
This paper is included in the Proceedings of the
11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).
April 2–4, 2014 • Seattle, WA, USA

ISBN 978-1-931971-09-6

Open access to the Proceedings of the
11th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’14)

is sponsored by USENIX

Warranties for Faster Strong Consistency
Jed Liu, Tom Magrino, Owen Arden, Michael D. George,

and Andrew C. Myers, Cornell University

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/liu_jed

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 503

Warranties for Faster Strong Consistency

Jed Liu Tom Magrino Owen Arden Michael D. George Andrew C. Myers

Cornell University Department of Computer Science
{liujed,tmagrino,owen,mdgeorge,andru}@cs.cornell.edu

Abstract
We present a new mechanism, warranties, to enable
building distributed systems with linearizable transac-
tions. A warranty is a time-limited assertion about one or
more distributed objects. These assertions generalize op-
timistic concurrency control, improving throughput be-
cause clients holding warranties need not communicate
to verify the warranty’s assertion. Updates that might
cause an active warranty to become false are delayed un-
til the warranty expires, trading write latency for read
latency. For workloads biased toward reads, warranties
improve scalability and system throughput. Warranties
can be expressed using language-level computations, and
they integrate harmoniously into the programming model
as a form of memoization. Experiments with some non-
trivial programs demonstrate that warranties enable high
performance despite the simple programming model.

1 Introduction
Although the trend for many systems has been to
weaken consistency in order to achieve greater scalabil-
ity, strong consistency is critical when lives or money are
at stake. Examples include systems for medical informa-
tion, banking, payment processing, and the military.

Users of weakly consistent systems may be confused
by applications that appear buggy. Moreover, weak con-
sistency can significantly complicate the job of develop-
ers who try to detect and repair inconsistencies at the
application layer. Consistency failures at the bottom of
a software stack can percolate up through the stack and
affect higher layers in unpredictable ways, requiring de-
fensive programming.

The need for strong consistency and a simple program-
ming model has kept databases with ACID transactions
in business. However, transactions are often considered
to have poor performance, especially in a distributed set-
ting. In this work, we introduce warranties, a new mech-
anism that improves the performance of transactions, en-
abling them to scale better both with the number of appli-
cation clients and with the number of persistent storage
nodes. Warranties help avoid the unfortunate choice be-
tween consistency and performance.

A warranty is a limited guarantee that some (poten-
tially complex) assertion remains true regarding the state
of a distributed system. The guarantee is limited in that it
eventually expires. But during the term of the warranty,
the application can safely use it to perform computation
locally without communicating with the server that is-
sued the warranty. Warranties are like leases [21] in that
they have a duration, but differ in that they make a logical
assertion rather than conferring the right to use objects.

Warranties support implementing linearizable trans-
actions by generalizing optimistic concurrency control
(OCC) [16, 32]. OCC permits aggressive caching of
objects read by transactions, but requires communicat-
ing with storage servers to ensure objects are up to date.
Since warranties can express guarantees that objects are
up to date, communication can be reduced. Warranties
are particularly effective in the common case of high read
contention, where many clients want to share the same
popular—yet mutable—data.

More generally, warranties can contain an assertion
that the results of a language-level computation has not
changed. These computation warranties offer a form
of distributed memoization, allowing clients to share
cached computation in the manner often currently done
using distributed caches such as memcached—but with
strong consistency guarantees that are currently lacking.

Overall, warranties offer a new way to ameliorate
the tension between consistency and scalability in dis-
tributed applications.

The remainder of this paper is structured as follows.
Section 2 discusses our system model and relevant back-
ground material. Section 3 presents the warranty abstrac-
tion in more detail, and discusses its connection to leases.
Section 4 explains in more detail how optimistic trans-
actions are implemented using warranties. The mecha-
nisms needed for computation warranties are explored
in Section 5. Our implementation using the Fabric dis-
tributed object system is described in Section 6. The
evaluation in Section 7 shows that warranties signifi-
cantly improve the performance of both representative
benchmarks and a substantial real-world program. Re-
lated work is discussed more broadly in Section 8, and
we conclude in Section 9.

1

504 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

2 Background and system model
We assume a distributed system in which each node
serves one of two main roles: client nodes perform com-
putations locally using persistent data from elsewhere,
and persistent storage nodes (stores) store the persis-
tent data. Client nodes obtain copies of persistent data
from stores, perform computations, and send updates to
the persistent data back to the stores. For example, the
lower two tiers of the traditional three-tier web applica-
tion match this description: application servers are the
clients and database servers are the stores.

Our goal is a simple programming model for appli-
cation programmers, offering strong consistency so they
do not need to reason about inconsistent or out-of-date
state. In particular, we want linearizability [25], so each
committed transaction acts as though it executes atomi-
cally and in logical isolation from the rest of the system.
Linearizability strengthens serializability [42, 8] to offer
external consistency.

A partially successful attempt at such a programming
model is the Java Persistence API (JPA) [12], which pro-
vides an object–relational mapping (ORM) that trans-
lates accesses to language-level objects into accesses to
underlying database rows. JPA implementations such as
Hibernate [27] and EclipseLink [15] are widely used to
build web applications. However, we want to improve on
both the consistency and performance of JPA.

We assume that the working set of both clients and
stores fits in the node’s memory. This assumption is rea-
sonable for many applications, though not for large-scale
data analytics applications, which we do not target.

In a distributed transaction system using OCC (e.g.,
Thor [37]) clients fetch and then cache persistent objects
across transactions. Optimistic caching allows client
transactions to largely avoid talking to stores until com-
mit time, unlike with pessimistic locking. The system is
faster because persistent data is replicated at the memo-
ries of potentially many client nodes. However, care must
be taken to avoid inconsistency among the cached copies.

Because of its performance advantages, optimism has
become increasingly popular for JPA applications, where
the best performance is usually achieved through an “op-
timistic locking” mode that appears to provide strong
consistency in some but not all implementations of JPA.1

To provide strong consistency, OCC logs reads and
writes to objects. As part of committing the transaction,
clients send the transaction log to stores involved in the
transaction. The stores then check that the state of each
object read matches that in the store (typically by check-

1The term “optimistic locking” is misleading; locking occurs only
during transaction commit. The JPA 2 specification appears to guaran-
tee that objects written by a transaction are up to date—but, unfortu-
nately, not the objects read unless explicitly locked. Implementations
differ in interpretation.

ing version numbers), and then perform updates.
To scale up a distributed computing system of this sort,

it is important to be able to add storage nodes across
which persistent data and client requests can be dis-
tributed. As long as a given client transaction accesses
data at just one store, and load is balanced across the
stores, the system scales well: each transaction can be
committed with just one round trip between the client
and the accessed store.

In general, however, transactions access information
located at multiple stores. For example, consider a web
shopping application. A transaction that updates the
user’s shopping cart may still need to read information
shared among many users of the system, such as details
of the item purchased.

Accessing multiple stores hurts scalability. To commit
such a transaction serializably, it must be known at com-
mit time that all objects read during the transaction were
up to date. A two-phase commit (2PC) is used to ensure
this is the case. In the first phase (the prepare phase), each
store checks that the transaction can be committed and if
so, readies the updates to be committed; it then reports to
the coordinator whether the transaction is serializable. If
the transaction can be committed at every store, all stores
are told to commit in the commit phase. Otherwise, the
transaction is aborted and its effects are rolled back.

If popular, persistent data is accessed by many clients,
the read contention between clients interferes with scala-
bility. Each client committing a transaction must execute
a prepare phase at the store of that data. The work done
by the prepare phase consists of write prepares done on
objects that have been updated by the transaction, and
read prepares on objects that have been read. In both
cases, the object is checked to ensure that the version
used was up to date.

