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Abstract

Over the years middleboxes have become a fundamen-
tal part of today’s networks. Despite their usefulness,
they come with a number of problems, many of which
arise from the fact that they are hardware-based: they are
costly, difficult to manage, and their functionality is hard
or impossible to change, to name a few.

To address these issues, there is a recent trend to-
wards network function virtualization (NFV), in essence
proposing to turn these middleboxes into software-based,
virtualized entities. Towards this goal we introduce
ClickOS, a high-performance, virtualized software mid-
dlebox platform. ClickOS virtual machines are small
(5MB), boot quickly (about 30 milliseconds), add little
delay (45 microseconds) and over one hundred of them
can be concurrently run while saturating a 10Gb pipe on
a commodity server. We further implement a wide range
of middleboxes including a firewall, a carrier-grade NAT
and a load balancer and show that ClickOS can handle
packets in the millions per second.

1 Introduction

The presence of hardware-based network appliances
(also known as middleboxes) has exploded, to the point
where they are now an intrinsic and fundamental part
of today’s operational networks. They are essential to
network operators, supporting a diverse set of functions
ranging from security (firewalls, IDSes, traffic scrub-
bers), traffic shaping (rate limiters, load balancers), deal-
ing with address space exhaustion (NATSs) or improv-
ing performance (traffic accelerators, caches, proxies), to
name a few. Middleboxes are ubiquitous: a third of ac-
cess networks show symptoms of stateful middlebox pro-
cessing [12] and in enterprise networks there are as many
middleboxes deployed as routers and switches [37].
Despite their usefulness, recent reports and operator
feedback reveal that such proprietary middleboxes come
with a number of significant drawbacks [9]: middleboxes
are expensive to buy and manage [37], and introduc-
ing new features means having to deploy new hardware
at the next purchase cycle, a process which on average
takes four years. Hardware middleboxes cannot easily
be scaled up and down with shifting demand, and so
must provisioned to cope with peak demand, which is
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wasteful. Finally, a considerable level of investment is
needed to develop new hardware-based devices, which
leaves potential small players out of the market and so
raises innovation barriers.

To address these issues, Network Function Virtual-
ization (NFV) has been recently proposed to shift mid-
dlebox processing from hardware appliances to software
running on inexpensive, commodity hardware (e.g., x86
servers with 10Gb NICs). NFV has already gained a con-
siderable momentum: seven of the world’s leading tele-
coms network operators, along with 52 other operators,
IT and equipment vendors and technology providers,
have initiated a new standards group for the virtualiza-
tion of network functions [8].

NFV platforms must support multi-tenancy, since they
are intended to concurrently run software belonging to
the operator and (potentially untrusted) third parties: co-
located middleboxes should be isolated not only from a
security but also a performance point of view [10]. Fur-
ther, as middleboxes implement a large range of func-
tionality, platforms should accommodate a wide range of
OSes, APIs and software packages.

Is it possible to build a software-based virtual-
ized middlebox platform that fits these requirements?
Hypervisor-based technologies such as Xen or KVM are
well established candidates and offer security and perfor-
mance isolation out-of-the-box. However, they only sup-
port small numbers of tenants and their networking per-
formance is unsatisfactory'. At a high-level, the reason
for the poor performance is simple: neither the hyper-
visors (Xen or KVM), nor the guest OSes (e.g., Linux)
have been optimized for middlebox processing.

In this paper we present the design, implementation
and evaluation of ClickOS, a Xen-based software plat-
form optimized for middlebox processing. To achieve
high performance, ClickOS implements an extensive
overhaul of Xen’s I/O subsystem, including changes to
the back-end switch, virtual net devices and back and
front-end drivers. These changes enable ClickOS to sig-
nificantly speed up networking in middleboxes running
in Linux virtual machines: for simple packet generation,
Linux throughput increases from 6.46 Gb/s to 9.68 Gb/s
for 1500B packets and from 0.42 Gb/s to 5.73 Gb/s for
minimum-sized packets.

'In our tests, a Xen guest domain running Linux can only reach
rates of 6.5 Gb/s on a 10Gb card for 1500-byte packets out-of-the-box;
KVM reaches 7.5 Gb/s.
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A key observation is that developing middleboxes as
applications running over Linux (and other commodity
OSes) is a complex task and uses few of the OS services
beyond network connectivity. To allow ease of develop-
ment, a much better choice is to use specialized frame-
works to program middleboxes. Click [17] is a stand-out
example as it allows users to build complex middlebox
processing configurations by using simple, well known
processing elements. Click is great for middlebox pro-
cessing, but it currently needs Linux to function and so it
inherits the overheads of commodity OSes.

To support fast, easily programmable middleboxes,
ClickOS implements a minimalistic guest virtual ma-
chine that is optimized from the ground up to run Click
processing at rates of millions of packets per second.
ClickOS images are small (SMB), making it possible
to run a large number of them (up to 400 in our tests).
ClickOS virtual machines can boot and instantiate mid-
dlebox processing in under 30 milliseconds, and can sat-
urate a 10Gb/s link for almost all packets sizes while con-
currently running as many as 100 ClickOS virtual ma-
chines on a single CPU core.

2 Problem Statement

Our goal is to build a versatile, high performance soft-
ware middlebox platform on commodity hardware. Such
a platform must satisfy a number of performance and se-
curity requirements:

Flexibility to run different types of software middle-
boxes, relying on different operating systems or frame-
works, coming from different vendors, and requested by
the operator itself or potentially untrusted third-parties.
Isolation of memory, CPU, device access and perfor-
mance to support multiple tenants on common hardware.
High Throughput and Low Delay: Middleboxes are
typically deployed in operator environments so that it is
common for them to have to handle large traffic rates
(e.g., multiple 10Gb/s ports); the platform should be
able to handle such rates, while adding only negligible
delay to end-to-end RTTs.

Scalability: Running middleboxes for third-parties
must be very efficient if it is to catch on. Ideally, the
platform should ideally support a large number of mid-
dleboxes belonging to different third-parties, as long as
only a small subset of them are seeing traffic at the same
time. This implies that platforms must be able to quickly
scale out processing with demand to make better use of
additional resources on a server or additional servers, and
to quickly scale down when demand diminishes.

