
This paper is included in the Proceedings of the
11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14).
April 2–4, 2014 • Seattle, WA, USA

ISBN 978-1-931971-09-6

Open access to the Proceedings of the
11th USENIX Symposium on

Networked Systems Design and
Implementation (NSDI ’14)

is sponsored by USENIX

Catch the Whole Lot in an Action: Rapid Precise
Packet Loss Notification in Data Center

Peng Cheng, Fengyuan Ren, Ran Shu, and Chuang Lin, Tsinghua University

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/cheng

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 17

Catch the Whole Lot in an Action:
Rapid Precise Packet Loss Notification in Data Centers

Peng Cheng, Fengyuan Ren, Ran Shu, Chuang Lin
Dept. of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

Email: {chengpeng5555, renfy, shuran, clin}@csnet1.cs.tsinghua.edu.cn

Abstract
An increasing number of TCP performance issues in-
cluding TCP Incast, TCP Outcast, and long query com-
pletion times are common in large-scale data centers. We
demonstrate that the root cause of these problems is that
existing techniques are unable to maintain self-clocking
or to achieve accurate and rapid packet loss notification.
We present cutting payload (CP), a mechanism that sim-
ply drops a packet’s payload at an overloaded switch,
and a SACK-like precise ACK (PACK) mechanism to
accurately inform senders about lost packets. Exper-
iments demonstrate that CP successfully addresses the
root cause of TCP performance issues. Furthermore, CP
works well with other TCP variants used in data center
networks.

1 Introduction
Modern large-scale data centers, which enable cloud
computing and host online services with intensive server-
side computing and storage, are significantly different
from traditional data centers because of shorter round
trip time (RTT), higher bandwidth, highly variable flow
characteristics [4, 18] and very low latency requirements
[4, 28]. Because of these differences, TCP has been
found to have various performance issues in large-scale
data center networks (DCNs).

In recent years, TCP Incast [22], TCP Outcast [24], the
TCP out-of-order problem [32], and long-query comple-
tion times [4] have been found to significantly affect TCP
performance in DCNs. Through experiments, we found
that throughput cliff (described in § 2.1) and TCP unfair-
ness in multiple-bottleneck scenarios [20] may also exist
in DCNs. Collectively, these problems are referred to
as “TCP problems” in this paper. These problems must
be resolved to achieve high throughput and low latency,
which are critical requirements of many data center ap-
plications [4, 14].

Our experimental observations and comprehensive

analysis attribute TCP problems to three issues. First,
self-clocking stall caused by insufficient ACKs results
in Incast, throughput cliff, and unfairness. Second, in-
accurate packet-loss notification caused by ambiguous
loss indication results in the TCP out-of-order problem.
Third, slow packet loss detection leads to long query
completion time.

Packet loss notification is a powerful mechanism to ad-
dress these problems. It maintains self-clocking, makes
unambiguous differentiation between packet loss and
out-of-order packets and shortens the detection time of
packet loss. We propose a simple solution called CP1 for
packet loss notification. CP drops only the packet pay-
load instead of the entire packet during buffer overload
and uses a SACK-like precise ACK (PACK) technique to
accurately inform senders of lost packets. In our exper-
iments, CP successfully demonstrates its ability to solve
TCP problems.

We implement CP in NetFPGA cards. In our imple-
mentation, CP only results in a 56-ns processing delay
and less than a 2% increase in resource usage. Further-
more, the additional overhead is rarely introduced be-
cause the processing is only triggered by packet loss.
Because of its low overhead and limited extra resource
usage, CP can be easily added to existing commercial
switches.

This paper makes two main contributions:

• Our comprehensive analysis identifies three key is-
sues with TCP in large-scale DCNs: self-clocking
stall, inaccurate packet loss notification, and slow
packet loss detection.

• We propose CP, which leaves the packet header
intact during packet drop processing, merely cut-
ting out the payload to rapidly inform the sender of
packet loss. Experiments demonstrate that this can
solve many TCP problems and has good compati-
bility with other variations of TCP used in DCNs.

1CP is the abbreviation of “cutting payload”.

1

18 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

550

600

650

700

750

800

850

900

1 25 50 75 100 125 150 175 200 225 250

Go
od

pu
t(
M
bp

s)

Number of Senders

DCTCP(RTO_MIN=10ms)
TCP(RTO_MIN=10ms)

PTC=
170

PTC=
85

PTC=
42

PTC=
14

Figure 1: In this experiment, each sender transfers 64 KB
data to one receiver through 128 KB bottleneck link simul-
taneously . The network topology and other experimental
configurations are the same as MapReduce-like application
scenario described in § 6 .1 . We observe that DCTCP avoids
the throughput cliff where PTC=14 and postpones it from
PTC=42 to PTC=50, but still suffers the throughput cliff
with an increasing number of senders .

The remainder of this paper is organized as follows.
In Section 2, we summarize the existing TCP problems.
In Section 3, we analyze inherent reasons for these prob-
lems. In Section 4 and Section 5, we propose CP and
describe its design and implementation in detail. In Sec-
tion 6, we test and illustrate the performance of CP when
handling TCP performance issues in DCNs. Finally, we
conclude the paper in Section 7.

2 TCP in Contemporary DCNs
In this section, we summarize and discuss TCP prob-
lems in DCNs based on experimental results from a small
testbed. Our testbed is made up of one aggregation
switch, four top-of-rack (ToR) switches, and twelve end-
hosts. More details are discussed in § 6.

2 .1 Low and Volatile Throughput
In current data centers, the many-to-one communica-
tion pattern is common in applications such as MapRe-
duce [10] and Web search applications [18]. In this pat-
tern, data from many synchronized senders is transferred
to the same receiver in parallel; thus, TCP Incast col-
lapse naturally occurs and throughput decreases sharply.
Many approaches have been proposed to address TCP
Incast, such as DCTCP [4], ICTCP [29], and decreas-
ing RTOmin [27]. However, through experimental ob-
servation, we found that these approaches are not able to
satisfy the particular demands of two major types of ap-
plications: MapReduce-like applications and Web search
applications.

In MapReduce-like applications, the number of
senders varies dramatically (the average is 154 with a
standard deviation of 558) [19]. When the number of
senders is large, the buffer associated with the bottleneck
link overflows even though each sender transmits only
one packet [4]. Then, because of packet loss and the one-
packet transmission window, timeouts are inevitable. In

0

100

10 20 30 40 50 60 70 80 90
Number of Experimental Flow

0

100

200

300

400

500

600

700

800

900

1000

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Su
m

 o
f M

BF
's

Go
od

pu
t(

M
bp

s)

Ratio of MBF to SBF

SBF=5
SBF=25
SBF=50
Theory

Figure 2: In this experiment, all flows use TCP with SACK,
and the topology is shown in Fig . 9 (b) . Other experimental
configuration are the same as those described in § 6 .2 .

order to keep high throughput and avoid TCP Incast
collapse, even with DCTCP and ICTCP, the number of
senders needs to stay within an upper limit. In practice,
this limit fails to meet demands of large-scale applica-
tions. In addition, we observed a particular phenomenon
when using a small value for RTOmin, as shown in Fig.
1. We call this a throughput cliff, reflecting that the
throughput will sharply decline at the point of through-
put cliff (PTC) and then slowly climb. We found that
the throughput cliff is due to synchronous adjustment
of the congestion window at senders and synchronous
packet loss2. The synchronous packet loss leads to in-
creasing timeouts and throughput decline. Thus, these
well-known approaches to alleviate TCP Incast collapse
cannot maintain sufficiently high throughput with a large
number of senders.

