
USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 427

Improving availability in distributed systems with failure informers

Joshua B. Leners∗ Trinabh Gupta∗ Marcos K. Aguilera† Michael Walfish∗

∗The University of Texas at Austin †Microsoft Research Silicon Valley

Abstract. This paper addresses a core question in dis-

tributed systems: how should applications be notified of

failures? When a distributed system acts on failure re-

ports, the system’s correctness and availability depend

on the granularity and semantics of those reports. The

system’s availability also depends on coverage (failures

are reported), accuracy (reports are justified), and time-

liness (reports come quickly). This paper describes Pi-

geon, a failure reporting service designed to enable high

availability in the applications that use it. Pigeon exposes

a new abstraction, called a failure informer, which al-

lows applications to take informed, application-specific

recovery actions, and which encapsulates uncertainty, al-

lowing applications to proceed safely in the presence of

doubt. Pigeon also significantly improves over the pre-

vious state of the art in the three-way trade-off among

coverage, accuracy, and timeliness.

1 Introduction

Availability is now a paramount concern of distributed

applications in data centers and enterprises (distributed

storage systems, key-value stores, replication systems,

etc.); for such applications, even seconds of downtime

can affect millions of users. A critical factor in avail-

ability is failure handling. Specifically, for optimal avail-

ability, distributed applications need to learn of failures

quickly, so that they can recover, and they need infor-

mation about the failure, so that they can take the best

recovery action.1

This paper proposes Pigeon, a service for reporting

host and network failures to highly available distributed

applications. Pigeon provides a new abstraction, called a

failure informer. This abstraction hides the messy details

of failures; it reports a small number of conditions that

each represent a class of problems that affect the appli-

cation similarly. The conditions are differentiated by the

failure certainty, or lack thereof, which gives enough in-

formation for applications to improve their recovery, in

application-specific ways.

For example, if a lease server [13, 30] is informed

of the certain crash of a process holding a lease, the

server can bypass the lease delay and reissue the lease

immediately; without this information, the lease server

1By failure, we mean a problem that is visible end-to-end, not masked;

by recovery, we mean actions in response to such failures (failover,

etc.). Techniques such as microreboot and component restart [14, 15]

are failure prevention, which is orthogonal to (in the sense that it does

not obviate) our concern of failure reporting.

would have to wait until the lease times out. As another

example, consider a primary-backup system [4]. If Pi-

geon reports to the backup that the primary has certainly

stopped, the backup takes over immediately; if Pigeon

reports that the primary is (possibly intermittently) un-

reachable, the backup must decide whether to fail over

the primary, based on the expected problem duration

(which Pigeon reports) and the cost of failover; and if Pi-

geon reports that the primary is expected to crash soon,

the backup can provision a new replica without failing

over the primary yet.

In the above example, notice that the different reports

from Pigeon are qualitatively different and allow qual-

itatively different failure responses. Consider, by con-

trast, existing mechanisms for reporting failures, such as

ICMP, TCP connection reset, and failure detectors [17]

built on tuned timeouts [11, 18, 34, 62] or on layer-

specific monitors [46]. These mechanisms not only can-

not distinguish between various failure conditions but

also have other shortcomings (as argued in Section 2.1).

These shortcomings are rooted in the network’s design:

[At] the top of transport, there is only one fail-

ure, and it is total partition. The architecture was to

mask completely any transient failure. . . . the Inter-

net makes very weak assumptions about the ability

of a network to report that it has failed. [The] In-

ternet is thus forced to detect network failures using

Internet level mechanisms, with the potential for a

slower and less specific error detection [emphasis

added] [21].

The rationale was simplicity. Since the network was

to be designed for survivability above almost everything

else [21, §3–§4], and hence would recover from failures,

the benefit of exposing failures to applications was not

worth the cost of a mechanism. Yet, availability of dis-

tributed applications—a more pressing concern now than

it was then—calls for additional design: we want faster

and more specific error detection!

What should such a failure reporting service look

like? Answering this question requires addressing sev-

eral challenges. First, there are many failure indicators

(e.g., monitors reporting crashed processes, status of net-

work links, hardware error status), each with its own id-

iosyncrasies, but what details should be exposed to appli-

cations? Second, these indicators may report uncertain

information, leading to wrong conclusions. Addressing

these two challenges requires finding the right abstrac-

tion for failure reporting—one that is simple but conveys

1

428 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

the information that lets applications recover effectively.

The third challenge is in implementing the abstraction:

to improve application availability, the implementation

must provide full coverage (failures are reported), but

also provide accuracy (reports are justified), and time-

liness (failures are reported quickly). Meanwhile, these

considerations are in a three-way trade-off.

Our response, Pigeon, classifies failures into four

types: whether the problem certainly occurred versus

whether it is expected and imminent, and whether the tar-

get is certainly and permanently stopped versus not. Ob-

serve that a report of certain occurrence and certain per-

manence abstracts “process crash” (among other things),

and a report of certain occurrence and uncertain per-

manence abstracts “pending timeout expired” or “net-

work partition” (among other things). Furthermore, ob-

serve that applications can benefit from even the uncer-

tain reports: they can consider the cost-benefit trade-offs

of waiting versus recovery (for problems of uncertain

permanence) and of waiting versus precautionary actions

(for problems of uncertain occurrence). Pigeon includes

other information too, such as expected problem dura-

tion, and the resulting abstraction is what we refer to as a

failure informer. To summarize the abstraction, it knows

what it knows, it knows what it doesn’t know, and appli-

cations benefit from hearing the difference.

Pigeon manages the conflict among coverage, accu-

racy, and timeliness by relying on an end-to-end timeout

as a backstop (achieving full coverage) and then using

low-level information from throughout the system to sig-

nificantly improve the accuracy-timeliness tradeoff. The

use of low-level information is inspired by Falcon [46].

However, Falcon has limited coverage (network failures

cause it to hang), a coarse interface (it reports crashes

only), and adverse collateral effects (it kills components,

sometimes gratuitously). We elaborate on these points in

Section 2.1 and compare the two systems in Section 7.

Our implementation of Pigeon has several limitations

and operating assumptions. First, Pigeon assumes a sin-

gle administrative domain (but there are many such net-

works, including enterprise networks and data centers).

Second, Pigeon requires the ability to install code in the

application and network routers (but doing so is viable in

single administrative domains). Third, for Pigeon to be

most effective, the administrator or operator must per-

form environment-specific tuning (but this needs to be

done only once).

Before continuing, we emphasize that the challenges

of Pigeon are mostly in architecture and design, as op-

posed to low-level mechanism; the mechanisms in Pi-

geon are largely borrowed from previous work [36, 37,

46, 59, 60]. The contributions of this work are:

• The thesis that network and host failures should be

exposed to applications (§2). Though simple, this

thesis has apparently not been advanced in previous

work (§7).

• The failure informer abstraction for exposing failures

(§3.1–§3.2) and a service, Pigeon, that implements

it (§3.4–§3.5). As is often the case with concise but

powerful abstractions, this one may appear “easy”, yet

identifying it was not, judging by our own repeated

attempts.

• The uses of Pigeon (§3.3, §5.2). Our confidence in the

abstraction is bolstered by concrete use cases.

• The evaluation (§5) of our prototype (§4). For a mi-

nor price in resources, Pigeon quickly (sub-second

time) and accurately reports common failure types.

Pigeon quantitatively and qualitatively outperforms

other mechanisms (including Falcon), and we demon-

strate that it allows real applications to make better,

faster, application-specific recovery decisions.

2 Motivation, challenges, and principles

We now explain the status quo’s shortcomings (§2.1) and

the principles that Pigeon is based on (§2.2).

2.1 Failure reporting today

Existing mechanisms for reporting failures are coarse-

grained, lack coverage, lack accuracy, or do not handle

latent failures. We give specifics below and demonstrate

some of them experimentally in Section 5.1.

As an example of a coarse-grained mechanism, con-

sider ICMP “destination unreachable” messages, which

the network delivers to sources [54]. This signal conflates

different failure cases (whether the failure resulted from

a problem in the host or network, whether the condition

is transient, etc.), requiring that applications react to each

failure identically or ignore the notifications altogether.

Other mechanisms do not have good coverage. For ex-

ample, consider the “connection reset” error in TCP. This

signal reports to the application that a remote process has

exited—but only if the remote TCP stack and the net-

work are both working.

Other mechanisms have good coverage but lack accu-

racy. For example, end-to-end timeouts eventually trig-

ger if a failure occurs, but they sometimes trigger prema-

turely, without any failures.

Some mechanisms do not detect latent failures: they

report failure only if and when the application tries to

use the network. For example, the network generates an

ICMP error packet only when a host attempts to send

data.2 As another example, consider timeouts again: they

are often set on some pending event (e.g., a request is-

sued to a peer). If an application has no such event out-

2The select() and epoll() system calls, which report errors on par-

ticular file descriptors, are simply interfaces to this behavior.

