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Abstract

Scaling the performance of short TCP connections on
multicore systems is fundamentally challenging. Although
many proposals have attempted to address various short-
comings, inefficiency of the kernel implementation still
persists. For example, even state-of-the-art designs spend
70% to 80% of CPU cycles in handling TCP connections
in the kernel, leaving only small room for innovation in
the user-level program.

This work presents mTCP, a high-performance user-
level TCP stack for multicore systems. mTCP addresses
the inefficiencies from the ground up—from packet I/O
and TCP connection management to the application inter-
face. In addition to adopting well-known techniques, our
design (1) translates multiple expensive system calls into a
single shared memory reference, (2) allows efficient flow-
level event aggregation, and (3) performs batched packet
I/O for high I/O efficiency. Our evaluations on an 8-core
machine showed that mTCP improves the performance of
small message transactions by a factor of 25 compared to
the latest Linux TCP stack and a factor of 3 compared to
the best-performing research system known so far. It also
improves the performance of various popular applications
by 33% to 320% compared to those on the Linux stack.

1 Introduction

Short TCP connections are becoming widespread. While
large content transfers (e.g., high-resolution videos) con-
sume the most bandwidth, short “transactions” ! dominate
the number of TCP flows. In a large cellular network, for
example, over 90% of TCP flows are smaller than 32 KB
and more than half are less than 4 KB [45].

Scaling the processing speed of these short connec-
tions is important not only for popular user-facing on-
line services [1,2, 18] that process small messages. It is

'We refer to a request-response pair as a transaction. These transac-
tions are typically small in size.

*Princeton University

also critical for backend systems (e.g., memcached clus-
ters [36]) and middleboxes (e.g., SSL proxies [32] and
redundancy elimination [31]) that must process TCP con-
nections at high speed. Despite recent advances in soft-
ware packet processing [4,7,21,27,39], supporting high
TCP transaction rates remains very challenging. For exam-
ple, Linux TCP transaction rates peak at about 0.3 million
transactions per second (shown in Section 5), whereas
packet I/O can scale up to tens of millions packets per
second [4,27,39].

Prior studies attribute the inefficiency to either the high
system call overhead of the operating system [28,40,43]
or inefficient implementations that cause resource con-
tention on multicore systems [37]. The former approach
drastically changes the I/O abstraction (e.g., socket API)
to amortize the cost of system calls. The practical lim-
itation of such an approach, however, is that it requires
significant modifications within the kernel and forces ex-
isting applications to be re-written. The latter one typically
makes incremental changes in existing implementations
and, thus, falls short in fully addressing the inefficiencies.

In this paper, we explore an alternative approach that de-
livers high performance without requiring drastic changes
to the existing code base. In particular, we take a clean-
slate approach to assess the performance of an untethered
design that divorces the limitation of the kernel implemen-
tation. To this end, we build a user-level TCP stack from
the ground up by leveraging high-performance packet
I/O libraries that allow applications to directly access the
packets. Our user-level stack, mTCP, is designed for three
explicit goals:

1. Multicore scalability of the TCP stack.
2. Ease of use (i.e., application portability to mTCP).

3. Ease of deployment (i.e., no kernel modifications).

Implementing TCP in the user level provides many
opportunities. In particular, it can eliminate the expen-
sive system call overhead by translating syscalls into
inter-process communication (IPC). However, it also in-
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. . Application Mod- | Kernel
Accept queue ‘ Conn. Locality ‘ Socket API Event Handling Packet I/O ification Modification
PSIO [12],
DPDK [4], No interface for No
PF_RING [7], No TCP stack Batched transport layer (NIC driver)
netmap [21]
Linux-2.6 Shared None BSD socket Syscalls Per packet | Transparent No
Linux-3.9 Per-core None BSD socket Syscalls Per packet Add option No
SO_REUSEPORT
Affinity- .
Accept [37] Per-core Yes BSD socket Syscalls Per packet | Transparent Yes
. Event model to
MegaPipe [28] Per-core Yes Iwsocket Batched syscalls Per packet completion /O Yes
FlexSC [40], Change to use .
VOS [43] Shared None BSD socket Batched syscalls Per packet new API Yes
. Socket API to | No
mTCP Per-core Yes User-level socket | Batched function calls | Batched mTCP AP (NIC driver)

Table 1: Comparison of the benefits of previous work and mTCP.

troduces fundamental challenges that must be addressed—
processing IPC messages, including shared memory mes-
sages, involve context-switches that are typically much
more expensive than the system calls themselves [3,29].

Our key approach is to amortize the context-switch
overhead over a batch of packet-level and socket-level
events. While packet-level batching [27] and system-call
batching [28,40,43] (including socket-level events) have
been explored individually, integrating the two requires
a careful design of the networking stack that translates
packet-level events to socket-level events and vice-versa.

This paper makes two key contributions:

First, we demonstrate that significant performance
gain can be obtained by integrating packet- and socket-
level batching. In addition, we incorporate all known
optimizations, such as per-core listen sockets and load
balancing of concurrent flows on multicore CPUs with
receive-side scaling (RSS). The resulting TCP stack out-
performs Linux and MegaPipe [28] by up to 25x (w/o
SO_REUSEPORT) and 3x, respectively, in handling TCP
transactions. This directly translates to application per-
formance; mTCP increases existing applications’ perfor-
mance by 33% (SSLShader) to 320% (lighttpd).

Second, unlike other designs [23,30], we show that such
integration can be done purely at the user level in a way
that ensures ease of porting without requiring significant
modifications to the kernel. mTCP provides BSD-like
socket and epoll-like event-driven interfaces. Migrating
existing event-driven applications is easy since one simply
needs to replace the socket calls to their counterparts in
mTCP (e.g., accept () becomes mtcp_accept ()) and
use the per-core listen socket.

2 Background and Motivation

We first review the major inefficiencies in existing TCP
implementations and proposed solutions. We then discuss
our motivation towards a user-level TCP stack.