In Web search applications, because of the fixed size
of search result, the number of senders is not significantly
large. However, the query completion time is closely re-
lated to Web search performance [28]. From our exper-
iments, we were surprised to find that, because a high
and stable throughput cannot be guaranteed by TCP or
its variants, query completion time is far greater than ex-
pected and has frequent fluctuations3.

2 .2 TCP Unfairness
TCP unfairness in wide area networks and wireless net-
works is well known. In DCNs, TCP unfairness occurs
in both single-bottleneck and multi-bottleneck scenarios.

In a single-bottleneck scenario, a port blackout [24], in
which each input port accidently loses a series of pack-
ets, causes the consecutive packets loss or even entire
window loss leading to TCP timeout. When there are

2For example, with 14 senders, if the bottleneck buffer is 128
KB and each sender increases its congestion window to 7 packets
(1.5KB× 14× 6 = 126KB), all senders will see a drop synchronously.
Consequently, synchronous adjustment of congestion window and syn-
chronous packet loss happen at PTC.

3The concrete results are presented in Fig. 8(b) in § 6.1. Using
TCP with 10ms-RTOmin, there is a delay of twice the expected value
when the number of senders is greater than 26. Using DCTCP, there
is a severe fluctuation in query completion time when the number of
senders is between 22 and 42.

2

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 19

both a large and small number of flows from two differ-
ent input ports to one output port, timeouts preferentially
happen on the small flows, which results in TCP Out-
cast. A straightforward solution called equal-length rout-
ing [24] changes the routing paths through core switches
to address this problem. However, this imposes signifi-
cant pressure on core switches and increases end-to-end
delay. Therefore, alleviating or eliminating the damage
caused by a port blackout without imposing additional
costs is desirable.

In the multiple-bottleneck scenario, multiple-
bottleneck flows (MBF), i.e., cross-rack flows, share two
bottlenecks with two different single-bottleneck flows
(SBF), i.e., in-rack flows, which have the same number
of flows. Fig. 2 shows that when the packet loss ratio is
very high (i.e., SBFs = 50), MBFs have a significantly
lower throughput. However, when the packet loss ratio
is low (i.e., SBFs = 5 or 25), the throughput of MBFs
is higher than the theoretical value. Further analysis
indicates that MBFs always have a higher packet loss
ratio than SBFs; thus, they may lose all transmitted
packets and trigger timeouts in a high packet loss ratio
scenario. However, in a low packet loss ratio scenario,
SBFs suffer the TCP Outcast problem, which leads to
the higher throughput of MBFs. Thus, in both situations,
either SBFs or MBFs suffer from unfairness.

2 .3 TCP Out-of-order Problem
Several data center topologies [1, 14, 15] have been pro-
posed to deal with bottlenecks in core switches; how-
ever, they employ many redundant links that are uti-
lized to only 40% -50% [8, 25]. Therefore, many mul-
tipath routing techniques have been proposed, such as
ECMP, Hedera [2], and Valiant Load Balancing (VLB)
[14]. All these techniques are flow-based traffic split-
ting schemes, which are dramatically worse than an ideal
packet-level one. However, packet-level schemes lead to
serious throughput degradation because of out-of-order
packets [11]. Therefore, tackling the out-of-order prob-
lem can significantly improve the performance of multi-
path routing techniques.

2 .4 Long Query Completion Time
Data centers host many soft real-time online services
such as retail, advertisement, and Web search[28]. Query
completion time is very critical because it is directly re-
lated to the quality of these online services.

Query completion time is influenced by the amount
of queuing delay and retransmission time. Long queu-
ing delay has been addressed by some proposed schemes
[4, 5, 28]. We conducted an experiment to determine if
query completion time is affected by a long retransmis-
sion time. In our experiment, we ran a query with 20
flows. As shown in Fig. 3, in flow No.18, the delay

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
m

s

Flow Number

15.37

Figure 3: Each of 20 DCTCP flows transfers 50 KB to the
same receiver through the 128 KB bottleneck link . We con-
ducted experiments for 10,000 random instances, and found
that in 1,231 experiments, some flow completion times are
larger than 15ms. The figure shows detailed information
of the completion time of each flow in one of these experi-
ments .

is approximately two times that of other flows, thereby
resulting in delay of the completion time of the entire
query. After more in-depth observation, we found that
flow No.18 suffers from many fast retransmissions and
wastes significant time retransmitting. More than 12%
of the queries suffer the same problem in our 10,000
random experimental instances. Therefore, we conclude
that retransmission delay imposes a significant influence
on query completion time.

3 Why TCP Does Not Work Well in DCNs
Here, we discuss three fundamental weaknesses of TCP
and its variants used in DCNs.

3 .1 Self-clocking Stall
The self-clocking mechanism was proposed in 1988 [17].
Essentially, the arrival of an ACK tells the sender that the
network can accept another packet. Through this mech-
anism, TCP can maintain continuous and stable trans-
mission and quickly fill up the pipeline. Without suffi-
cient ACKs, however, self-clocking stops, which causes
a timeout. In DCNs, the congestion window of each flow
is relatively small because of the low delay-bandwidth
product and large number of concurrent connections. In
addition, the many-to-one traffic pattern often causes se-
vere congestion and a high packet loss ratio. Therefore,
self-clocking stall in a many-to-one traffic pattern of-
ten triggers timeouts that result in low and volatile TCP
throughput. The port blackout phenomenon and high
packet loss ratio of MBFs lead to the loss of the vast
majority of packets in a window or even the entire win-
dow. This makes it increasingly less likely that a flow
can receive a sufficient number of ACKs to maintain self-
clocking. Therefore, self-clocking stall is an essential
reason for low and volatile TCP throughput and TCP un-
fairness.

3

20 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

To maintain self-clocking, three enhancements have
been proposed in prior work. The first mechanism is de-
fined in RFC 3042 [7]: when a sender receives two dupli-
cate ACKs, it sends one more packet immediately. The
second mechanism is the TCP implementation in Linux
kernel 2.6.3, in which a sender sends one more packet ev-
ery time it receives a duplicate ACK. Unfortunately, the
two mechanisms mentioned above fail when all segments
in whole congestion window are lost, such as with the
port blackout phenomenon. The third mechanism is tail
loss probe (TLP) [12]. It transmits one packet every two
round-trips when no ACK is received at the end of the
transaction. This mechanism is an incomplete solution
to avoid self-clocking stall because it still fails except in
the tail loss case. Therefore, whether we use standard
TCP, RFC 3042, TCP in Linux, or TLP, self-clocking
stall remains inevitable.

This leads to the realization that we need a com-
plementary method, apart from ACK, to maintain self-
clocking for addressing TCP Incast and unfairness.

