
USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 443

BOSS: Building Operating System Services

Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja,
Sagar Karandikar, Gabe Fierro, Nikita Kitaev, and David Culler

Computer Science Division, University of California, Berkeley

Abstract
Commercial buildings are attractive targets for introduc-
ing innovative cyber-physical control systems, because
they are already highly instrumented distributed systems
which consume large quantities of energy. However, they
are not currently programmable in a meaningful sense
because each building is constructed with vertically inte-
grated, closed subsystems and without uniform abstrac-
tions to write applications against. We develop a set of
operating system services called BOSS, which supports
multiple portable, fault-tolerant applications on top of the
distributed physical resources present in large commer-
cial buildings. We evaluate our system based on lessons
learned from deployments of many novel applications
in our test building, a four-year-old, 140,000sf building
with modern digital controls, as well as partial deploy-
ments at other sites.

1 Introduction
Researchers and futurists working on ubiquitous and

pervasive computing have long argued that a future full
of personalized interaction between people and their en-
vironment is near [49, 42]. But this future has been
primarily held back by the lack of a path from concept
demonstration to broad deployment: developers have
prototyped hundreds of interesting sensors [11, 36, 21],
bringing new information about the world into a digital
form, and tied these sensors together with actuators to
provide interesting new capabilities to users. But invari-
ably, these are developed and deployed as standalone,
vertical applications, making it hard to share infrastruc-
ture investment among a variety of applications.

What is needed is an operating system to knit together
existing pieces of infrastructure, Internet data feeds, and
human feedback into a cohesive, extendable, and pro-
grammable system; i.e., provide convenient abstractions
and controlled access to shared physical resources. Do-
ing so is a significant challenge, since such a system must
bring together legacy systems with their own quirks, pro-

vide a path forward for new, native devices, and provide
improved and simplified interfaces at multiple levels of
abstraction. Existing buildings are not “programmable”
in a meaningful sense: there are no layers of abstraction
between the program and the system; programs may only
access sensors and actuators at the very lowest level. As
a result, applications are not portable, and it is impos-
sible to provide protected access to an application, due
to semantic mismatches between the level of policy and
the level of access. We propose a new architecture for
building control systems which, in addition to operating
the machinery, provides for robust, portable application
development and support many simultaneously running
applications on the common physical infrastructure of a
building. While buildings provide a concrete context,
many of the ideas could be applied to other complex,
connected physical systems.

We develop a collection of services forming a dis-
tributed operating system that solves several key prob-
lems that prevented earlier systems from scaling across
the building stock. First, as buildings and their contents
are fundamentally complicated, distributed systems with
complex interrelationships, we develop a flexible ap-
proximate query language allowing applications to spec-
ify the components they interact with in terms of their re-
lationship to other components, rather than specific hard-
ware devices. Second, coordinated distributed control
over a federated set of resources raises questions about
behavior in the presence of failure. To resolve this con-
cern, we present a transactional system for updating the
state of multiple physical devices and reasoning about
what will happen during a failure. Finally, there has pre-
viously been a separation between analytics, which deal
with historical data, and control systems, which deal with
real-time data. We demonstrate how to treat these uni-
formly in this environment, and present a time series ser-
vice which allows applications to make identical use of
both historical and real-time data.

Commercial buildings are an excellent environment in



444 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

which to investigate such new systems. Many buildings
already contain thousands of sense and actuation points
which can be manipulated to provide new and surprising
experiences without hardware retrofits. They have large
energy bills, consuming about 73% of all electricity in
the United States [48], making energy efficiency a com-
pelling incentive for new investment. Furthermore, they
are large enough and contain enough people to drive is-
sues of scale, partial failure, isolation, and privacy.

2 Existing Building Systems
A large modern commercial building represents the

work of thousands of individuals and tens or hundreds of
millions of dollars of investment. Most of these buildings
contain extensive internal systems to manufacture an in-
door environment: to provide thermal comfort (heating
and cooling), good air quality (ventilation), and suffi-
cient lighting; other systems provide for life safety (fire
alarms, security) and connectivity (networking). These
systems are frequently provided by different vendors and
have little interoperability or extensibility beyond the
scope of the original system design.

Figure 1: A typical process diagram of an HVAC system
loop in a commercial building.

As an example of the complexity of many of these sub-
systems, Figure 1 shows one common design of a heat-
ing, ventilation, and air conditioning (HVAC) system for
a large building. Air is blown through ducts, where it
passes through variable air volume (VAV) boxes into in-
ternal rooms and other spaces. After circulating, it re-
turns through a return air plenum where a portion is ex-
hausted and the remaining portion is recirculated. The
recirculated air is also mixed with fresh outside air, be-
fore being heated or cooled to a target supply temperature
within an air handler unit (AHU), completing the loop.
Other systems circulate hot and cold water for chang-
ing the air temperature. Many different control loops are
present; the predominant control type is PID controllers
used to meet setpoint targets for air pressure, tempera-
ture, and air volume.

This control in existing building systems operates on

two levels. Direct control is performed in open and
closed control loops between sensors and actuators: a
piece of logic examines a set of input values and com-
putes a control decision which commands an actuator.
These direct control loops frequently have configuration
parameters that govern their operation that are called set-
points; they are set by the building operator, installer,
or engineer. Adjusting setpoints and schedules forms
an outer logical loop, known as supervisory control.
This logical distinction between types of control is typ-
ically reflected physically in the components and net-
working elements making up the system: direct control
is performed by embedded devices called Programmable
Logic Controllers (PLCs) that are hard-wired to sensors
and actuators, while supervisory control and manage-
ment of data for historical use is performed over a shared
bus between the PLCs. This architecture is natural for
implementing direct control loops since it minimizes the
number of pieces of equipment and network links infor-
mation must traverse to affect a particular control policy,
making the system more robust, but it provides no coor-
dinated control of distinct elements, and hard boundaries
which are difficult to overcome. This collection of equip-
ment is collectively known as a Building Management
System (BMS).