2.1 Limitations of the Kernel’s TCP Stack

Recent studies proposed various solutions to address four
major inefficiencies in the Linux TCP stack: lack of con-
nection locality, shared file descriptor space, inefficient
packet processing, and heavy system call overhead [28].
Lack of connection locality: Many applications are
multi-threaded to scale their performance on multicore
systems. However, they typically share a listen socket
that accepts incoming connections on a well-known port.
As a result, multiple threads contend for a lock to access
the socket’s accept queue, resulting in a significant perfor-
mance degradation. Also, the core that executes the kernel
code for handling a TCP connection may be different from
the one that runs the application code that actually sends
and receives data. Such lack of connection locality intro-
duces additional overhead due to increased CPU cache
misses and cache-line sharing [37].

Affinity-Accept [37] and MegaPipe [28] address this

issue by providing a local accept queue in each CPU core
and ensuring flow-level core affinity across the kernel and
application thread. Recent Linux kernel (3.9.4) also partly
addresses this by introducing the SO_REUSEPORT [14] op-
tion, which allows multiple threads/processes to bind to
the same port number.
Shared file descriptor space: In POSIX-compliant op-
erating systems, the file descriptor (fd) space is shared
within a process. For example, Linux searches for the min-
imum available fd number when allocating a new socket.
In a busy server that handles a large number of concurrent
connections, this incurs significant overhead due to lock
contention between multiple threads [20]. The use of file
descriptors for sockets, in turn, creates extra overhead
of going through the Linux Virtual File System (VES), a
pseudo-filesystem layer for supporting common file op-
erations. MegaPipe eliminates this layer for sockets by
explicitly partitioning the fd space for sockets and regular
files [28].
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Figure 1: CPU usage breakdown when running 1ighttpd serv-

ing a 64B file per connection.

Inefficient per-packet processing: Previous studies in-
dicate per-packet memory (de)allocation and DMA over-
head, NUMA -unaware memory access, and heavy data
structures (e.g., sk_buff) as the main bottlenecks in
processing small packets [27,39]. To reduce the per-
packet overhead, it is essential to batch process multi-
ple packets. While many recent user-level packet I/O
libraries [4, 7,27, 39] address these problems, these li-
braries do not provide a full-fledged TCP stack, and not
all optimizations are incorporated into the kernel.

System call overhead: The BSD socket API requires
frequent user/kernel mode switching when there are
many short-lived concurrent connections. As shown in
FlexSC [40] and VOS [43], frequent system calls can
result in processor state (e.g., top-level caches, branch
prediction table, etc.) pollution that causes performance
penalties. Previous solutions propose system call batch-
ing [28,43] or efficient system call scheduling [40] to
amortize the cost. However, it is difficult to readily apply
either approach to existing applications since they often
require user and/or kernel code modification due to the
changes to the system call interface and/or its semantics.

Table 1 summarizes the benefits provided by previous
work compared to a vanilla Linux kernel. Note that there
is not a single system that provides all of the benefits.

2.2 Why User-level TCP?

While many previous designs have tried to scale the per-
formance of TCP in multicore systems, few of them truly
overcame the aforementioned inefficiencies of the kernel.
This is evidenced by the fact that even the best-performing
system, MegaPipe, spends a dominant portion of CPU
cycles (~80%) inside the kernel. Even more alarming is
the fact that these CPU cycles are not utilized efficiently;
according to our own measurements, Linux spends more
than 4x the cycles (in the kernel and the TCP stack com-
bined) than mTCP does while handling the same number
of TCP transactions.

To reveal the significance of this problem, we profile the
server’s CPU usage when it is handling a large number of
concurrent TCP transactions (8K to 48K concurrent TCP
connections). For this experiment, we use a simple web
server (1ighttpd v1.4.32 [8]) running on an 8-core Intel
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Figure 2: Relative scale of # transactions processed per CPU
cycle in the kernel (including TCP/IP and I/O) across four
lighttpd versions.

—_

— 1

Transactions/sec (x 10%)

T 0
mTCP

Xeon CPU (2.90 GHz, E5-2690) with 32 GB of memory
and a 10 Gbps NIC (Intel 82599 chipsets). Our clients
use ab v2.3 [15] to repeatedly download a 64B file per
connection. Multiple clients are used in our experiment to
saturate the CPU utilization of the server. Figure 1 shows
the breakdown of CPU usage comparing four versions of
the lighttpd server: a multithreaded version that harnesses
all 8 CPU cores on Linux 2.6.32 and 3.10.12 2 (Linux), a
version ported to MegaPipe > (MegaPipe), and a version
using mTCP, our user-level TCP stack, on Linux 2.6.32
(mTCP). Note that MegaPipe adopts all recent optimiza-
tions such as per-core accept queues and file descriptor
space, as well as user-level system call batching, but reuses
the existing kernel for packet I/O and TCP/IP processing.

Our results indicate that Linux and MegaPipe spend
80% to 83% of CPU cycles in the kernel which leaves
only a small portion of the CPU to user-level applications.
Upon further investigation, we find that lock contention
for shared in-kernel data structures, buffer management,
and frequent mode switch are the main culprits. This
implies that the kernel, including its stack, is the major
bottleneck. Furthermore, the results in Figure 2 show
that the CPU cycles are not spent efficiently in Linux
and MegaPipe. The bars indicate the relative number
of transactions processed per each CPU cycle inside the
kernel and the TCP stack (e.g., outside the application),
normalized by the performance of Linux 2.6.32. We find
that mTCP uses the CPU cycles 4.3 times more effectively
than Linux. As a result, mTCP achieves 3.1x and 1.8x
the performance of Linux 2.6 and MegaPipe, respectively,
while using fewer CPU cycles in the kernel and the TCP
stack.

Now, the motivation of our work is clear. Can we de-
sign a user-level TCP stack that incorporates all existing
optimizations into a single system and achieve all benefits
that individual systems have provided in the past? How
much of a performance improvement can we get if we
build such a system? Can we bring the performance of
existing packet I/O libraries to the TCP stack?

2This is the latest Linux kernel version as of this writing.
3We use Linux 3.1.3 for MegaPipe due to its patch availability.
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Figure 3: mTCP Design Overview.