3.2 Inaccurate Packet-loss Notification
In § 2.3, we see that packet-level multipath routing tech-
niques cause performance problems due to TCP’s reac-
tion to out-of-order packets. Here, by considering the
features of DCNs, we provide further explanation. Since
queuing delay causes most of the end-to-end delay in
DCNs, a high-latency path is always accompanied by
link congestion. Therefore, the phenomena of packet
loss and out-of-order packets often co-exist in multipath
DCNs. TCP deals poorly with these mixed paths due
to the one-size-fits-all solution of using a fixed thresh-
old value (three duplicate ACKs) to determine whether
packet is out-of-order or lost. This often leads to spu-
rious retransmission or sluggish congestion control [32]
because it is impossible to determine the exact number of
allowable out-of-order packets to set an effective thresh-
old. TCP SACK is an effective way to avoid retrans-
mitting received packets, however, it also cannot address
this problem because it is not able to distinguish whether
a packet is out-of-order or lost. Therefore, only by accu-
rately distinguishing between lost or out-of-order pack-
ets, can TCP make correct decisions regarding packet re-
transmission and congestion window size.

3 .3 Slow Packet loss Detection
In § 2.4, we claimed that reducing retransmission delay is
important to shorten query completion time. Retransmis-
sion delay is composed of the detection time of packet
loss and the retransmission time of lost packets. How-
ever, it is difficult to improve the retransmission time of
lost packets because it depends on a relatively mature
congestion control algorithm. Thus, we focus on reduc-
ing detection time.

There are two indicators of packet loss in TCP: time-
out and three duplicate ACKs. The detection time of
packet loss caused by timeout is directly related to RTT
estimations and RTOmin. Imprecise RTT estimations
[31] and improper RTOmin [27] lead to slow packet loss
detection. Timeouts lead to other problems as well [31];
thus, avoiding timeouts is a good strategy, as discussed
in § 3.1.

In the traditional Internet, packet loss is detected by
the reception of three duplicate ACKs. In DCNs, due to
the small congestion window, it is very unlikely that the
window size is large enough to cause enough duplicate
ACKs to be received by the sender in one RTT. More-
over, packet loss implies congestion where RTT becomes
very long as a result of a crowded queue. Therefore,
timeouts and the need for three duplicate ACKs further
delays packet loss detection.

3 .4 Related Work
There are three typical types of schemes to address these
problems.

One is to use a TCP-like protocol, such as DCTCP.
DCTCP uses ECN to adjust the congestion window. Un-
fortunately, when packets are dropped by the switch, the
ECN information is also lost and DCTCP degenerates
to standard TCP or SACK, which do not work well in
DCNs. DCTCP also does not work normally in such an
environment, especially with the loss of the entire con-
gestion window. Furthermore, DCTCP does not work
well in a multipath environment because of the potential
for out-of-order packet. Finally, DCTCP must wait to
receive three packets before retransmission when packet
loss occurs, and this period can be relatively long be-
cause of potential queuing delays on switches. Both
HULL [5] and D2TCP [26], which extend DCTCP, have
these same problems.

The second class of schemes is based on rate control.
QCN [3], D3 [28] and PDQ [16] use implicit or explicit
rate control to avoid self-clocking stall. However, they
cannot achieve accurate and rapid packet loss detection.
pFabric [6] is a clean-slate design that totally solves all
the above problems. Using rapid retransmission by re-
ducing RTOmin to one RTT, pFabric avoids inaccurate
and slow packet loss detection. However, it is hard to
implement it in practice because it needs changes to both
endhosts and switch hardware.

The third class of schemes uses special packets to in-
form the sender of a packet loss. For example, source
quench [23] sends ICMP packets for every loss. The
problem with such schemes is that it is very difficult for
a switch to create a packet to be sent in the reverse direc-
tion when traversing the forward path. It also destroys
TCP self-clocking and self-pacing.

4

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 21

0 16 32

(a) SACK

0 16 32

(b) PACK

Figure 4: Unambiguous identities of SACK and PACK .

4 CP Design
We now discuss the design of CP.

4 .1 Packet Types
CP uses four types of packets.

(1) Normal packets are sent by a sender that does not
support CP. These packets are dropped by a switch when
the buffer exceeds the defined threshold.

(2) CP-enabled packets are data packets with pay-
loads that are sent by CP-capable senders. Only the pay-
load portion of a CP-enabled packet is dropped when the
buffer exceeds the defined threshold.

(3) Payload-cut packets are header-only packets
without payloads. A CP-enabled packet becomes a
payload-cut packet after payloads are cut off by the
switch. Switches should ignore the IP length field in
payload-cut packets.

(4) PACKs contain accurate packet loss information
and are sent by CP-capable receivers when payload-cut
packets are received.

4 .2 CP Drop Processing
A switch with the payload-cutting function is called a CP
switch. A CP switch has a buffer for each port to store
packets awaiting forwarding. If the total size of packets
in any port buffer exceeds the threshold, and a new CP-
enabled packet arrives, the switch will cut off the payload
of the CP-enabled packet. During this operation, first,
the packet is marked as payload-cut packet. Then, the IP
length is preserved for the receiver to calculate the packet
size (further explanations in § 4.3), and the TCP check-
sum is recalculated and revised. After that, the regener-
ated packet without the payload queues in the buffer as
a normal packet and waits for forwarding. It should be
noted that a little extra buffer space is necessary to store
new payload-cut packets. This will be further discussed
in § 4.6.

Because of IP length field conservation, payload-cut
packets may be dropped at modern switch ASICs or
many middle boxes. As an alternative to achieve CP
drop processing, we can preserve the first two bytes of
the data payload to carry the IP length. In consideration
of the similarity between these two methods, we will just
discuss the first method.

4 .3 Packet-loss Feedback: PACK
For backwards compatibility, we define a PACK option
similar to the SACK option. As shown in Fig. 4(a), the
SACK option uses the left and right edges of the block

to indicate a SACKed block. The left edge represents
the first sequence number of the block, and the right
edge corresponds to the sequence number immediately
following the last seen sequence number [21].

There are two key considerations to accomplish de-
signing PACK. The first is determining the left edge and
right edge of the lost packet from the payload-cut packet.
The second is how to represent the lost packet infor-
mation such that it is compatible with SACK. For the
first issue, we can easily obtain the left edge from the
sequence number in the TCP header of the payload-cut
packet. The original packet length in the IP header is pre-
served; hence, we can use it to calculate the right edge4.
For the second issue, as shown in Fig. 4(b), we swap the
position of the left and right edge to indicate lost packet
information. This arrangement will not produce ambigu-
ity because the left edge must be smaller than the right
edge in the SACK option. In this manner, we can parsi-
moniously indicate lost packet information in the PACK
option. When a payload-cut packet arrives, the receiver
simply parses it and adds the lost packet information in
the first block of the PACK option, which is similar to
the processing in SACK. For convenience, the receiver
marks the packet to tell the sender to parse the PACK
option. Marking will be discussed in § 5.1.