Read prepares can make the nodes storing popular ob-
jects into bottlenecks even when those objects are rarely
updated. This is a fundamental limit on scalability of
OCC, so a key benefit of warranties is addressing this
performance bottleneck. An alternative strategy would
be to replicate popular objects across multiple nodes, but
keeping replicas in agreement is very costly.

3 The warranty abstraction
A warranty is a time-limited assertion about the state of
the system: it is guaranteed to remain true for some fixed
period of time. Warranties improve scalability for two
reasons: first, because they reduce or eliminate the work
needed for read prepares; second, more generally, they
enable the distributed caching of computations and en-
force a more semantic notion of consistency.

Because warranties make guarantees about the state
of the system, they allow transactions to be committed
without preparing reads against the objects covered by

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 505

warranties. When all reads to a store involved in a trans-
action are covered by warranties, that store need not be
contacted. Consequently, two-phase commit can be re-
duced to a one-phase commit in which the prepare and
commit phases are consolidated, or even to a zero-phase
commit in which no store need be contacted. The result
is significantly improved performance and scalability.

In this section, we give a more detailed overview of
how warranties work.

• Simple state warranties generalize OCC (§3.1) and
also, to some extent, leases (§3.2).

• Updates to the system are prevented from invalidat-
ing warranties (§3.3), with implications for perfor-
mance (§3.4).

• Warranty assertions can be expressive, enabling dis-
tributed caching of computed results (§3.5).

• Warranties are requested by clients (§3.6) and gen-
erated on demand by stores (§3.7).

• Warranties are distributed throughout the system to
clients that need them (§3.9).

• The term of warranties can be set automatically,
based on run-time measurements (§3.8).

3.1 State warranties
The simplest form of warranty is a state warranty, an as-
sertion that the concrete state of an object has a particular
value. A warranty is guaranteed to be true (active) during
the warranty’s term. At the end of its term, the warranty
expires and is no longer guaranteed to be true.

For example, a state warranty for an object represent-
ing a bank account might be 〈assert = {name = "John
Doe", bal = $20,345}, exp = 1364412767.1〉. Here,
the field assert specifies the state of the object, and the
field exp is the time that the warranty expires.

A warranty is issued by a store, and times appearing
in the warranties are measured by the clock of the store
that issued the warranty. We assume that clocks at nodes
are loosely synchronized; well-known methods exist to
accomplish this [40].

If a warranty expires before the transaction commits,
the warranty may continue to be valid, meaning that the
assertion it contains is still true even though clients can-
not rely on its remaining true. Clients can, however, still
use the warranty optimistically and check at commit time
that the warranty remains valid.

As can be seen, state warranties generalize optimistic
concurrency control. Ordinary OCC equates to always
receiving a zero-length warranty for the state of the ob-
ject read, and using that expired warranty optimistically.

3.2 Warranties vs. leases
Leases [21] have been used in many systems (e.g., [51,
2]) to improve performance. Warranties exploit the key
insight of leases that time-limited guarantees increase
scalability by reducing coordination overhead. As de-
fined originally by Gray and Cheriton, leases confer
time-limited rights to access objects in certain ways, and
must be held by clients in order to perform the corre-
sponding access. Conversely, warranties are time-limited
assertions about what is true in the distributed system,
and are not, therefore, held by any particular set of nodes.
Unlike with leases, an expired warranty may be used to
access an object optimistically. Gray does sketch in his
dissertation [20] how read leases might be integrated into
an optimistic transaction processing system, but we are
not aware of any detailed design or implementation.

Leases and warranties do partly overlap. Since read
leases on objects effectively prevent modifying object
state, they must enforce assertions regarding the state of
that data. Therefore, state warranties can be viewed as
read leases that are given to many clients and that cannot
be relinquished by those clients.

However, we see a fundamental difference between
these two perspectives. The value of the warranty (asser-
tion) perspective is that state warranties naturally gen-
eralize to expressive assertions over state—in particular,
warranties that specify the results of application-defined
computations over the state of potentially many objects.

3.3 Defending warranties
Transactions may try to perform updates that affect ob-
jects on which active warranties have been issued. Up-
dates cannot invalidate active warranties without poten-
tially violating transactional isolation for clients using
those warranties. Therefore, stores must defend war-
ranties against invalidating updates, a process that has no
analogue in OCC.

A warranty can be defended against an invalidating
update transaction in two ways: the transaction can ei-
ther be rejected or delayed. If rejected, the transaction
will abort and the client must retry it. If delayed, the up-
dating transaction waits until it can be safely serialized.
Rejecting the transaction does not solve the underlying
problem of warranty invalidation, so delaying is typically
the better strategy if the goal is to commit the update. To
prevent write starvation, the store stops issuing new war-
ranties until after the commit. The update also shortens
the term of subsequent warranties.

3.4 Performance tradeoffs
Using warranties improves read performance for objects
on which warranties are issued, but delays writes to these
objects. Such a tradeoff appears to be an unavoidable
with strong consistency. For example, in conventional

3

506 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

database systems that use pessimistic locking to enforce
consistency, readers are guaranteed to observe consistent
states, but update transactions must wait until all read
transactions have completed and released their locks.
With many simultaneous readers, writers can be signifi-
cantly delayed. Thus, warranties occupy a middle ground
between optimism and pessimism, using time as a way to
reduce the coordination overhead incurred with locking.

The key to good performance, then, is to issue war-
ranties that are long enough to allow readers to avoid
revalidation but not so long that they block writers more
than they otherwise would be blocked.

For applications where it is crucial to have both high
write throughput and high read throughput to the same
object, replication is essential, and the cost of keeping
object replicas in sync makes strong consistency infeasi-
ble. However, if weak consistency is acceptable, there is
a simple workaround: implement replication by explic-
itly maintaining the state in multiple objects. Writes can
go to one or more persistent objects that are read infre-
quently, and only by a process that periodically copies
them (possibly after reconciliation of divergent states)
to a frequently read object on which warranties can be
issued. This is a much easier programming task than
starting from weak consistency and trying to implement
strong consistency where it is needed. The only chal-
lenging part is reconciliation of divergent replicas, which
is typically needed in weakly consistent systems in any
case (e.g., [50, 47, 14]).

3.5 Computation warranties
Warranty assertions are not limited to specifying the con-
crete state of persistent objects. In general, a warranty as-
sertion is an expression in a language that can describe a
computation that operates on persistent objects and that
can be evaluated at the store. SQL is one query language
that fits this description, but in this work, we integrate
assertions more tightly with the programming language.
Computation warranties provide guarantees about com-
putations described in terms of method calls.

In current distributed applications, it is common to use
a distributed cache such as memcached [18] to share data
and computation across many nodes. For example, web
application servers can cache the text of commonly used
web pages or content to be included in web pages. Com-
putation warranties can be used to cache such computed
results without abandoning strong consistency.

Example: top N items. Many web applications display
the top-ranked N items among some large set (such as
advertisements, product choices, search results, poll can-
didates, or game ladder rankings).

Although the importance of having consistent rank-
ings may vary across applications, there are at least some
cases in which the right ranking is important and may

have monetary or social impact. Election outcomes mat-
ter, product rankings can have a large impact on how
money is spent, and game players care about ladder rank-
ings. But at present there is no easy and efficient way to
ensure that cached computation results are up to date.

To cache the results of such a computation, we might
define a computation top(n, i, j), which returns the
set s of the n top-ranked items whose indices in an ar-
ray of items lie between i and j. A warranty of the form
s = top(n, 0, num items) then allows clients to share
the computation of the top-ranked items within the range.

The reason why the top function has arguments i and
j is to permit top to be implemented recursively and ef-
ficiently using results from subranges, on which further
warranties are issued. We discuss later in more detail how
this approach allows computation warranties to be up-
dated and recomputed efficiently.