The BMS is typically configured, managed, and pro-
grammed through a head-end node sitting on the shared
bus. This node is responsible for providing an opera-
tor interface, storing historical “trend” data, and provid-
ing a point at which to reprogram the other controllers
on the bus. It may also be a point of integration with
other systems and therefore support some amount of re-
programmability or external access; for this reason, it can
be a natural point of access to existing systems.

3 Design Development
To articulate the design of an operating system for

buildings, we introduce three concrete, novel appli-
cations developed through research programs on our
testbed building. The essential commonality is that all
involve substantial interaction between components of
building infrastructure, substantial computational ele-
ments, and building occupants, rather than simply pro-
viding a new interface to existing controls.

3.1 Motivating Applications
Ordinarily, the temperature within an HVAC zone is

controlled to within a small range using a PID controller.
The drive to reach an exact setpoint is actually quite inef-
ficient, because it means that nearly every zone is heating
or cooling at all times. A more relaxed strategy is one
of floating: not attempting to effect the temperature of
the room within a much wider band; however this is not
one of the control policies available in typical commer-



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 445

cial systems even though numerous studies indicate that
occupants can tolerate far more than the typical 2◦F vari-
ation allowed [4]. Furthermore, the minimum amount of
ventilation air provided to each zone is also configured
statically as a function of expected occupancy; however
the actual requirement is stated in terms of fresh, outside
air per occupant. The HVAC optimization application
uses occupancy information derived from network activ-
ity, combined with information about the mix of fresh
and return air currently in use to dynamically adjust the
volume of ventilation air to each zone.

A second application was developed to improve com-
fort by giving occupants direct control of their spaces,
inspired by previous work [16]. Using a smart-phone
interface, the personalized control application gives oc-
cupants direct control of the lighting and HVAC systems
in their workspaces. The application requires the ability
to command the lights and thermostats in the space.

A third application is an energy audit application for
our highly-instrumented building. Researchers input in-
formation about the structure of the building and the re-
lationship between sensors and devices. This requires
access to a uniform naming structure and streaming sen-
sor data coming from physically-placed sensors. The
former captures relationships between locations within
the building, sensors, and loads (energy consumers) and
the latter provides up-to-date information about physical
measurements taken in locations throughout the building.
This combination of data and metadata allow dashboard-
ing and occupant feedback to access fine-grained slices
of data – for instance, displaying the total energy con-
sumed by all plug-loads on a particular floor.

Many other building applications have been developed
in prior work including demand response [38], peak-
price minimization [34], and occupant feedback [37]. All
of these would benefit from a robust, common frame-
work for controlling the building and the ability to run
alongside other applications.

3.2 Architectural Implications
Experience with the ad hoc development of these

kinds of applications led us to conclude that better ab-
stractions and shared services would admit faster, easier,
and richer application development, as well as a more
fault tolerant system. The HVAC optimization applica-
tion highlights the need for real-time access, locating the
appropriate actuator for each temperature control unit,
and replacing the local control logic with something new.
Access to historical data is vital for training models and
evaluating control strategies.

The personalized climate control application high-
lights the need for the ability to outsource control, at least
temporarily, to a mobile web interface in a way that re-
verts gracefully to local control. It also integrates control

over multiple subsystems that are frequently physically
and logically separate in a building: HVAC and lighting.

The energy audit application highlights the need to
couple semantic information with streaming sensor data
in a uniform fashion and a way to meaningfully combine
it with raw sensor data. It also emphasizes the need for
real-time data cleaning and aggregation. Sensor feeds
can be quite dirty, often missing values or containing er-
rant data.

4 Design
The BOSS architecture consists of six main subsys-

tems shown in Figure 2: (1) hardware abstraction and
access abstraction; (2) naming and semantic modeling;
(3) real-time time series processing and archiving; (4)
a control transaction system; (5) authorization; and fi-
nally (6) running applications. The hardware abstrac-
tion layer elevates the plethora of underlying sensors
and actuators to a shared, RESTful level and places all
data within a shared global namespace, while the seman-
tic modeling system allows for the description of rela-
tionships between the underlying sensors, actuators, and
equipment. The time series processing system provides
both real-time access to all underlying sensor data as well
as stored historical data, and common analytical opera-
tors for cleaning and processing the data. The control
transaction layer defines a robust interface for external
processes wishing to control the system that is tolerant
of failure and applies security policies. Last, “user pro-
cesses” comprise the application layer. We expand on the
design of each of these services below.

The mapping of these components to fault domains
determines key properties of the overall system. The
HPL must be physically co-located with the machinery it
monitors and controls; failure of these components will
prevent undoing actions taken by applications, although
built-in control strategies provide the most basic level of
fallback control. The transaction manager coordinates
control over a set of HPL points and so it, combined with
the set of HPL services it manages, determines a second,
wider fault domain: this component forms the boundary
at which other OS components can fail and still provide
guaranteed behavior. The placement of the other services
is flexible but impacts the availability of the resulting ser-
vice; any other service failing could cause an application
to crash.

4.1 Hardware Presentation Layer
Building systems are made up of a huge number

of specialized sensors, actuators, communications links,
and controller architectures. A significant challenge is
overcoming this heterogeneity by providing uniform ac-
cess to these resources and mapping them into corre-
sponding virtual representations of underlying physical



446 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Architectural component Functional requirements Placement
Hardware presentation layer Expose the primitive low-level operations of hardware using a

common interface.
Distributed as close to the physical sensors as possible (ideally,
co-located).

Control transaction manager Provide “all or nothing” semantics when applying control in-
puts; provide rollback of actions on failure, cancellation, or ex-
piration.

Within the same failure domain as the HPL used to affect the
changes.

Hardware abstraction layer Map the low-level functions of the physical hardware to higher-
level abstractions.

Anywhere.

Time series service Maintain a history of readings from the sensors and actuators;
provide application interface to data.

Replicated; may be offsite.