For simplicity, the two-byte PACK-Permitted option is
similar to SACK-Permitted option. The option is sent in
the SYN by the sender to inform the receiver that it can
support the PACK option. In our implementation, we just
use the SACK-Permitted option: this does not affect the
performance of CP.

4 .4 Sender Reaction to PACK
TCP SACK maintains a “scoreboard” to store the status
of packets [9]. Every packet is in one of four states, i.e.,
“received” (or “SACKed”), “out-of-order,” “lost,” and
“retransmitted.” Like SACK, CP stores packet informa-
tion in a “scoreboard.” When the new packet is transmit-
ted, its status changes to “out-of-order.” We divide the
sender action on receiving PACK into three steps. In the
first step, the sender parses the PACK option as described
in § 4.3 and checks state of the packet. If the status of
the packet is “received” or “lost,” the sender takes no ac-
tion. Otherwise, it enters the second step, converting the
packet status in the scoreboard to “lost” and adding the
packet to the retransmission queue. In the third step, if
TCP is not in a state of fast retransmission, the sender
triggers the fast retransmission mechanism and performs
congestion control. When the packet has been retrans-

4right edge = left edge + SYN + FIN + original length -
IP header length - TCP header length. In Linux kernel, SYN and FIN
have only 1 bytes payload by default, although the payload length is 0
in reality. Therefore, if the packet is SYN or FIN packet, SYN or FIN
in the above formula equals 1. Otherwise, both are 0.

5

22 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

mitted, the packet status changes to “retransmitted”. It
should be noted that using three duplicate ACKs to indi-
cate packet loss is not necessary unless payload-cut pack-
ets or PACKs themselves are lost. Therefore, we recom-
mend that the threshold for duplicate ACKs is set to a
relatively large number.

4.5 Benefits
CP overcomes the three TCP defects as follows:
Self-clocking Stall: Payload-cut packets and PACKs
provide the sender with packet loss notification. Using
this notification, the sender can maintain a self-clocking
mechanism and avoid timeouts.
Inaccurate Packet loss Notification: Payload-cut pack-
ets provide the receiver with accurate packet-loss infor-
mation, which is brought back to the sender by PACKs.
Thus, the sender can easily distinguish between lost and
out-of-order packets.
Slow Packet loss Detection: Because PACKs quickly
carry the information of packet loss back to the sender,
the sender could start the retransmission immediately
without waiting for three duplicate ACKs. Therefore, CP
shortens the packet loss detection time.

Note that CP is compatible with existing congestion
control protocols proposed for data centers because it is
an additional mechanism for loss detection. In addition,
it is TCP-friendly and backward compatible.

4 .6 Discussion
The extra buffer can be small: An extra buffer or a
lower drop threshold is needed at a CP switch to hold
payload-cut packets during an output buffer overload. It
only needs to be one maximum packet size because the
input bandwidth becomes smaller than output bandwidth
after CP processing. For example, the average packet
size (without MAC header) in DCNs is 850 bytes [8]. CP
reduces the packet length to only 66 bytes, a reduction
by about 92.37%5. Thus, with CP, a 1 Gbps output link
can tolerate an input burst at about 13.1 Gbps (1 Gbps
/ 7.63%). Therefore, the extra buffer can be quite small
without loss of payload-cut packets.
Loss of payload-cut packets or PACKs: The loss of
payload-cut packets or PACKs is a rare occurrence be-
cause of their small size. Nevertheless, even if one PACK
is dropped, the sender can recover the information of
the lost PACK from a subsequent PACK. Similarly, if a
payload-cut packet is dropped, the sender can use dupli-
cate ACKs to confirm the lost packet, which causes CP
to degenerate to standard TCP SACK.

5The average packet length is 864 B (14 MAC header + 850 average
length) and payload-cut packet length is 66 B (14 MAC header + 20
IP header + 20 TCP header + 12 timestamp option). The ratio of the
header length to packet length is about 7.63% for this packet length.

Source Port Number Destination Port Number
Sequence Number

Acknowledgment Number

Options and Padding

0 8 16 24 32

Reserved

Window SizeHeader
Length

Urgent PointerTCP Checksum

Figure 5: Extended TCP header for CP implementation

NetFPGA

In
pu

t A
rb

ite
r

O
ut

pu
t P

or
t L

oo
ku

p

O
ut

pu
t Q

ue
ueFIFO

Pa
ck

et
 R

ef
or

m
er

D
ro

p
 P

ay
lo

ad

Buffer Size
Registers

EC
N

 &
 C

P
M

ar
ke

r

CP Handler

TCP Checksum Calculation
(6 cycle delay)

New Packet Length Calculation
(7 cycle delay)

CP Controller
(no delay)

ECN Handler

IP Checksum Calculation
(1 cycle delay)

Data Path Control Path
Figure 6: Structure of NetFPGA for implementing the CP
switch . The packets are forwarded through the data path,
and the decision-making modules in the data path generate
signals that tell the processing modules whether or how to
deal with the packet via the control path .

5 Implementation
This section discusses CP implementation details.

5 .1 Protocol Details
As shown in Fig. 5, two reserved bits in the TCP header
are defined as CP-available (CPA) and precise packet
loss (PPL) to identify the four types of packets men-
tioned in § 4.1. Packets with CPA = 1 and PPL = 0 are
CP-enabled packets and those with CPA = 0 and PPL =
1 are PACK packets. When the payload of CP-enabled
packets are cut off, PPL becomes 1. Therefore, packets
with CPA = 1 and PPL = 1 are payload-cut packets. To
maintain compatibility, packets with CPA = 0 and PPL =
0 are defined as normal TCP packets. CP switches han-
dle them in the same way as commodity switches.

5 .2 CP switch
CP switches cut off the payload of CP-enabled packets
and change the TCP checksum when a buffer exceeds the
threshold. In our prototype, we also add ECN capability
to allow us to compare DCTCP with CP as discussed in
§ 6, .

Fig. 6 shows the basic structure of the CP switch im-
plemented in NetFPGA cards. When a packet enters the
switch, it first looks for an output port and then waits
for the handling of the ECN & CP marker. Depend-
ing on the packet type and buffer occupancy level, the
ECN & CP marker determines how to deal with packets

6

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 23

Table 1: Resource Usage of NetFPGA
Reference

Switch
ECN

Switch
CP

Switch
Slices 12807 13579 13777

Slice Flip Flops 14158 14365 14511
4 Input LUTs 17589 17907 18239

and directs the operation of related modules. For exam-
ple, on seeing payload-cut packets or PACK packets, the
ECN & CP marker allows them to pass directly through
all modules in the data path and places them in the for-
warding buffer. All modules work in parallel, and the
packet waits in the FIFO queue until all modules have
finished their processing. After a short processing delay
(seven-cycle delay for CP handler; one-cycle delay for
ECN handler; no delay for others6), packet reformer re-
generates the packet, which introduces no delay and little
additional overhead. Finally, the packet is placed in the
output buffer and waits for forwarding. As discussed in
§ 4.6, an extra buffer space may be necessary to absorb
all payload-cut packets corresponding to dropped pack-
ets; however, the extra buffer size can generally be quite
small, because some payload-cut packet loss is accept-
able. Therefore, the extra buffer is set to 4 KB in our
implementation.