How should middleboxes be programmed? The de-
fault today is to code them as applications or kernel
changes on top of commodity OSes. This allows much
flexibility in choosing the development tools and lan-

guages, at the cost of having to run one commodity OS
to support a middlebox.

In addition, a large fraction of functionality is com-
mon across different middleboxes, making it important
to support code re-use to reduce prototyping effort, and
processing re-use to reduce overhead [36].

3 Related Work

There is plenty of related work we could leverage to build
NFV platforms. Given that the goal is to isolate different
middleboxes running on the same hardware, the choice
is either containers (chroot, FreeBSD Jails, Solaris
Zones, OpenVZ [44, 45, 27]) or hypervisors (VMWare
Server, Hyper-V, KVM, Xen [40, 21, 16, 3]).
Containers are lightweight but inflexible, forcing all
middleboxes to run on the same operating system. This
is a limitation even in the context of an operator wanting
to run software middleboxes from different vendors.
Hypervisors provide the flexibility needed for multi-
tenant middleboxes (i.e., different guest operating sys-
tems are able to run on the same platform), but this is at
the cost of high performance, especially in networking.
For high-performance networking with hypervisors, the
typical approach today is to utilize device pass-through,
whereby virtual machines are given direct access to a de-
vice (NIC). Pass-through has a few downsides: it compli-
cates live migration, and it reduces scalability since the
device is monopolized by a given virtual machine. The
latter issue is mitigated by modern NICs supporting tech-
nologies such as hardware multi-queuing, VMDq and
SR-IOV [14], however the number of VMs is still lim-
ited by the number of queues offered by the device. In
this work we will show that it is possible to maintain per-
formance scalability even without device pass-through.
Minimalistic OSes and VMs: Minimalistic OSes or
micro kernels are attractive because, unlike traditional
OSes, they aim provide just the required functionality for
the job. While many minimalist OSes have been built
[22, 23, 1, 42, 43], they typically lack driver support
for a wide range of devices (especially NICs), and most
do not run in virtualized environments. With respect to
ClickOS, Mirage [19] is also a Xen VM built on top of
MiniOS, but the focus is to create Ocaml, type-safe virtu-
alized applications and, as such, its network performance
is not fully optimized (e.g., 1.7 Gb/s for TCP traffic). Er-
lang on Xen, LuaJIT and HalVM also leverage MiniOS
to provide Erlang, Lua, and Haskell programming envi-
ronments; none target middlebox processing nor are op-
timized for network I/O.

Network I/0O Optimization: Routebricks [7] looked
into creating fast software routers by scaling out to a
number of servers. PacketShader [11] took advantage
of low cost GPUs to speed up certain types of network
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processing. More recently, PFQ, PF_RING, Inte]l DPDK
and netmap [25, 6, 13, 29] focused on accelerating net-
working by directly mapping NIC buffers into user-space
memory; in this work we leverage the last of these to pro-
vide a more direct pipe between NIC and VMs.
Regarding virtualization, work in the literature has
looked at improving the performance of Xen network-
ing [28, 35], and we make use of some of the tech-
niques suggested, such as grant re-use. The works
in [47, 24] look into modifying scheduling in the hyper-
visor in order to improve I/O performance; however, the
results reported are considerably lower than ClickOS. Fi-
nally, Hyper-Switch [15] proposes placing the software
switch used to mux/demux packets between NICs and
VMs inside the hypervisor. Unfortunately, the switch’s
data plane relies on open vSwitch code [26], resulting
in sub-optimal performance. More recently, two sepa-
rate efforts have looked into optimizing network I/O for
KVM [4] [32]; neither of these has focused on virtual-
izing middlebox processing, and the rates reported are
lower than those in this paper.
Software Middleboxes: Comb [36] introduces an archi-
tecture for middlebox deployments targeted at consoli-
dation. However, it does not support multi-tenancy nor
isolation, and the performance figures reported (about
4.5Gb/s for two CPU cores assuming maximum-sized
packets) are lower than the line-rate results we present
in Section 9. The work in [37] uses Vyatta software (see
below) to run software middleboxes on Amazon EC2 in-
stances. Finally, while a number of commercial offer-
ings exist (Cisco [5], Vyatta [41]), there are no publicly-
available detailed evaluations.

It is worth noting that a preliminary version of this paper
has appeared as [20]. This version includes a detailed
account of our solution and design decisions, extensive
benchmarking as well as implementation and evaluation
of a range of ClickOS middleboxes.

4 ClickOS Design

To achieve flexibility, isolation and multi-tenancy, we
rely on hypervisor virtualization, which adds an extra
software layer between the hardware and the middlebox
software which could hurt throughput or increase delay.
To minimize these effects, para-virtualization is prefer-
able to full virtualization: para-virtualization makes mi-
nor changes to the guest OSes, greatly reducing the over-
heads inherent in full virtualization such as VM exits [2]
or the need for instruction emulation [3].

Consequently, we base ClickOS on Xen [3] since its
support for para-virtualized VMs provides the possibility
to build a low-delay, high-throughput platform, though
its potential is not fulfilled out of the box (Section 6).

Middlebox Key Click Elements

Load balancer RatedSplitter, HashSwitch
Firewall IPFilter

NAT [IP|UDP|TCP]Rewriter

DPI Classifier, IPClassifier
Traffic shaper BandwidthShaper, DelayShaper
Tunnel IPEncap, IPsecESPEncap
Multicast IPMulticastEtherEncap, IGMP
BRAS PPPControlProtocol, GREEncap
Monitoring IPRateMonitor, TCPCollector
DDoS prevention IPFilter

IDS Classifier, IPClassifier

IPS IPClassifier, IPFilter
Congestion control | RED, SetECN

IPv6/1Pv4 proxy ProtocolTranslator46

Table 1: Key Click elements that allow developing a
wide range of middleboxes.

KVM also supports driver para-virtualization through
virtio [33], but yields lower performance (Section 6).

Programming Abstractions. Today’s software middle-
boxes are written either as user-space applications on
top of commodity OSes (e.g., Snort or Bro) or as kernel
changes (e.g., iptables, etc). Either way, C is the de-facto
programming language as it offers high performance.