Authorization service Approve application requests for access to building resources. Anywhere.
Control processes “User processes” implementing custom control logic. Anywhere.

Table 1: Architectural components of a Building Operating System

sMAP sMAP sMAP sMAP

Transaction ManagerTime Series Service

sMAP

Transaction ClientTime-series Client

Auth Service HAL Service

submit
callback

application logic

Application fault
 domain

Runtime Logic

system 
libraries

Model Training

publish command

request

authorize

1

2

3 4

co
nt

ro
l p

ro
ce

ss

RS-485 BACnet/IPOPC-DA 6loWPANXML/HTTP

Authorization token

5 verify

historical
data

Building fault
 domain

Figure 2: A schematic of important pieces in the system.
BOSS consists of (1) the hardware presentation layer, the
(2) hardware abstraction layer, the (3) time series ser-
vice, and the (4) control transaction component. Finally,
the (5) authorization service determines access controls.
Control processes sit on top and consume these services.

hardware. At the lowest level is a Hardware Presentation
Layer. The HPL hides the complexity and diversity of
the underlying communications protocols and device in-
terfaces, presenting hardware capabilities through a uni-
form, self-describing protocol. The HPL abstracts all
sensing and actuation by mapping each individual sen-
sor or actuator into a point: for instance, the temperature
readings from a thermostat would be one sense point,
while the damper position in a duct would be represented
by an actuation point. These points produce time se-
ries, or streams, consisting of a timestamped sequence of
readings of the current value of that point. The HPL pro-
vides a small set of common services for each sense and
actuation point: the ability to read and write the point;
the ability to subscribe to changes or receive periodic
notifications about the point’s value, and the ability to re-

trieve and append simple key-value structured metadata
describing the point.

In order to provide the right building blocks for higher
level functionality, this layer includes:

Naming: each sense or actuation point is named with
a single, globally unique identifier. This provides
canonical names for all data generated by that point
for higher layers to use.

Metadata: most traditional protocols have limited or no
metadata included about themselves, or their in-
stallation; however metadata, is incredibly impor-
tant for the interpretation of data and for developing
portable applications. The HPL allows us to include
key-value metadata tags describing the data being
collected to consumers.

Buffering and Leasing: many sources of data have the
capability to buffer data for a period of time in case
of the failure of the consumer; the HPL uses this to
guard against missing data wherever possible. For
actuators, safely commanding them in a fault toler-
ant way requires associating each write with a lease.

Discovery and Aggregation: sensors and the associ-
ated computing resources are often physically dis-
tributed with low-powered hardware. The HPL pro-
vides a mechanism to discover and aggregate many
sensors into a single source on a platform with more
resources, to support scalability.

This functionality is distributed across the computing
resources closest to each sensor and actuator; ideally it
is implemented natively by each device, although for
legacy devices use a gateway or proxy. The HPL pro-
vides a small set of common services for each sense and
actuation point: the ability to read and write the point;
the ability to subscribe to changes or receive periodic
notifications about the point’s value, and the ability to re-
trieve and append simple key-value structured metadata
describing the point.

4.2 Hardware Abstraction Layer
Unlike computer systems, buildings are nearly always

custom-designed with unique architecture, siting, lay-
out, mechanical and electrical systems, and control logic
adapted to occupancy and local weather conditions. The



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 447

HAL allows applications to inspect these differences at a
high level of abstraction, crucial for application portabil-
ity. To do this, the HAL provides an approximate query
language [28] allowing authors to describe the particular
sensor or actuator that the application requires based on
the relationship of that component to other items in the
building, rather than hardcoding a name or tag. Applica-
tions can be written in terms of high-level queries such as
“lights in room 410,” rather than needing the exact net-
work address of that point. The query language allows
authors to search through multiple views of underlying
building systems, including spacial, where objects are
located in three-dimensional space; electrical, describing
the electrical distribution tree; HVAC, describing how the
mechanical systems interact; and lighting.

The HAL also abstracts the logic used to control build-
ing components such as pumps, fans, dampers, chillers,
using a set of drivers to provide standard interfaces.
Drivers provide high-level methods such as set speed

and set temperature that are implemented using com-
mand sequences and control loops over the relevant HPL
points. These drivers provide a place to implement
device-specific logic that is needed to present standard-
ized abstractions on top of eclectic hardware systems.

Drivers and applications use this functionality to de-
termine locking sets, necessary for coexisting with other
applications. For instance, an application that is char-
acterizing the air handler behavior might want to ensure
that the default control policy is in use, while varying
a single input. It could use the approximate query lan-
guage to lock all points on the air handler, excluding
other processes. Since different models of the same piece
of equipment may have different points even though they
perform the same function, it is essential that applica-
tions can control sharing at the level of functional com-
ponent rather than raw point name.

4.3 Time series service
Most sensors and embedded devices have neither the

ability to store large quantities of historical data nor the
processing resources to make use of them; such data are
extremely important for historical analyses, model train-
ing, fault detection, and visualization. The challenge is
storing large quantities of these data efficiently, while
allowing applications to make the best use of them in
near real-time for incorporation into control strategies.
In existing systems, most historical data are goes unused
because they are difficult to access and make sense of.
Applications typically access data either by performing
range queries over timestamps and streams, or by sub-
scribing to the latest values. For instance, a typical query
might train a model based room light-level readings for
a period of one month, touching hundreds of millions of
values. Even a modest-sized installation will easily have

tens of billions of readings stored, with new data from
the HPL mostly appended to the end of the time series.
Finally, the data are usually dirty, often having desyn-
chronized timestamps requiring outlier detection and re-
calibration before use.

The time series service (TSS) provides a low-latency
application interface for accessing the large repository of
stored data at different granularities. It consists of two
parts: a stream selection language and a data transforma-
tion language. Using the stream selection language, ap-
plications can inspect and retrieve metadata about time
series. The data transformation language allows clients
to apply a pipeline of operators to the retrieved data to
perform common data cleaning operations. This moves
common yet complex processing logic out of applica-
tions, allowing them to focus on making the best use of
the data, and also enables the possibility of optimizing
common access patterns.