The CP handler comes out three operations to im-
plement CP: (1) TCP checksum calculation . Re-
computing a checksum is only needed for the TCP
header whose maximum size is 48 B (8 IP address + 20
TCP header + 20 padding); thus, the overhead is very
limited. For example, NetFPGA can process 8 B in a cy-
cle, and no more than 6 cycles (i.e., 48 ns) are consumed
to re-compute the checksum. With increased process-
ing capacity, this overhead can be further reduced and
will become negligible. (2) New packet length calcula-
tion . This module changes the packet length parameter
when sending a packet header because of NetFPGA re-
quirement. (3) CP controller . This module tells packet
reformer to cut out the payload.

Clearly, CP implementation is quite simple, and the
processing delay at the switch is very small. Further-
more, the cutting off payload mechanism is not a normal
operation for each packet, because it is only triggered
to avoid packet dropping. Therefore, the additional pro-
cessing delay at the switch is not introduced frequently.
In addition, CP introduces only a little resource con-
sumption on switches. Table 1 shows that, compared
with ECN switches, the resource usage in CP switches
only increases by less than 2%.

6The clock rate of NetFPGA is 125 MHz. Each cycle is equivalent
to 8 ns, i.e., CP drop processing introduces a delay of 56 ns, and an
additional delay of ECN is 8 ns. ECN marking must change one bit
in each packet; thus, the new IP checksum is similar to the former
and is easily calculated. Otherwise, the CP mechanism will cut off all
payloads and require more time to recalculate the TCP checksum.

Agg1

ToR1

Rack1

ToR2

Rack2

ToR3

Rack3

ToR4

Rack4
Figure 7: Basic topology of our testbed

We conclude that the implementation complexity, pro-
cessing delay, and resource consumption of CP switches
are acceptable; thus, CP drop processing can be built into
commercial switches.

6 Evaluation

This section is divided into four parts. In each subsec-
tion, we test the effectiveness of CP in addressing each
TCP problem mentioned in § 2. We also compare its
performance with that of other state-of-the-art protocols
used in DCNs. Our experimental results showed that CP
addresses the TCP problems and achieves the expected
performance goals.
Testbed . We use a real testbed to evaluate CP perfor-
mance. Our testbed is shown in Fig. 7. All switches
in our experiments are NetFPGA cards with four 1-Gbps
Ethernet ports. The implementation of the CP switch as
described in § 5.2 is downloaded to the NetFPGA cards,
and the buffer sizes of each port are arbitrarily set from
1 KB to 512 KB. Each ToR switch communicates with
others through the aggregation switch and connects three
hosts (Dell OptiPlex 360 desktops with an Intel Celeron
Dual-Core 2930 MHz CPU, 4 GB RAM and 1 Gbps
NIC). All hosts in our testbed are running CentOS 5.5
with Linux kernel 2.6.38 with protocol patches applied.
The RTT without queuing delay is approximately 100 μs
between two endhosts in the same rack.
Protocols . We study four congestion control schemes.
(i) TCP: The TCP variant we study is TCP SACK. We
also allow DSACK [13]. The TCP receive window size
is set to 256 KB so that TCP can meet a 1 Gbps line rate.
We disable delayed ACK to avoid performance problem
[30]. The number of tolerable out-of-order packets is
three by default. Furthermore, RTOmin is set to either
10 ms or 200 ms and this is denoted TCP (10ms) and
TCP (200ms), respectively.
(ii) CP: Switches carry out CP; receivers generate
PACKs. Other settings are the same as TCP.
(iii) DCTCP: The parameters are set to K = 32 KB and
g = 1/16 [4]. The other settings are the same as for TCP,
including two values for RTOmin.
(iv) DCTCP with CP (CP&DCTCP): CP is used along
with DCTCP. Other settings are the same as for DCTCP.

7

24 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Go
od

pu
t(

M
bp

s)

550

600

650

700

750

800

850

1 25 50 75 100 1

Go
od

pu
t(

M
bp

s)

Number of S

PTC= 85

PTC= 42

PTC= 14

0
100
200
300
400
500
600
700
800
900

1000

1 25 50 75 100 125 150 175 200 225 250

Go
od

pu
t(

M
bp

s)

Number of Senders

CP & DCTCPCP

DCTCP(10ms)

TCP(10ms)

DCTCP(200ms)
TCP(200ms)

(a) MapReduce-like Apps
P(200ms) TCP(10ms) TCP(200ms)

8

16

32

64

128

256

1 25 50 75 100

Q
ue

ry
 C

om
pl

et
io

n
Ti

m
e

(m
s)

Number of Senders

CP & DCTCPCP

DCTCP(10ms)TCP(10ms)

DCTCP(200ms)

TCP(200ms)

(b) Web search Apps

Figure 8: Experimental results of scenarios for many-to-
one transmission . Notice the log scale in Fig . 8(b) .

6 .1 Low and Volatile Throughput Impair-
ment

Here, we explore the results of using CP in two typi-
cal scenarios (MapReduce-like and Web search applica-
tion scenarios), which have different performance crite-
ria (see § 2.1).
Topology and parameter settings . In these tests, nine
hosts send data to a host on another rack. Each sending
host is used to emulate multiple senders [28]. Flows are
bottlenecked at the link from the aggregation switch to
the receiving host. The buffer on the bottleneck link is
128 KB, and the other buffers are 512 KB. Because the
settings of RTOmin can have a significant impact on per-
formance in these scenarios [27], two different RTOmin
settings (10ms and 200ms) were studied.
MapReduce-like application scenario . In this test, a
receiver generates a query to each sender, and each of
them immediately responds with 64 KB of data. Fig.
8(a) shows that only CP successfully avoids both TCP In-
cast and the throughput cliff when the number of senders
is large. both DCTCP and TCP with 10-ms-RTOmin
maintain a throughput of about 600 Mbps; however,
the throughput cliff is not avoided. We see that CP
and DCTCP with CP achieve a high throughput7 and
avoid throughput cliff because the payload-cut packets

7In CP implementation, the receiver obtains approximately 43
payload-cut packets for each sender and only wastes 4.32% of the 1
Gbps bandwidth when the number of senders is 250.

S1

Dest 1

Dest 2

S2S3Dest 3

Bottleneck
LinkBottl

eneck

Lin
k

Bottleneck
Link

Dest 1 Dest 2

S1 S2

ToR1

ToR2
ToR1 ToR2

Agg1

(a) Single Bottleneck (b) Multiple Bottleneck

Experimental Flows
Background Flows

Figure 9: Experimental scenario of unfairness impairment
assessment .

and PACK packets maintain the self-clocking.
Web search application scenario . In this test, each of
n different senders transfers 1024/n KB to the receiver
through the bottleneck link. Fig. 8(b) shows that CP
and DCTCP with CP have better performance than TCP
and DCTCP in reducing query completion time. The
query completion times of CP and DCTCP with CP are
approximately 9 ms when the number of senders is less
than 50 and slightly increases by 0.4 ms as the number
of senders increases from 1 to 100. In comparison, de-
pending on 10-ms- and 200-ms-RTOmin, the delays of
TCP or DCTCP converge at 16.1 ms and 201.6 ms, re-
spectively. Through closer observation and analysis, we
found that CP totally eliminates timeouts and wastes only
3.49% of the 1 Gbps bandwidth to send 554 payload-cut
packets (554 × 66 B = 35.7 KB) for each query when the
number of senders is 100. However, increasing the num-
ber of senders8 for TCP and DCTCP results in timeouts
and prolongs the query completion time. In addition, us-
ing DCTCP with CP reduces the query completion time
by 91.3 μs compared with CP because DCTCP with CP
maintains short queue length and reduces the probability
of packet loss.