Our platform aims to allow today’s middleboxes to run
efficiently in the context of virtualization. However, we
believe that there are much better ways to develop fast
middleboxes. C offers great flexibility but has high de-
velopment and debugging costs, especially in the kernel.
In addition, there is not much software one can reuse
when programming a new type of middlebox.

Finding the best programming abstraction for middle-

boxes is an interesting research topic, but we do not set
out to tackle it in this paper. Instead, we want to prag-
matically choose the best tool out of the ones we have
available today. As a result, we leverage the Click mod-
ular router software. Previous work [36] showed that a
significant amount of functionality is common across a
wide range of middleboxes; Click makes it easy to reuse
such functionality, abstracting it into a set of re-usable
elements. Click comes with over 300+ stock elements
which make it possible to construct middleboxes with
minimal effort (Table 1). Finally, Click is extensible, so
we are not limited to the functionality provided by the
stock elements. Click is of course no panacea: it does
not cover all types of middlebox processing, for instance
middleboxes that need a full-fledged TCP stack. In such
cases it is better to use a standard Linux VM.
Running Click Efficiently: By default, Click runs on
top of Linux either as a userland process (with poor per-
formance, see [30]) or as a kernel module. To get domain
isolation, we would have to run each Click middlebox
inside a Linux virtual machine. This, however, violates
our scalability requirement: even stripped down Linux
VMs are memory-hungry (128MB or more) and take 5s
to boot.
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Figure 1: ClickOS architecture.

Instead, we take a step back and ask: what support
does Click need from the operating system to be able to
enable a wide range of middlebox processing? The an-
swer is, surprisingly, not much:

e Driver support to be able to handle different types of
network interfaces.

e Basic memory management to allocate different data
structures, packets, etc.

e A simple scheduler that can switch between running
Click element code and servicing interrupts (mostly
from the NICs). Even a cooperative scheduler is
enough - there is no need for pre-emptive scheduling,
or multi-threading.

The first requirement seems problematic, given the
large number of interface vendors and variety of mod-
els. Xen elegantly solves this issue through paravirtual-
ization: the guest accesses all NIC types through a single,
hardware-agnostic driver connected to the driver domain,
and the driver domain (a full-blown Linux machine with
the customary driver support) talks to the hardware itself.

Almost all operating systems meet the other two re-
quirements, so there is no need to build one from scratch:
we just need an OS that is minimalistic and is able to
boot quickly. Xen comes with MiniOS, a tiny operating
system that fits the bill and allows us to build efficient,
virtualized middleboxes without all of the unnecessary
functionality included in a conventional operating sys-
tem. MiniOS is the basis for our ClickOS VMs.

In short, our ClickOS virtualized middlebox platform
consists of (1) a number of optimizations to Xen’s net-
work I/O sub-system that allow fast networking for tra-
ditional VMs (Section 7); (2) tailor-made middlebox vir-
tual machines based on Click; and (3) tools to build and
manage the ClickOS VMs, including inserting, deleting,
and inspecting middlebox state (Figure 1).

5 ClickOS Virtual Machines

Before describing what a ClickOS virtual machine is, it
is useful to give a brief Xen background. Xen is split into
a privileged virtual machine or domain called domO (typ-

ically running Linux), and a set of guest or user domains
comprising the users’ virtual machines (also known as
domUs). In addition, Xen includes the notion of a driver
domain VM which hosts the device drivers, though in
most cases domO acts as the driver domain. Further,
Xen has a split-driver model, where the back half of a
driver runs in a driver domain, the front-end in the guest
VM, and communications between the two happen us-
ing shared memory and a common, ring-based API. Xen
networking follows this model, with dom0 containing
a netback driver and the guest VM implementing a
netfront one. Finally, event channels are essentially
Xen inter-VM interrupts, and are used to notify VMs
about the availability of packets.

MiniOS implements all of the basic functionality
needed to run as a Xen VM. MiniOS has a single ad-
dress space, so no kernel/user space separation, and a co-
operative scheduler, reducing context switch costs. Min-
iOS does not have SMP support, though this could be
added. We have not done so because a single core is suf-
ficient to support 10 Gbps line-rate real middlebox pro-
cessing, as we show later. Additionally, we scale up by
running many tiny ClickOS VMs rather than a few large
VMs using several CPU cores each.

Each ClickOS VM consists of the Click modular
router software running on top of MiniOS, but building
such a VM image is not trivial. MiniOS is intended to be
built with standard GCC and as such we can in principle
link any standard C library to it. However, Click is writ-
ten in c++, and so it requires special precautions. The
most important of these is that standard g++ depends on
(among others) ctypes . h (via glibc) which contains
Linux specific dependencies that break the standard Min-
i0S iostream libraries. To resolve this we developed
a new build tool which creates a Linux-independent c++
cross-compiler using newlibc [38].

In addition, our build tool re-designs the standard Min-
iOS toolchain so that it is possible to quickly and eas-
ily build arbitrary, MiniOS-based VMs by simply link-
ing an application’s entry point so that it starts on VM
boot; this is useful for supporting middleboxes that can-
not be easily supported by Click. Regarding libraries,
we have been conservative in the number of them we
link, and have been driven by need rather than experi-
mentation. In addition to the standard libraries provided
with the out-of-the-box MiniOS build (1wip, zlib,
libpci) we add support for 1ibpcre, libpcap
and libssl, libraries that certain Click elements de-
pend on. The result is a ClickOS image with 216/282
Click elements, with many of the remaining ones requir-
ing a filesystem to run, which we plan to add.

Once built, booting a ClickOS image start by creat-
ing the virtual machine itself, which involves reading its
configuration, the image file, and writing a set of entries

462 11th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association



to the Xen store, a proc-like database residing in domO
that is used to share control information with the guest
domains. Next, we attach the VM to the back-end switch,
connecting it to physical NICs.

MiniOS boots, after which a special control thread is
created. At this point, the control thread creates an install
entry in the Xen store to allow users to install Click con-
figurations in the ClickOS VM. Since Click is designed
to run on conventional OSes such as Linux or FreeBSD
which, among other things, provide a console through
which configurations can be controlled and, given that
MiniOS does not provide these facilities, we leverage the
Xen store to emulate such functionality.