To answer these questions, we build a TCP stack in
the user level. User-level TCP is attractive for many rea-
sons. First, it allows us to easily depart from the kernel’s
complexity. In particular, due to shared data structures
and various semantics that the kernel has to support (e.g.,
POSIX and VFES), it is often difficult to separate the TCP
stack from the rest of the kernel. Furthermore, it allows
us to directly take advantage of the existing optimiza-
tions in the high-performance packet I/O library, such as
netmap [39] and Intel DPDK [4]. Second, it allows us to
apply batch processing as the first principle, harnessing
the ideas in FlexSC [40] and VOS [43] without extensive
kernel modifications. In addition to performing batched
packet I/O, the user-level TCP naturally collects multiple
flow-level events to and from the user application (e.g.,
connect () /accept () and read() /write() for differ-
ent connections) without the overhead of frequent mode
switching in system calls. Finally, it allows us to easily
preserve the existing application programming interface.
Our TCP stack is backward-compatible in that we provide
a BSD-like socket interface.

3 Design

The goal of mTCP is to achieve high scalability on mul-
ticore systems while maintaining backward compatibil-
ity to existing multi-threaded, event-driven applications.
Figure 3 presents an overview of our system. At the high-
est level, applications link to the mTCP library, which
provides a socket API and an event-driven programming
interface for backward compatibility. The two underlying
components, user-level TCP stack and packet I/O library,
are responsible for achieving high scalability. Our user-
level TCP implementation runs as a thread on each CPU
core within the same application process. The mTCP
thread directly transmits and receives packets to and from
the NIC using our custom packet I/O library. Existing
user-level packet libraries only allow one application to
access an NIC port. Thus, mTCP can only support one
application per NIC port. However, we believe this can
be addressed in the future using virtualized network inter-
faces (more details in Section 3.3). Applications can still

choose to work with the existing TCP stack, provided that
they only use NICs that are not used by mTCP.

In this section, we first present the design of mTCP’s
highly scalable lower-level components in Sections 3.1
and 3.2. We then discuss the API and semantics that
mTCP provides to support applications in Section 3.3.

3.1 User-level Packet I/O Library

Several packet I/O systems allow high-speed packet I/O
(~100M packets/sec) from a user-level application [4,7,
12]. However, they are not suitable for implementing a
transport layer since their interface is mainly based on
polling. Polling can significantly waste precious CPU cy-
cles that can potentially benefit the applications. Further-
more, our system requires efficient multiplexing between
TX and RX queues from multiple NICs. For example, we
do not want to block a TX queue while sending a data
packet when a control packet is waiting to be received.
This is because if we block the TX queue, important con-
trol packets, such as SYN or ACK, may be dropped, re-
sulting in a significant performance degradation due to
retransmissions.

To address these challenges, mTCP extends the Pack-
etShader I/O engine (PSIO) [27] to support an efficient
event-driven packet 1/O interface. PSIO offers high-speed
packet I/O by utilizing RSS that distributes incoming pack-
ets from multiple RX queues by their flows, and provides
flow-level core affinity to minimize the contention among
the CPU cores. On top of PSIO’s high-speed packet 1/O,
the new event-driven interface allows an mTCP thread to
efficiently wait for events from RX and TX queues from
multiple NIC ports at a time.

The new event-driven interface, ps_select (), works
similarly to select () except that it operates on TX/RX
queues of interested NIC ports for packet I/O. For exam-
ple, mTCP specifies the interested NIC interfaces for RX
and/or TX events with a timeout in microseconds, and
ps_select () returns immediately if any event of interest
is available. If such an event is not detected, it enables
the interrupts for the RX and/or TX queues and yields
the thread context. Eventually, the interrupt handler in
the driver wakes up the thread if an I/O event becomes
available or the timeout expires. ps_select () is also
similar to the select () /poll () interface supported by
netmap [39]. However, unlike netmap, we do not integrate
this with the general-purpose event system in Linux to
avoid its overhead.

The use of PSIO brings the opportunity to amortize the
overhead of system calls and context switches throughout
the entire system, in addition to eliminating the per-packet
memory allocation and DMA overhead. In PSIO, packets
are received and transmitted in batches [27], amortizing
the cost of expensive PCle operations, such as DMA ad-
dress mapping and IOMMU lookups.
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Figure 4: Thread model of mTCP.

3.2 User-level TCP Stack

A user-level TCP stack naturally eliminates many system
calls (e.g., socket I/O), which can potentially reduce a
significant part of the Linux TCP overhead. One approach
to a user-level TCP stack is to implement it completely
as a library that runs as part of the application’s main
thread. This “zero-thread TCP” could potentially provide
the best performance since this translates costly system
calls into light-weight user-level function calls. However,
the fundamental limitation of this approach is that the
correctness of internal TCP processing depends on the
timely invocation of TCP functions from the application.

In mTCP, we choose to create a separate TCP thread to
avoid such an issue and to minimize the porting effort for
existing applications. Figure 4 shows how mTCP interacts
with the application thread. The application uses mTCP
library functions that communicate with the mTCP thread
via shared buffers. The access to the shared buffers is
granted only through the library functions, which allows
safe sharing of the internal TCP data. When a library
function needs to modify the shared data, it simply places
arequest (e.g., write () request) to a job queue. This way,
multiple requests from different flows can be piled to the
job queue at each loop, which are processed in batch when
the mTCP thread regains the CPU. Flow events from the
mTCP thread (e.g., new the CPU core. Flow events from
the mTCP thread (e.g., new connections, new data arrival,
etc.) are delivered in a similar way

This, however, requires additional overhead of manag-
ing concurrent data structures and context switch between
the application and the mTCP thread. Such cost is un-
fortunately not negligible, typically much larger than the
system call overhead [29]. One measurement on a recent
Intel CPU shows that a thread context switch takes 19
times the duration of a null system call [3].

In this section, we describe how mTCP addresses these
challenges and achieves high scalability with the user-
level TCP stack. We first start from how mTCP processes
TCP packets in Section 3.2.1, then present a set of key
optimizations we employ to enhance its performance in
Sections 3.2.2, 3.2.3, and 3.2.4.

3.2.1 Basic TCP Processing

When the mTCP thread reads a batch of packets from the
NIC’s RX queue, mTCP passes them to the TCP packet

Application

5) {6}
Socket API  accept ()

epoll_wait() connect() write() close()
Connect Write Close
queue  (7) ] queue queue
Event (4
(2)| queue queue

Accept
Packet handler

- Controllist — s [ A [ F/A

ACK hsl

Figure 5: An example of TCP processing in mTCP.