6 .2 TCP Unfairness
In this section, we focus on whether CP can improve TCP
unfairness.
Topology . We use topologies studied in prior works for
both the single-bottleneck case [24] and the multiple-
bottleneck case [20], as shown in Fig. 9. It should be
noted that the number of background flows shown in Fig.
9 (b) are equal. We use a subset of our testbed to achieve
these scenarios, and each buffer on the bottleneck links
is 128 KB9.

8In our experiment, DCTCP and TCP suffer from TCP Incast when
the numbers of senders are 38 and 23, respectively. Below these num-
ber of senders, there are large fluctuations in the query completion time
even if TCP Incast disappears.

9only the critical components are illustrated. An aggregation switch
(Fig. 9(a)) and a ToR switch (Fig. 9(b)) are not shown because they do
not affect the results.

8

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 25

0

20

40

60

80

100

120

cp&dctcp cp dctcp(200ms) dctcp(10ms) tcp(200ms) tcp(10ms)

3-hop 12 flows 3-hop 2 flows

0

20

40

60

80

100

CP&DCTCP CP DCTCP(10ms) TCP(10ms)

Go
od

pu
t(
M
bp

s)

background flows experimental flows

(a) 12-2 flow pair

0

2

4

6

8

10

12

14

16

18

CP&DCTCP CP DCTCP(10ms) TCP(10ms)

Go
od

pu
t(
M
bp

s)

background flows experimental flows

(b) 60-10 flow pair

ows
0

2

4

6

8

10

CP&DCTCP CP DCTCP(10ms) TCP(10ms)

Go
od

pu
t(
M
bp

s)

background flows experimental flows

(c) 120-20 flow pair

Figure 10: Average goodput of different flow-pairs in the single-bottleneck experiment. We use the notation n−m to refer
to n background and m experimental flows.

0

10

20

30

40

50

60

70

80

90

12-2 flow-pair 60-10 flow-pair 120-20 flow-pair

EF
JR

 (%
)

CP&DCTCP CP DCTCP(10ms) TCP(10ms)

Figure 11: Experimental flows jitter ratio (EFJR) in single-
bottleneck scenario

Single-bottleneck scenario . We refer to the combina-
tion of n background flows and m experimental flows as
an n-m flow pair. From the experiments, we found that
TCP and DCTCP with different RTOmin have similar
features; therefore, we only show the results for 10-ms-
RTOmin TCP and DCTCP. Three flow pairs from our
experiment are shown in Fig. 10. The error bars indi-
cate the average absolute deviation of goodput. For con-
venience, we refer to the experimental flow ratio of the
average absolute deviation to average throughput as the
experimental flow jitter ratio (EFJR). EFJR reflects the
fairness among experimental flows.

Three points are evident from Fig. 10 and Fig. 11.
First, the experimental flows using TCP suffer the TCP
Outcast problem in all three cases. The goodput of flows
with larger number is much lower than that with smaller
number. Second, DCTCP can alleviate the TCP Out-
cast problem for the 60-10 flow pair and the 12-2 flow
pair; however, when the number of flows is large (e.g.,
the 120-20 flow pair), DCTCP suffers the TCP Outcast
problem and its EFJR is high. In additional, the EFJR of
DCTCP significantly fluctuates from 3% to 48%. It is ev-
ident that DCTCP can maintain flow fairness only when
number of flows is small. Third, CP prevents TCP Out-
cast from occurring and maintains the EFJR below 15%.
DCTCP with CP has a smaller EFJR than CP; therefore,
DCTCP with CP provides better fairness among flows.
In conclusion, compared with TCP and DCTCP, DCTCP
with CP and CP both avoid TCP Outcast problem and

0
100
200
300
400
500
600
700
800
900

1 2 3 4 5 6 7 8 9 10
Go

od
pu

t(
M

bp
s)

Number of Experimental Flows

CP DCTCP
TCP(200ms) TCP(10ms)
Theory

(a) Background Flows = 5

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70 80 90 100

Go
od

pu
t(
M
bp

s)

Number of Experimental Flows

CP&DCTCP CP
DCTCP TCP(10ms)
TCP(200ms) Theory

(b) Background Flows = 50

Figure 12: Total goodput of all experimental flows in the
multiple-bottleneck scenario .

achieve reasonable fairness among flows.
Multiple-bottleneck scenario . In this scenario, from
Fig. 9(b), we see that experimental flows are MBFs and
background flows are SBFs. Two sets of experiments
were conducted to explore the fairness of experimental
flows under different packet loss conditions. We chose 5
flows and 50 flows for the number of background flows
to represent low and high packet loss scenarios, respec-
tively. Each experiment lasted 22 minutes. The ratio of
the number of experimental flows to that of the back-
ground flows was increased by 20% every two minutes
from 0 to 200%. From the experiments, we found that
DCTCP with different RTOmin values has a similar per-

9

26 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

formance, so Fig. 12 only illustrates DCTCP with 200-
ms-RTOmin, denoted DCTCP.

In Fig. 12, the line denoted “Theory” is determined by
calculating the throughput according to RTT fairness 10.
Deviation above this line indicates unfairness to SBFs,
and below this line to MBFs. Three conclusions can be
drawn from the data presented in the low loss rate ex-
periment shown in Fig. 12(a). First, we discover that
200-ms-RTOmin TCP suffers the TCP Outcast problem
when the number of flows is greater than 8 because back-
ground flows suffers timeout and share extremely low
bandwidth. Under these conditions, the other protocols
show normal performance. Second, compared with 10-
ms-RTOmin TCP and CP, DCTCP demonstrates poor
fairness because it only achieves an average of 70% of
the theoretical fair value, while 10-ms-RTOmin TCP and
CP achieve an average of 87.1% and 86.8%, respectively.
Third, compared to 10-ms-RTOmin TCP, CP has slight
unfairness because rapid packet loss notification favors
short RTT flows. Fig. 12(b) shows that, in a high packet
loss environment, 200-ms-RTOmin TCP has very low
goodput. In addition, 10-ms-RTOmin TCP and DCTCP
experience the TCP Outcast problem when the number
of experimental flows increases. In conclusion, CP and
DCTCP with CP perform better.