2

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 429

condition occurred? permanent? description example causes

stop certain certain target stopped executing core dump, machine reboot

unreachability certain uncertain target unreachable network link down

stop warning expected; imminent certain target may stop executing disk about to crash

unreachability warning expected; imminent uncertain target may become unreachable network link close to capacity,

CPU overloaded

Figure 1—Conditions reported by Pigeon. These conditions abstract specific failures affecting a remote target process and encap-

sulate two kinds of uncertainty.

standing but later generates one, it must then wait for the

timeout interval to expire before learning of the failure.

Falcon [46] detects latent failures and is accurate, but

it sacrifices coverage and gives coarse-grained reports.

Falcon monitors a remote process with a network of spies

deployed at different layers of the system (operating sys-

tem, application, etc.). If a layer is unresponsive, a spy

sometimes kills that layer (e.g., by terminating a virtual

machine) so that clients can make progress; this requires

network communication so that the Falcon client can re-

quest and confirm the kill. As a result, Falcon hangs if

there is a network failure. Moreover, Falcon can report

applications only as crashed or not crashed.

2.2 Design challenges and principles

As noted in the introduction, there are three top-level

challenges in designing Pigeon: identifying what failure

details to provide; handling uncertain information safely;

and managing a three-way trade-off among coverage, ac-

curacy, and timeliness. At a high level, the root cause of

these challenges is the difficulty of determining why a re-

mote process does not respond: is it crashed? or slow? or

is the problem in the network? We confront these chal-

lenges with the principles below.

Renounce killing. Consider techniques that provide

perfect accuracy, such as Falcon [46], watchdogs [1, 27],

and virtual synchrony [12]. What would be required for

them not to hang on network failures? Since their accu-

racy comes from killing (when they are uncertain), they

would have to kill network elements and intentionally

create network partitions. This seems like a bad idea. In

fact, even targeted killing is not ideal: taking live compo-

nents offline impairs availability! Pigeon shall not kill.

Provide full coverage. Availability requires that the

failure informer report all failures (full coverage). How-

ever, two issues result. First, full coverage implies that

perfect accuracy is unattainable: if an informer must re-

port all failures (and do so without killing), but is uncer-

tain about whether a failure occurred, then the informer

will sometimes report some failures incorrectly. Second,

the three-way conflict among coverage, accuracy, and

timeliness means that full coverage causes a trade-off be-

tween accuracy (already imperfect) and timeliness. Our

next two principles address these issues in turn.

Expose uncertainty. How can the failure informer en-

sure safety, despite occasional mistakes? Our approach is

for the failure informer to provide certainty when possi-

ble and to flag the reports that may be wrong as uncertain.

(This is different from the notion of confidence in failure

detectors [34]; see Section 7.) This allows applications

to take qualitatively different recovery actions, as stated

in the introduction (see also Section 5.2). Note that han-

dling uncertainty is not a burden, as applications do so

already when, for example, end-to-end timeouts expire.

Leverage local information. The timeliness-accuracy

tradeoff can be improved by local knowledge that reveals

the state of components. For example, if a host’s cable

disconnects from a network switch, the switch quickly

learns, and the informer can thus tell the application

quickly. For the same accuracy, then, a failure informer

with access to lower layers can be more timely, because

the local information is visible sooner than if it had to

bubble up to higher layers. We borrow the idea of using

local information from Falcon [46] (see Section 7).

Design for extensibility. We are not going to get a per-

fect implementation, so we design for extensibility: Pi-

geon accommodates add-on modules that provide better

information and indicate different kinds of faults, ideally

improving the accuracy-timeliness trade-off. These ex-

tensions do not require redesigning Pigeon or applica-

tions; a key factor in avoiding redesign is exposing fail-

ures through an abstraction, versus exposing all details.

3 Design of Pigeon

This section presents the interface exposed by Pi-

geon (§3.1), describes the guarantees (§3.2), explains

how Pigeon can be used (§3.3), describes its architec-

ture (§3.4), and explains errors and their effects (§3.5).

3.1 The failure informer interface

The failure informer interface exposes conditions to ap-

plications, where each condition abstracts a class of

problems in a remote target process that all affect the

distributed application in similar ways. There are four

conditions, shown in Figure 1.

(1) In a stop, the target process has stopped execut-

ing and lost its volatile state. The problem has already

3

430 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

occurred, and it is certainly permanent. This condition

abstracts process crashes, machine reboots, etc.

(2) In an unreachability, the target process may be op-

erational, but the client cannot reach it. The problem has

already occurred, but it is potentially intermittent. This

condition abstracts a timeout due to, say, a network par-

tition or a slow process.

(3) In a stop warning, the target process may stop exe-

cuting soon, as a critical resource is missing or depleted.

The problem has not yet occurred, but if it occurs it is

permanent. This condition abstracts cases such as a re-

port about an imminent disk failure [33, 53, 63].

(4) In an unreachability warning, the target process

may become unreachable soon, as an important resource

is missing or depleted. The problem has not yet occurred;

if it occurs, it is potentially intermittent. This condition

abstracts cases such as a network link being nearly satu-

rated or overload in the host CPU of the target process.

The four conditions above reflect a classification based

on two types of uncertainty that are useful to applica-

tions: whether the problem is certainly permanent (stop

vs. unreachability) and whether the problem certainly oc-

curred (actual vs. warning).

The interface also returns properties: information spe-

cific to the condition, which may help applications re-

cover. A property of all conditions is their expected du-

ration. (Note that a duration estimate does not subsume

certainty: certainty-vs-unreachability captures a quality

other than duration, and the duration estimate itself is

fundamentally uncertain.3) We describe how this prop-

erty is set in Section 4.4. A property of the warning con-

ditions is a bit vector indicating the critical resource(s)

responsible for the warning (disk, memory, CPU, net-

work bandwidth, etc.).

Client API. Client applications see the following pro-

grammatic interface.

function description

h = init(target, callback) request monitoring of target

process; returns a handle for

use in future operations

uninit(h) stop monitoring

c = query(h) get status; returns a list of

conditions

res = getProp(h, c, propname) get condition property value

setTimeout(h, timeout) set/reset timeout

clearTimeout(h) cancel timeout

The client calls init() to monitor a target process,

named by an IP address and an application identifier in

some name space (e.g., port space). The function returns

a handle to be used in other functions. The init() func-

3In fact, a failure informer can report an unreachability with indefinite

(unknown) duration. This is different from a stop, which is permanent.

tion takes as a parameter a callback function, which the

implementation calls as new failure conditions emerge.

The query() function returns a (possibly empty) list of

active conditions. The getProp() function returns proper-

ties, as described above.

The setTimeout() and clearTimeout() functions

set/reset and clear end-to-end timeouts. Clients use

timeouts as a catch-all: after the client installs a timer, if

the client does not cancel or reset it before the timeout

period, then the interface reports an unreachability.

3.2 Guarantees

We now describe the guarantees provided by Pigeon

along three axes: coverage, accuracy, and timeliness. Pi-

geon provides these guarantees in spite of failures in the

network and Pigeon itself, as described in Section 3.5.

Coverage. If the client uses Pigeon’s end-to-end time-

out, Pigeon guarantees full coverage: if the target process

stops responding to the client, then Pigeon reports either

a stop or an unreachability condition.

Accuracy. By accuracy, we mean “reported failures are

justified” (§1); we address the correctness of duration es-

timates in Section 5.1. We designed Pigeon not for per-

fect accuracy in its reports but for accuracy in its cer-

tainty: Pigeon knows when it knows, and it knows when

it doesn’t know. Specifically, if Pigeon reports a stop con-

dition, the application client can safely assume that the

target process will not continue; Pigeon returns an un-

reachability when it cannot confirm that the condition is

permanent. When Pigeon reports a warning, it guaran-

tees that a motive exists (a fault occurred) but not that an

unreachability or stop will occur.

Timeliness. If a condition occurs, Pigeon reports it as

fast as it can. This is a best effort guarantee.

3.3 Using the interface

We now give a general description of how applications

might use Pigeon; Section 5.2 considers specific appli-

cations (RAMCloud [52], Cassandra [43], lease-based

replication [30]). For each of the four conditions, we

explain the implications for the application and how it

could respond.

Recall that a stop condition indicates that the target

process has lost its volatile state and stopped executing

permanently; this has a quantitative implication and a

qualitative one. Quantitatively, it is safe for the client

to initiate recovery immediately. Qualitatively, the client

can use simpler recovery procedures: because it gets

closure—that is, because it knows that the target process

has stopped—it does not have to handle the case that the

target process is alive. For example, a stop condition al-

lows the client to simply restart the target on a backup.

By contrast, an unreachability condition implies only

4

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 431

that the target is unreachable; the target process may

in fact be operational, or the condition may disappear

by itself. This has two implications. First, if the client

takes a recovery action, the system may have multiple

instances of the target process. Recovering safely there-

fore requires coordinating with other nodes using mech-

anisms like Chubby [13], ZooKeeper [35], or Paxos [45],

which allow nodes to agree on a single master or ac-

tion. Note that reports of unreachability are still useful—

and that using these agreement mechanisms is not overly

burdensome—because systems already have the appro-

priate logic: this is the logic that handles the case that an

end-to-end timeout fires without an actual failure.

