4089, by Quanta, and by Google.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 171

REFERENCES

[1] D. Akhawe, P. Saxena, and D. Song. Privilege sep-
aration in HTML5 applications. In Proceedings of
the 21st Usenix Security Symposium, Bellevue, WA,
Aug. 2012.

[2] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Koss-
mann, R. Ramamurthy, and R. Venkatesan. Orthog-
onal security with Cipherbase. In Proceedings of the
6th Biennial Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA, Jan. 2013.

[3] G. Ateniese, K. Fu, M. Green, and S. Hohenberger.
Improved proxy re-encryption schemes with appli-
cations to secure distributed storage. In Proceedings
of the 13th Annual Network and Distributed System
Security Symposium, San Diego, CA, Feb. 2006.

[4] S. Bajaj and R. Sion. TrustedDB: a trusted hardware
based database with privacy and data confidentiality.
In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, pages
205–216, Athens, Greece, June 2011.

[5] A. Barth, C. Jackson, and J. C. Mitchell. Securing
frame communication in browsers. In Proceedings
of the 17th Usenix Security Symposium, San Jose,
CA, July–Aug. 2008.

[6] A. Barth, J. Caballero, and D. Song. Secure content
sniffing for web browsers, or how to stop papers
from reviewing themselves. In Proceedings of the
30th IEEE Symposium on Security and Privacy, Oak-
land, CA, May 2009.

[7] F. Beato, M. Kohlweiss, and K. Wouters. Scramble!
your social network data. In Proceedings of the
11th Privacy Enhancing Technologies Symposium,
Waterloo, Canada, July 2011.

[8] D. Benjamin. Adapting Kerberos for a browser-
based environment. Master’s thesis, Massachusetts
Institute of Technology, Department of Electrical
Engineering and Computer Science, Sept. 2013.

[9] D. Borelli. The name Edward Snowden should
be sending shivers up CEO spines. Forbes,
Sept. 2013. http://www.forbes.com/sites/
realspin/2013/09/03/the-name-edward-
snowden-should-be-sending-shivers-up-
ceo-spines/.

[10] A. Chen. GCreep: Google engineer stalked teens,
spied on chats. Gawker, Sept. 2010. http://
gawker.com/5637234/.

[11] A. Chlipala. Static checking of dynamically-varying
security policies in database-backed applications. In

Proceedings of the 9th Symposium on Operating
Systems Design and Implementation (OSDI), Van-
couver, Canada, Oct. 2010.

[12] M. Christodorescu. Private use of untrusted web
servers via opportunistic encryption. In Proceed-
ings of the Web 2.0 Security and Privacy Workshop,
Oakland, CA, May 2008.

[13] CipherCloud. Cloud data protection solution. http:
//www.ciphercloud.com.

[14] Defuse Security. Encrypted pastebin. https://
defuse.ca/pastebin.htm, Sept. 2013.

[15] A. J. Feldman, W. P. Zeller, M. J. Freedman, and
E. W. Felten. SPORC: Group collaboration using
untrusted cloud resources. In Proceedings of the
9th Symposium on Operating Systems Design and
Implementation (OSDI), Vancouver, Canada, Oct.
2010.

[16] R. Fischer, M. Seltzer, and M. Fischer. Privacy
from untrusted web servers. Technical Report
YALEU/DCS/TR-1290, Yale University, Depart-
ment of Computer Science, May 2004.

[17] C. Gentry. Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing (STOC),
pages 169–178, Bethesda, MD, May–June 2009.

[18] D. B. Giffin, A. Levy, D. Stefan, D. Terei, D. Maz-
ières, J. C. Mitchell, and A. Russo. Hails: Protect-
ing data privacy in untrusted web applications. In
Proceedings of the 10th Symposium on Operating
Systems Design and Implementation (OSDI), Holly-
wood, CA, Oct. 2012.

[19] S. Goldwasser, Y. Kalai, R. A. Popa, V. Vaikun-
tanathan, and N. Zeldovich. Reusable garbled cir-
cuits and succinct functional encryption. In Proceed-
ings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), pages 555–564, Palo Alto,
CA, June 2013.

[20] Google, Inc. User data requests – Google
transparency report, Sept. 2013. http:
//www.google.com/transparencyreport/
userdatarequests/.

[21] S. Kamara, C. Papamanthou, and T. Roeder. Dy-
namic searchable symmetric encryption. In Proceed-
ings of the 19th ACM Conference on Computer and
Communications Security, Raleigh, NC, Oct. 2012.