From these results above, we conclude that, as the
packet loss ratio increases, the TCP Outcast problem oc-
curs initially and then low throughput of MBF occurs.
Both phenomena affect TCP fairness; 10-ms-RTOmin
TCP and DCTCP can only alleviate the problem but not
solve it. Furthermore, DCTCP with CP significantly
improves TCP fairness and increases throughput up to
75.1% of the theoretical fair value. Unfortunately, CP
alone, which achieves only an average of only 45.6% of
the theoretical value, only eases unfairness rather than
solving it because TCP congestion control is signifi-
cantly affected by the violent queue oscillations in a high
packet loss environment. Thus, CP with DCTCP is the
best approach to maintain fairness in low or high packet
loss environments with multiple bottlenecks.

6 .3 TCP Out-of-order Problem
Topology . Fig. 13 shows the basic topology used in these
experiments. An additional aggregation switch is added
to the testbed. It should be noted that the ToR1 switch
is a random forwarding switch that sends packets from
S1 to Path A or Path B with the probability of selecting
each path chosen by a configuration parameter. Other
switches forward packets according to the look-up table.

10We define G as the theoretical goodput and N as the number
of flows. Through experimental measurements, we found that the
RTT of background flows is half that of experimental flows. There-
fore, Gexperimental = Nexperimental/(Nbackground ∗ 2 + Nexperimental) ×
Gtotal where Gtotal = 910Mbps.

Agg2Agg1

S1 S2 Dest 2Dest 1

ToR3ToR2ToR1

Multipath Flows

Background Flows

Non-congested Path A

Congested Path B

Figure 13: Basic topology of TCP out-of-order experiment

200

300

400

500

600

700

800

900

1000

 1/8 1/4 3/8 1/2 5/8 3/4 7/8

Go
od

pu
t(

M
bp

s)

Probability of Packets Through the Path A

TCP(DupACK=3) DCTCP
TCP(DupACK=∞,RTO_MIN=200ms) TCP(DupACK=∞,RTO_MIN=10ms)
CP(DupACK=3) CP(DupACK=∞)
Theory

Figure 14: Experiment results of TCP out-of-order experi-
ment

ACKs from Dest1 only pass through Path B back to S1.
Furthermore, the bottleneck buffer is set to 256 KB. This
creates an environment in which packets passing through
Path A to reach Dest1 take less time than the packets
through Path B.
Experimental parameter settings . We allow the num-
ber of tolerable out-of-order packets to be set to three
or infinity. In our experiment, DCTCP achieved similar
throughput in both cases; thus, we only show the results
for DCTCP with three duplicate ACKs (denoted DCTCP
in Fig. 14). The theoretical value is calculated by the
probability of packets passing through Path A11.
Experimental results . We can draw four conclu-
sions from the results shown in Fig. 14. First, the
small number of tolerable out-of-order packets (three)
causes throughput decline even though most packets pass
through the non-congested Path A. With the increasing
number of packets passing through Path A, the through-
put of TCP or CP with three duplicate ACKs decreases
from 825 Mbps to around 600 Mbps. This occurs be-
cause a small number of packets moving through the
congested Path B leads to spurious retransmission and

11We define G as the theoretical goodput, P as the probability of
packets through the Path A. Theoretically the sub-flows of multi-
path flows through Path B gets half of the bandwidth. Therefore,
GMultipath = 1/2×Gbandwith/(1−P) where Gbandwith = 910Mbps.

10

USENIX Association 11th USENIX Symposium on Networked Systems Design and Implementation 27

0
5

10
15
20
25
30
35
40
45
50

99th 99.9th

Q
u

er
y

Co
m

p
le

ti
o

n
 T

im
e

m
s

CP&DCTCP DCTCP CP TCP

(a) Agg Buffer=128KB

99.9th

cp&dctcp

cp

dctcp(10ms)

tcp(10ms)

0
5

10
15
20
25
30
35
40
45
50

Q
u

er
y

Co
m

p
le

ti
o

n
 T

im
e

m
s

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Avearage 95th 99th 99.9th

Pe
rc

en
ta

ge
 o

f
In

cr
ea

se

CP&DCTCP CP

0
5

10
15
20
25
30
35
40
45
50

99th 99.9th

Q
u

er
y

Co
m

p
le

ti
o

n
 T

im
e

m
s

CP&DCTCP DCTCP CP TCP

(b) Agg Buffer=384KB

Figure 15: Query completion time under realistic Data
Center traffic

dctcp(200ms)

dctcp(10ms)

tcp(200ms)

tcp(10ms)

1

2

4

8

16

32

64

128

256

512

Ave

Q
u

er
y

C
o

m
p

le
ti

o
n

 T
im

e
m

s

1

2

4

8

16

32

64

128

256

512

Q
u

er
y

C
o

m
p

le
ti

o
n

 T
im

e
(m

s)

0
50
100
150
200
250
300
350
400
450
500

99th 99.9th

Q
u

er
y

C
o

m
p

le
ti

o
n

 T
im

e
m

s

CP&DCTCP DCTCP CP TCP

(a) 10X Expanded Traffic

0

5

10

15

20

25

30

35

40

45

Avearage 50th 95th 99th 99.9th

0

10

20

30

40

50

99th 99.9th

Q
u

er
y

Co
m

p
le

ti
o

n
 T

im
e

m
s

32KB 64KB 128KB 256KB

(b) Different Buffer Size

Figure 16: Query completion time under different condi-
tions .

unnecessary congestion control. Second, the large num-
ber of tolerable out-of-order packets (infinity) causes
TCP to have a slow response to congestion and triggers
a significant number of timeouts. From the compari-
son of 200-ms-RTOmin TCP, 10-ms-RTOmin TCP and
the theoretical value, we find that 200-ms-RTOmin TCP
achieves less throughput than 10-ms-RTOmin TCP be-
cause RTOmin determines how quickly the protocol re-
acts to congestion as the timeout occurs. Rapid reaction
to congestion increases total bandwidth utilization. In
addition, the extent of congestion declines with increas-
ing probability of packets passing through Path A. There-
fore, TCP throughput approaches the theoretical value.
Third, DCTCP is affected by the ECN mechanism and
the early congestion control makes the throughput lower
than the theoretical value. Finally, CP with no threshold
for out-of-order packets works well and matches the the-
oretical value. In summary, CP with no threshold for
duplicate ACKs can completely solve the out-of-order
problem.