Example: airplane seats. Checking whether airplane
flights have open seats offers a second example of a com-
putation that can be worth caching. Because the client-
side viewer may be sorting lists of perhaps hundreds of
potential flights, flights are viewed much more often than
their seating is updated. Scalability of the system would
be hurt by read prepares.

Efficient searching over suitable flights can be sup-
ported by issuing warranties guaranteeing that at least a
certain number of seats of a specified type are available;
for a suitable constant number of seats n large enough to
make the purchase, a warranty of this form works:

flight.seats available(type) ≥ n

This warranty helps searching efficiently over the set of
flights on which a ticket might be purchased. It does not
help with the actual update when a ticket is purchased on
a flight. In this case, it becomes necessary to find and up-
date the actual number of seats available. However, this
update can be done quickly as long as the update does
not invalidate the warranty.

Like state warranties, computation warranties can be
used optimistically even if they expire during the trans-
action. In this case, the dependencies of the computation
described in the warranty must be checked at commit
time to ensure that the warranty’s assertion remains true,
just as objects whose state warranties expire before com-
mit time must be checked. A warranty that is revalidated
in this fashion can then be issued as a new warranty.

Like active state warranties, active computation war-
ranties must be defended against invalidation by updates.
This mechanism is discussed in Section 5.2.

3.6 Programming with warranties
As clients compute, they request warranties as needed.
State warranties are requested automatically when ob-
jects are newly fetched by a computation. Computation

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 507

warranties can also be generated in a natural way, relying
on simple program annotations.

Computation warranties explicitly take the form of
logical assertions, so they could be requested by using
a template for the desired logical assertion. In the air-
line seat reservation example above, a query of the form
flight.seats available(type) ≥ ? could be used
to find all available warranties matching the query, and
at the same time fill in the “?” with the actual value n
found in the warranty. In the case where multiple war-
ranties match, a warranty might be chosen whose dura-
tion and value of n are “best” according to application-
specific criteria.

We pursue a more transparent way to integrate war-
ranty queries into the language, via memoized func-
tion calls. For example, we can define a memo-
ized method with the signature memoized boolean
seats lb(type,n) that returns whether there are at
least n seats of the desired type still available on the
flight. The keyword memoized indicates that its result
is to be memoized and warranties are to be issued on its
result. To use these warranties, client code uses the mem-
oized method as if it were an ordinary method, as in the
following code:

for (Flight f : flights)

if (f.seats_lb(aisle, seats_needed))

display_flights.add(f)

When client code performs a call to a memoized
method, the client automatically checks to see if a war-
ranty for the assertion ? = seats_lb(type, n) has
either been received already or can be obtained. If so, the
result of the method call is taken directly from the war-
ranty. If no warranty can be found for the method call,
the client executes the method directly.

With appropriate language support, the implementa-
tion of such a memoized method is also straightforward:

memoized boolean seats_lb(Seat t, int n) {

return seats_available(t) >= n;

}

A language that correctly supports transparent OCC al-
ready automatically logs the reads and writes performed
on objects; this logging already computes the dependen-
cies of computation warranties.

3.7 Generating warranties
Warranties are issued by stores, because stores must
know about warranties in order to defend them against
updates that might invalidate them. However, for scala-
bility, it is important to avoid giving the store extra load.
Therefore, it only makes sense to generate warranties for
some objects and computations: those that are used much
more frequently than they are invalidated.

For state warranties, the store already has enough in-
formation to decide when to generate a warranty for an
object, because it sees both when the object is updated
and when it is necessary to check that the version of the
object read by a client is up to date. State warranties im-
prove performance by removing the need to do version
checks on read objects, but at the cost of delaying up-
dates that would invalidate active warranties. This trade-
off makes sense if the version checks are sufficiently
more numerous than the updates.

For computation warranties, the store may be able to
infer what warranties are needed from client requests, but
it makes more sense to have the client do the computa-
tional work. Recall that clients that fail to find a suitable
warranty compute the warranty assertion themselves. If
the assertion is true, it is the basis of a potential warranty
that is stored in the client’s local cache and reused as
needed during the same transaction. As part of commit-
ting the transaction, the client sends such potential war-
ranties to the store, which may issue these warranties,
both back to this client and to other clients. The decision
whether to issue a warranty properly depends on whether
issuing the warranty is expected to be profitable.

3.8 Setting warranty terms
Depending on how warranty terms are set, warranties can
either improve or hurt performance. However, it is usu-
ally possible to automatically and adaptively set warranty
terms to achieve a performance increase.

Warranties improve performance by avoiding read
prepares for objects, reducing the load on stores and on
the network. If all read and write prepares to a particular
store can be avoided, warranties eliminate the need even
to coordinate with that store.

Warranties can hurt performance primarily by delay-
ing writes to objects. The longer a warranty term is, the
longer the write is delayed. If warranty terms are set
too long, writers may experience unacceptable delays. A
good rule of thumb is that we would like writers to be
delayed no more than they would be by read locks in a
system using pessimistic locks.

Excessively long warranties may also allow readers to
starve writers, although starvation is mitigated because
new warranties are not issued while writers are blocked
waiting for a warranty to expire. Note that with pure
OCC, writers can block readers by causing all read pre-
pares to fail [43]; thus, warranties shift the balance of
power away from writers and toward readers, addressing
a fundamental problem with OCC.

To find the right balance between the good and bad
effects of warranties, we take a dynamic, adaptive ap-
proach. Warranty terms are automatically and individu-
ally set by stores that store the relevant objects. Fortu-
nately, stores observe enough to estimate whether war-

5

508 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Prepare

Read-only

Yes

End

No

Abort

FailOk

Extend

Read-write

Yes

Must
renew?

No

Abort

Fail Ok

Prepare

Commit
time

Fail

Commit

Must
renew?

Figure 1: Warranty commit protocol for read-only and
read-write transactions.

ranty terms are likely to be profitable. Stores see both
read prepares and write prepares. If the object receives
many read prepares and few or no write prepares, a state
warranty on that object is likely to be profitable. A simi-
lar observation applies to computation warranties.

To determine whether to issue a warranty for an ob-
ject, and its warranty term L in the case where a war-
ranty is issued, the system plugs measurements of object
usage into a simple system model. The system measures
the rate W of writes to each object, and when there is no
warranty issued on the object, it also measures the rate R
of reads to the object. Both rates are estimated using an
exponentially weighted moving average (EWMA) [28]
of the intervals between reads and writes. We modify
EWMA to exponentially decay historical read-prepare
data during warranty periods, when read prepares can-
not be observed. Empirically, this modification improves
the accuracy of rate estimation. To lower the overhead
of monitoring, unpopular objects are flagged and given
lower-cost monitoring as long as they remain unpopular.

To ensure that the expected number of writes delayed
by a warranty is bounded by a constant k1 < 1 that con-
trols the tradeoff between read and write transactions.
The warranty term is set to k1/W with a maximum war-
ranty Lmax used to bound write delays. Our goal is that
warranties are profitable: they should remove load from
the store, improving scalability. A warranty eliminates
roughly RL read prepares over its term L, but adds the
cost of issuing the warranty and some added cost for each
write that occurs during the term. The savings of issuing
a warranty is positive if each write to an object is ob-
served by at least k2 reads for some value k2, giving us a
condition RL ≥ k2 that must be satisfied in order to is-
sue a warranty. The value for constant k2 can be derived
analytically using measurements of the various costs, or
set empirically to optimize performance.

This way to set terms for state warranties also works

stores

prevent commits
until conflicting

warranties expire
clients

CDN

distribute
warranties

warranty
subscriptions

warranties
guarantee
consistent

observations
commit
updates

warranties

propose
warranties

Figure 2: Warranty distribution architecture.

for computation warranties, with the following interpre-
tation: uses of a computation warranty are “reads” and
updates to its dependencies are “writes”.