Second, based on the expected duration of the condi-

tion, the application must consider the costs and benefits

of just waiting versus starting recovery proactively. Con-

ceptually, each application has an unavailability thresh-

old such that if the expected duration of the condition is

smaller, the application should wait; otherwise, it should

start recovery.

In fact, “eager recovery” can be taken a step further:

warnings allow applications to take precautionary ac-

tions even without failures. For example, a stop warning

could cause an application to bring a stand-by from warm

to hot, while an unreachability warning could cause an

application to degrade its service.

To illustrate the use of Pigeon concretely, consider a

synchronous primary-backup system [4], where the pri-

mary serves requests while a backup maintains an up-to-

date copy of the primary. The backup can use Pigeon to

monitor the primary:

• If Pigeon reports a stop, the backup takes over;

• If Pigeon reports an unreachability, the backup must

decide whether to fail over the primary, or instantiate

a new replica (either of which requires mechanisms

to prevent having multiple primaries), or simply wait.

These decisions must weigh the cost of the recovery

actions against the expected duration of the condition.

• If Pigeon reports a stop warning, the backup provi-

sions a new replica without failing over the primary.

• Under an unreachability warning, the backup logs the

warning so that, if the condition is frequent, operators

can better provision the system in the future.

3.4 Architecture of Pigeon

As stated in the introduction, Pigeon works within a sin-

gle administrative domain: an enterprise, a data center,

a campus network, etc. Pigeon’s architecture is geared

toward extracting and exploiting the information about

failures already available inside the system. For example,

the failed links in a network collectively yield informa-

tion about a network partition. To use this information,

Pigeon needs mechanisms to (a) sense information in-

client host 2

client host 1
client
app 1
client
library

client
library

client
app 2

S
R

S
R

target host 1

target host 2

SSR

SS

SSR

I

R

I

Figure 2—Architecture of Pigeon. Pigeon has sensors (S), re-

lays (R), and interpreters (I). Sensors are component-specific.

Sensors and relays are shared by multiple clients and end-hosts;

an interpreter is shared by all client applications on its host. The

client library presents the client API (§3.1) to applications.

side components, (b) relay information to end-hosts, and

(c) interpret information for client applications. These

mechanisms are embodied, respectively, in sensors, re-

lays, and interpreters (Figure 2). We describe their ab-

stract function below and their instantiations in our pro-

totype in Section 4.

A sensor is component-specific and tailored; it is em-

bedded in the component and detects faults in it. A fault

is a local event, possibly a malfunction, that may con-

tribute to one of the four failure conditions (§3.1). A crit-

ical fault is one that may lead to a stop condition; a regu-

lar fault, to an unreachability condition; and an advisory

fault, to a warning condition. Faults need not cause con-

ditions; they may be masked by recovery mechanisms

outside the application (e.g., route convergence).

Relays communicate with sensors and propagate these

sensors’ fault information to end-hosts. Sensors and re-

lays may be installed for Pigeon or may already exist in

the system.

Each end-host has an interpreter that receives infor-

mation about faults from the relays. Interpreters render

this information as failure conditions and estimate the ex-

pected duration of conditions. Clients interact with inter-

preters through a client library, which implements end-

to-end timeouts and the client API (§3.1). Interpreters

also determine which sensors are relevant to the client-

supplied (IP, port) pair that identifies a target (§4.4).

3.5 Coping with imperfect components

In this section we describe the effect of errors in Pi-

geon’s own components and the network. These errors

include crash failures and misjudgments; they do not in-

clude Byzantine failures, which Pigeon does not tolerate.

Figure 3 summarizes the effect of errors.

Before continuing, we note non-effects. First, Pigeon

does not compromise on coverage: its coverage derives

from the end-to-end timeout, which is implemented in

5

432 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

compromise cause

coverage nothing

safety nothing

timeliness sensor, relay, or interpreter crashes

sensor misses fault

interpreter does not report stop or unreachability

accuracy sensor, relay, or interpreter crashes

sensor falsely detects regular or advisory fault

interpreter falsely reports unreachability or warning

Figure 3—Effect of errors on Pigeon’s guarantees. Errors in

duration estimates are covered in Section 5.1.

the client library (linked into the application) and hence

shares fate with the client application, despite failures

elsewhere. Second, Pigeon is designed to not compro-

mise safety; while inaccuracy is possible under Pigeon,

the only threat to safety is a report of a stop that did not

happen (§3.2), which Pigeon is designed to avoid (§4).

If a sensor, relay, or interpreter crashes or is discon-

nected from the network, Pigeon loses access to local in-

formation, which affects accuracy and timeliness (§2.2).

Loss of local information also causes missed opportuni-

ties to report some failures as stop conditions (e.g., re-

mote process exit) rather than an unreachability condi-

tion triggered by the end-to-end timeout.

If a sensor does not detect a fault, then Pigeon may

need to rely on the end-to-end timeout, compromising

timeliness. If a sensor falsely detects a regular fault, then

Pigeon may misreport an unreachability condition. This

error in turn compromises accuracy (potentially caus-

ing an unwarranted application recovery action) but not

safety (see above). The effect when a sensor falsely de-

tects an advisory fault is similar (misreports of warning

conditions).

If the interpreter crashes or fails to report a condition,

then Pigeon relies on the end-to-end timeout, again com-

promising timeliness. If the interpreter misreports an un-

reachability or warning, Pigeon compromises accuracy

but not safety (see above). Errors in the interpreter’s du-

ration estimates are covered in Section 5.1.

We have designed Pigeon to be extensible, so new

components can reduce the errors above. However, Pi-

geon’s current components, which we describe next, al-

ready yield considerable benefits.

4 Prototype of Pigeon

We describe our target environment (§4.1), and the im-

plementations of sensors (§4.2), relays (§4.3), and the

interpreter (§4.4) used in our prototype. The prototype

borrows many low-level mechanisms from prior work, as

we will note, but the synthesis is new (if unsurprising).

4.1 Target environment

Our prototype targets networks that use link-state rout-

ing protocols, which are common in data centers and

enterprises [31, 39]. Currently, the prototype assumes

the Open Shortest Path First (OSPF) protocol [51] with

a single OSPF area or routing zone. This assumption

may raise scalability questions, which we address in Sec-

tion 5.3. We discuss multi-area routing and layer 2 net-

works in Section 6.

We assume a single administrative domain, where an

operator can tune and install our code in applications and

routers; this tuning is required at deployment, not during

ongoing operation.

4.2 Sensors

Sensors must detect faults quickly and confirm critical

faults; the latter requirement ensures that Pigeon does not

incorrectly report stops. The architecture accommodates

pluggable sensors, and our prototype includes four types:

a process sensor and an embedded sensor at end-hosts,

and a router sensor and an OSPF sensor in routers. For

each type, we describe the faults that it detects, how it de-

tects them, and how it confirms critical faults. Faults are

denoted as F-〈type〉 (critical ones noted in parentheses).

Process sensor. This sensor runs at end-hosts. When a

monitored application starts up, it connects to its local

process sensor over a UNIX domain socket. The pro-

cess sensor resembles Falcon’s application spy [46], but

it does not kill. The sensor detects three faults:

F-exit (critical). The target process is no longer in the

OS process table and has lost its volatile state, but the

OS remains operational. This fault can be caused by a

graceful exit, a software bug (e.g., segmentation fault),

or an exogenous event (e.g., the process was killed by

the out-of-memory killer on Linux). To detect this fault,

the sensor monitors its connection to the target processes.

When a connection is closed, the sensor checks the pro-

cess table every Tproc-check time units; after confirming the

target process is absent, it reports F-exit. Our prototype

sets Tproc-check to 5 ms, a value small enough to produce a

fast report, but not so small as to clog the CPU.

F-suspect-stop. The target process is in the process ta-

ble but is not responding to local probes. This fault can be

due, for example, to a bug that causes a deadlock in the

target process. To detect this fault, the sensor queries the

monitored process every Tapp-check time units. If the target

process reports a problem or times out after Tapp-resp time

units, the sensor declares the fault. Our prototype sets

Tapp-check to 100 ms of real time and Tapp-resp to 100 ms of

CPU time of the monitored application (the same values

are justified in Falcon [46, §4]).

F-disk-vulnerable. A disk used by the target process

has failed or is vulnerable to failure (based on vendor-

specific reporting data, e.g., SMART [63]). To detect this

fault, Pigeon checks the end-host’s SMART data every

Tdisk-check time units, which our prototype sets to 500 ms.

6

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 433

Embedded sensor. The next sensor is logic embedded

in the end-host operating systems. This sensor resembles

Falcon’s OS-layer spy but has additional logic to confirm

critical faults without killing. It detects three faults:

F-host-reboot (critical). The OS of the target process

is rebooting. The embedded sensor reports this fault dur-

ing the shutdown that precedes a reboot but only after all

of the processes monitored by Pigeon have exited (the

waiting prevents falsely reporting a stop condition).