Once the install entry is created, the control thread sets
up a watch on it that monitors changes to it. When writ-
ten to, the thread launches a second MiniOS thread which
runs a Click instance, allowing several Click configura-
tions to run within a single ClickOS VM. To remove the
config we write an empty string to the Xen store entry.

We also need to support Click element handlers,
which are used to set and retrieve state in elements (e.g,
the AverageCounter element has a read counter to
get the current packet count and a write one to reset
the count); to do so, we once again leverage the Xen
store. For each VM, we create additional entries for
each of the elements in a configuration and their han-
dlers. We further develop a new Click element called
ClickOSControl which gets transparently inserted
into all configurations. This element takes care of in-
teracting, on one end, with the read and write operations
happening on the Xen store, and communicating those to
the corresponding element handlers within Click.

In order to control these mechanisms which are not
standard to all Xen VMs, ClickOS comes with its own
domO CLI called Cosmos (as opposed to the standard,
Xen-provided x1 tool). Cosmos is built directly on top
of the Xen UI libraries (Figure 1) and therefore does not
incur any extraneous costs when processing requests. To
simplify development and user interaction, Cosmos im-
plements a SWIG [39] wrapper enabling users to auto-
matically generate Cosmos bindings for any of the SWIG
supported languages. For convenience, we have also im-
plemented a Python-based ClickOS CLI.

Finally, it is worth mentioning that while MiniOS rep-
resents a low-level development environment, program-
ming for ClickOS is relatively painless: development,
building and testing can take place in user-space Click,
and the resulting code/elements simply imported into the
ClickOS build process when ready.

6 Xen Networking Analysis

In this section we investigate where the Xen network-
ing bottlenecks are. Figure 1 illustrates the Xen network
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Figure 2: Xen performance bottlenecks using a differ-
ent back-end switch and netfront (NF) and netback (NB)
drivers (“opt” stands for optimized).

I/0 sub-system: the network driver, software switch, vir-
tual interface and netback driver in dom0 and the netfront
driver (either the Linux or MiniOS one) in the guest do-
mains, any of which could be bottlenecks.

In order to get some baseline numbers, we begin by
performing a simple throughput test. For this test we
used a server with an Intel Xeon E3-1220 3.1GHz 4-core
CPU, 16GB memory and an Intel x520-T2 dual Ether-
net port 10Gb/s card (about $1,500 including the NIC).
The server had Xen 4.2, Open vSwitch as its back-end
switch and a single ClickOS virtual machine. The VM
was assigned a single CPU core, the remainder given to
dom0.

The first result (labeled “NF-MiniOS” in Figure 2)
shows the performance of the MiniOS netfront driver
when sending (Tx, in which case we measure rates at the
netback driver in dom0) and receiving (Rx) packets. Out
of the box, the MiniOS netfront driver yields poor rates,
especially for Rx, where it can barely handle 8 Kp/s.

To improve this receive rate, we modified the net-
front driver to re-use memory grants. Memory grants are
Xen’s mechanism to share memory between two virtual
machines, in this case the packet buffers between dom0O
and the ClickOS VM. By default, the driver requests a
grant for each packet, requiring an expensive hypercall
to the hypervisor (essentially the equivalent of a system
call for an OS); we changed the driver so that it receives
the grants for packet buffers at initialization time, and to
re-use these buffers for all packets handled. The driver
now also uses polling, further boosting performance.

The results are labeled “NF-MiniOS-opt” in Figure 2.
We see important improvements in Rx rates, from 8 Kp/s
to 344 Kp/s for maximum-sized packets. Still, this is far
from the 10Gb/s line rate figure of 822 Kp/s, and quite far
from the 14.8 Mp/s figure for minimum-sized packets,
meaning that other significant bottlenecks remain.

Next, we took a look at the software switch. By de-
fault, Xen uses Open vSwitch, which previous work re-
ports as capping out at 300 Kp/s [30]. As a result, we
decided to replace it with the VALE switch [31]. Be-
cause VALE ports communicate using the netmap API,
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description | function | ns
get vif poll_net_schedule_list 119
handle frags if any netbk_count_requests 53
alloc skb alloc_skb 384
reserve_skb
alloc page xen_netbk_alloc_page 293
for packet data
build grant op struct fills gnttab_copy 96
extends the skb __skb_put 96
with the expected size
build grant op struct xen_netbk_get_requests 61
(for frags)
add the skb __skb_queue_tail 53
to the Tx queue
checks for check_rx_xenvif 206
packets received
packet grant copy HYPERCALL 24708
dequeue packet _skb_dequeue 94
from Tx queue
copy pkt data to skb memcpy 90
put a response fills xen_netif_tx_response | 52
in the ring notify_via_remote_irq
copy frag data xen_netbk_fill_frags 179
calc checksum checksum_setup 78
forward pkt to bridge xenvif_receive_skb 3446

Table 2: Per-function netback driver costs when sending
a batch of 32 packets. Small or negligible costs are not
listed for readability. Timings are in nanoseconds.

we modified the netback driver to implement that API,
and removed the Xen virtual interface (vif) in the pro-
cess. These changes (“NB-vale”) gave a noticeable boost
of up to 1.2 Mp/s for 64B packets, confirming that the
switch was at least partly to blame 2.

Despite the improvement, the figures were still far
from line rate speeds. Sub-optimal performance in the
presence of a fast software switch, no vif and an opti-
mized netfront driver seem to point to issues in the net-
back driver, or possibly in the communication between
netback and netfront drivers. To dig in deeper, we car-
ried out a per-function analysis of the netback driver to
determine where the major costs were coming from.

The results in Table 2 report the main costs in the
code path when transmitting a batch of 32 packets. We
obtain timings via the getnstimeofday () function,
and record them using the trace_printk function
from the lightweight FTrace tracing utility.

The main cost, as expected, comes from the hypercall,
essentially a system call between the VM and the hyper-
visor. Clearly this is required, though its cost can be sig-
nificantly amortized by techniques such as batching. The
next important overhead comes from transmitting pack-
ets from the netback driver through the vif and onto the
switch. The vif, basically a tap device, is not fundamen-
tal to having a VM communicate with the netback driver

2We did not implement Rx on this modified netback driver as the
objective was to see if the only remaining major bottleneck was the
software switch.
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Figure 3: Standard Xen network I/O pipe (top) and
our optimized, ClickOS one with packet buffers directly
mapped into the VM’s memory space.

and switch, but as shown adds non-negligible costs aris-
ing from extra queuing and packet copies. Other further
penalties come from using the Xen ring API, which for
instance requires responses to all packets transmitted in
either direction. Finally, a number of overheads are due
to sk_buff management, not essential to having a VM
transmit packets to the network back-end — especially a
non-Linux VM such as ClickOS.