W >

X manager

Data list

processing logic which follows the standard TCP specifi-
cation. For each packet, mTCP first searches (or creates) a
TCP control block (tcb) of the corresponding flow in the
flow hash table. As in Figure 5, if a server side receives
an ACK for its SYN/ACK packet (1), the tcb for the new
connection will be enqueued to an accept queue (2), and
a read event is generated for the listening socket (3). If
a new data packet arrives, mTCP copies the payload to
the socket’s read buffer and enqueues a read event to an
internal event queue. mTCP also generates an ACK packet
and keeps it in the ACK list of a TX manager until it is
written to a local TX queue.

After processing a batch of received packets, mTCP
flushes the queued events to the application event queue
(4) and wakes up the application by signaling it. When
the application wakes up, it processes multiple events in a
single event loop (5), and writes responses from multiple
flows without a context switch. Each socket’s write ()
call writes data to its send buffer (6), and enqueues its
tcb to the write queue (7). Later, mTCP collects the tcbs
that have data to send, and puts them into a send list (8).
Finally, a batch of outgoing packets from the list will be
sent by a packet I/O system call, transmitting them to the
NIC’s TX queue.

3.2.2 Lock-free, Per-core Data Structures

To minimize inter-core contention between the mTCP
threads, we localize all resources (e.g., flow pool, socket
buffers, etc.) in each core, in addition to using RSS for
flow-level core affinity. Moreover, we completely elimi-
nate locks by using lock-free data structures between the
application and mTCP. On top of that, we also devise an
efficient way of managing TCP timer operations.

Thread mapping and flow-level core affinity: We pre-
serve flow-level core affinity in two stages. First, the
packet I/O layer ensures to evenly distribute TCP con-
nection workloads across available CPU cores with RSS.
This essentially reduces the TCP scalability problem to
each core. Second, mTCP spawns one TCP thread for
each application thread and co-locates them in the same
physical CPU core. This preserves the core affinity of
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packet and flow processing, while allowing them to use
the same CPU cache without cache-line sharing.

Multi-core and cache-friendly data structures: We
keep most data structures, such as the flow hash table,
socket id manager, and the pool of tcb and socket buffers,
local to each TCP thread. This significantly reduces any
sharing across threads and CPU cores, and achieves high
parallelism. When a data structure must be shared across
threads (e.g., between mTCP and the application thread),
we keep all data structures local to each core and use
lock-free data structures by using a single-producer and
single-consumer queue. We maintain write, connect, and
close queues, whose requests go from the application to
mTCP, and an accept queue where new connections are
delivered from mTCP to the application.

In addition, we keep the size of frequently accessed
data structures small to maximize the benefit of the CPU
cache, and make them aligned with the size of a CPU
cache line to prevent any false sharing. For example, we
divide tcb into two parts where the first-level structure
holds 64 bytes of the most frequently-accessed fields and
two pointers to next-level structures that have 128 and 192
bytes of receive/send-related variables, respectively.

Lastly, to minimize the overhead of frequent memory
allocation/deallocation, we allocate a per-core memory
pool for tcbs and socket buffers. We also utilize huge
pages to reduce the TLB misses when accessing the tcbs.
Because their access pattern is essentially random, it often
causes a large number of TLB misses. Putting the memory
pool of tcbs and a hash table that indexes them into huge
pages reduces the number of TLB misses.

Efficient TCP timer management: TCP requires timer
operations for retransmission timeouts, connections in
the TIME_WAIT state, and connection keep-alive checks.
mTCP provides two types of timers: one managed by
a sorted list and another built with a hash table. For
coarse-grained timers, such as managing connections in
the TIME_WAIT state and connection keep-alive check,
we keep a list of tcbs sorted by their timeout values. Ev-
ery second, we check the list and handle any tcbs whose
timers have expired. Note that keeping the list sorted is
trivial since a newly-added entry should have a strictly
larger timeout than any of those that are already in the
list. For fine-grained retransmission timers, we use the
remaining time (in milliseconds) as the hash table index,
and process all tcbs in the same bucket when a timeout ex-
pires for the bucket. Since retransmission timers are used
by virtually all t cbs whenever a data (or SYN/FIN) packet
is sent, keeping a sorted list would consume a significant
amount of CPU cycles. Such fine-grained event batch
processing with millisecond granularity greatly reduces
the overhead.

Application
¥ ¥
read() write() Tob
Accept Event queue
queue queue
mice [ T F—— ] ]
Receive socket buffer / Send socket buffer
\ v
NiC | I I | | I I
RX buffer TX buffer

Figure 6: Batch processing of events and jobs.

3.2.3 Batched Event Handling

mTCP transparently enables batch processing of multi-
ple flow events, which effectively amortizes the context
switch cost over multiple events. After receiving pack-
ets in batch, mTCP processes them to generate a batch
of flow-level events. These events are then passed up to
the application, as illustrated in Figure 6. The TX direc-
tion works similarly, as the mTCP library transparently
batches the write events into a write queue. While the
idea of amortizing the system call overhead using batches
is not new [28,43], we demonstrate that benefits similar
to that of batched syscalls can be effectively achieved in
user-level TCP.

In our experiments with 8 RX/TX queues per 10 Gbps
port, the average number of events that an mTCP thread
generates in a single scheduling period is about 2,170
for both TX and RX directions (see Section 5.1). This
ensures that the cost of a context switch is amortized
over a large number of events. Note the fact that the use
of multiple queues does not decrease the number of the
events processed in a batch.

3.2.4 Optimizing for Short-lived Connections

We employ two optimizations for supporting many short-
lived concurrent connections.

Priority-based packet queueing: For short TCP con-
nections, the control packets (e.g., SYN and FIN) have a
critical impact on the performance. Since the control pack-
ets are mostly small-sized, they can often be delayed for a
while when they contend for an output port with a large
number of data packets. We prioritize control packets by
keeping them in a separate list. We maintain three kinds
of lists for TX as shown in Figure 5. First, a control list
contains the packets that are directly related to the state of
a connection such as SYN, SYN/ACK, and ACK, or FIN
and FIN/ACK. We then manage ACKs for incoming data
packets in an ACK list. Finally, we keep a data list to send
data in the socket buffers of TCP flows. When we put
actual packets in a TX queue, we first fill the packets from
a control list and an ACK list, and later queue the data
packets. By doing this, we prioritize important packets
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to prevent short connections from being delayed by other
long connections. 4

Lightweight connection setup: In addition, we find
that a large portion of connection setup cost is from allo-
cating memory space for TCP control blocks and socket
buffers. When many threads concurrently call malloc ()
or free (), the memory manager in the kernel can be eas-
ily contended. To avoid this problem, we pre-allocate
large memory pools and manage them at user level to sat-
isfy memory (de)allocation requests locally in the same
thread.