F-host-shutdown (critical). The OS of the target pro-

cess is shutting down. The sensor uses the same mecha-

nism as for F-host-reboot.

F-suspect-stop. The OS of the target process is no

longer scheduling a high priority process that increments

a counter in kernel memory every Tinc time units. The

sensor detects a fault by checking that the counter has

incremented at least once every Tinc-check time units. Our

prototype sets Tinc and Tinc-check to 1 ms and 100 ms, re-

spectively, providing fast detection of failures with neg-

ligible CPU cost (we borrow these settings from Falcon).

Router sensor. A process on the router runs as a sensor

that detects two faults:

F-suspect-stop. The end-host is no longer responding

to network probes. This fault can occur, for example, be-

cause of a power failure or an OS bug. The router sensor

detects this fault by running a keep-alive protocol with

any attached end-hosts. (This keep-alive protocol is bor-

rowed from Falcon.)

F-link-util. A network link has high utilization. Our

prototype checks the utilization of the router’s links ev-

ery Tutil time units and detects a fault if utilization ex-

ceeds a fraction Fbw of the link bandwidth. Our prototype

sets Fbw to 63% (which we measured to be the lowest uti-

lization at which a router starts to drop traffic) and Tutil

to 1 second (which corresponds to the maximum rate at

which this fault can be reported; see Section 4.3).

OSPF Sensor. A router’s OSPF logic acts as a sensor

that detects two faults:

F-link. A link in the network has gone down. The

routers in our environment detect link failures using

Bidirectional-Forwarding Detection (BFD) [38].

F-router-reboot. A network router is about to reboot.

The sensor detects this fault because the operating sys-

tem notifies it that the router is about to reboot.

4.3 Relays

The prototype uses three kinds of relays: one at end-

hosts, called a host relay, and two at routers, called a

router relay and an OSPF relay. Relays may be faulty, as

discussed in Section 3.5.

Host relay. This relay communicates faults detected by

the process sensor, and it runs in the same process as the

process sensor. When a client begins monitoring a tar-

get process, the client’s interpreter registers a callback at

the target’s host relay. The host relay invokes this call-

back whenever the process sensor detects a fault. Call-

backs improve timeliness, as the interpreter learns about

faults soon after they happen; this technique is used else-

where [20, 36, 46].

Router relay. This relay communicates the F-suspect-

stop fault detected by the router sensor, as well as all

faults detected by the embedded sensors. The relay runs

in the same process as the router sensor, and it uses the

same callback protocol as the host relay.

OSPF relay. This relay uses OSPF’s link-state routing

protocol to communicate information about links. Un-

der this protocol, routers generate information about their

links in Link-State Advertisements (LSAs) and propa-

gate LSAs to other routers using OSPF’s flooding mech-

anism. For link failures (F-link), the OSPF relay uses

normal LSAs, and for graceful shutdowns (F-router-

reboot), the relay uses LSAs with infinite distance [57].

To announce overloaded links (F-link-util), the router re-

lay uses opaque LSAs [10], which are LSAs that carry

application-specific information.

Using the network to announce overload and fail-

ures might compound problems, so we rate-limit opaque

LSAs to Ropaque, which our prototype sets to 1 per sec-

ond (the highest rate at which routers should accept

LSAs [10]). Similarly, a buggy client could deplete the

resources of this relay (and the router relay), since they

are shared; mitigating such behavior is outside our cur-

rent prototype’s scope, but standard techniques should

apply (rate-limiting, etc.). Note that the concern is buggy

clients, not malicious ones, because Pigeon targets a sin-

gle administrative domain (§4.1).

4.4 The interpreter

The interpreter gathers information about faults and out-

puts the failure conditions of §3.1. The interpreter must

(1) determine which sensors correspond to the client-

specified target process, (2) determine if a condition is

implied by a fault, (3) estimate the condition’s duration,

(4) report the condition to the application via the client

library, and (5) never falsely report a stop condition. We

discuss these duties in turn.

(1) The interpreter determines which sensors are rele-

vant to a target process by using knowledge of the net-

work topology, the location of sensors, and the location

of the client and target processes.

(2) The interpreter must not report every fault as a con-

dition; for example, a failed link that is not on the client’s

path to the target does not cause an unreachability con-

dition. If the interpreter cannot determine the effect of

a fault from failure information alone, it uses hints. For

7

434 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

example, if a link becomes loaded along one of multiple

paths to the target process, the interpreter sends an ICMP

Echo Request with the Explicit Congestion Notification

(ECN) option [56] set, to determine if the client’s current

path is affected. The router sensors intercept these pack-

ets, and, if a link is loaded, mark them with the Conges-

tion Encountered (CE) bits. If the interpreter receives an

Echo Reply with these bits set, or times out after Tprobe-to

time units, the interpreter reports an unreachability warn-

ing; in this warning, the network is marked as the criti-

cal resource (§3.1). Our implementation sets Tprobe-to to

50 ms.4 The interpreter uses a similar hint (a network

probe packet) to determine the effect of link failures.

The interpreter determines which paths are available

to clients by passively participating in OSPF, a technique

used elsewhere [36, 59, 60]. For detecting link failures,

this technique adds little overhead to the network. How-

ever, detecting link utilization has additional overhead

(because it generates extra LSAs), and OSPF itself has

some cost. We evaluate these costs in Section 5.3.

(3) As mentioned earlier, the interpreter estimates the

duration of some unreachability conditions. Currently,

these durations are hard-coded based on our testbed mea-

surements, which we describe next; a better approach is

to estimate duration using on-line statistical learning.

Our prototype estimates the duration of unreachability

conditions as follows. If a link fails or a router reboots

along the current path from the client to the target pro-

cess, but there are alternate working paths, the interpreter

reports a duration of Tnew-path-delay—the average time that

the network takes to find and install the new path. If a

router reboots and there are no working paths from the

client to the target process, the client must wait for the

router to reboot, so the interpreter reports a duration of

Trouter-reboot—the average time that the router takes to re-

boot. The interpreter reports all other conditions as hav-

ing an indefinite duration.

In our testbed, we set Tnew-path-delay and Trouter-reboot to

2.8 seconds and 66 seconds, respectively. We determine

these values by measuring the unavailability caused by a

fault, as observed by a host pinging another every 50 ms.

In each experiment, we inject a link failure or router re-

boot, and report the failure’s duration as the gap in ping

replies observed by the end-host. We repeat this experi-

ment 50 times for each fault. The means are as reported;

the standard deviations are 27 ms and 2.5 seconds, re-

spectively, for the two conditions.

(4) The interpreter reports all conditions (and their ex-

pected duration) to the client library; the interpreter also

4We validate this timeout by running an experiment where one host

sends an ICMP Echo Request to another host for 10,000 iterations in

a closed loop. We observe a response latency (which includes round-

trip time and packet processing time) of 760 µs (standard deviation

96 µs) and a maximum of 1.2 ms, well below the timeout value.

Compared to existing failure reporting services, Pigeon

improves, either in coverage, accuracy, timeliness, or quality
§5.1

Pigeon’s richer information enables applications to react

quickly or prevent costly recoveries
§5.2

Pigeon uses negligible CPU and moderate network

bandwidth
§5.3

Figure 4—Summary of main evaluation results.

what problem is modeled? how is the fault injected?

process crash segmentation fault

host reboot issue reboot at host

link failure (backup paths exist) disable router port

link failures (partition) disable multiple router ports

router reboot (disrupts all paths) issue reboot at edge router

network load flood network path with burst

disk failure change SMART attributes [63]

Figure 5—Panel of modeled faults. The three groups should

generate stop, unreachability, and warning reports, respectively.

informs the client library if a condition clears or changes

expected duration. The client library in turn calls back

the client, and also exposes active conditions via the

query() function (§3.1).

(5) To avoid reporting false stop conditions, the inter-

preter reports a stop only for the critical faults (F-exit,

etc.), which sensors always confirm (by design).

5 Experimental evaluation

We evaluate Pigeon by assessing its reports (§5.1), its

benefit to applications (§5.2), and its costs (§5.3). Fig-

ure 4 summarizes the results.

Fully assessing Pigeon’s benefit would require running

Pigeon against real-world failure data. We do not have

that data, and gathering it would be a paper in its own

right [28]. Instead, we consider several real-world appli-

cations and failure scenarios, and show Pigeon’s benefit

for these instances.

Specifically, our evaluation compares our prototype

to a set of baselines, in a test network, under synthetic

faults. The three baselines in our experiments are:

1. End-to-end timeouts, set aggressively (200 ms time-

out on a ping sent every 250 ms) and to more usual

values (10 second timeout; ping every 5 seconds).

2. Falcon, with and without killing to confirm failure.

We call the version without killing Falcon-NoKill.

3. A set of Linux system calls (§2.1): send() in-

voked every 250 ms, recv(), and epoll(), with

and without error queues.