In the next section we discuss how we revamped the
Xen I/O network pipe in order to remove or alleviate
most of these costs.

7 Network I/0 Re-Design

The Xen network I/O pipe has a number of components
and mechanisms that add overhead but that are not funda-
mental to the task of getting packets in and out of VMs.
In order to optimize this, it would be ideal if we could
have a more direct path between the back-end NIC and
switch and the actual VMs. Conceptually, we would like
to directly map ring packet buffers from the device driver
or back-end switch all the way into the VMs’ memory
space, much like certain fast packet I/O frameworks do
between kernel and user-space in non-virtualized envi-
ronments [29, 25, 6].

To achieve this, and to boost overall performance, we
take three main steps. First, we replace the standard but
sub-optimal Open vSwitch back-end switch with a high-
speed, ClickOS switch; this switch exposes per-port ring
packet buffers which are able to we map into a VM’s
memory space. Second, we observe that since in our
model the ClickOS switch and netfront driver transfer
packets between one another directly, the netback driver
becomes redundant. As a result, we remove it from the
pipe, but keep it as a control plane driver to perform
actions such as communicating ring buffer addresses
(grants) to the netfront driver. Finally, we changed the
VM netfront driver to map the ring buffers into its mem-
ory space.

These changes are illustrated in Figure 3, which con-
trasts the standard Xen network pipe (top diagram) with
ours (bottom). We dedicate the rest of this section to
providing a more detailed explanation of our optimized
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switch, netback and netfront drivers (both MiniOS’ and
the Linux one) and finally a few modifications to Click.

ClickOS Switch. Given the throughput limitations of
Xen’s standard Open vSwitch back-end switch, we de-
cided to replace it with the VALE high-speed switch [18],
and to extend its functionality in a number of ways. First,
VALE only supports virtual ports, so we add the ability
to connect NICs directly to the switch. Second, we in-
crease the maximum number of ports on the switch from
64 to 256 so as to accommodate a larger number of VMs.

In addition, we add support for each individual VM to
configure the number of slots in the packet buffer ring, up
to a maximum of 2048 slots. As we will see in the evalu-
ation section, larger ring sizes can improve performance
at the cost of larger memory requirements.

Finally, we modify the switch so that its switching
logic is modular, and replace the standard learning bridge
behavior with static MAC address-to-port mappings to
boost performance (since in our environment we are in
charge of assigning MAC addresses to the VMs this
change does not in any way limit our platform’s function-
ality). All of these changes have been now upstreamed
into VALE’s main code base.

Netback Driver. We redesign the netback driver to
turn it (mostly) into a control-plane only driver. Our
modified driver is in charge of allocating memory for the
receive and transmit packet rings and their buffers and to
set-up memory grants for these so that the VM’s netfront
driver can map them into its memory space. We use the
Xen store to communicate the rings’ memory grants to
the VMs, and use the rings themselves to tell the VM
about the ring buffers’ grants; doing so ensures that the
numerous grants do not overload the Xen store.

On the data plane side, the driver is only in charge
of (1) setting up the kthreads that will handle packet
transfers between switch and netfront driver; and (2)
proxy event channel notifications between the netfront
driver and switch to signal the availability of packets.

We also make a few other optimizations to the netback
driver. Since the driver is no longer involved with ac-
tual packet transfer, we no longer use vifs nor OS-specific
data structures such as sk_buf fs for packet processing.
Further, as suggested in [46], we adopt a 1:1 model for
mapping kernel threads to CPU cores: this avoids unfair-
ness issues. Finally, the standard netback uses a single
event channel (a Xen interrupt) for notifying the avail-
ability of packets for both transmit and receive. Instead,
we implement separate Tx and Rx event channels that
can be serviced by different cores.

Netfront Driver. We modify MiniOS’ netfront driver
to be able to map the ring packet buffers exposed by the
ClickOS switch into its memory space. Further, since
the switch uses the netmap API [29], we implement a

netmap module for MiniOS. This module uses the stan-

dard netmap data structures and provides the same ab-

stractions as user-space netmap: open, mmap, close
and finally pol1 to transmit/receive packets.

Beyond these mechanisms, our netfront driver in-
cludes a few other changes

e Asynchronous Transmit: In order to speed up trans-
mit throughput, we modify the transmit function to run
asynchronously.

e Grant Re-Use: Unlike the standard MiniOS netfront
driver, we set-up grants once, and re-use them for
the lifetime of the VM. This is a well-known tech-
nique for improving the performance of Xen’s network
drivers [35].

e Linux Support: While our modifications result in im-
portant performance increases, the departure from the
standard Xen network I/0 model means that we break
support for other, non-MiniOS guests. To remedy this,
we implemented a new Linux netfront driver suited
to our optimized network pipe. Using this new net-
front results in 10 Gb/s rates for most packet sizes (see
Section 8) and allows us to run, at speed, any remain-
ing middleboxes that cannot be easily implemented in
Click or on top of MiniOS.

Click Modifications. Finally, we have made a few
small changes to Click (version 2.0.1, less than 50 lines
of code), including adding new elements to send and re-
ceive packets via the netfront driver, and optimizations
to the InfiniteSource element to allow it to reach
high packet rates.

ClickOS Prototype. The ClickOS prototype is open-
source software. It includes changes to the XEN back-
end (around 1000 LoC) and the frontend (1200 LoC). We
are beginning to upstream these changes to Xen, but this
process is lengthy; in the meantime, we plan to make the
code available so that prospective users can just down-
load our patches and recompile the netback and netfront
modules (or recompile the dom0 kernel altogether).

8 Base Evaluation

Having presented the ClickOS architecture, its compo-
nents and their optimization, we now provide a thorough
base evaluation of the system. After this, in Section 9, we
will describe the implementation of several middleboxes
as well as performance results for them.