The tension between write latency and read through-
put can also be eased by using warranty refresh in addi-
tion to a maximum warranty term. The term L is com-
puted as above, but warranties are issued to clients with
a shorter term corresponding to the maximum acceptable
update latency. The issuing store proactively refreshes
each such warranty when it is about to expire, so the war-
ranty stays valid at clients throughout its term.

3.9 Distributing warranties
Warranties can be used regardless of how they get to
clients and can be shared among any number of clients.
Therefore, a variety of mechanisms can be used to dis-
tribute warranties to clients.

One option for warranty distribution is to have clients
directly query stores for warranties, but this makes the
system less scalable by increasing load on stores. As
shown in Figure 2, Stores will be less loaded if warranties
are distributed via a content distribution network (CDN)
that clients query to find warranties.

Going a step further, applications can subscribe to
warranties that match a given pattern, as shown in
Figure 2. Stores automatically refresh warranties with
later expiration times before the old warranties expire,
by pushing these extended warranties either directly to
clients or into the CDN. Warranty refresh makes it feasi-
ble to satisfy client requests with shorter warranty terms,
consequently reducing write latency.

This strategy for achieving high availability and high
durability differs from that used in many current dis-
tributed storage systems, which use replication to achieve
high availability, low latency, and durability. Those three
goals are handled separately here. Distributing war-
ranties through a CDN makes data objects highly avail-
able with low latency, without damaging consistency.
Because the authoritative copies of objects are located
at stores, a write to an object requires a round-trip to its
store; the latency this introduces is ameliorated by the

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 509

Stores Phases:
Stores written Unexpired? Warranties OCC

1+ 0 Y 0 1
1+ 0 N 1 1
1 1 Y/N 1 1

2+ 1 Y 1 2
2+ 1 N 2 2
2+ 2+ Y 2 2
2+ 2+ N 3 2

Table 1: Warranties require fewer phases than traditional
OCC in some cases (highlighted).

support for relatively large transactions, in which com-
munication with stores tends to happen at the end of
transactions rather than throughout.

To achieve high durability, stores should be imple-
mented using replication, so that each “store” mentioned
in this paper is actually a set of replicas. Since wide-
area replication of stores implementing strong consis-
tency will have poor performance, we assume store repli-
cas are connected with low latency.

4 Transactions and warranties
Warranties improve the performance of OCC by reduc-
ing the work needed during the prepare phase and by al-
lowing phases to be eliminated entirely.

4.1 The warranty commit protocol
When a transaction completes, the client performs a
modified two-phase commit, illustrated in Figure 1 for
both read-only and read-write transactions. In the pre-
pare phase, the client sends the write set of the transac-
tion (if any), along with any warranties in the read set
whose term has expired. If all warranties in the read set
can be renewed, the transaction may commit. Since out-
standing warranties may cause the updates to be delayed,
the store responds with a commit time indicating when
the commit may be applied successfully.

When the client receives a commit time from all stores,
it checks to ensure the terms of the warranties it holds ex-
ceed the maximum commit time. If not, it attempts to re-
new these warranties beyond the commit time in an addi-
tional extend phase. If active warranties are obtained for
all dependencies, the client sends the commit message,
and the stores commit the updates at the specified time.

4.2 Avoiding protocol phases
While a two-phase commit is required in the general
case, performance can be improved by eliminating or
combining phases when possible. For read-only transac-
tions, the commit phase is superfluous, and clients exe-
cuting transactions that involve only one store can com-
bine the prepare and commit phases into one round-trip.

The optimizations to 2PC that warranties make possible
are summarized in Table 1.

The read-only (rows 1–2) and single-store optimiza-
tions (row 3) are available with or without warranties.
However, unexpired warranties enable eliminating addi-
tional phases, shown by the two rows highlighted in gray.

Row 1 shows that read-only transactions whose read
set is covered by unexpired warranties may commit with-
out communicating with stores—a zero-phase commit.
This optimization matters because for read-biased work-
loads, most transactions will be read-only.

Row 4 shows that transactions that read from multi-
ple stores but write to only one store may commit in
a single phase if their read set is fully warrantied. This
single-phase optimization pays off if objects are stored
in such a way that writes are localized to a single store.
For example, if a user’s information is located on a single
store, transactions that update only that information will
be able to exploit this optimization.

While warranties usually help performance, they do
not strictly reduce the number of phases required to com-
mit a transaction. Transactions performing updates to
popular data may have their commits delayed. Since the
commit time may exceed the expiration time of war-
ranties used in the transaction, the additional extend
phase may be required to renew these warranties beyond
the delayed commit time, as shown in the final row.

5 Computation warranties
A computation warranty is a guarantee until time t of
the truth of a logical formula φ, where φ can mention
computational results such as the results of method calls.
We focus here on the special case of warranties gener-
ated by memoized function calls, where φ has the form
o.f(�x) =? for some object o on which method f is in-
voked using arguments �x, producing a value to be ob-
tained from the warranty. Note that the value returned by
f need not be a primitive value. In the general case, it
may be a data structure built from both new objects con-
structed by the method call and preexisting objects.

Our goal is that warranties do not complicate program-
mer reasoning about correctness and consistency. There-
fore, when f is a memoized method, a computation of the
form v = o.f(�x) occurring in a committed transaction
should behave identically whether or not a warranty is
used to obtain its value. This principle has several impli-
cations for how computation warranties work. It means
that only some computations make sense as computation
warranties, and that updates must be prevented from in-
validating active warranties.

5.1 Memoizable computations
To ensure that using a computation warranty is equiva-
lent to evaluating it directly, we impose three restrictions.

7

510 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

First, computation warranties must be deterministic:
given equivalent initial state, they must compute equiva-
lent results. Therefore, computations using a source of
nondeterminism, such as input devices or the system
clock, do not generate computation warranties.

Second, we prevent memoization of any computation
that has observable side effects. Side effects are consid-
ered to be observable only when they change the state of
objects that existed before the beginning of the memo-
ized computation.

Importantly, this definition of “observable” means that
memoized computations are allowed to create and ini-
tialize new objects as long as they do not modify pre-
existing ones. For example, the top-N example from Sec-
tion 3.5 computes a new object representing a set of
items, and it may be convenient to create the object by
appending items sequentially to the new set. Warranties
on this kind of side-effecting computation are permitted.
Enforcing this definition of the absence of side effects is
straightforward in a system that already logs which ob-
jects are read and written by transactions.

Third, a memoized function call reads from some set
of objects, so updates to those objects may change its re-
sult, and may occur even during the same transaction that
performed the function call. At commit time, the trans-
action’s write set is intersected with the read set of each
potential warranty. If the intersection is nonempty, the
potential warranty is invalidated.

5.2 Defending computation warranties
Once a computation warranty is requested by a worker
and issued by a store, the store must ensure that the value
of the call stays unchanged until the warranty expires.

Revalidation A conservative way to defend warranties
against updates would be to delay all transactions that
update objects used by the warranty. This approach is
clearly safe because of the determinism of the warranty
computation, but it would prevent too many transactions
from performing updates, hurting write availability. In-
stead, we attempt to revalidate affected warranties when
each update arrives. The store reruns the warranty com-
putation and checks whether the result is equivalent to
the result stored in the warranty.

For primitive values and references to pre-existing ob-
jects (not created by the warranty computation), the re-
sult must be unchanged. Otherwise, two results are con-
sidered equivalent if they are semantically equal per the
equals() method, which operates as in Java.

Warranty dependencies In general, a warranty com-
putation uses and thus depends on other warranties,
whether state warranties or general computation war-
ranties. For example, if the method top is implemented
recursively (see Figure 3), the warranty for a call to top

top(n,i,j)

top(n,i,k0) top(n,k0,j)

top(n,i,k1) top(n,k1,k0)

X... ...