Our test network has 16 routers and 3 physical hosts,

each multiplexing up to 4 virtual machines (VMs).5 Our

5We do not expect much loss of fidelity in network performance from

using VMs. The peak throughput achieved by a benchmark tool, net-

8

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 435

fault Pigeon 200 ms timeout Linux syscalls Falcon [46] Falcon-NoKill

process crash ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

host reboot ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

link failure (no partition) ⋆ ⋆ ⋆ ⋆ ⋆

link failures (partition) ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

router reboot ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

network load ⋆ ⋆ ⋆ ⋆ ⋆

disk failure ⋆ ⋆ ⋆

Figure 6—Pigeon compared to baseline failure reporters under our fault panel. More stars and smaller bars are better. Stars

indicate the quality of a report; bars indicate the detection time. A maximum of four stars are awarded for detecting a failure, giving

a certain report, giving more information than just crashed-or-not (e.g., indicating the cause as network load), and for not killing.

Bar length and error bars depict mean detection time and standard deviation. These quantities are scaled; maximum is 30 seconds

(long bars), which means “not covered”. For the faults in our panel, Pigeon has higher quality, lower detection time, or both.

testbed looks like this:

It comprises three pods (gray circles), consisting of four

routers (white circles) and hosts (white squares). This is

a fat-tree topology [3], which we use to model a data cen-

ter. Note that our operating assumptions are data centers,

fat-tree, and OSPF; these assumptions are compatible, as

data centers use OSPF.6 Our topology has the same size

as the one evaluated by Al-Fares et al. (minus one pod),

albeit with different hardware [3].

Our routers are ASUS RT-N16s that run DD-WRT

(basically Linux) [25], and use the Quagga networking

suite [55] patched to detect link failure with BFD [38].

Our hypervisors run on three Dell PowerEdge T310s,

each with a quad-core Intel Xeon 2.4 GHz processor,

4 GB of RAM, and ten Gigabit Ethernet ports (four of

which are designated for VMs). The VMs are guests

of QEMU v1.1 and the KVM extensions of the Linux

3.4.9-gentoo kernel. The guests run 64-bit Linux (2.6.34-

gentoo-r6) and have either 768 MB of memory (labeled

small) or 1536 MB of memory (large). Each VM attaches

to the network using the host’s Intel 82574L NIC, which

it accesses via PCI passthrough.

Figure 5 lists the panel of faults in our experiments.

Although the faults are synthetic, the resulting failures

model a class of actual problems.

5.1 How well does Pigeon do its job?

In this section, we first evaluate Pigeon’s reports and then

the effect of duration estimation error.

Multi-dimensional study. There are many competing

requirements in failure reporting; the challenge is not to

meet any one of them but rather to meet all of them. Thus,

perf [2], is the same for a virtual and physical machine in our testbed,

and in our experiments, VMs do not contend for physical resources.
6A non-assumption is using layer 3: there are data center architectures,

based on fat-tree variants, that use OSPF at layer 2 [31].

we perform a multi-dimensional study of Pigeon and the

baselines.

Quantitatively, we investigate timeliness: for each pair

of failure reporter and fault, we perform 10 runs in which

a client process on a (small) VM monitors a target pro-

cess on another (small) VM in the same pod. We record

the detection time as the delay between when the appa-

ratus issues an RPC (to fault injection modules on the

routers and hosts) and when the client receives an er-

ror report; if no report is received within 30 seconds, we

record “not covered”. Qualitatively, we develop a rating

system of failure reporting features: certainty, ability to

give warnings, etc.

Figure 6 depicts the comparison. Pigeon’s reports are

generally of higher quality than those of the baselines;

for instance, Falcon offers certainty, but it kills to do so.

And none of the baselines gives proactive warnings, as

Pigeon does for the final two faults in the panel. In Sec-

tion 5.2, we investigate how these qualitative differences

translate into benefits for the application.

Pigeon’s reports are timely. For process crashes, sin-

gle link failure, partition, and router reboot, the mean de-

tection times are 10 ms, 710 ms, 660 ms, and 690ms.

For host reboots, Pigeon has a mean detection time of

1.9 seconds. (Detecting host reboot takes longer because

we measure from when the reboot command is issued,

and there is delay between then and when the reboot af-

fects processes.)

Pigeon has full coverage, at least in our experiments.

Finally, we come to accuracy (recall that Pigeon has to

balance coverage, timeliness, and accuracy). In our ex-

periments, Pigeon is accurate: we never observe Pigeon

incorrectly reporting a fault that has not occurred (a pro-

duction deployment would presumably see some false re-

ports and could adjust its parameters should such reports

become problematic; see Section 4). Next, we consider

the effect of duration estimation error in Pigeon’s reports.

Duration estimation error. To understand the effect of

duration estimation error, we compare our prototype to

an ideal failure informer that predicts the exact duration

of a failure condition. Specifically, we measure the ad-

9

436 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9 10

cu
m

u
la

ti
v

e
p

ro
b

ab
il

it
y

cost of Pigeon over ideal failure informer (sec)

small threshold
large threshold

Figure 7—CDF of Pigeon’s cost over the ideal failure informer

for two sample applications, with availability thresholds (§3.3)

smaller and larger than Pigeon’s duration estimate.

ditional unavailability that Pigeon causes in two applica-

tions: one that always recovers when using Pigeon be-

cause its unavailability threshold (§3.3) is smaller than

Pigeon’s estimate (which is static; see Section 4.4), and

one that always waits (because its threshold is higher).

We perform a simulation; we sample failure durations

from a Weibull distribution (shape 0.5, scale 1.0), which

is heavy-tailed and intended to stress the prototype’s

static estimate by “spreading out” the range of actual fail-

ures. For each sample, we record the cost, defined as the

additional unavailability of the application when it uses

Pigeon versus when it uses the ideal. We model the ap-

plication’s recovery duration and availability threshold as

equal to each other.

Figure 7 depicts the results. For the small threshold,

Pigeon matches the ideal for fewer than 30% of the sam-

ples because a significant fraction of the actual durations

are very close to zero. Since this application always re-

covers with Pigeon, it frequently incurs (unnecessary)

unavailability from recovery: waiting out these short fail-

ures would have resulted in less unavailability. For the

large threshold, Pigeon matches the ideal for almost 80%

of the samples but sometimes does much worse, since it

waits on a long tail of failure durations. However, both

applications’ costs are capped, owing to their backstop

timeouts. Additionally, we find that these simulated ap-

plications incur lower costs from using Pigeon compared

to choosing “recover” or “wait” uniformly at random.

5.2 Does Pigeon benefit applications?

We consider three case study applications that use Pi-

geon differently: RAMCloud [52], Cassandra [43], and

lease-based replication [30]. For each, we consider the

unmodified system, the system modified to use Pigeon,

and the system modified to use one or more baselines.

RAMCloud [52]. RAMCloud is a storage system that

stores data in DRAM at a set of master servers, which

process client requests. RAMCloud replicates data on

the disks of multiple backup servers, for durability. To

reduce unavailability after a master server fails, a coor-

RAMCloud using

fault timeout Falcon [46] Pigeon

process crash 2.7s, eject 2.1s, eject 1.9s, eject

host reboot 2.6s, eject 1.8s, eject 1.9s, eject

link failure (no partition) 2.8s, eject 2.6s, wait 2.6s, wait

link failures (partition) 2.6s, eject ∞, wait 2.6s, eject

router reboot 2.6s, eject ∞, wait 1.7s, eject

network load ∞, eject 0.5s, wait 0.5s, wait

Figure 8—Mean unavailability observed by a RAMCloud

client when RAMCloud uses different detection mechansims

(standard deviations are within 15% of means). We also note

whether RAMCloud ejects a server or waits for the fault to

clear. Pigeon is roughly as timely as highly aggressive timeouts

but saves RAMCloud the cost of recovery sometimes (under

link failure (no partition) and network load faults). Falcon [46]

hangs on network failures, so RAMCloud+Falcon does too

(represented with ∞). Using timeouts, RAMCloud sometimes

hangs if network load triggers multiple recoveries.

dinator manages recovery to reconstruct data from the

backups quickly. There are two notable aspects of RAM-

Cloud for our purposes. First, although recovery is fast,

it is expensive (it draws data from across the system, and

it ejects the server, reducing capacity). Second, RAM-

Cloud has an aggressive timeout: it detects failures by

periodically pinging other servers at random and then

timing out after 200 ms.

Thus, we expect that unmodified RAMCloud recov-

ers more often than needed, and that Pigeon could help

it begin recovery quickly or avoid recovering; we also

expect that Pigeon can offer this benefit while provid-

ing full coverage and timely information. To investigate,

we modify RAMCloud servers to use Pigeon and Fal-

con (with long backstop timeouts that do not fire in these

experiments). We run a RAMCloud cluster on six large

VMs (one client, five servers; two VMs in each pod),

where each server stores 20MB of data. This configura-

tion allows RAMCloud to recover quickly on our testbed,

at the cost of ejecting a server. For each injected fault, we

perform 10 iterations and measure the gap in response

time that is seen by a client querying in a closed loop.