Experimental Set-up. The ClickOS tests in this sec-
tion were conducted using either (1) a low-end, single-
CPU Intel Xeon E3-1220 server with 4 cores at 3.1 GHz
and 16 GB of DDR3-ECC RAM (most tests); or (2) a
mid-range, single-CPU Intel Xeon E5-1650 server with
6 cores at 3.2 GHz and 16 GB of DDR3-ECC RAM
(switch and scalability tests). In all cases we used Linux
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drivers.

3.6.10 for domO and domU, Xen 4.2.0, Click 2.0.1 and
netmap’s pkt—-gen application for packet generation
and rate measurements. All packet generation and rate
measurements on an external box are conducted using
one or more of the low-end servers, and all NICs are
connected through direct cables. For reference, 10Gb/s
equates to about 14.8 Mp/s for minimum-sized packets
and 822 Kp/s for maximum-sized packets.

ClickOS Switch. The goal is to ensure that the switch-
ing capacity is high so that it does not become a bottle-
neck as more ClickOS VMs, cores and NICs are added
to the system.

For this test we rely on a Linux (i.e., non-Xen) system.
We use a user-space process running pkt-gen to gen-
erate packets towards the switch, and from there onto a
single 10 Gb/s Ethernet port; a separate, low-end server
then uses pkt—-gen once again to receive the packets
and to measure rates. We then add another pkt-gen
user-process and 10Gb/s Ethernet port to test scalability.
Each pkt—gen/port pair uses a single CPU core (so two
in total for the 20Gb/s test).

For the single port pair case, the switch saturated the
10Gb/s pipe for all packet sizes (Figure 4). For the two
port pairs case, the switch fills up the entire cumulative
20Gb/s pipe for all packet sizes except minimum-sized
ones, for which it achieves 70% of line rate. Finally, we
also conducted receive experiments (where packets are
sent from an external box towards the system hosting the
switch) which resulted in roughly similar rates.

Memory Footprint. As stated previously, the basic
memory footprint of a ClickOS image is SMB (includ-
ing all the supported Click elements). In addition to this,
a certain amount of memory is needed to allocate the
netmap ring packet buffers. How much memory depends
on the size of the rings (i.e., how many slots or packets
the ring can hold at a time), which can be configured on
a per-ClickOS VM basis.

To get an idea of how much memory might be re-
quired, Table 3 reports the memory requirements for dif-

Ring size Required memory (KB) | # of grants
64 264 65
128 516 129
256 1032 258
512 2064 516
1024 4128 1032
2048 8260 2065

Table 3: Memory requirements for different ring sizes.

ferent ring sizes, ranging from kilobytes for small rings
all the way up to 8MB for a 2048-slot ring. As we will
see later on in this section, this is a trade-off between the
higher throughput that can be achieved with larger rings
and the larger number of VMs that can be concurrently
run when using small ring sizes. Ultimately, it might be
unlikely that a single ClickOS VM will need to handle
very large packet rates, so in practice a small ring size
might suffice. It is also worth pointing out that larger
rings require more memory grants; while there is a max-
imum number of grants per VM that a Xen system can
have, this limit is configurable at boot time.

What about the state that certain middleboxes might
contain? To get a feel for this, we inserted 1,000 for-
warding rules into an IP router, 1,000 rules into a firewall
and 400 into an IDS (see Section 9 for a description of
these middleboxes); the memory consumption from this
was 20KB, 87KB and 30KB, respectively, rather small
amounts. All in all, even if we use large ring sizes, a
ClickOS VM requires approximately 15MB of memory.

Boot Times. In this set of tests we use the Cosmos tool
to create ClickOS VMs and measure how long it takes
for them to boot. A detailed breakdown of the ClickOS
boot process may be found in [20]; for brevity, here we
provide a summary. During boot up most of the time is
spent issuing and carrying out the hypercall to create the
VM (5.2 milliseconds), building the image (7.1 msecs)
and creating the console (4.4 msecs), for a total of about
20.8 msecs. Adding roughly 1.4 msecs to attach the VM
to the back-end switch and about 6.6 msecs to install a
Click configuration brings the total to about 28.8 msecs
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from when the command to create the ClickOS VM is
issued until the middlebox is up and running.

Next we measured how booting large numbers of
ClickOS VMs on the same system affects boot times.
For this test we boot an increasing number of VMs in
sequence and measure how long it takes for each of them
to boot and install a Click configuration (Figure 5). Both
the boot and startup times increase with the number of
VMs, up to a maximum of 219 msecs boot and 20.0
msecs startup for the 400th VM. This increase is due to
contention on the Xen store and could be improved upon.

Delay. Most middleboxes are meant to work transpar-
ently with respect to end users, and as such, should in-
troduce little delay when processing packets. Virtualiza-
tion technologies are infamous for introducing extra lay-
ers and with them additional delay, so we wanted to see
how ClickOS’ streamlined network I/O pipe would fare.

To set-up the experiment, we create a ClickOS VM
running an ICMP responder configuration based on the
ICMPPingResponder element. We use an external
server to ping the ClickOS VM and measure RTT. Fur-
ther, we run up to 11 other ClickOS VMs that are either
idle, performing a CPU-intensive task (essentially an in-
finite loop) or a memory-intensive-one (repeatedly allo-
cating and deallocating several MBs of memory).

The results show low delays of roughly 45 psecs for
the test with idle VMs, a number that stays fairly con-
stant as more VMs are added. For the memory intensive
task test the delay is only slightly worse, starting again at
45 psecs and ramping up to 64 psecs when running 12
VMs. Finally, the CPU intensive task test results in the
largest delays (RTTs of up to 300 psecs), though these
are still small compared to Internet end-to-end delays.

Next, we compared ClickOS’ idle delay to that of
other systems such as KVM and other Xen domains
(Figure 6). Unsurprisingly, domO has a small delay of
41 usecs since it does not incur the overhead of going
through the netback and netfront drivers. This overhead
does exist when measuring delay for the standard, un-
optimized netback/netfront drivers of a Xen Linux VM
(106 usecs). KVM, in comparison, clocks in at 69 pisecs
when using its para-virtualized virt io drivers and 107
usecs for its virtualized e1000 driver.