3.3 Application Programming Interface

One of our primary design goals is to minimize the port-
ing effort of existing applications so that they can easily
benefit from our user-level TCP stack. Therefore, our
programming interface must preserve the most commonly
used semantics and application interfaces as much as pos-
sible. To this end, mTCP provides a socket API and an
event-driven programming interface.

User-level socket API: We provide a BSD-like socket
interface; for each BSD socket function, we have a
corresponding function call (e.g., accept () becomes
mtcp_accept ()). In addition, we provide functionali-
ties that are frequently used with sockets, e.g., fcntl and
ioctl, for setting the socket as nonblocking or getting/set-
ting the socket buffer size. To support various applications
that require inter-process communication using pipe (),
we also provide mtcp_pipe ().

The socket descriptor space in mTCP (including the fds
of pipe () and epoll()) is local to each mTCP thread;
each mTCP socket is associated with a thread context.
This allows parallel socket creation from multiple threads
by removing lock contention on the socket descriptor
space. We also relax the semantics of socket () such
that it returns any available socket descriptor instead of
the minimum available fd. This reduces the overhead of
finding the minimum available fd.

User-level event system: We provide an epoll ()-
like event system. While our event system aggre-
gates the events from multiple flows for batching ef-
fects, we do not require any modification in the event
handling logic.  Applications can fetch the events
through mtcp_epoll_wait () and register events through
mtcp_epoll_ctl (), which correspond to epoll_wait ()
and epoll_ctl () in Linux. Our current mtcp_epoll ()
implementation supports events from mTCP sockets (in-
cluding listening sockets) and pipes. We plan to integrate
other types of events (e.g., timers) in the future.

4This optimization can potentially make the system more vulnerable
to attacks, such as SYN flooding. However, existing solutions, such as
SYN cookies, can be used to mitigate the problem.

Applications: mTCP integrates all techniques known
at the time of this writing without requiring substantial
kernel modification while preserving the application inter-
face. Thus, it allows applications to easily scale their
performance without modifying their logic. We have
ported many applications, including 1ighttpd, ab, and
SSLShader to use mTCP. For most applications we ported,
the number of lines changed were less than 100 (more de-
tails in Section 4). We also demonstrate in Section 5 that a
variety of applications can directly enjoy the performance
benefit by using mTCP.

However, this comes with a few trade-offs that appli-
cations must consider. First, the use of shared memory
space offers limited protection between the TCP stack and
the application. While the application cannot directly ac-
cess the shared buffers, bugs in the application can corrupt
the TCP stack, which may result in an incorrect behavior.
Although this may make debugging more difficult, we
believe this form of fate-sharing is acceptable since users
face a similar issue in using other shared libraries such as
dynamic memory allocation/deallocation. Second, appli-
cations that rely on the existing socket fd semantics must
change their logic. However, most applications rarely de-
pend on the minimum available fd at socket(), and even if
s0, porting them will not require significant code change.
Third, moving the TCP stack will also bypass all existing
kernel services, such as the firewall and packet schedul-
ing. However, these services can also be moved into the
user-level and provided as application modules. Finally,
our prototype currently only supports a single application
due to the limitation of the user-level packet I/O system.
We believe, however, that this is not a fundamental limita-
tion of our approach; hardware-based isolation techniques
such as VMDq [5] and SR-IOV [13] support multiple
virtual guest stacks inside the same host using multiple
RX/TX queues and hardware-based packet classification.
We believe such techniques can be leveraged to support
multiple applications that share a NIC port.

4 Implementation

We implement 11,473 lines of C code (LoC), including
packet I/O, TCP flow management, user-level socket API
and event system, and 552 lines of code to patch the PSIO
library.> For threading and thread synchronization, we use
pthread, the standard POSIX thread library [11].

Our TCP implementation follows RFC793 [17]. It sup-
ports basic TCP features such as connection management,
reliable data transfer, flow control, and congestion control.
For reliable transfer, it implements cumulative acknowl-
edgment, retransmission timeout, and fast retransmission.
mTCP also implements popular options such as timestamp,
Maximum Segment Size (MSS), and window scaling. For

3The number is counted by SLOCCount 2.26.

USENIX Association

11th USENIX Symposium on Networked Systems Design and Implementation 495



congestion control, mTCP implements NewReno [10],
but it can easily support other mechanisms like TCP CU-
BIC [26]. For correctness, we have extensively tested our
mTCP stack against various versions of Linux TCP stack,
and have it pass stress tests, including cases where a large
number of packets are lost or reordered.

4.1 mTCP Socket API

Our BSD-like socket API takes on per-thread semantics.
Each mTCP socket function is required to have a context,
mctx_t, which identifies the corresponding mTCP thread.
Our event notification function, mt cp_epol1l, also enables
easy migration of existing event-driven applications. List-
ing 1 shows an example mTCP application.

mctx_t mctx = mtcp_create_context ();
ep_id = mtcp_epoll_create (mctx, N);
mtcp_listen (mctx, listen_id, 4096);
while (1) {
n=mtcp_epoll_wait (mctx,ep_id,events,N,-1);
for (i = 0; 1 < n; 1++) {
sockid = events[i].data.sockid;
if (sockid == listen_id) {
c = mtcp_accept (mctx, listen_id, NULL);
mtcp_setsock_nonblock (mctx, c);
ev.events = EPOLLIN | EPOLLOUT;
ev.data.sockid = c;
mtcp_epoll_ctl (mctx, ep_id,
EPOLL_CTL_ADD, c, &ev);
} else if (events[i].events == EPOLLIN) {
r = mtcp_read (mctx, sockid, buf, LEN);
if (r == 0)
mtcp_close (mctx, sockid);
} else if (events[i].events == EPOLLOUT) {
mtcp_write (mctx, sockid, buf, len);
}
}
}
Listing 1: Sample mTCP application.
mTCP supports mtcp_getsockopt () and
mtcp_setsockopt ()  for socket options, and

mtcp_readv () and mtcp_writev () for scatter-gather
I/0 as well.