Figure 8 depicts the results. Pigeon is roughly as

timely as very aggressive timeouts, deriving its timeli-

ness from sensors. Pigeon also enables RAMCloud to

forgo recovery when possible. For instance, RAMCloud

waits under network load when it receives a warning

from Pigeon. Under a link failure, RAMCloud receives

an unreachability condition with a short duration (equal

to the network convergence time), so it waits. By con-

trast, under router reboot, RAMCloud receives an un-

reachability condition with a long duration (see Sec-

tion 4.4), so it recovers.

Cassandra [43]. Cassandra [43] is a distributed key-

value storage system used broadly (e.g., at Netflix, Cisco,

10

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 437

 0

 50

 100

 150

 200

 0 5 10 15 20

T
h

ro
u

g
h

p
u

t
(r

ea
d

s/
se

c)

time (sec)

Pigeon snitch
unmodified snitch

Figure 9—Cassandra’s read throughput with and without Pi-

geon, after a network link fails 5 seconds into the run, tem-

porarily disrupting a single server. Using Pigeon, the Cassan-

dra snitch avoids using an unreachable replica; without Pigeon,

Cassandra waits for the server to become reachable again. This

example is representative: in our experiments, clients observed

a mean unavailability of 1 second (σ < 0.1) using Pigeon and

2.2 seconds (σ = 1.3) using the unmodified snitch.

and Reddit [16]). Cassandra servers read data from a pri-

mary replica and request digests from the other replicas.

Thus, the choice of primary is important: if the primary

has a problem, the server blocks until the problem is

solved or the request times out. A server chooses as its

primary the replica with the lowest expected request la-

tency, as reported by an endpoint snitch.

We expect that Pigeon could help a snitch make better

server selections. To measure this benefit, we run a client

in a closed loop, inject two faults (network load and link

failure) at a server in a five-server cluster (using large

VMs), and measure the throughput.

Under network load (not depicted), the unmodified

snitch and the Pigeon snitch offer comparable (signifi-

cant) benefit over no snitch, as the unmodified snitch’s

decisions are based on latencies—but only if the network

is working. This brings us to Figure 9, which depicts the

link failure case: here, Pigeon’s report to the snitch al-

lows the server to quickly choose a better primary, re-

sulting in higher throughput. Compare to RAMCloud:

Pigeon lets Cassandra act more quickly than it other-

wise would (because Pigeon reports the case and because

switching is cheap), whereas this same report lets RAM-

Cloud wait when it would otherwise act (see above).

Lease-based replication [30]. A common approach to

replication is to use a lease server [13, 30], which grants

a lease to a master replica, which in turn handles client

requests, forwarding them to backups. If a backup detects

or suspects a failure, it tries to become the master, by

requesting a lease from the lease server. However, this

process is delayed by the time remaining on the lease.

We expect that Pigeon’s stop reports would be par-

ticularly useful here: they report that a lease holder has

crashed with certainty, which allows the system to break

the lease, increasing system availability.7 To investigate,

we build a demo replication application and lease server,

which offers 10-second leases, and run it with and with-

out Pigeon. We run a client (10 iterations) that issues

queries in a closed loop, measuring the response gap seen

by the client after we inject a process crash at the master.

The results are unsurprising (but encouraging): the re-

sponse gap measured at the client averages 2.7 seconds

(standard deviation 0.4 seconds) when using Pigeon, ver-

sus 6.1 seconds (standard deviation 2.5 seconds) using

unmodified lease expiration.

Which applications do not gain from Pigeon? We

considered simple designs for many applications; Pigeon

usually provides a benefit but sometimes not. For exam-

ple, a DNS client can use Pigeon to monitor its DNS

server and quickly failover to a backup server when there

is a problem. However, because the client’s recovery is

lightweight (retry the request), there is little benefit over

using short end-to-end timeouts, since the cost of inac-

curacy is low. Some applications do not make use of any

information about failures; such applications likewise do

not gain from Pigeon. For example, NFS (on Linux) has

a hard-mount mode, in which the NFS client blocks until

it can communicate with its NFS server; this NFS client

does not expose failures or act on them. However, such

applications are not our target since they consciously re-

nounce availability.

5.3 What are Pigeon’s costs?

Implementation costs. Pigeon has 5.4K lines of C++

and Java. Sensors are compact, and the system is easy to

extend (e.g., the disk failure logic required only 34 lines).

Integrating Pigeon into applications is easy: it required

68 lines for RAMCloud and 414 lines for Cassandra.

CPU and network overheads. Figure 10 shows the

resource costs of Pigeon. CPU use is small; the main cost

is a high-priority process in the embedded sensor, which

periodically increments a shared counter (§4.2). Pigeon’s

network overheads come from OSPF LSAs to hosts.

Scalability. The main limiting factor is bandwidth to

propagate failure data; this overhead is inherited from

OSPF, which generates a number of LSAs proportional

to the number of router-to-router links in the network.

And this many LSAs are reasonable for networks with

thousands of routers and tens of thousands of hosts.

Specifically, we estimate that in a 48-port fat-tree topol-

ogy with 2880 routers and 27,648 end-hosts [3], OSPF

would use less than 11.8 Mbps of bisection bandwidth

(or 1.1% of 1 Gbps capacity), which is consistent with

our smaller-scale measurements. Larger networks would

7Note that Falcon would also enable such lease-breaking, but Falcon is

incompatible with the availability requirement: if the problem is in the

network, a query to Falcon literally hangs.

11

438 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

component (§4) detecting network load idle

CPU used at end-hosts

process sensor/host relay 0.1% 0.0%

embedded sensor 3.0% 0.0%

interpreter 0.0% 0.0%

CPU used at routers

router sensor/relay 0.2% 0.0%

OSPF sensor/relay 0.1% 0.0%

bandwidth used

at each end-host 2.3 kbps 0 bps

at each router 3.4 kbps 1.3 kbps

Figure 10—Resource overheads of our Pigeon implementation.

presumably use multiple areas; we briefly discuss ex-

tending Pigeon to that setting in the next section.

6 Discussion, limitations, and future work

We now consider assumptions and limitations of the fail-

ure informer abstraction (§3.1–§3.2), the Pigeon archi-

tecture (§3.4), and our prototype implementation (§4).

The abstraction. How do we know if we got the ab-

straction right? As with any abstraction, this one is based

on generalizing from specific difficult cases, on judg-

ment, and on use cases. It is hard to prove that an ab-

straction is optimal (but ours is better than at least our

own previous attempts). A critique is that an implemen-

tation of the abstraction is permitted to return spurious

“uncertain” reports. However, uncertainty is fundamen-

tal and hence some wrong answers are inevitable (§2.2);

thus, this critique is really a requirement that the imple-

mentation have few false positives (§5.1).

The architecture. Our architecture assumes a single

administrative domain. This scenario has value (many

data centers satisfy this assumption), but extending to

a federated context may be worthwhile. However, this

requires additional research; prior work gives a starting

point [5, 6, 8, 61, 68].

The prototype. Our prototype assumes OSPF, runs on

layer 3, and monitors only end-hosts and routers (not

middleboxes). We could extend our prototype to other

routing protocols, by implementing appropriate relays

and sensors (§4.2–§4.3). We could also extend to layer-2

networks, either with OSPF (some layer-2 architectures

run OSPF for routing [31]), or without; in the latter case,

the prototype would need different sensors and relays.

Another extension is to monitor middleboxes using ad-

ditional types of sensors. Neither our current prototype

nor these extensions requires structural network changes.

(The logic for sensors and relays is small and runs in soft-

ware, on a router’s or switch’s control processor.)

We estimated our prototype’s scalability in Sec-

tion 5.3: it ought to scale to tens of thousands of hosts

in a single area, with the limit coming from OSPF itself.

OSPF can scale to more hosts, by using multiple areas;

we could extend Pigeon to this case using additional sen-

sors and relays at area borders to address what would

otherwise be a loss of accuracy (since areas are opaque

to each other). We leave this for future work.

7 Related work

Pigeon borrows low-level mechanisms from prior work

in network monitoring and failure handling. We describe

these two areas, and also present an extended comparison

with Falcon [46], which is Pigeon’s closest relative.

Network monitoring and intelligence. Many works in

network monitoring [7, 9, 23, 26, 29, 40, 41, 67, 69]

are complementary to Pigeon. Broadly speaking, these

works extract intelligence from network elements to aid

diagnosis, and Pigeon could use these techniques. In-

deed, Pigeon’s OSPF monitoring technique is borrowed

from Shaikh et al. [59, 60] (see Section 4.4). However,

the goal of these works is to help network operators per-

form diagnosis while Pigeon’s is to provide an online

failure reporting abstraction to distributed applications.

Providing a comprehensive service to distributed ap-

plications, using global information about the state of

a network, is the goal of information planes [19, 65].