4.4 Control transactions
BOSS applications typically take the form of either

coordinating control among multiple resources, which
would otherwise operate independently as in the HVAC
optimization, or extending control beyond the building to
other systems, as in the personalized control or electric
grid responsive control. The challenge is doing so in a
way that is expressive enough to implement innovative
new control algorithms, yet is robust to failure of net-
work elements and controllers. Control algorithms that
involve users or Internet-based data feeds should survive
the failure of the parts of the control loop that run outside
of the building without leaving any building equipment
in an uncertain state. Therefore, we use a transaction
metaphor for affecting changes to control state. Transac-
tions in database systems are a way of reasoning about
the consistency guarantees made when modifying multi-
ple pieces of underling state; within BOSS, we use trans-
actions as a way of reasoning about what happens when
collections of control actions are performed.

A control transaction consists of a set of actions to
be taken at a particular time: for instance, a coordinated
write to multiple actuators. Actions at this level operate
at the level of “points” – individual actuator outputs; the
HAL uses its system model and driver logic to translate
high-level requests into point-level operations that may
include reads, writes, and locks.

To ensure reliability, control transactions require a
lease time during which actions are valid, a revert se-
quence specifying how to undo the action, and an er-
ror policy stating what to do in case of a partial failure.
When the lease expires, the transaction manager executes
the revert sequence, which restores control of the sys-
tem to the next scheduled direct controller. The ability
to revert transactions provides the fundamental building



448 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

block for allowing control of the building to be turned
over to more sophisticated and less-trusted applications,
while providing baseline control. Actions may also be re-
verted on a partial failure, depending on the error policy;
for instance, if the transaction manager cannot acquire a
lock or the write to the underlying device fails. Revert se-
quences are provided for each action and can be thought
of as the “inverse action” that undoes the control input.
We require there to be a “lowest common denominator”
control loop present that is able to run the building in
its default (although potentially inefficient) operation. In
this way, applications can always simply release control
and the building will revert to its default control regime.

To support multiple applications, each point-level op-
eration also is associated with a priority level and a lock-
ing strategy. These allow multiple higher-level processes
or drivers to access the underlying points, while provid-
ing a mechanism for implicit coordination. Using a con-
cept borrowed from BACnet, writes are performed into
a “priority array” – a set of values that have been writ-
ten to the point ordered by priority level. The actual
output value is determined by taking the highest prior-
ity write. Although it provides for basic multiprocess-
ing, the BACnet scheme has several problems. With-
out leases, a crashing application could leave the system
locked in an uncertain state until its writes are manually
cleared. Without notifications, it is difficult to determine
if a particular write has been preempted by another pro-
cess at a higher priority without periodically polling the
array. The transaction manager adds notification, leasing
and locking, allowing applications to be notified when
their writes are preempted, or to prevent lower-priority
processes from accessing the point.

4.5 Authorization service
In addition to providing high-level, expressive access

to building systems, BOSS seeks to limit the ability
of applications to manipulate physical resources. Most
building operators will not turn over control to just any-
one, and even for a trusted application developer, safe-
guards against runaway behavior are needed. The au-
thorization service provides a means of authorizing prin-
cipals to perform actions and is based on the approxi-
mate query language of the HAL; applications may be
restricted by location (only lights on the fourth floor),
value (cannot dim the lights below 50%), or schedule
(access is only provided at night). This provides access
control at the same semantic level as the operations to be
performed.

BOSS checks access permissions on the level of in-
dividual method call and point name in the HAL and
HPL using a two-stage approve/verify process. Applica-
tions first register their intent to access a point or method
name with the service and what arguments they will call

it with. The intents may either be automatically approved
or presented to a building manager for approval. Security
and safety checks are performed at time-of-use on each
method call, providing the ability to revoke access. Ver-
ifying access permissions at time-of-use using an online
server rather than at time-of-issue using signed capabil-
ities has negative implications for availability and scala-
bility, as it places the authorization service on the critical
path of all application actions. However, we found the
ability to provide definitive revocation a critical function-
ality necessary to convince building managers that the
system is safe. This is one place where practical consid-
erations of the domain won over our bias against adding
more complexity to the command pathway.

4.6 Control processes
Updates to building control state are made atomi-

cally using control transactions; however, these are often
part of larger, more complex long-lived blocks of logic.
These is known as a “control process” (CP) and are anal-
ogous to a user process; each of our motiving applica-
tions is implemented as a control process in BOSS. CPs
connect to services they require, such as the time series
service, HAL, and transaction managers, and manage the
input of control actions. Because of the careful design of
transactions and the TSS, there are few constraints on
where control processes can be placed in the comput-
ing infrastructure; if they fail or become partitioned from
the actuator they control, the transaction manager will
simply “roll back” their changes and revert to a lower-
priority CP which has not experienced partition or failure
and ultimately to the hard-coded control strategy.

5 Implementation and Evaluation
To evaluate our architecture for building software sys-

tems, we have developed a prototype implementation
of the Building Operating System Services. BOSS im-
plements all system components, and is currently being
used by researchers in a living lab context. The sys-
tem is built mostly in Python, with C used for certain
performance-critical parts; all together, it is about 10,000
lines of non-application source code. The system uses a
service-oriented design, with canonical DNS names used
for finding other services; most services communicate
using RESTful interfaces exchanging JSON objects. In
cases where authentication is required, two-sided SSL is
used.

We have fully installed BOSS on our test building,
Sutardja Dai Hall: a four-year-old, 140,000 square foot
building containing mostly open “collaboratory” spaces
alongside faculty offices on the UC Berkeley campus.
Additionally, we have partially installed BOSS in many
other buildings; we have performed full BMS integra-
tion in two other campus buildings, and have used the



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 449

HPL for data collection and analysis in around 100 other
buildings. The system is running many applications, in-
cluding our motivating examples; we study these actual
applications to illustrate how BOSS achieves its goals.