Throughput. In the next batch of tests we perform a
number of baseline measurements to get an understand-
ing of what packet rates ClickOS can handle. All of these
tests are done on the low-end servers, with one CPU core
dedicated to the VM and the remaining three to dom0.
Before testing a ClickOS VM we would like to bench-
mark the underlying network I/O pipe, from the NIC
through to the back-end switch, netback driver and the
netfront one. To do so, we employ our build tool to create
a special VM consisting of only MiniOS and pkt-gen

on top of it. After MiniOS boots, pkt—gen begins to
immediately generate packets (for Tx tests) or measure
rates (Rx). We conduct the experiment for different ring
sizes (set using a sysctl command to the netmap ker-
nel module) and for different packet sizes (for Tx tests
this is set via Cosmos before the VM is created).

Figure 7 reports the results of the measurements. On
transmit, the first thing to notice is that our optimized
I/O pipe achieves close to line rate for minimum-sized
packets (14.2 Mp/s using 2048-slot rings out of a max of
14.8 Mp/s) and line rate for all other sizes. Further, ring
size matters, but mostly for minimum-sized packets. The
receive performance is also high but somewhat lower due
to extra queuing overheads at the netfront driver.

With these rates in mind, we proceed to deriv-
ing baseline numbers for ClickOS itself. In this
case, we use a simple Click configuration based
on the AverageCounter element to measure re-
ceive rates and another one based on our modified
InfiniteSource to generate packets. Figure 7(c)
shows ClickOS’ transmit performance, which is com-
parable to that produced by the pkt-gen VM, meaning
that at least for simple configurations ClickOS adds lit-
tle overhead. The same is true for receive, except for
minimum-sized packets, where the rate drops from about
12.0 Mp/s to 9.0 Mp/s.

For the last set of throughput tests we took a look at
the performance of our optimized Linux domU netfront
driver, comparing it to that of a standard netfront/Linux
domU and KVM. For the latter, we used Linux version
3.6.10, the emulated e1000 driver, Vhost enabled, the
standard Linux bridge, and pkt —gen once again to gen-
erate and measure rates. As seen in Figure 8 the Tx
and Rx rates for KVM and the standard Linux domU
are fairly similar, reaching only a fraction of line rate for
small packet sizes and up to 7.88 Gb/s (KVM) and 6.46
Gb/s (Xen) for maximum-sized ones. The optimized net-
front/Linux domU, on the other hand, hits 8.53 Mp/s for
Tx and 7.26 Mp/s for Rx for 64-byte frames, and practi-
cally line rate for 256-byte packets and larger.

State Insertion. In order for our middlebox platform to
be viable, it has to allow the middleboxes running on it
to be quickly configured. For instance, this could involve
inserting rules into a firewall or IDS, or adding extra ex-
ternal IP addresses to a carrier-grade NAT. In essence, we
would like to test the performance of ClickOS element
handlers and their use of the Xen store to communicate
state changes. In this test we use Cosmos to perform a
large number of reads and writes to a dummy ClickOS
element with handlers, and measure how long these take
for different transaction sizes (i.e., the number of bytes
in question for each read and write operation).

Figure 9 reports read times of roughly 9.4 msecs and
writes of about 0.1 msecs, numbers that fluctuate little
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Figure 7: Performance of a single VM pkt—gen running on top of MiniOS/ ClickOS on a single CPU core, when
varying the number of ring slots. The line graphs correspond to the right-hand y-axis.

across different transaction sizes. Note that read takes
longer since it basically involves doing a write, wait-
ing for the result, and then reading it. However, the
more critical operation for middleboxes should be write,
since it allows state insertion and deletion. For complete-
ness, we also include measurements when using the XEN
python API; in this case, the read and write operations
jump to 10.1 and 0.3 msecs, respectively.

Chaining. Is it quite common for middleboxes to be
chained one after the other in operator networks (e.g.,
a firewall followed by an IDS). Given that ClickOS has
the potential to host large numbers of middleboxes on
the same server, we wanted to measure the system’s per-
formance when chaining different numbers of middle-
boxes back-to-back. In greater detail, we instantiate one
ClickOS VM to generate packets as fast as possible, an-
other one to measure them, and an increasing number of
intermediate ClickOS VMs to simply forward them. As
with other tests, we use a single CPU core to handle the
VMs and assign the rest to domO.

As expected, longer chains result in lower rates, from
21.7 Gb/s for a chain of length 2 (just a generator VM
and the VM measuring the rate) all the way down to 3.1
Gb/s for a chain with 9 VMs (Figure 10). Most of the

decrease is due to the single CPU running the VMs being
overloaded, but also because of the extra copy operations
in the back-end switch and the load on dom0. The former
could be alleviated with additional CPU cores; the latter
by having multiple switch instances (which our switch
supports) or driver domains (which Xen does).

Scaling Out. In the final part of our platform’s base
evaluation we use our mid-range server to test how well
ClickOS scales out with additional VMs, CPU cores and
10 Gb/s NICs. For the first of these, we instantiate an in-
creasing number of ClickOS VMs, up to 100 of them. All
of them run on a single CPU core and generate packets as
fast as possible towards an outside box which measures
the cumulative throughput. In addition, we measure the
individual contribution of each VM towards the cumu-
lative rate in order to ensure that the platform is fairly
scheduling the VMs: all of VMs contribute equally to
the rate and that none are starved.

Figure 11 plots the results. Regardless of the number
of VMs, we get a cumulative throughput equivalent to
line rate for 512-byte packets and larger and a rate of 4.85
Mp/s for minimum-sized ones. The values on top of the
bars represent the standard deviation for all the individual
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Figure 11: Running many ClickOS packet generator
VMs on one core and a 10 Gb/s port. Fairness is shown
by the low standard deviations above the the bars.

rates contributed by each VM; the fact that these values
are rather low confirms fairness among the VMs.

Next, we test ClickOS’ scalability with respect to ad-
ditional CPU cores and 10 Gb/s ports. We use one packet
generator ClickOS VM per port, up to a maximum of
six ports. In addition, we assign two cores to dom( and
the remaining four to the ClickOS VMs in a round-robin
fashion. Each pair of ports is connected via direct ca-
bles to one of our low-end servers and we calculate the
cumulative rate measured at them; ring size is 1024.