4.2 Porting Existing Applications
We ported four different applications to mTCP.

Web server (lighttpd-1.4.32): Lighttpd is an open-
sourced single-threaded web server that uses event-driven
I/0 for servicing client requests. We enabled multi-
threading to support a per-core listen socket and ported
it to mTCP. We changed only ~65 LoC to use mTCP-
specific event and socket function calls. For multi-
threading, a total of ~800 lines® were modified out of
lighttpd’s ~40,000 LoC.

We also ported lighttpd to MegaPipe for comparison.
Because its API is based on the I/O completion model,

Some global variables had to be localized to avoid race conditions.

the porting required more effort as it involved revamping
lighttpd’s event-based fdevent backend library; an ad-
ditional 126 LoC were required to enable MegaPipe I/O
from the multi-threaded version.

Apache benchmarking tool (ab-2.3): ab is a perfor-
mance benchmarking tool that generates HTTP requests.
It acts as a client to measure the performance of a Web
server. Scaling its performance is important because sat-
urating a 10 Gbps port with small transactions requires
multiple machines that run ab. However, with mTCP we
can reduce the number of machines by more than a factor
of 4 (see Section 5.3).

Porting ab was similar to porting lighttpd since ab is also
single-threaded. However, ab uses the Apache Portable
Runtime (APR) library [16] that encapsulates socket func-
tion calls, so we ported the APR library (version 1.4.6) to
use mTCP. We modified 29 lines of the APR library (out
of 66,493 LoC), and 503 lines out of 2,319 LoC of the ab
code for making it multi-threaded.

SSL reverse proxy (SSLShader): SSLShader is a high-
performance SSL reverse proxy that offloads crypto opera-
tions to GPUs [32]. For small-file workloads, SSLShader
reports the performance bottleneck in TCP, spending over
60% CPU cycles in the TCP stack, under-utilizing the
GPU. Porting SSLShader to mTCP was straightforward
since SSLShader was already multi-threaded and uses
epoll () for event notification. Besides porting socket
function calls, we also replace pipe () withmtcp_pipe (),
which is used to notify the completion of crypto operations
by GPU threads. Out of 6,618 lines of C++ code, only 43
lines were modified to use mTCP. It took less than a day
to port to mTCP and to finish basic testing and debugging.

Realistic HTTP replay client/server (WebReplay):
WebReplay is a pair of client and server programs that
reproduces realistic HTTP traffic based on the traffic log
collected at a 10 Gbps backhaul link in a large cellular
network [45]. Each line in the log has a request URL,
a response size, start and end timestamps, and a list of
SHAT hashes of the 4KB content chunks of the original
response. The client generates HTTP requests on start
timestamps. Using the content hashes, the server dynami-
cally generates a response that preserves the redundancy
in the original traffic; the purpose of the system is to repro-
duce Web traffic with a similar amount of redundancy as
the original. Using this, one can test the correctness and
performance of network redundancy elimination (NRE)
systems that sit between the server and the client. To sim-
ulate the traffic at a high speed, however, the WebReplay
server must handle 100Ks of concurrent short connections,
which requires high TCP performance.

WebReplay is multi-threaded and uses the 1ibevent
library [6] which in turn calls epoll () for event notifica-
tion. Porting it to mTCP was mostly straightforward in
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that it only required replacing the socket and libevent calls
with the corresponding mTCP API. We modified 44/37
LoC out of 1,703/1,663 lines of server and client code,
respectively.

5 Evaluation

We answer three questions in this section:

1. Handling short TCP transactions: Does mTCP pro-
vide high-performance in handling short transactions?
In Section 5.1, we show that mTCP outperforms
MegaPipe and Linux (w/o SO_REUSEPORT) by 3x and
25x, respectively; mTCP connection establishment
alone is 13x and 5x faster than Linux and MegaPipe,
respectively.

2. Correctness: Does mTCP provide correctness with-
out introducing undesirable side-effects? Section 5.2
shows that mTCP provide fairness and does not intro-
duce long latency.

3. Application performance: Does mTCP benefit real
applications under realistic workloads? In Section 5.3,
we show that mTCP increases the performance of
various applications running realistic workload by 33%
to 320%.

Experiment Setup: We compare mTCP on Linux
2.6.32 with the TCP stack on the latest Linux kernel (ver-
sion 3.10.12, with and without SO_REUSEPORT) as well as
MegaPipe on Linux 3.1.3. We use a machine with one
8-core CPU (Intel Xeon E5-2690 @ 2.90 GHz), 32 GB
RAM, and an Intel 10 GbE NIC as a server, and use up

to 5 clients of the same type to saturate the server. While
mTCP itself does not depend on the kernel version, the
underlying PSIO library currently works on Linux 2.6.32.
For Linux, we use ixgbe-3.17.3 as the NIC driver.

5.1 Handling Short TCP Transactions

Message benchmark: We first show mTCP’s scalabil-
ity with a benchmark for a server sending a short message
as a response. All servers are multi-threaded with a single
listening port. Our workload generates a 64 byte message
per connection, unless otherwise specified. The perfor-
mance result is averaged over a one minute period in each
experiment. Figure 7 shows the performance as a function
of the number of CPU cores, the number of messages per
connection (MPC), and message size.

Figure 7(a) shows that mTCP scales almost lin-
early with the number of CPU cores. Linux without
SO_REUSEPORT (‘Linux’) shows poor scaling due to the
shared accept queue, and Linux with SO_REUSEPORT
(‘REUSEPORT") scales but not linearly with the num-
ber of cores. At 8 cores, mTCP shows 25x, 5x, 3x higher
performance over Linux, REUSEPORT, and MegaPipe,
respectively.

Figure 7(b) shows that the mTCP’s benefit still holds
even when persistent connections are used. mTCP scales
well as the number of messages per connection (MPC)
increases, and it nearly saturates the 10G link from 64
MPC. However, the performance of the other systems
almost flattens out well below the link capacity. Even at
32 MPC, mTCP outperforms all others by a significant
margin (up to 2.7x), demonstrating mTCP’s effectiveness
in handling small packets.