In our implementation, the HPL and the transaction
manager run physically co-located with the BMS com-
puter. Because the HPL buffers data when the time se-
ries service is unavailable and the transaction manager
will revert any actions taken by failing or disconnect pro-
cesses, this provides the best fault tolerance to failures
outside of the building. Other services run mostly in a
server room, although some applications are hosted on
cloud services such as EC2. The failure or partition of an
application from any of the services generally causes the
application to fail, with the transaction manager reverting
any actions taken once its leases expire.

5.1 Hardware Presentation
The presentation layer allows higher layers to retrieve

data and command actuators in a uniform way. Our HPL
is a revised version the Simple Measurement and Actua-
tion Profile [12, 13], which provides RESTful access to
data sources and actuators, exposing the command re-
source tree shown in Figure 3.

/data/      # all timeseries and collections  
 {  

     "Contents" : ["sensor0"], 
     “Metadata” : { “SourceName” : “Example sMAP Source” }, 
    }  
/data/sensor0 

 { "Contents” :["channel0"] }, 
/data/sensor0/channel0 

 { 
     "uuid" : "a7f63910-ddc6-11e0-8ab9-13c4da852bbc",     
     "Readings" : [ [1315890624000, 12.5 ] ] 
   } 
/reports/     # data destinations 

Figure 3: Resource tree exported by sMAP. Sensors and
actuators are mapped to time series resources identified
by UUIDs. Metadata from underlying systems are at-
tached as key-value tags associated with time series or
collections of time series.

Ease of integration is key when interfacing with exist-
ing systems. The sMAP library1 takes care of the me-
chanics of providing the external interface, and allows
driver writers to focus on implementing only sensor or
actuator-specific logic. It uses abstracted drivers that sep-
arate the device-specific logic needed for talking with
a device (native communications protocols, etc) from
the site-specific configuration (network locations, sam-
pling rates, etc). To demonstrate its flexibility and ver-
satility, we have implemented around 25 driver modules
which integrate with three major BMS vendors, various
low-power wireless devices, several different three-phase
electric meters, weather stations, and detailed operations
data from all major US electric grids to enable control

strategies taking account of time-of-use pricing and re-
newable energy availability; together, more than 28,000
streams are present in the HPL2. We interface with the
building management system of our test building primar-
ily over BACnet.

5.2 Hardware Abstraction Layer
The hardware abstraction enables application portabil-

ity in two ways: it supports queries over the relationships
between building components, and provides drivers with
standardized methods for making control inputs.
5.2.1 Semantic Query Language

Spacial Domain (#AREA)

HVAC Domain (#HVAC)

Constant Flow Chilled Water Loop VAV
Damper

Heating 
Coil

Airflow 
Sensor

Chiller

PumpTemp 
Sensor Temp 

Sensor

Cooling 
Tower

Electrical 
Domain 
(#ELEC)

Building 
Electrical 

Meter

Submeter

Lighting 
Domain 

(#LIGHTING)

Light 
Relay

Light 
Relay

Submeter

Air Handler
Outside 

Air 
Damper

Cooling 
Coil

Temp 
Sensor

Temp 
Sensor Fan

VAV
Damper

Heating 
Coil

Airflow 
Sensor

Figure 4: Partial functional and spacial representation of
our test building. Directed edges indicate a “supplies”
or “feeds into” relationship. Queries are executed by
searching the graph.

The query interface allows applications to select ob-
jects based on type, attributes, and functional or spacial
relationships, allowing programmers to describe the par-
ticular sensor or actuator that the application requires
rather than hardcoding a name or tag. This allows ap-
plications to be portable across buildings with different
designs[28].

Queries are expressed in terms of metadata tags from
the HPL, and relationships indicated by < and > oper-
ators with A > B meaning that A supplies or feeds into
B. For example, an air handler might supply variable air
volume (VAV) boxes that supply rooms; a whole building
power meter may feed into multiple breaker panels that
supply different floors. The execution engine evaluates
queries by searching a directed graph of objects. Figure 4
shows a partial rendering of the functional and spacial
relationship graphs. Objects are exposed by drivers and
can be low-level (e.g., damper, sensor, fan) or high-level
(e.g., air handler, chilled water loop). Directed edges in-



450 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

dicate the flow of physical media, i.e.air, water, electric-
ity. Tags describe the object type and functionality. We
also represent spatial areas, defined as polygons on floor
maps of the building and stored in a GIS database.

5.2.2 Drivers
BOSS drivers are implemented as persistent objects

within a global namespace; CPs obtain references to
drivers using the semantic query language from the HAL.
To make driver code reusable in an environment where
very little can be assumed about the underlying technol-
ogy, drivers present both uniform top-level interfaces to
the components they represent, as well as a template-
based bottom interface allowing them to be automatically
instantiated when the underlying HAL points have been
tagged with appropriate metadata.

SiemensReheatVAV

set_airflow(range) { ... }
set_temp(range) { ... }
set_reheat(level) { ... }

VAV/Setpoint

VAV/MinAirflow
VAV/MaxAirflow

VAV/HeatingValve

VAV/AirflowBaseVAV <<interface>>

set_airflow(range);
set_temp(range);

HAL Drivers HPL Points

Figure 5: Drivers expose a set of methods on top, and
are bound to HPL points based on metadata provided
by the HPL. Here, a Siemens VAV driver exposes the
methods common to all VAVs as well as an additional
set reheat method.

Figure 5 shows a schematic of a VAV driver:
to illustrate these relationships, the BaseVAV inter-
face which provides methods for controlling set-
point and temperature has been extended by the
SiemensReheatVAV driver to provide an additional,
non-standard set reheat method. Drivers encapsulate
device-specific logic needed to provide a standardized
interface on top of the actual hardware present which
may be more sophisticated than what is installed in a
given building. For instance, the standard VAV control
method allows applications to set a target temperature
range (dead band). However, for many VAVs, including
those in our test building, the width of this band is impos-
sible to change once installed. Therefore, the driver em-
ulates the desired behavior by manipulating the set point
as the temperate moves in and out of the dead band.