6 .4 Query Completion Time
Experimental parameter settings . The literature [4]
describes the PDF of background flow size distribution,
the interval time between arrivals of queries, and the in-
terval time between arrivals of background flows in real-
istic DCNs. According to this information, we generate
realistic traffic of DCNs with 12 servers in our testbed.
Unless otherwise specified, all switch buffers of each
port are set to 128 KB. In the experiment, each server
independently selects a time value and data size from
identical time interval and data size distributions. One
query is immediately sent to the other 11 servers after
its arrival, and responses are sent back to the originat-

ing server. Both query size and response size are 2 KB.
We conducted the experiment using DCTCP with CP, CP,
10-ms-RTOmin DCTCP, and 10-ms-RTOmin TCP. The
experiment lasted 10 minutes and generated over 50,000
queries and background flows separately. We also con-
ducted the previously reported 10x-realistic traffic exper-
iment [4] in which the size of responses and background
flows larger than 1 MB were increased tenfold. Further-
more, in the different buffer size experiments, all switch
buffers are set to a specific value.
Realistic data center traffic. Fig. 15 shows the 99th
and 99.9th percentile of query completion time with 128
KB and 384 KB at the aggregation switch. It can be seen
that CP reduces the query completion time of TCP and
DCTCP. In Fig. 15(a), compared with TCP, CP achieves
a 34.06% reduction at 99th percentile and a 11.74% re-
duction at 99.9th percentile, respectively. At the 99th
and 99.9th percentile, query completion time of DCTCP
is 0.56ms and 1.41ms higher than that of DCTCP with
CP, respectively. Similarly, in Fig. 15(b), query comple-
tion time of CP is 61.91% and 88.60% of that of TCP at
the 99th and 99.9th percentile, respectively. Compared
with DCTCP, CP with DCTCP achieves a 4.5ms de-
crease at 99th percentile and a 2.4ms decrease at 99.9th
percentile. No query traffic suffered timeouts during the
experiments. Thus, the query completion time reduction
is due to the rapid packet loss detection using CP.
Expanded traffic or different buffer size. We con-
ducted experiments using 10x-expanded traffic and a dif-
ferent buffer size. As can be seen in Fig. 16(a), com-
pared with TCP, CP achieves a 35.71% reduction at 99th
percentile and a 76.55% reduction at 99.9th percentile.
Compared with DCTCP, DCTCP with CP achieves a
18.5% reduction at 99th percentile and a 26.2% reduc-
tion at 99.9th percentile. These results indicate that CP
effectively decreases query completion time even under
10x-expanded traffic condition.

Fig. 16(b) shows the query completion times with
CP with different buffer size. Compared with 128 KB
and 256 KB buffer, 32 KB buffer achieves 33.07% and
56.49% time reduction at the 99th percentile, respec-
tively. The 99.9th percentile query completion time with
a 32 KB buffer is only 6.426 ms, which is 17.77% and
15.34% of that with 128 KB and 256 KB buffer, respec-
tively. It is clear that the combination of CP and a shal-
low buffer can achieve good performance in DCNs.

7 Conclusion
In this paper, we proposed the cutting payload (CP) ap-
proach to solve TCP problems. Analysis indicates that
TCP problems are due to three types of issues. To ad-
dress these imperfections, CP uses payload-cut pack-
ets and PACK packets to maintain self-clocking and to

11

28 11th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

rapidly and precisely inform a sender of packet loss. The
experimental results verify that CP can solve the prob-
lems with TCP discussed in this paper. In addition, CP
is compatible with nearly all existing congestion con-
trol protocols in DCNs. In particular, the combination
of DCTCP and CP has the best performance across all
topologies in experiments.

Acknowledgments
We gratefully appreciate our shepherd Prof. S. Ke-
shav for his constructive suggestions, and acknowledge
the anonymous reviewers for their valuable comments.
This work is supported in part by National Basic Re-
search Program of China (973 Program) under Grant No.
2012CB315803 and 2014CB347800, and National Nat-
ural Science Foundation of China (NSFC) under Grant
No. 61225011.

References
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,

Commodity Data Center Network Architecture. In SIG-
COMM, August 2010.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang,
and A. Vahdat. Hedera: Dynamic Flow Scheduling for
Data Center Networks. In NSDI, August 2010.

[3] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikan-
tha, R. Pan, B. Prabhakar, and M. Seaman. Data Center
Transport Mechanisms: Congestion Control Theory and
IEEE Standardization. In Allerton CCC, August 2008.

[4] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. DCTCP:
Efficient Packet Transport for the Commoditized Data
Center. In SIGCOMM, August 2010.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less Is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center. In
NSDI, April 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal Near-
Optimal Datacenter Transport. In SIGCOMM, August
2013.

[7] M. Allman, H. Balakrishnan, and S. Floyd. RFC 3042:
Enhancing TCP’s Loss Recovery Using Limited Trans-
mit.

[8] T. Benson, A. Anand, A. Akella, and M. Zhang. Under-
standing Data Center Traffic Characteristics. In WREN,
August 2009.

[9] E. Blanton, M. Allman, K. Fall, and L. Wang. RFC 3517:
A Conservative Selective Acknowledgment (SACK)-
based Loss Recovery Algorithm for TCP.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In OSDI, December 2004.

[11] A. Dixit, P. Prakash, and R. R. Kompella. On the Efficacy
of Fine-grained Traffic Splitting Protocols in Data Center
Networks. In SIGCOMM, August 2011.

[12] N. Dukkipati. Tcp: Tail Loss Probe (TLP). http://lwn.
net/Articles/542642/.

[13] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. RFC
2883: An Extension to the Selective Acknowledgement
(SACK) Option for TCP.

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta.
VL2: A Scalable and Flexible Data Center Network. In
SIGCOMM, August 2009.

[15] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian,
Y. Zhang, and S. Lu. Bcube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, August 2009.

[16] C. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows
Quickly with Preemptive Scheduling. In SIGCOMM, Au-
gust 2012.

[17] V. Jacobson. Congestion Avoidance and Control. In SIG-
COMM, August 1988.

[18] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The Nature of Datacenter Traffic: Measure-
ments & Analysis. In IMC, November 2009.

[19] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An
Analysis of Traces from a Production Mapreduce Cluster.
In CCGRID, May 2010.

[20] A. Mankin. Random Drop Congestion Control. In SIG-
COMM, September 1990.

[21] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. RFC
2018: TCP Selective Acknowledgment Options.

[22] D. Nagle, D. Serenyi, and A. Matthews. The Panasas Ac-
tiveScale Storage Cluster: Delivering scalable high band-
width storage. In SC, November 2004.

[23] J. Postel. RFC 792: Internet Control Message Protocol.
[24] P. Prakash, A. Dixit, Y. C. Hu, and R. Kompella. The

TCP Outcast Problem: Exposing Unfairness in Data Cen-
ter Networks. In NSDI, April 2012.

[25] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wis-
chik, and M. Handley. Improving Datacenter Perfor-
mance and Robustness with Multipath TCP. In SIG-
COMM, August 2011.

[26] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-
Aware Datacenter TCP(D2TCP). In SIGCOMM, August
2012.

[27] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G.
Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller.
Safe and Effective Fine-grained TCP Retransmissions for
Datacenter Communication. In SIGCOMM, August 2009.

[28] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron.
Better Never than Late: Meeting Deadlines in Datacenter
Networks. In SIGCOMM, August 2011.

[29] H. Wu, Z. Feng, C. Guo, and Y. Zhang. ICTCP: Incast
Congestion Control for TCP in Data Center Networks. In
CoNEXT, December 2010.

[30] M. Yu, A. Greenberg, D. Maltz, J. Rexford, L. Yuan,
S. Kandula, and C. Kim. Profiling Network Performance
for Multi-tier Data Center Applications. In NSDI, March
2011.

[31] L. Zhang. Why TCP Timers Don’t Work Well. In SIG-
COMM, August 1986.

[32] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP:
A Reordering-Robust TCP with DSACK. In Proceedings
of ICNP, November 2003.

12