Works in this area include the Knowledge Plane [22],

Sophia [58, 65] (which provides a distributed computa-

tional model for queries), iPlane [49, 50] (which helps

end-host applications choose servers, peers, or relays,

based on link latency, link loss, link capacity, etc.), and

NetQuery [61] (which instantiates a Knowledge Plane

under adversarial assumptions). These works are more

flexible than Pigeon (they usually expose an interface to

arbitrary queries), while Pigeon is more focused: its goal

is to report failure conditions to applications, a capability

that these papers do not discuss.

More targeted works include Meridian [66] (a node

and path selection service), King [32] (a latency esti-

mation service), and Network Exception Handlers [36]

(NEHs), which proactively delivers information from the

network to the end-host operating system, so end-hosts

can participate in traffic engineering. The goals of these

systems are different from Pigeon’s goal of exposing fail-

ures. But again, Pigeon could be extended to use similar

techniques, and in fact, Pigeon’s callback-based architec-

ture is reminiscent of the delivery mechanism in NEH.

While there are works that do report network failures

and errors to end-hosts [5, 42, 64], they do not provide a

comprehensive abstraction or full coverage, in contrast to

Pigeon’s goal. For example, Packet Obituaries [5] (POs)

proposes that each dropped packet should generate a re-

port about which AS dropped it. Their credo (“keep the

host informed!”) is similar to ours, and information about

POs would be useful for Pigeon, but POs do not obviate

Pigeon. First, under POs, the network generates reports

12

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 439

Falcon [46] Pigeon

interface failure detector (crashes) failure informer (§3.1–§3.2)

accuracy always accurate usually accurate

timeliness fast fast

domain host failures host+network failures

coverage incomplete full

blocks yes no

kills yes no

Figure 11—Pigeon compared to its most closely related sys-

tem, Falcon [46]. Falcon has better accuracy, which simplifies

the layers over it, but Pigeon is superior in the other respects

and in particular leads to higher availability.

proactively but only when the host sends a packet, so this

mechanism has the limitation discussed in Section 2.1,

of allowing latent failures to persist. Second, POs pro-

vide low-level information about individual packets, in

contrast to Pigeon’s higher-level goal. Third, POs do not

provide information about host failures.

Failure recovery and detection. Handling failures re-

quires recovery and detection. Host failure recovery

(see [24] and citations therein) is complementary to our

work. (From our vantage, strategies such as microre-

boot [14, 15] are about masking and containing faults;

for us, recovery is about what to do when faults cannot

be masked.) Networks, of course, are designed for re-

covery, but there are techniques for making them even

more robust: Failure Carrying Packets [44] and Safe-

Guard [47] mask failures by carrying control plane infor-

mation inside data packets, and in Data-Driven Connec-

tivity [48], data plane packets trigger limited routing state

changes. Though these works are orthogonal to ours, an

open question is whether applications can benefit from

knowing that fault masking is underway.

The other aspect of handling failures is detection.

Chandra and Toueg [17] gave a theory of failure de-

tection, in the context of a client monitoring a remote

process. Since then, a number of failure detectors (FDs)

based on end-to-end timeouts have been proposed, in-

cluding by Bertier et al. [11], Chen et al. [18], and So and

Sirer [62]. The φ-accrual FD, by Hayashibara et al. [34],

extends the FD interface with a measure of confidence.

This notion of confidence contrasts with Pigeon’s notion

of “certain crash”: the confidence is probabilistic, so even

when the φ-accrual failure detector reports a crash with

high confidence, the monitored process may be up. The

failure detection literature, particularly the Falcon failure

detector [46], influenced the design of Pigeon; we com-

pare the two systems immediately below.

Pigeon vs. Falcon [46]. Falcon observed the power of

low-level information, and Pigeon borrows this observa-

tion, but the two have different goals, different proper-

ties, and different designs. Figure 11 shows the differ-

ences. Falcon is an accurate failure detector [17]—an ex-

isting abstraction that reports crash or up; by contrast,

Pigeon presents a new abstraction (the failure informer)

that exposes more information but with less accuracy.

Furthermore, Falcon does not have full coverage of hosts

or any coverage of the network; in the non-covered cases,

it hangs. In terms of design, Falcon (a) uses low-level

information only from hosts, (b) relies on the layered

structure of end-host system software, and (c) relies on

killing. Pigeon faces a bigger problem (network and host

failures, and a richer interface), in a landscape that does

not admit a layered structure or a license to kill. Thus,

Pigeon needs a different design, one that has intelligence

from the network and better local knowledge. Further-

more, there is a philosophical distinction in the knowl-

edge provided: Falcon reports the things that it knows it

knows, while Pigeon in addition gives timely reports of

the things that it knows it doesn’t know, and eventual re-

ports of the things that it does not know it does not know.

8 Summary and conclusion

The Internet is transparent to success but opaque to

failure [5].

Pigeon’s top-level contributions are architectural: a

thesis that applications should get information about fail-

ures, and a proposal to encapsulate that information in a

new abstraction that conveys the degree of certainty. Of

course, there is much about Pigeon to object to: its ul-

timate goal (better availability) is shared by all, its de-

sign is unsurprising, its mechanisms are borrowed, and

its implementation is limited. Nevertheless, this deriva-

tive system in fact enables higher application availability,

and it does so by enabling new behavior and functional-

ity in applications. Specifically, applications can use the

information provided by Pigeon to take the most appro-

priate action for the failure at hand: to initiate recovery

more quickly, to execute a simpler recovery strategy, to

recover proactively, or to simply wait it out by not re-

covering yet. As demonstrated in our experimental eval-

uation, this freedom leads to qualitatively and quantita-

tively better behavior, for a modest price in resources.

Pigeon, then, is like its namesake: in the wrong environ-

ment, it is a homely nuisance; in the right one, it is a key

tool with surprisingly powerful functionality.

Acknowledgments

This paper was improved by the helpful comments of

Lorenzo Alvisi, Sebastian Angel, Mahesh Balakrishnan,

Russ Cox, Alan Dunn, James Grimmelmann, Rodrigo

Rodrigues, Srinath Setty, Scott Shenker, and Edmund L.

Wong. We thank the anonymous reviewers, and our shep-

herd Katerina Argyraki, for their suggestions. This re-

search was supported in part by AFOSR grant FA9550-

10-1-0073 and NSF grants 1055057 and 1040083.

13

440 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

References

[1] Linux-HA, High-Availability software for Linux.

http://www.linux-ha.org.

[2] Netperf, the network performance benchmark.

www.netperf.org.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In ACM

SIGCOMM, pages 63–74, Aug. 2008.

[4] P. A. Alsberg and J. D. Day. A principle for resilient sharing of

distributed resources. In International Conference on Software

Engineering (ICSE), pages 562–570, 1976.

[5] K. Argyraki, P. Maniatis, D. Cheriton, and S. Shenker. Providing

packet obituaries. In ACM Workshop on Hot Topics in Networks

(HotNets), Nov. 2004.

[6] K. Argyraki, P. Maniatis, and A. Singla. Verifiable

network-performance measurements. In ACM Conference on

Emerging Networking EXperiments and Technologies

(CoNEXT), Dec. 2010.

[7] H. Ballani and P. Francis. Fault management using the CONMan

abstraction. In INFOCOM, Apr. 2009.

[8] B. Barak, S. Goldberg, and D. Xiao. Protocols and lower bounds

for failure localization in the Internet. In EUROCRYPT, Apr.

2008.

[9] T. Benson, A. Akella, and D. Maltz. Unraveling the complexity

of network management. In Symposium on Networked Systems

Design and Implementation (NSDI), pages 335–348, Apr. 2009.

[10] L. Berger, I. Bryskin, A. Zinin, and R. Coltun. The OSPF opaque

LSA option. RFC 5250, Network Working Group, July 2008.

[11] M. Bertier, O. Marin, and P. Sens. Implementation and

performance evaluation of an adaptable failure detector. In

International Conference on Dependable Systems and Networks

(DSN), pages 354–363, June 2002.

[12] K. P. Birman and T. A. Joseph. Exploiting virtual synchrony in

distributed systems. In ACM Symposium on Operating Systems

Principles (SOSP), pages 123–138, Nov. 1987.

[13] M. Burrows. The Chubby lock service for loosely-coupled

distributed systems. In Symposium on Operating Systems Design

and Implementation (OSDI), pages 335–350, Dec. 2006.

[14] G. Candea, J. Cutler, and A. Fox. Improving availability with

recursive microreboots: A soft-state system case study.

Performance Evaluation Journal, 56(1–4):213–248, Mar. 2004.

[15] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.

Microreboot—a technique for cheap recovery. In Symposium on

Operating Systems Design and Implementation (OSDI), pages

31–44, Dec. 2004.

[16] The Apache Cassandra Project.

http://cassandra.apache.org/.

[17] T. D. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. Journal of the ACM,

43(2):225–267, Mar. 1996.

[18] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of

service of failure detectors. IEEE Transactions on Computers,

51(5):561–580, May 2002.