Our driver system includes representations of many
common building infrastructure elements such as VAVs,
dampers, water pumps, air handlers, economizers, lights,
light switches and transformers – and maps them into
canonical representations that are placed into the meta-
data graph. Using drivers’ bottom layer templates, ap-
propriate drivers are loaded in places where HPL points
have matching metadata, subject to hand checking.

5.3 Time Series Service
The time series service is responsible for storing, se-

lecting, and cleaning both real-time and historical data.
Figure 6 shows an example query exercising all three of
these functions. The TSS contains three main compo-
nents: the readingdb historian3 provides compressed,
low-latency, and high-throughput access to raw time se-
ries data. A selection engine performs SQL-to-SQL
compilation on user queries, allowing them to flexibly
select data streams on the basis of the tags applied by the
HPL. A data transformation component applies domain-
specific operations to the data.

5.3.1 readingdb
Many building energy products build on start SQL

databases which are disappointing at scale. Figure 7
compares readingdb performance to MySQL (using
both InnoDB and MyISAM storage engines) and Post-
greSQL tuned for time series data on a representative
usage pattern. Here, the database is loaded with syn-
thetic data (simulating a trickle load), and periodically
stopped to query a fixed-size set of data as well as to
measure how large the stored data are on disk. Because
MyISAM appends all records to the end of the volume,
inserts are uniformly very cheap; however, query perfor-
mance is poor and furthermore scales with the size of
the database rather than the size of the results set. Post-
gres and InnoDB keep data ordered by time on disk re-
sulting in more predictable query performance, but have
more expensive insert paths; furthermore the B+-tree in-
dexes scale poorly when presented with a large number
of leaf keys. readingdb’s bucketing algorithm mitigates
these issues (while still using an index for fast random
access) by packing neighboring records together using
only a single key, achieving an order of magnitude better
compression than the other tree-based schemes.

5.3.2 Data Selection
With tens of thousands of data streams present, find-

ing the right one can be a challenge. The HPL provides
the basis for this naming by identifying each data stream
with a unique identifier (a UUID), and attaching key-
value metadata to it. The time series service provides the
mechanism to apply complex queries to these streams to
locate them on the basis of the metadata, i.e., an “entity-
attribute-value” schema. Our system uses an SQL-to-
SQL complier to transform logical queries in key-space
to queries on the underlying database schema, allowing
users to specify any attribute in the HPL. Line 3 in Figure
6 is an example of easily locating all datacenter power
feeds.

5.3.3 Data Transformation
The processing pipeline allows operators to inspect

both data (time, value vectors) as well as metadata: op-
erators are first bound to the actual streams to be pro-



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 451

1: apply  sum(axis=1) < missing < paste < window(mean, field="minute", width=15) 

2: to data in ("4/20/2012", "4/21/2012") 

3: where Metadata/Extra/System = 'datacenter' and Properties/UnitofMeasure = 'kW’ !



Figure 6: Example query executed by the time series service. Line 1 uses a pipeline of four data cleaning operators
to aggregate by resampling data in 15-minute intervals and then filtering missing data, Line 2 selects a range of time
from the readingdb storage manager, and Line 3 queries metadata to locate datacenter power feeds.

(a) Size of on-disk files (b) Insert performance (c) Query performance

Figure 7: readingdb time series performance compared to two relational databases. Compression keeps disk I/O to a
minimum, while bucketing prevents updating the B+-tree indexes on the time dimension from becoming a bottleneck.
Keeping data sorted by stream ID and timestamp preserves locality for range queries.

cessed and since each operator can inspect the metadata
of the input streams, it is possible to implement operators
that transform data based on the metadata such as a unit
or timezone conversion. Using simple combinations of
these operators, queries can interpolate time-stamps, re-
move sections with missing data, and compute algebraic
formulas over input data. Extending the set of operators
is simple since we provide support for wrapping arbitrary
Python functions which operate on vector data; in par-
ticular, we have imported most of the numpy numerical
library automatically.

5.4 Transaction Manager
Submitted transactions become runnable once the start

time has passed. The scheduler chooses the next ac-
tion from among the runnable actions, taking into ac-
count considerations of both upper and lower layers. It
considers the priorities of the various runnable actions
as well as the concurrency requirements of the underly-
ing hardware. For instance, some devices are present on
a shared 9600-baud RS-485 bus; Internet-style applica-
tions can easily overwhelm such a limited resource. Pri-
orities are implemented as separate FIFO queues at each
priority level. Once actions are scheduled, actual execu-
tion is passed off to controller components that perform
the action by communicating with the appropriate sMAP
devices and proxies. When the lifetime of a transaction
expires, it is canceled, or it encounters an error, the re-
vert method is used to enqueue new commands to undo
the previous control inputs.

The naı̈ve reversion policy would simply clear any
writes made; however, Figure 8(a) illustrates one prob-
lem with this method. Here, the setpoint is reduced at
around 12:31, causing air volume to increase and room
temperature to fall. However, when this change is re-

12:26:00 12:31:00 12:36:00 12:41:00 12:46:00 12:51:00 12:56:00
Time of day

50

55

60

65

70

75

80

Te
mp

era
tur

e (
F)

Zone setpoint (F)
Zone temperature (F)
Air volume (CFM)

0

500

1000

1500

2000

2500

3000

3500

Air
 vo

lum
e (

CF
M)

(a) Unstable behavior around a transition

22:30:00 22:35:00 22:40:00 22:45:00 22:50:00 22:55:00 23:00:00
Time of day

50

55

60

65

70

75

80

Te
mp

era
tur

e (
F)

Zone setpoint (F)
Zone temperature (F)
Air volume (CFM)

200

300

400

500

600

700

800

900

1000

Air
 vo

lum
e (

CF
M)

(b) Specialized reversion sequences can deal
with this problem

Figure 8: Drivers may implement specialized reversion
sequences to preserve system stability when changing
control regimes.

verted at 12:41, the default commercial controller which
takes over becomes confused by the unexpected devia-
tion from setpoint, causing the damper position (and thus
air volume) to oscillate several times before finally stabi-
lizing. Understanding and dealing with this issue is prop-
erly the concern of a higher-level component such as a
VAV driver; to allow this, some drivers provide a custom
revert action along with their inputs. These actions con-
sist of restricted control sequences requiring no commu-
nication, replacing the default reversion policy. In Fig-
ure 8(b), the VAV driver uses a custom revert sequence
to gradually release control.