Items

Figure 3: An update to X causes a semantic warranty to
be invalidated, but the updated value for the re-evaluated
method does not invalidate other warranties.

depends on warranties for its recursive calls. The depen-
dencies between warranties form a tree in which compu-
tation warranties higher in the tree depend on warranties
lower down, and the leaves are state warranties.

Any warranty that has not expired must be defended
against updates that could invalidate it. Defense is easy
when the term of a warranty is contained within (a subset
of) the terms of all warranties it depends on, including
state warranties on all direct references to objects, be-
cause the validity of the higher-level warranty is implied
by the defense of the lower-level warranties.

In general, however, a warranty can have a longer term
than some of its dependencies. Updates to those depen-
dencies must be prevented if they invalidate the warranty,
even if they are expired warranties. Conversely, it is pos-
sible to allow updates to warranty dependencies that do
not invalidate the warranty. The implication is that it
is often feasible to give higher-level warranties longer
terms than one might expect given the rate of updates
to their dependencies.

For example, consider the recursive call tree for the
method top(n, i, j) shown in Figure 3. If the request
to see the top n items among the entire set is very pop-
ular, we would like to issue relatively long computation
warranties for that result. Fortunately, updates to items
(shown at the leaves of the call tree) that change their
ranking might invalidate some of the warranties in the
tree, but most updates will affect only a small part of the
tree. Assuming that lower levels of the tree have short
warranties, most updates need not be delayed much.

5.3 Reusing computation warranty values
In the case where the warranty computation created new
objects, it may be crucial for correctness of the compu-
tation that the objects returned by the warranty are dis-
tinct from any existing objects. This desired semantics is
achieved when using a warranty computation result by
making a copy of all objects newly created during the
warranty computation. These objects are explicitly iden-

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 511

tified in the warranty.
Computation warranties are used whenever available

to the client, to avoid performing the full computation.
If the client is holding an expired warranty, or obtains
an expired warranty from the CDN, it can use that ex-
pired warranty optimistically. At commit time, the ex-
pired warranty is revalidated during the prepare phase,
exactly like a read prepare.

5.4 Creating computation warranties
Whenever code at a client makes a call to a memoized
method, the client searches for a matching computation
warranty. If the client is not already holding such war-
ranty, it may search using a CDN, if available, or request
the warranty directly from the appropriate store.

If the client cannot find an existing computation war-
ranty, it performs the warranty computation itself. It
starts a new transaction and executes the method call. As
the call is evaluated, the transaction’s log keeps track of
all reads, writes, and object creations performed by the
call. When the call is completed, the result is recorded
and the log is checked to verify that the call does not
violate any of the restrictions outlined above. If the war-
ranty is still valid, the call, value, and transaction log are
gathered to form a complete warranty proposal.

At commit time, if the warranty proposal has not al-
ready been invalidated by an update to its read set, the
proposal is sent to the store. The store looks at the request
and, using the same mechanism as for state warranties,
sets a warranty term. For state warranties, terms are set
individually for each object, but here the warranty iden-
tity is defined by the entire set of arguments to the memo-
ized method. Finally, the computation warranty is issued
to the requesting client and the store begins to defend the
new warranty or warranties proposed by the client.

6 Implementation
To evaluate the warranty mechanism, we extended the
Fabric secure distributed object system [38]. Fabric pro-
vides a high-level programming model that, like the Java
Persistence API, presents persistent data to the program-
mer as language-level objects. Language-level objects
may be both persistent and distributed. It implements lin-
earizability using OCC.

Fabric also has many security-related features—
notably, information flow control—designed to support
secure distributed computation and also secure mobile
code [5]. The dynamic security enforcement mechanisms
of Fabric were not turned off for our evaluation, but they
are not germane to this paper.

We extended the Fabric system and language to im-
plement the mechanisms described in this paper. Our
extended version of Fabric supports both state war-
ranties and computation warranties. Computation war-

ranties were supported by extending the Fabric language
with memoized methods. Client (worker) nodes were ex-
tended to use warranties during computation and to eval-
uate and request computation warranties as needed. The
Fabric dissemination layer, a CDN, was extended to dis-
tribute warranties and to support warranty subscriptions.
Fabric workers and stores were extended to implement
the new transaction commit protocols, and stores were
extended to defend and revalidate warranties.

The previously released version of Fabric (0.2.1) con-
tains roughly 44,000 lines of (non-blank, non-comment)
code, including the Fabric compiler and the run-time sys-
tems for worker node, store nodes, and dissemination
nodes, written in either Java or the Fabric intermediate
language. In total, about 6,900 lines of code were added
or modified across these various system components to
implement warranties.

Fabric ships objects from stores to worker nodes in
object groups rather than as individual objects. State
warranties are implemented by attaching individual war-
ranties to each object in the group.

Some features of the warranties design have not been
implemented; most of these features are expected to im-
prove performance further. The single-store optimization
of the commit protocol has been implemented for base
Fabric, but rows 3–5 of Table 1 have not been imple-
mented for warranties. The warranty refresh mechanism
is also not yet implemented.

To simplify the work needed to defend computation
warranties, the current implementation only generates
warranties for computations that involve objects from a
single store. Also, our implementation does not use the
dissemination layer to distribute computation warranties.

7 Evaluation
We evaluated warranties against existing OCC mecha-
nisms, and other transactional mechanisms, primarily us-
ing three programs. First, we used the multiuser OO7
benchmark [13]. Second, we used versions of Cornell’s
deployed Course Management System [10] (CMS) to
examine how warranties perform with real systems un-
der real-world workloads. Both of these programs were
ported to Fabric in prior work [38]. Third, we developed
a new benchmark that simulates a component of a social
network in which users have subscribers.

7.1 Multiuser OO7 benchmark
The OO7 benchmark was originally designed to model a
range of applications typically run using object-oriented
databases. The database consists of several modules,
which are tree-based data structures in which each leaf
of the tree contains a randomly connected graph of
20 objects. In our experiments we used the “SMALL”
sized database. Each OO7 transaction performs 10 ran-

9

512 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

dom traversals on either the shared module or a pri-
vate module specific to each client. When the traversal
reaches a leaf of the tree, it performs either a read or a
write action. These are relatively heavyweight transac-
tions compared to many current benchmarks; each trans-
action reads about 460 persistent objects and modifies
up to 200 of them. By comparison, if implemented in a
straightforward way with a key-value store, each transac-
tion would perform hundreds of get and put operations.
Transactions in the commonly used TPC-C benchmark
are also roughly an order of magnitude smaller [52], and
in the YCSB benchmarks [54], smaller still.

Because OO7 transactions are relatively large, and
because of the data’s tree structure, OO7 stresses a
database’s ability to handle read and write contention.
However, since updates only occur at the leaves of the
tree, writes are uniformly distributed in the OO7 spec-
ification. To better model updates to popular objects,
we modified traversals to make read operations at the
leaves of the tree exhibit a power-law distribution with
α = 0.7 [11]. Writes to private objects are also made
power-law distributed, but remain uniformly distributed
for public objects.

7.2 Course Management System
The CS Course Management System [10] (CMS) is a
54k-line Java web application used by the Cornell com-
puter science department to manage course assignments
and grading. The production version of the application
uses a conventional SQL database; when viewed through
the JPA, the persistent data forms an object graph not
dissimilar to that of OO7. We modified this application
to run on Fabric. To evaluate computation warranties, we
memoized a frequently used method that filters the list of
courses on an overview page.

We obtained a trace from Cornell’s production CMS
server from three weeks in 2013, a period that en-
compassed multiple submission deadlines for several
courses. To drive our performance evaluation, we took
10 common action types from the trace. Each transaction
in the trace is a complete user request including genera-
tion of an HTML web page, so most request types access
many objects. Using JMeter [30] as a workload genera-
tor, we sampled the traces, transforming query parame-
ters as necessary to map to objects in our test database
with a custom JMeter plugin.