For maximum-sized packets we see a steady, line-rate
increase as we add ports, VMs and CPU cores, up to 4
ports (Figure 12). After this point, VMs start sharing
cores (our system has six of them, with four of them as-
signed to the VMs) and the performance no longer scales
linearly. For the final experiment we change the config-
uration that the ClickOS VMs are running from a packet
generator to one that bounces packets back onto the same
interface that they came on (line graphs in Figure 12). In
this configuration, ClickOS rates go up to 27.5 Gb/s.

Scaling these experiments further requires a CPU with
more cores than in our system, or adding NUMA sup-
port to ClickOS so that performance scales linearly with
additional CPU packages; the latter is our future work.

Figure 9: ClickOS middlebox state
insertion (write) and retrieval (read)
for different transaction sizes (log

Figure 10: Performance when chaining
ClickOS VMs back-to-back. The first
VM generates packets, the ones in the
middle forward them and the last one
measures rates. Ring size is set to 64
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Figure 12: Cumulative throughput when using multiple
10 Gb/s ports and one ClickOS VM per port to (1) send
out traffic (tx) or (2) forward traffic (fwd).

9 Middlebox Implementations

Having evaluated the baseline performance of ClickOS,
we now turn our attention to evaluating its performance
when running actual middleboxes. Clearly, since the
term middleboxes covers a wide range of processing, ex-
haustively testing them all is impossible. We therefore
evaluate the performance of ClickOS on a set candidate
middleboxes which vary in the type of workload they
generate.

For these set of tests we use two of our low-end servers
connected via two direct cables, one per pair of Ethernet
ports. One of the servers generates packets towards the
other server, which runs them through a ClickOS mid-
dlebox and forwards them back towards the first server
where their rate is measured. The ClickOS VM is as-
signed a single CPU core, with the remaining three given
to dom0. We test each of the following middleboxes:
Wire (WR): A simple “middlebox” which sends pack-
ets from its input to its output interface. This configura-
tion serves to give a performance baseline.
EtherMirror (EM): Like wire, but also swap the Eth-
ernet source and destination fields.

IP Router (IR): A standards-compliant IPv4 router
configured with a single rule.
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Figure 13: Performance for different ClickOS middle-
boxes and packet sizes using a single CPU core.

Firewall (FW): Based on the IPFilter element and
configured with ten rules, none matching any packets.
Carrier Grade NAT (CN): An  almost  standards-
compliant carrier-grade NAT. To stress the NAT, each
packet has a different set of source and destination port
numbers. Using a single flow/set of ports results in a
higher rate of 5.1 Mp/s for minimum-sized packets.
Software BRAS (BR): An implementation of a Broad-
band Remote Access Server (BRAS), including PPPoE
session handling. The data plane checks session num-
bers and PPPoE/PPP message types, strips tunnel head-
ers, and performs IP lookup and MAC header re-writing.
Intrusion Detection System (IDS): A simple Intrusion
Detection System based on regular expression matching.
The reported results are for a single rule that matches the
incoming packets.

Load Balancer (LB): This re-writes packet source
MAC addresses in a round-robin fashion based on the
IP src/dst, port src/dst and type S-tuple in order to split
packets to different physical ports.

Flow Monitor (FM) retains per flow (5-tuple) statistics.

Figure 13 reports throughput results for the various
middleboxes. Overall, ClickOS performs well, achiev-
ing almost line rate for all configurations for 512-byte
and larger packets (the BRAS and CG-NAT middleboxes
have rates slightly below the 2.3 Mp/s line rate figure).
For smaller packet sizes the percentage of line rate drops,
but ClickOS is still able to process packets in the mil-
lions/second.

To get and idea of how this relates to a real-world traf-
fic matrix, compare this to an average packet size of 744
bytes reported by a recent study done on a tier-1 OC192
(about 10Gb/s) backbone link [34]: if we take our target
to be packets of around this size, all middleboxes shown
can sustain line rate.

Naturally, some of these middleboxes fall short of be-
ing fully functional, and different configurations (e.g., a
large number of firewall rules) would cause their perfor-
mance to drop from what we present here. Still, we be-

lieve these figures to be high enough to provide a sound
basis upon which to build production middleboxes. The
carrier-grade NAT, for instance, is proof of this: it is fully
functional, and in stress tests it is still able to handle
packets in the millions/second.

10 Conclusions

This paper has presented ClickOS, a Xen-based vir-
tualized platform optimized for middlebox processing.
ClickOS can turn Network Function Virtualization into
reality: it runs hundreds of middleboxes on commod-
ity hardware, offers millions of packets per second pro-
cessing speeds and yields low packet delays. Our ex-
periments have shown that a low-end server can forward
packets at around 30Gb/s.

ClickOS is proof that software solutions alone are
enough to significantly speed up virtual machine pro-
cessing, to the point where the remaining overheads are
dwarfed by the ability to safely consolidate heteroge-
neous middlebox processing onto the same hardware.
ClickOS speeds up networking for all Xen virtual ma-
chines by applying well known optimizations including
reducing the number of hypercalls, use of batching, and
removing unnecessary software layers and data paths.

The major contribution of ClickOS is adopting Click
as the main programming abstraction for middleboxes
and creating a tailor-made guest operating system
to run Click configurations. Such specialization al-
lows us to optimize the runtime of middleboxes to the
point where they boot in milliseconds, while allowing
us to support a wide range of functionality. Our im-
plementations of a software BRAS and a Carrier-Grade
NAT show that ClickOS delivers production-level perfor-
mance when running real middlebox functionality.

In the end, we believe that ClickOS goes beyond re-
placing hardware middleboxes with the software equiva-
lent. Small, quick-to-boot VMs make it possible to offer
personalized processing (e.g., firewalls) to a large num-
ber of users with comparatively little hardware. Boot
times in the order of milliseconds allow fast scaling
of processing dynamically (e.g., in response to a flash
crowd) as well as migration with negligible down-time.
Finally, ClickOS could help with testing and deployment
of new features by directing subsets of flows to VMs run-
ning experimental code; issues with the features would
then only affect a small part of the traffic, and even VMs
crashing would not represent a major problem since they
could be re-instantiated in milliseconds.
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