452 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

6 Applications
We further evaluate BOSS in two ways: first, we ex-

amine how the system architecture makes implementing
our three motivating applications simpler and more con-
cise, while showing how it helps applications to coexist.
Second, we provide a survey of other applications which
have been implemented using BOSS, providing evidence
of the system’s generality.

6.1 HVAC Optimization
The HVAC optimization control process consists of

two strategies: temperature floating and ventilation ad-
justment. Building codes often require a rate of fresh
air ventilation per room based on occupancy and room
size [9, 4]. Keeping ventilation rates at the required min-
imum is highly desirable for energy savings since it re-
duces fan power and the need for air conditioning; how-
ever, this is difficult to do in traditional building control
systems because separate control loops are in charge of
varying the fresh air intake into the building, controlling
the per-room airflow, and detecting occupants. Occu-
pancy detection is a well-researched subject that is best
performed by fusing data from many sensors [2, 1, 31]
not normally available.

Figure 9 shows pseudocode implementing the airflow
reductions. The code uses the HAL semantic query inter-
face to find all dampers controlling fresh air intake and
adjusts the ventilation rates for their downstream rooms
– the more fresh air being brought into the building from
the outside, the less airflow is required per room to main-
tain the required freshness. In the example, line 3 returns
dampers servicing the two air handlers (AH1A and AH2A

in our building), each of which services around 70 zones,
which are found on line 4. We use a simple occupancy
model based on time of day and class schedule obtained
from a Google Calendar feed, and scale the ventilation
as a function of the number of people. This demon-
strates coordinated control across traditionally indepen-
dent building components: on line 6, the actual fresh air
intake setting is used to control the room ventilation re-
quirements. Furthermore, a separate building with com-
pletely different ventilation layout would be able to run
virtually the same control application.

1 proc = BossProcess(timeout=15min, auth_token=ABC)
2 while True:
3 for dmp in hal.find(’#OUT_AIR_DMP > #AH’):
4 for vav in hal.find(’#VAV < $%s’ % dmp.name):
5 occ = model.estimate_occupancy(vav)
6 vav.set_min_airflow((vav.min_fresh_air() /
7 dmp.get_percent_open()) * occ)
8 time.sleep(15*60)

Figure 9: Ventilation component of the HVAC optimiza-
tion application.

6.2 Personalized Control
A second application, a personalized control system,

takes direct occupant input to adjust room temperatures
and ventilation. One of its key features is the ability to
temporarily blast warm or cold air into the space in re-
sponse to a user request. Fault tolerance is crucial in this
application; blasts must be reverted even if the control
process crashes to ensure occupant comfort and avoid
wasting energy. Figure 10 shows the execution flow of
the personalized control application and the error han-
dling in response to an emulated crash.

The application writes to a room setpoint in response
to a user request but shortly thereafter crashes. The trans-
action manager reverts the blast action by undoing the
submitted transaction. A subplot of room temperature
taken while executing this control flow is also shown in
Figure 10. Temperature drops while the cold blast is run-
ning and reverts to normal after the application crashes.
Unlike traditional computer systems, reverting the room
temperature takes time as the space slowly warms back
up to steady state.

We run the personalized control application concur-
rently with the HVAC optimization application. Since
both apps access the same VAV point, some coordination
is required to ensure correct behavior. In this case, the
HVAC optimization application can coexist with the per-
sonal control application: if its commands are overrid-
den at a higher priority, it simply regains control when-
ever the higher priority application is finished. However,
the inverse situation is not acceptable: since users expect
an immediate response when initiating a blast, the appli-
cation locks the VAV points with an exclusive lock, so
that if it is itself overridden, it will immediately cause
the transaction to abort and display an error message.

req_auth
#VAV[Floor=4]
set_temp([65,75])
get_temp()

Temperature Float App

SiemensReheatVAV
Driver

TX Manager

sMAP
BACnet

HALAuth
(human/auto approval)

lookup
#VAV

[Floor=4]

[s4-20,
s4-21, 
... ]

Approved
token=ABC set_temp(65)

token=ABC

Success

write
life=15verify

set_temp(65), token=ABC

Success
txid=123

write revertSuccess

Time

setpoint
room tempTe

m
p 

(°
F)

Initialization

Figure 10: Execution flow of the personalized control
application responding to a user request for cooling. Af-
ter the control process crashes, the transaction manager
automatically reverts past actions.

6.3 Auditing and Baselining
We use the auditing application to compute energy

savings from the HVAC optimization and personal con-



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 453

trols. The HPL and time series service allow easy access
to historical data from all meters within the building. We
use these data to train a baseline model of power con-
sumption of the building in its standard operating regime,
regressing against outside air temperature, time of day,
and class schedules. This model is used to produce a new
real-time baseline stream which appears as a new virtual
feed in the HPL. Using this baseline, we can compare
building performance before and after enabling our opti-
mization and control algorithms. Figure 11 shows mea-
sured power consumption and the modeled power base-
line. Power consumption drops by 28kW, about 17%,
after launching our optimization apps.