7.3 Top-subscribers benchmark
The third benchmark program simulates a relatively ex-
pensive analytics component of a social network in
which users have subscribers. The analytics component
computes the set of 5 users with the largest number
of subscribers, using the memoized top-N function de-
scribed in Section 3.5. The number of subscribers per
user is again determined by a power-law distribution with

α = 0.7. The workload consists of a mix of two op-
erations: 98% compute the list of top subscribers, cor-
responding to viewing the home page of the service;
2% are updates that randomly either subscribe or un-
subscribe some randomly chosen user. This example ex-
plores the effectiveness of computation warranties for
caching expensive computed results.

7.4 Comparing with Hibernate/HSQLDB
To provide a credible baseline for performance compar-
isons, we also ported our implementation of CMS to the
Java Persistence API (JPA) [12]. We ran these implemen-
tations with the widely used Hibernate implementation
of JPA 2, running on top of HyperSQL (HSQLDB), a
popular in-memory database in READ COMMITTEDmode.
For brevity, we refer to Hibernate/HSQLDB as JPA. For
JPA, we present results only for a single database in-
stance. Even in this single-store setting, and even with
Hibernate running in its optimistic locking mode, which
does not enforce serializability, Fabric significantly out-
performs JPA in all of our experiments. (Note that JPA
in optimistic locking mode is in turn known to outper-
form JPA with pessimistic locking, on read-biased work-
loads [49, 17]). This performance comparison aims to
show that Fabric is a good baseline for evaluating the
performance of transactional workloads: its performance
is competitive with other storage frameworks offering a
transactional language-level abstraction.

7.5 Experimental setup
Our experiments use a semi-open system model. An
open system model is usually considered more realis-
tic [48] and a more appropriate way to evaluate system
scalability. Worker nodes execute transactions at expo-
nentially distributed intervals at a specified average re-
quest rate. Consequently, each worker is usually running
many transactions in parallel. Overall system throughput
is the total of throughput from all workers. To find the
maximum throughput, we increase the average request
rate until the target throughput cannot be achieved.

The experiments are run on a Eucalyptus cluster. Each
store runs on a virtual machine with a dual core processor
and 8 GB of memory. Worker machines are virtual ma-
chines with 4 cores and 16 GB of memory. The physical
processors are 2.9 GHz Intel Xeon E5-2690 processors.

The parameters k1 and k2 (Section 3.8) are set to 0.5
and 2.0, respectively; the maximum warranty term was
10 s. Performance is not very sensitive to k1 and k2.

7.6 Results
We evaluated scalability using the OO7 benchmark with
different numbers of stores. A “shared store” was re-
served for the assembly hierarchies of all modules. The
component parts of the modules were distributed evenly
across the remaining stores. Only shared composite parts

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 513

1 3 5 7
0

1,000

2,000

Stores

M
ax

im
um

th
ro

ug
hp

ut
(t

x/
s)

Fabric
Warranties

Figure 4: OO7 maximum throughput on a 2%-write
workload as the number of stores increases. Warranties
allow throughput to scale up with more stores.

were placed on the shared store. Results presented are
the average of three runs.

Figure 4 shows maximum throughput in total transac-
tions committed per second by 36 workers, as the number
of stores increases. Error bars show the standard devi-
ation of the measurements. As expected, adding stores
has little effect on maximum throughput in base Fab-
ric because the shared store is a bottleneck. Warranties
greatly reduce load on the shared store allowing us to
add roughly 400 tx/s per additional store. Note that the
plot only counts committed transactions; the percentage
of aborted transactions for Fabric at maximum through-
put ranges from 2% to 6% as the number of stores in-
creases from 3 to 7; with warranties, from 4% up to 15%.

Table 2 reports on the performance of the CMS appli-
cation in various configurations. The first three rows of
Table 2 show that Fabric, without or without warranties,
delivers more than an order of magnitude performance
improvement over JPA. Although the JPA implementa-
tion enforces weaker consistency, Fabric’s more precise

0 2 5 10
0

1,000

2,000

3,000

Write percentage

M
ax

im
um

th
ro

ug
hp

ut
(t

x/
s)

Fabric
Warranties

Figure 5: Effect of write percentage on OO7 maximum
throughput on 3 stores with 24 workers.

System Stores Tput (tx/s) Latency (ms)
JPA 1 72± 12 211± 44

Fabric 1 3032± 144 143± 120
Warranties 1 4142± 112 27± 27

Comp. Warranties 1 4088± 189 114± 30
Fabric 3 4090± 454 311± 175

Warranties 3 5886± 124 35± 4

Table 2: CMS throughput and latency on various sys-
tems. Both are averaged over 10 s at max throughput.

object invalidation helps performance as contention in-
creases. Warranties help improve performance further,
even in a single-store configuration.

To evaluate how the system scales for a more realistic
workload, we also ran CMS with 3 stores using Fabric
and Warranties. Two stores each held data for multiple
courses, while the third store contained metadata. As Ta-
ble 2 shows, Warranties scale better than Fabric with the
additional stores.

Increases in throughput would be less compelling if
they came at the cost of high latency. Table 2 also reports
the latency measured with the CMS workload on the var-
ious systems. Fabric has similar latency with or without
warranties. Because CMS was not designed with compu-
tation warranties in mind, the functions we designated to
be memoized turn out not to have a significant impact
on performance. They are relatively cheap to evaluate
on cached objects, and the bookkeeping for computation
warranties adds no noticeable overhead.

Figure 5 shows how the performance of warranties
is affected by the fraction of update transactions. Four
different workload mixes were measured, each having a
94:6 shared-to-private traversal ratio and a 1:10 shared-
to-private write ratio. When more than 10% of the trans-
actions are updates, the cost of maintaining and issu-
ing warranties in the current implementation is too high
to obtain a performance improvement. The latencies at
some of these throughputs are higher than Fabric’s, but
still relatively low. At 2% and 5% writes, the latency
of warranties is about 400 ms higher than Fabric’s but
nearly the same as Fabric’s at 0% and 10% writes.

Warranties can result in delaying transactions that are
attempting to write to an object that has a warranty. We
call this write delay. For all of the runs depicted in Fig-
ure 5, the median write delay is 0 ms. However, some
fraction of transactions are forced to wait until one or
more warranties expire. The more read-biased the trans-
action, the more frequently this happens. In the 2%-write
workload, 70% of read-write transactions see no write
delay. In the 10%-write workload, 82% see no write de-
lay. Among those that encounter write delay, the delay
is roughly uniformly distributed from 0 up to the max
warranty length.

11

514 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

95th pct
Median Write

Tput Latency Delay
Fabric 17± 5 568± 500 N/A

Warranties 26± 7 1239± 644 623± 387
Comp. Warranties 343± 14 12± 3 16± 5

Table 3: Top-N benchmark: maximum throughput (tx/s),
latency (ms), and 95th percentile write delay (ms).

7.7 Computation warranties
To further evaluate the impact of computation warranties,
we ran the top-N benchmark with Fabric, state war-
ranties, and with computation warranties. Because the
performance of the recursive top-N strategy on Fabric
and on state warranties was very poor, we used an al-
ternate implementation that performed better on those
configurations. Table 3 shows the average across three
runs of the maximum throughput and the corresponding
latency achieved in the system without any operations
failing to commit during a 15 minute period. Computa-
tion warranties improve throughput by more than an or-
der of magnitude. Since the computation warranty is on
the value of the top 5 accounts rather than on each in-
dividual value used in computing the result, writes are
not delayed as heavily as they are when using only state
warranties.

8 Related work
Many mechanisms for enforcing concurrency control
have been proposed in the literature: locks, timestamps,
versions, logs, leases, and many others [33, 22, 34, 46,
7, 21]. Broadly speaking, these can be divided into opti-
mistic and pessimistic mechanisms. The monograph by
Bernstein, Hadzilacos, and Goodman provides a broad
overview from the perspective of databases [8]. War-
ranties are an optimistic technique, allowing clients to
concurrently operate on shared data.