[19] B. Chun, J. M. Hellerstein, R. Huebsch, P. Maniatis, and

T. Roscoe. Design considerations for Information Planes. In

Workshop on Real, Large, Distributed Systems (WORLDS), Dec.

2004.

[20] D. D. Clark. The structuring of systems using upcalls. In ACM

Symposium on Operating Systems Principles (SOSP), pages

171–180, Dec. 1985.

[21] D. D. Clark. The design philosophy of the DARPA Internet

protocols. In ACM SIGCOMM, pages 106–114, Aug. 1988.

[22] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski.

A knowledge plane for the Internet. In ACM SIGCOMM, pages

3–10, Aug. 2003.

[23] E. Cooke, R. Mortier, A. Donnelly, P. Barham, and R. Isaacs.

Reclaiming network-wide visibility using ubiquitous end system

monitors. In USENIX Annual Technical Conference, June 2006.

[24] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and

A. Warfield. Remus: High availability via asynchronous virtual

machine replication. In Symposium on Networked Systems

Design and Implementation (NSDI), pages 161–174, Apr. 2008.

[25] DD-WRT firmware. http://www.dd-wrt.com.

[26] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot.

Troubleshooting network unreachabilities using end-to-end

probes and routing data. In ACM Conference on Emerging

Networking EXperiments and Technologies (CoNEXT), Dec.

2007.

[27] C. Fetzer. Perfect failure detection in timed asynchronous

systems. IEEE Transactions on Computers, 52(2):99–112, Feb.

2003.

[28] P. Gill, N. Jain, and N. Nagappan. Understanding network

failures in data centers: Measurement, analysis, and

implications. In ACM SIGCOMM, pages 350–361, Aug. 2011.

[29] S. Goldberg, D. Xiao, E. Tromer, B. Barak, and J. Rexford.

Path-quality monitoring in the presence of adversaries. In

SIGMETRICS, pages 193–204, June 2008.

[30] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant

mechanism for distributed file cache consistency. In ACM

Symposium on Operating Systems Principles (SOSP), pages

202–210, Dec. 1989.

[31] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,

P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: a scalable

and flexible data center network. In ACM SIGCOMM, pages

51–62, Aug. 2009.

[32] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Estimating

latency between arbitrary Internet end hosts. In SIGCOMM

Workshop on Internet Measurement (IMW), pages 5–18, Nov.

2002.

[33] G. Hamerly and C. Elkan. Bayesian approaches to failure

prediction for disk drives. In International Conference on

Machine Learning (ICML), pages 202–209, June 2001.

[34] N. Hayashibara, X. Défago, R. Yared, and T. Katayama. The φ

accrual failure detector. In IEEE Symposium on Reliable

Distributed Systems (SRDS), pages 66–78, Oct. 2004.

[35] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:

Wait-free coordination for Internet-scale systems. In USENIX

Annual Technical Conference, pages 145–158, June 2010.

[36] T. Karagiannis, R. Mortier, and A. Rowstron. Network

exception handlers: Host-network control in enterprise networks.

In ACM SIGCOMM, Aug. 2008.

[37] D. Katz, K. Kompella, and D. Yeung. Traffic enginnering (TE)

extensions to OSPF Version 2. RFC 3630, Network Working

Group, Sept. 2003.

[38] D. Katz and D. Ward. Bidirectional forwarding detection (BFD)

for IPv4 and IPv6 (single hop). RFC 5881, Network Working

Group, June 2010.

[39] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE: a

scalable Ethernet architecture for large enterprises. In ACM

SIGCOMM, pages 3–14, Aug. 2008.

[40] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren. IP

fault localization via risk modeling. In Symposium on Networked

Systems Design and Implementation (NSDI), May 2005.

[41] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren.

Detection and localization of network black holes. In

INFOCOM, pages 2180–2188, May 2007.

[42] R. Krishnan, J. P. G. Sterbenz, W. M. Eddy, C. Partridge, and

M. Allman. Explicit transport error notification (ETEN) for

error-prone wireless and satellite networks. Computer Networks,

46(3):343–362, 2004.

[43] A. Lakshman and P. Malik. Cassandra – A decentralized

structured storage system. In International Workshop on Large

Scale Distributed Systems and Middleware (LADIS), Oct. 2009.

[44] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,

14

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 441

S. Shenker, and I. Stoica. Achieving convergence-free routing

using failure-carrying packets. In ACM SIGCOMM, pages

241–252, Aug. 2007.

[45] L. Lamport. The part-time parliament. ACM Transactions on

Computer Systems (TOCS), 16(2):133–169, May 1998.

[46] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and

M. Walfish. Detecting failures in distributed systems with the

FALCON spy network. In ACM Symposium on Operating

Systems Principles (SOSP), pages 279–294, Oct. 2011.

[47] A. Li, X. Yang, and D. Wetherall. SafeGuard: Safe forwarding

during route changes. In ACM Conference on Emerging

Networking EXperiments and Technologies (CoNEXT), pages

301–312, Dec. 2009.

[48] J. Liu, S. Shenker, M. Schapira, and B. Yang. Ensuring

connectivity via data plane mechanisms. In Symposium on

Networked Systems Design and Implementation (NSDI), Apr.

2013.

[49] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson,

A. Krishnamurthy, and A. Venkataramani. iPlane: An

information plane for distributed services. In Symposium on

Operating Systems Design and Implementation (OSDI), pages

367–380, Nov. 2006.

[50] H. V. Madhyastha, E. Katz-Bassett, T. Anderson,

A. Krishnamurthy, and A. Venkataramani. iPlane Nano: path

prediction for peer-to-peer applications. In Symposium on

Networked Systems Design and Implementation (NSDI), pages

137–152, Apr. 2009.

[51] J. Moy. OSPF version 2. RFC 2328, Network Working Group,

Apr. 1998.

[52] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and

M. Rosenblum. Fast crash recovery in RAMCloud. In ACM

Symposium on Operating Systems Principles (SOSP), pages

29–41, Oct. 2011.

[53] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a

large disk drive population. In USENIX Conference on File and

Storage Technologies (FAST), pages 17–28, Feb. 2007.

[54] J. Postel. Internet control message protocol. RFC 792, Network

Working Group, 1981.

[55] The Quagga routing software suite.

http://www.nongnu.org/quagga/.

[56] K. K. Ramakrishnan, S. Floyd, and D. Black. The addition of

Explicit Congestion Notification (ECN) to IP. RFC 3168,

Network Working Group, Sept. 2001.

[57] A. Retana, L. Nguyen, R. White, A. Zinin, and D. McPherson.

OSPF stub router advertisement. RFC 3137, Network Working

Group, June 2001.

[58] T. Roscoe, R. Mortier, P. Jardetzky, and S. Hand. InfoSpect:

Using a logic language for system health monitoring in

distributed systems. In ACM SIGOPS European Workshop,

pages 31–37, Sept. 2002.

[59] A. Shaikh, M. Goyal, A. Greenberg, R. Rajan, and K. K.

Ramakrishnan. An OSPF topology server: design and

evaluation. IEEE JSAC, 20(4):746–755, May 2002.

[60] A. Shaikh and A. Greenberg. OSPF monitoring: Architecture,

design, and deployment experience. In Symposium on

Networked Systems Design and Implementation (NSDI), pages

57–70, Mar. 2004.

[61] A. Shieh, E. G. Sirer, and F. B. Schneider. NetQuery: A

knowledge plane for reasoning about network properties. In

ACM SIGCOMM, pages 278–289, Aug. 2011.

[62] K. So and E. G. Sirer. Latency and bandwidth-minimizing

failure detectors. In European Conference on Computer Systems

(EuroSys), pages 89–99, Mar. 2007.

[63] C. E. Stevens. AT attachment 8 - ATA/ATAPI command set.

Technical Report 1699, Technical Committee T13, Sept. 2008.

[64] J. Stone and C. Partridge. When the CRC and TCP checksum

disagree. In ACM SIGCOMM, pages 309–319, Aug. 2000.

[65] M. Wawrzoniak, L. Peterson, and T. Roscoe. Sophia: An

information plane for networked systems. In ACM Workshop on

Hot Topics in Networks (HotNets), Nov. 2003.

[66] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight

network location service without virtual coordinates. In ACM

SIGCOMM, Aug. 2005.

[67] M. Zhang, C. Zhang, V. Pai, L. Peterson, and R. Wang.

PlanetSeer: Internet path failure monitoring and characterization

in wide-area services. In Symposium on Operating Systems

Design and Implementation (OSDI), pages 167–182, Dec. 2004.

[68] X. Zhang, A. Jain, and A. Perrig. Packet-dropping adversary

identification for data plane security. In ACM Conference on

Emerging Networking EXperiments and Technologies

(CoNEXT), Dec. 2008.

[69] Y. Zhao, Y. Chen, and D. Bindel. Towards unbiased end-to-end

network diagnosis. In ACM SIGCOMM, pages 219–230, Sept.

2006.

15