[22] J. Kannan, P. Maniatis, and B.-G. Chun. Secure
data preservers for web services. In Proceedings
of the 2nd USENIX Conference on Web Application

15

172 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Development, Portland, OR, June 2011.

[23] KiqueDev. kChat. https://github.com/
KiqueDev/kChat/.

[24] M. Krohn. Building secure high-performance web
services with OKWS. In Proceedings of the 2004
USENIX Annual Technical Conference, Boston, MA,
June–July 2004.

[25] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure
untrusted data repository (SUNDR). In Proceed-
ings of the 6th Symposium on Operating Systems
Design and Implementation (OSDI), pages 91–106,
San Francisco, CA, Dec. 2004.

[26] A. López-Alt, E. Tromer, and V. Vaikuntanathan.
On-the-fly multiparty computation on the cloud via
multikey fully homomorphic encryption. In Pro-
ceedings of the 44th Annual ACM Symposium on
Theory of Computing (STOC), New York, NY, May
2012.

[27] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,
M. Dahlin, and M. Walfish. Depot: Cloud stor-
age with minimal trust. In Proceedings of the 9th
Symposium on Operating Systems Design and Imple-
mentation (OSDI), Vancouver, Canada, Oct. 2010.

[28] Mega. The privacy company. https://mega.co.
nz/#privacycompany, Sept. 2013.

[29] Meteor, Inc. Meteor: A better way to build apps.
http://www.meteor.com, Sept. 2013.

[30] OpenID Foundation. OpenID. http://openid.
net, Sept. 2013.

[31] R. A. Popa and N. Zeldovich. Multi-key search-
able encryption. Cryptology ePrint Archive, Re-
port 2013/508, Aug. 2013. http://eprint.iacr.
org/.

[32] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. CryptDB: Protecting confidential-
ity with encrypted query processing. In Proceedings
of the 23rd ACM Symposium on Operating Systems
Principles (SOSP), pages 85–100, Cascais, Portugal,
Oct. 2011.

[33] K. Puttaswamy, C. Kruegel, and B. Zhao. Sil-
verline: Toward data confidentiality in storage-
intensive cloud applications. In Proceedings of the
2nd ACM Symposium on Cloud Computing, Cascais,
Portugal, Oct. 2011.

[34] F. Y. Rashid. Salesforce.com acquires SaaS encryp-
tion provider Navajo Systems. eWeek.com, August
2011.

[35] S. Sauvage. ZeroBin - because ignorance is
bliss. http://sebsauvage.net/wiki/doku.
php?id=php:zerobin, Feb. 2013.

[36] D. X. Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Pro-
ceedings of the 21st IEEE Symposium on Security
and Privacy, pages 44–55, Oakland, CA, May 2000.

[37] E. Stark. From client-side encryption to secure web
applications. Master’s thesis, Massachusetts Insti-
tute of Technology, Department of Electrical Engi-
neering and Computer Science, June 2013.

[38] E. Stark, M. Hamburg, and D. Boneh. Symmetric
cryptography in Javascript. In Proceedings of the
Annual Computer Security Applications Conference,
Honolulu, HI, Dec. 2009.

[39] The Cryptocat Project. Moving to a browser
app model. https://blog.crypto.cat/2012/
08/moving-to-a-browser-app-model/, Aug.
2012.

[40] The Cryptocat Project. Cryptocat. http://www.
cryptocat.com, Sept. 2013.

[41] Thoughtcrime Labs. Convergence. http://
convergence.io/, 2011.

[42] J. Tudor. Web application vulnerability statistics,
June 2013. http://www.contextis.com/
files/Web_Application_Vulnerability_
Statistics_-_June_2013.pdf.

[43] D. Wendlandt, D. G. Andersen, and A. Perrig. Per-
spectives: Improving SSH-style host authentication
with multi-path probing. In Proceedings of the 2008
USENIX Annual Technical Conference, Boston, MA,
June 2008.

[44] Y. Xie and A. Aiken. Static detection of security vul-
nerabilities in scripting languages. In Proceedings
of the 15th Usenix Security Symposium, Vancouver,
Canada, July 2006.

[45] A. Yip, N. Narula, M. Krohn, and R. Mor-
ris. Privacy-preserving browser-side scripting with
BFlow. In Proceedings of the ACM EuroSys Confer-
ence, Nuremberg, Germany, Mar. 2009.

[46] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow asser-
tions. In Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP), pages 291–
304, Big Sky, MT, Oct. 2009.

[47] M. Zalewski. The Tangled Web. No Starch Press,
2012.

16