Haerder [24] divides mechanisms for validating opti-
mistic transactions into “forward” and “backward” tech-
niques. Backward validation is a better choice for the dis-
tributed setting [3], so Fabric uses backward validation:
transactions are aborted in the prepare phase if any object
in the read set has been modified.

Traditionally, most systems adopted serializability or
linearizability as the gold standard of strong consis-
tency [42, 8, 25]. But many recent systems have sacri-
ficed serializability in pursuit of scalable performance.
Vogels [53] discusses this trend and surveys various for-
mal notions of eventual consistency. Much prior work
aims to provide a consistency guarantee that is weaker
than serializability; for example, causal consistency (e.g.,
[44, 39]) and probabilistically-bounded staleness [6].
Because this paper is about strong consistency, we do not

discuss this prior work in depth.
Leveraging application-level information to guide im-

plementations of transactions was proposed by Lam-
port [33] and explored in Garcia-Molina’s work on se-
mantic types [19], as well as recent work on trans-
actional boosting [26] and coarse-grained transac-
tions [31]. Unlike warranties, these systems use mech-
anisms based on commuting operations. A related ap-
proach is red–blue consistency [36], in which red opera-
tions must be performed in the same order at each node
but blue operations may be reordered.

Like warranties, Sinfonia [4] aims to reduce client–
server round trips without hurting consistency. It does
this through mini-transactions, in which a more general
computation is piggybacked onto the prepare phase. This
optimization is orthogonal to warranties.

Warranties borrow from leases [21] the idea of us-
ing expiring guarantees, though important differences are
discussed in Section 3.2. In fact, the idea of expiring state
guarantees occurs prior to leases in Lampson’s global di-
rectory service [35]. We are not aware of any existing
system that combines optimistic transactions with leases
or lease-like mechanisms, against which we could mean-
ingfully compare performance.

A generalization of leases, promises [23, 29] is a mid-
dleware layer that allows clients to specify resource re-
quirements via logical formulas. A resource manager
considers constraints across many clients and issues
time-limited guarantees about resource availability. Scal-
ability of promises does not seem to have been evaluated.

The tracking of dependencies between computa-
tion warranties, and the incremental updates of those
warranties while avoiding unnecessary invalidation, is
close to the update propagation technique used in self-
adjusting computation [1], realized in a distributed set-
ting. Incremental update of computed results has also
been done in the setting of MapReduce [9].

The TxCache system [45] provides a simple abstrac-
tion for caching and reusing results of functions oper-
ating over persistent data from a single storage node in
a distributed system. As with the Fabric implementation
of computation warranties, functions may be marked for
memoization. TxCache does not ensure that memoized
calls have no side effects, so memoized calls may not
behave like real calls. Memoized results are not shared
across clients. Compared to Fabric, TxCache provides a
weaker consistency guarantee, transactional consistency,
requiring that all transactions operate over data that is
consistent with a prior snapshot of the system.

Escrow transactions [41] have some similarities to
computation warranties. They generalize transactions by
allowing commit when a predicate over state is satis-
fied. Certain updates (incrementing and decrementing
values) may take place even when other transactions may

12

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 515

be updating the same values, as long as the predicate
still holds. Compared to computation warranties, escrow
transactions support very limited predicates over state,
and their goal is different: to permit updates rather than
to allow the result of a computation to be widely reused.

9 Conclusions
Strong consistency tends to be associated with the
very real performance problems of pessimistic locking.
While optimistic concurrency control mechanisms de-
liver higher performance for typical workloads, read pre-
pares on popular objects are still a performance bot-
tleneck. Warranties generalize OCC in a way that re-
duces the read-prepare bottleneck. Warranties address
this bottleneck by allowing stores to distribute war-
ranties on popular objects, effectively replicating their
state throughout the system. Warranties can delay up-
date transactions, but our results suggest that the de-
lay is acceptable. Effectively, warranties generalize OCC
in a way that adjusts the balance of power between
readers and writers, substantially increasing overall
performance. Computation warranties improve perfor-
mance further by supporting memcached-like reuse of
computations—but without losing strong consistency.

Acknowledgments
We would especially like to thank Robert Soulé for help
setting up experiments and Nate Foster for good sugges-
tions. Chin Isradisaikul also had good ideas for presen-
tation, and we thank our shepherd Yuan Yu. We thank
Hakim Weatherspoon for the use of Fractus cloud in-
frastructure provided by an AFOSR DURIP award, grant
FA2386-12-1-3008.

This project was funded partly by the Office of Naval
Research (grant N00014-13-1-0089), by MURI grant
FA9550-12-1-0400, by a grant from the National Sci-
ence Foundation (CCF-09644909), and by an NDSEG
Fellowship. This paper does not necessarily reflect the
views of any of these sponsors.

References
[1] Umut A. Acar, Amal Ahmed, and Matthias

Blume. Imperative self-adjusting computation.
In Proc. 35th ACM Symposium on Principles of
Programming Languages (POPL), pages 309–322,
2008.

[2] Atul Adya, William J. Bolosky, Miguel Castro,
Gerald Cermak, Ronnie Chaiken, John R. Douceur,
Jon Howell, Jacob R. Lorch, Marvin Theimer,
and Roger P. Wattenhofer. FARSITE: Feder-
ated, available, and reliable storage for an incom-
pletely trusted environment. In Proc. 5th USENIX

Symp. on Operating Systems Design and Imple-
mentation (OSDI), December 2002.

[3] Atul Adya, Robert Gruber, Barbara Liskov, and
Umesh Maheshwari. Efficient optimistic concur-
rency control using loosely synchronized clocks. In
Proc. ACM SIGMOD International Conference on
Management of Data, pages 23–34, San Jose, CA,
May 1995.

[4] Marcos K. Aguilera, Arif Merchant, Mehul Shah,
Alistair Veitch, and Christos Karamanolis. Sin-
fonia: a new paradigm for building scalable dis-
tributed systems. In Proc. 21st ACM Symp. on Op-
erating System Principles (SOSP), pages 159–174,
October 2007.

[5] Owen Arden, Michael D. George, Jed Liu,
K. Vikram, Aslan Askarov, and Andrew C. My-
ers. Sharing mobile code securely with information
flow control. In Proc. IEEE Symp. on Security and
Privacy, pages 191–205, May 2012.

[6] Peter Bailis, Shivaram Venkataraman, Michael J.
Franklin, Joseph M. Hellerstein, and Ion Stoica.
Probabilistically bounded staleness for practical
partial quorums. PVLDB, 5(8):776–787, April
2012.

[7] Philip A. Bernstein and Nathan Goodman. Concur-
rency control in distributed database systems. ACM
CSUR, 13(2):185–221, 1981.

[8] Phillip A. Bernstein, Vassos Hadzila-
cos, and Nathan Goodman. Concurrency
Control and Recovery in Database Sys-
tems. Addison Wesley, 1987. Available at
http://research.microsoft.com/en-us/

people/philbe/ccontrol.aspx.

[9] Pramod Bhatotia, Alexander Wieder, Rodrigo Ro-
drigues, Umut A. Acar, and Rafael Pasquini. In-
coop: MapReduce for incremental computations. In
ACM Symp. Cloud Computing, October 2011.

[10] Chavdar Botev et al. Supporting workflow in a
course management system. In Proc. 36th ACM
Technical Symposium on Computer Science Educa-
tion (SIGCSE), pages 262–266, February 2005.

[11] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and
Scott Shenker. Web caching and Zipf-like distribu-
tions: Evidence and implications. In INFOCOM,
1999.

[12] Heiko Böck. Java Persistence API. Springer, 2011.