Finally, Figure 7(c) shows the throughput by varying the
message size. mTCP’s performance improvement is more
noticeable with small messages, due to its fast processing
of small packets. However, both Linux servers fail to
saturate the 10 Gbps link for any message size. MegaPipe
saturates the link from 4KiB, and mTCP can saturate the
link from 1KiB messages.

Connection accept throughput: Figure 8 compares
connection throughputs of mTCP and Linux servers. The
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‘ ‘ Min ‘ Mean ‘ Max ‘ Stdev ‘

Linux 0 36 63,164 | 511.6
Connect
mTCP 0 1 500 1.1
. Linux 0 87 127,323 | 3,217
Processing
mTCP 1 13 2,323 9.7
Linux 0 124 | 127,323 | 3,258
Total
mTCP 9 14 2,348 9.8

Table 2: Distribution of response times (ms) for 64B HTTP
messages for 10 million requests (8K concurrency).

server is in a tight loop that simply accepts and closes
new connections. We close the connection by sending a
reset (RST) to prevent the connection from lingering in
the TIME_WAIT state. To remove the bottleneck from
the shared fd space, we add ‘Multiprocess’ which is a
multi-process version of the REUSEPORT server. mTCP
shows 13x, 7.5x, 5x performance improvement over Linux,
REUSEPORT, and Multiprocess, respectively. Among the
Linux servers, the multi-process version scales the best
while other versions show a sudden performance drop at
multiple cores. This is due to the contention on the shared
accept queue as well as shared fd space. However, Mul-
tiprocess shows limited scaling, due to the lack of batch
processing and other inefficiencies in the kernel.

5.2 Fairness and Latency

Fairness: To verify the throughput fairness among
mTCP connections, we use ab to generate 8K concurrent
connections, each downloading a 10 MiB file to saturate a
10 Gbps link. On the server side, we run 1ighttpd with
mTCP and Linux TCP. We calculate Jain’s Fairness Index
with the (average) transfer rate of each connection. As the
value gets closer to 1.0, it shows better fairness. We find
that Linux and mTCP show 0.973 and 0.999, respectively.
mTCP effectively removes the long tail in the response
time distribution, whereas Linux often drops SYN packets
and enters a long timeout.

Latency: Since mTCP relies heavily on batching, one
might think it may introduce undesirably long latency.
Table 2 shows the latency breakdown when we run ab
with 8K concurrent connections against the 64B message
server. We generate 10 million requests in total. Linux
and mTCP versions respectively achieve 45K and 428K
transactions per second on average. As shown in the table,
mTCP slightly increases the minimum (9 ms vs. 0 ms)
and the median (13 ms vs. 3 ms) response times. However,
the mean and maximum response times are 8.8x and 54.2x
smaller than those of Linux, while handling 9.5x more
transactions/sec. In addition, the standard deviation of the
response times in mTCP is much smaller, implying that
mTCP produces more predictable response times, which
is becoming increasingly important for modern datacenter
applications [33].
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Figure 9: Performance of four versions of 1ighttpd for static
file workload from SpecWeb2009.
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5.3 Application Performance

We now demonstrate the performance improvement for
existing applications under realistic workloads.

lighttpd and ab: To measure the performance of
lighttpd in a realistic setting, we use the static file work-
load extracted from SpecWeb2009 and compare the perfor-
mance of different lighttpd versions ported to use mTCP,
MegaPipe, and Linux with and without SO_REUSEPORT.
Figure 9 shows that mTCP improves the throughput of
lighttpd by 3.2x, 2.2x, 1.5x over Linux, REUSEPORT,
and MegaPipe, respectively. Even though the workload
fits into the memory, we find that heavy system calls for
VES operations limit the performance.

We now show the performance of ab. Figure 10 shows
the performance of Linux-based and mTCP-based ab
when varying the number of CPU cores when fetching a
64 byte file over HTTP. The scalability of Linux is limited,
since it shares the fd space across multiple threads.

Figure 10 shows the performance of ab and the corre-
sponding CPU utilization when varying the file size from
64 bytes to 8 KiB. From 2 KiB, mTCP saturates the link.
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Figure 12: SSL handshake throughputs of SSLShader with a
different levels of concurrency.

At the same time, mTCP’s event-driven system saves CPU
cycles.

When testing mTCP with long-lived connections (not
shown in the figure), we find that it consumes more CPU
cycles than Linux. mTCP shows a CPU utilization of
294% compared to 80% for Linux-3.10.12 when serv-
ing 8,000 concurrent connections, each transferring a 100
MiB file. This is because we did not fully utilize modern
NIC features, such as TCP checksum offload, large seg-
mentation offload (LSO), and large receive offload (LRO).
However, we believe that mTCP can easily incorporate
these features in the future.

SSLShader: We benchmark the performance of the
SSLShader with one NVIDIA GPU (Geforce GTX 580)
on our server. We use mTCP-based lighttpd as a server
and ab as a client. On a separate machine, we run
SSLShader as a reverse proxy to handle HTTPS trans-
actions. SSLShader receives an HTTPS request from ab
and decrypts the request. It then fetches the content from
lighttpd in plaintext, encrypts the response using SSL,
and sends it back to the client. We use 1024-bit RSA,
128bit-AES, and HMAC-SHAT as the cipher suite, which
is widely used in practice. To measure the performance
of SSL handshakes, we have ab to fetch 1-byte objects
through SSLShader while varying the number of concur-
rent connections.

Figure 12 shows that mTCP improves the performance
over the Linux version by 18% to 33%. As the concur-
rency increases, the benefit of mTCP grows, since mTCP
scales better with a large number of concurrent connec-
tions. Figure 13 indicates that mTCP also reduces the
response times compared to the Linux version. Especially,
mTCP reduces the tail in the response time distribution
over large concurrent connections with a smaller variance,
as is also shown in Section 5.2.

WebReplay: We demonstrate that mTCP improves the
performance of a real HTTP traffic replayer. We focus on
the server’s performance improvement because it performs
more interesting work than the client. To fully utilize the
server, we use four 10 Gbps ports and connect each port
to a client. The workload (HTTP requests) generated by
the clients is determined by the log captured at a cellular
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Figure 13: HTTPS response time distributions of SSLShader
on Linux and mTCP stacks. We use 8K concurrent connections
in the left graph, and mark median and 95th-percentile numbers.

# of copies 1 2 3 4 5 6 7
Linux (ms) | 27.8 | 29.0 | 45.8 | 1175.1 - - -
mTCP (ms) | 0.5 | 09 | 2.6 8.1 17.5 | 37.1 | 79.8

Table 3: Averages of extra delays (in ms) from the original
response times when replaying n copies of the log concurrently.

# of concurrent | # of new connections | Bandwidth
connections per second (Gbps)
Mean 23,869 14,425 2.28
Min 20,608 12,755 1.79
Max 25,734 15,440 348

Table 4: Log statistics for WebReplay.

backhaul link [45]. We replay the log for three minutes
at a peak time (at 11 pm on July 7, 2012) during the mea-
surement period. The total number of requests within the
timeframe is 2.8 million with the median and average con-
tent size as 1.7 KB and 40 KB. Table 4 summarizes the
workload that we replay. Unfortunately, we note that the
trace we replay does not simulate the original traffic per-
fectly since a longer log is required to effectively simulate
idle connections. Actually, the original traffic had as much
as 270K concurrent connections with more than 1 million
TCP connections created per minute. To simulate such a
load, we run multiple copies of the same log concurrently
for this experiment.

Table 3 compares the averages of extra delays from the
original response times when we replay n copies of the
log concurrently with Linux and mTCP-based WebRe-
player. We find that the Linux server works fine up to
the concurrent run of three copies, but the average extra
delay goes up beyond 1 second at four copies. In contrast,
mTCP server finishes up to seven copies while keeping
the average extra delay under 100 ms. The main cause for
the delay inflation in the Linux version is the increased
number of concurrent TCP transactions, which draws the
bottleneck in the TCP stack.

6 Related Work

We briefly discuss previous work related to mTCP.

System call and I/O batching: Frequent system calls
are often the performance bottleneck in busy servers.
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FlexSC [40] identifies that CPU cache pollution can waste
more CPU cycles than the user/kernel mode switch itself.
They batch the system calls by having user and kernel
space share the syscall pages, which allows significant
performance improvement for event-driven servers [41].
MegaPipe employs socket system call batching in a sim-
ilar way, but it uses a standard system call interface to
communicate with the kernel [28].

Batching also has been applied to packet I/O to re-
duce the per-packet processing overhead. PacketShader
I/0 engine [27] reads and writes packets in batches and
greatly improves the packet I/O performance, especially
for small packets. Packet I/O batching reduces the in-
terrupt, DMA, IOMMU lookup, and dynamic memory
management overheads. Similar approaches are found in
other high-performance packet I/O libraries [4,7,39].

In contrast, mTCP eliminates socket system calls by
running the TCP stack in the user level. Also, it enforces
batching from packet I/O and TCP processing up to user
applications. Unlike FlexSC and MegaPipe, batching in
mTCP is completely transparent without requiring kernel
or user code modification. Moreover, it performs batching
in both directions (e.g., packet TX and RX, application to
TCP and TCP to application).

Connection locality on multicore systems: TCP per-
formance can be further optimized on multiprocessors by
providing connection locality on the CPU cores [37]. By
handling all operations of same connection on the same
core, it can avoid inter-core contention and unnecessary
cache pollution. mTCP adopts the same idea, but applies
it to both flow- and packet-level processing.

User-level TCP stacks: There have been several at-
tempts to move the entire networking stack from the kernel
to the user level [22,24,25,42]. These are mainly (1) to
ease the customizing and debugging of new network pro-
tocols or (2) to accelerate the performance of existing
protocols by tweaking some internal variables, such as the
TCP congestion control parameters. They focus mostly
on providing a flexible environment for user-level proto-
col development or for exposing some in-kernel variables
safely to the user level. In contrast, our focus is on build-
ing a user-level TCP stack that provides high scalability
on multicore systems.

Light-weight networking stacks: Some applications
avoid using TCP entirely for performance reasons. High
performance key-value systems, such as memcached [9],
Pilaf [35], and MICA [34], either use RDMA or UDP-
based protocols to avoid the overhead of TCP. However,
these solutions typically only apply to applications run-
ning inside a datacenter. Most user-facing applications
must still rely on TCP.

Multikernel: Many research efforts enhance operating
system scalability for multicore systems [19, 20, 44]. Bar-

relfish [19] and fos [44] separate the kernel resources for
each core by building an independent system that manages
per-core resources. For efficient inter-core communica-
tion, they use asynchronous message passing. Corey [20]
attempts to address the resource sharing problem on mul-
ticore systems by having the application explicitly declare
shared and local resources across multiple cores. It en-
forces the default policy of having private resources for a
specific core to minimize unnecessary contention. mTCP
borrows the concept of per-core resource management
from Barrelfish, but allows efficient sharing between ap-
plication and mTCP threads with lock-free data structures.

Microkernels: The microkernel approach bears simi-
larity with mTCP in that the operating system’s services
run within the user level [23, 30, 38]. Exokernel [23], for
example, provides a minimal kernel and low-level inter-
faces for accessing hardware while providing protection.
It exposes low-level hardware access directly to the user
level so that applications perform their own optimizations.
This is conceptually similar to mTCP’s packet I/O library
that directly accesses the NIC. mTCP, however, integrates
flow-level and packet-level event batch processing to amor-
tize the context switch overhead, which is often a critical
bottleneck for microkernels.

7 Conclusion

mTCP is a high-performance user-level TCP stack de-
signed for multicore systems. We find that the Linux
kernel still does not efficiently use the CPU cycles in pro-
cessing small packets despite recent improvements, and
this severely limits the scalability of handling short TCP
connections. mTCP unleashes the TCP stack from the ker-
nel and directly delivers the benefit of high-performance
packet I/O to the transport and application layer. The
key enabler is transparent and bi-directional batching of
packet- and flow-level events, which amortizes the con-
text switch overhead over a batch of events. In addition,
the use of lock-free data structures, cache-aware thread
placement, and efficient per-core resource management
contributes to mTCP’s performance. Finally, our evalu-
ation demonstrates that porting existing applications to
mTCP is trivial and mTCP improves the performance of
existing applications by up to 320%.
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