13

516 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

[13] Michael Carey, David J. DeWitt, Chander Kant, and
Jeffrey F. Naughton. A status report on the OO7
OODBMS benchmarking effort. In Proc. 9th ACM
SIGPLAN Conf. on Object-Oriented Programming,
Systems, Languages and Applications, pages 414–
426, 1994.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jam-
pani, Gunavardhan Kakulapati, Avinash Lakshman,
Alex Pilchin, Swaminathan Sivasubramanian, Pe-
ter Vosshall, and Werner Vogels. Dynamo: Ama-
zon’s highly available key-value store. In Proc. 21st
SOSP, 2007.

[15] EclipseLink. http://www.eclipse.org/-

eclipselink.

[16] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L.
Traiger. The notions of consistency and predicate
locks in a database system. Comm. of the ACM,
19(11):624–633, November 1976. Also published
as IBM RJ1487, December, 1974.

[17] Gavin King et al. Hibernate developer
guide. Hibernate Community Documentation.
http://docs.jboss.org/hibernate/orm/4.0/-

devguide/en-US/html/ch05.html.

[18] Brad Fitzpatrick. Distributed caching with mem-
cached. Linux Journal, August 2004.

[19] Hector Garcia-Molina. Using semantic knowledge
for transaction processing in a distributed database.
ACM TODS, 8(2):186–213, June 1983.

[20] Cary G. Gray. Performance and Fault-Tolerance in
a Cache for Distributed File Service. PhD thesis,
Stanford University, December 1990.

[21] Cary G. Gray and David R. Cheriton. Leases: An
efficient fault-tolerant mechanism for distributed
file cache consistency. In Proc. 12th ACM Symp. on
Operating System Principles (SOSP), pages 202–
210, 1989.

[22] Jim N. Gray. Notes on database operating systems.
In R. Bayer, R. M. Graham, and G. Seegmüller, ed-
itors, Operating Systems, an Advanced Course, vol-
ume 60 of LNCS, pages 393–481. Springer-Verlag,
1978.

[23] Paul Greenfield, Alan Fekete, Julian Jang, Dean
Kuo, and Surya Nepal. Isolation support for
service-based applications: A position paper. In
Proc. 3rd CIDR, pages 314–323, 2007.

[24] T. Haerder. Observations on optimistic concurrency
control schemes. Information Systems, 9(2):111–
120, June 1984.

[25] M. Herlihy and J. Wing. Linearizability: A cor-
rectness condition for concurrent objects. Technical
Report CMU-CS-88-120, Carnegie Mellon Univer-
sity, Pittsburgh, Pa., 1988.

[26] Maurice Herlihy and Eric Koskinen. Transactional
boosting: A methodology for highly-concurrent
transactional objects. In Proc. 13th PPoPP, pages
207–216, February 2008.

[27] Hibernate. http://www.hibernate.org.

[28] J. Stuart Hunter. The exponentially weighted
moving average. Journal of Quality Technology,
18:203–210, 1986.

[29] J. Jang, A. Fekete, and P. Greenfield. Delivering
promises for web services applications. In Proc.
5th ICWS, pages 599–606, July 2007.

[30] JMeter. http://jmeter.apache.org.

[31] Eric Koskinen, Matthew Parkinson, and Maurice
Herlihy. Coarse-grained transactions. In Proc. 37th
POPL, pages 19–30, January 2010.

[32] H. T. Kung and J. T. Robinson. On optimistic meth-
ods for concurrency control. ACM Transactions on
Database Systems, 6(2):213–226, June 1981.

[33] L. Lamport. Towards a theory of correctness for
multi-user data base systems. Report CA-7610-
0712, Mass. Computer Associates, Wakefield, MA,
October 1976.

[34] L. Lamport. Time, clocks, and the ordering of
events in a distributed system. Comm. of the ACM,
21(7):558–565, July 1978.

[35] Butler W. Lampson. Designing a global name ser-
vice. In Proc. 5th PODC, pages 1–10, August 1986.

[36] Cheng Li, Daniel Porto, Allen Clement, Johannes
Gehrke, Nuno Preguiça, and Rodrigo Rodrigues.
Making geo-replicated systems fast as possible,
consistent when necessary. In Proc. 10th OSDI,
October 2012.

[37] B. Liskov, A. Adya, M. Castro, M. Day, S. Ghe-
mawat, R. Gruber, U. Maheshwari, A. C. Myers,
and L. Shrira. Safe and efficient sharing of per-
sistent objects in Thor. In Proc. ACM SIGMOD
International Conference on Management of Data,
pages 318–329, June 1996.

[38] Jed Liu, Michael D. George, K. Vikram, Xin Qi,
Lucas Waye, and Andrew C. Myers. Fabric: A plat-
form for secure distributed computation and stor-
age. In Proc. 22nd ACM Symp. on Operating Sys-
tem Principles (SOSP), pages 321–334, 2009.

14

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 517

[39] Wyatt Lloyd, Michael J. Freedman, Michael
Kaminsky, and David G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area
storage with COPS. In Proc. 23rd ACM Symp. on
Operating System Principles (SOSP), 2011.

[40] D. L. Mills. Network time protocol (version 3)
specification, implementation and analysis. Net-
work Working Report RFC 1305, March 1992.

[41] P. O’Neil. The escrow transactional method.
ACM Transactions on Database Systems (TODS),
11(4):405–430, December 1986.

[42] Christos H. Papadimitriou. The serializability of
concurrent database updates. JACM, 26(4):631–
653, October 1979.

[43] Peter Peinl and Andreas Reuter. Empirical com-
parison of database concurrency control schemes.
In Proc. 9th Int’l Conf. on Very Large Data Bases
(VLDB), pages 97–108, 1983.

[44] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M.
Theimer, and A. J. Demers. Flexible update
propagation for weakly consistent replication. In
Proc. 17th ACM Symp. on Operating System Prin-
ciples (SOSP), St. Malo, France, October 1997.

[45] Dan R. K. Ports, Austin T. Clements, Irene Zhang,
Samuel Madden, and Barbara Liskov. Transac-
tional consistency and automatic management in
an application data cache. In Proc. 9th USENIX
Symp. on Operating Systems Design and Imple-
mentation (OSDI), 2010.

[46] David P. Reed. Naming and synchronization in
a decentralized computer system. Technical Re-
port MIT-LCS-TR-205, Massachusetts Institute of
Technology, 1978.

[47] Yasushi Saito and Marc Shapiro. Optimistic repli-
cation. ACM CSUR, 37(1):42–81, March 2005.

[48] Bianca Schroeder, Adam Wierman, and Mor
Harchol-Balter. Open versus closed: a cautionary
tale. In Proc. 3rd Conf. on Networked Systems
Design & Implementation (NSDI), pages 18–31,
Berkeley, CA, USA, 2006. USENIX Association.

[49] ObjectDB Software. ObjectDB 2.3 developer’s
guide. http://www.objectdb.com/java/-

jpa/persistence/lock.

[50] Douglas B. Terry, Marvin M. Theimer, Karin
Petersen, Alan J. Demers, and Mike J. Spre-
itzer. Managing update conflicts in Bayou, a
weakly connected replicated storage system. In

Proc. 15th ACM Symp. on Operating System Prin-
ciples (SOSP), pages 172–183, December 1995.

[51] Chandramohan A. Thekkath, Timothy Mann, and
Edward K. Lee. Frangipani: a scalable distributed
file system. In Proc. 16th ACM Symp. on Operating
System Principles (SOSP), pages 224–237, 1997.

[52] TPC-C. http://www.tpc.org/tpcc/.

[53] Werner Vogels. Eventually consistent. CACM,
52(1):40–44, January 2009.

[54] Yahoo! cloud serving benchmark.
https://github.com/brianfrankcooper/YCSB.

15