01/22 01/23 01/24 01/25 01/26 01/27 01/28 01/29 01/30 01/31 02/01
100

120

140

160

180

200

220

240

260

280 Savings: 17.06%
 27.99kW

Po
w

er
 (k

W
)

 

 

Measured
Baseline

Figure 11: Energy use before and after starting our
HVAC control applications in our test building showing
energy savings of approximately 17%.

6.4 Deployment and Application Survey
To begin quantifying the generality of BOSS is, we

surveyed a number of users inside and outside our group
who have written applications to produce Table 2. These
include the motivating applications above, as well as
applications which perform model-predictive control of
various system components and conduct comfort analy-
ses of building data. Overall, application writers felt that
their ability to spend time on their actual problems such
as system modeling or producing visualizations of the
data was much improved by operating at a higher level
of abstraction; furthermore many appreciated the ability
to write application code that might have bugs and yet be
assured that the system would fail gracefully.

7 Related Work
7.1 Ubiquitous Computing

There have been many attempts to provide pro-
grammable abstractions to make it easier to run
tasks on devices, predominantly in homes. For in-
stance, ICrafter [39] integrates devices in an intelligent
workspace into a service-oriented framework, used to
generate user interfaces, while ubiHome [17] applies se-
mantic web techniques to describe the services provided
by a variety of consumer devices. Several “living labo-
ratories” such as Sensor Andrew and HOBNET [41, 19]

also work to make experimentation with ubiquitous com-
puting environments simple and scalable, performing
complimentary research on communications protocols.

Microsoft HomeOS [14] is a related attempt to pro-
vide high-level abstractions to make programming phys-
ical devices simpler. All intelligent devices in a home are
presented as PC peripherals, and applications are imple-
mented as modules loaded into a single system image;
these applications are strongly isolated using run-time
containers and Datalog descriptions of access rules.
Our work takes a fundamentally different approach: we
allow applications to be distributed and enforce safety at
the transaction manager and driver services, at the cost of
limiting control over the behavior of applications. By al-
lowing control to be decentralized, we allow the system
to be configured so as to trade off partition-tolerance with
cost. Unlike HomeOS, we allow applications to be writ-
ten in terms of components’ relationship with other com-
ponents, and provide efficient access to historical data;
these functions are essential for scalability.

7.2 Metadata
Industry Foundation Classes [22] specify models for

structural, mechanical, and electrical aspects of build-
ings. IFCs are intended to describe building design and
facilitate sharing of information among design and con-
struction teams. IFC includes classes for HVAC equip-
ment and a connectivity model for building a directed
graph of objects [8]. Project Haystack [40] uses a list of
tags and rules about their use to describe building compo-
nents. Liu, et al. [30] focus on integrating existing meta-
data from multiple sources and devising a common data
representation for use by applications. Our work is com-
plementary and focuses on how applications can conve-
niently make use of available building controls portably
and at a higher level of abstraction.

7.3 Protocols
OLE for Process Control (OPC) is commonly used

for controls interoperability. Based on DCOM, OPC ac-
complishes some of the same goals as the HPL [35],
and contains a component for accessing historical data:
OPC-HDA; however it does not provide the ability to ap-
ply analytical operators to the stored data and also can
only locate data by point name. BACnet, or the Build-
ing Automation and Control Network protocol, also pro-
vides a standardized interface for accessing devices in
a building [3]. It provides for the discovery of BACnet
objects on a local subnet, and the ability for these ob-
jects to export standardized services, such as ReadValue
and WriteValue. Other industrial controls protocols like
WirelessHART [51], Modbus [33], and many others pro-
vide low-level access to field devices similar to the level
of the HPL; however these form only the lowest-level
building-blocks of a complete system. Protocols in the



454 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Name Description
Sensors

Used
Actuators

Used
Type of
Control

HPL
Adaptors

External
Examples

Demand
Ventilation

Ventilation rates are modulated to fol-
low occupancy, and room temps can
float at night.

VAV temps, airflow, &
CO2

VAV Damper Posi-
tions

Supervisory BACnet,
6loWPAN

Supply
Air Temp
Control

Air Handling Unit supply air temp
(AHU SAT) is optimized using model-
predictive control (MPC) [5].

AHU SAT, VAV temps &
airflow

AHU SAT Supervisory BACnet [50], [29], [7],
[52]

VAV Control Individual variable air-volume boxes
are exercised to create detailed models
of their response.

VAV temps & airflow VAV damper posi-
tions

Direct BACnet

Building
Audit

Loads throughout the building are sur-
veyed to enable DR and energy effi-
ciency efforts.

Plug-load meters, subme-
ters

N/A N/A ACme [25],
BACnet

[18], [20], [32],
[10], [45]

Personal
Building
Control

Users are presented with web-based
lighting and HVAC control of building
systems.

Light power, VAV temps Light level, VAV
airflow

Direct BACnet [27], [32], [23],
[15]

Personal
Comfort
Toolkit

Enables analysis of air stratification in
building system operation.

Zone temperatures, strati-
fication

N/A N/A BACnet,
CSV,
6loWPAN

Demand Re-
sponse

Responds to electric grid-initiated con-
trol signals requesting setback.

N/A Airflow & temper-
ature setpoints

Supervisory BACnet [26], [46]

Table 2: Deployed applications making use of BOSS.

residential space like uPNP [24] and Zigbee [44] tend
to have higher-level interoperability as a goal, typically
defining device profiles similar to our driver logic; this
work is valuable for defining common device interfaces
but does not address failures when these interfaces are
implemented by coordinating multiple devices.

7.4 Building Controls
A number of Building Management Systems enable

building engineers to create applications. The Siemens
APOGEE [43] system provides the Powers Process Con-
trol Language (PPCL) for design of control applications;
PPCL allows for custom logic, PID loops, and alarms.
ALC’s LogicBuilder [6] allows for graphical construc-
tion of control processes by sequencing “microblocks,”
or control functions, from a library; however, the library
of control functions is not extensible. Further, both of
these systems can only interact with equipment physi-
cally connected to the panel on which the code is in-
stalled, limiting the use of external information in con-
trol decisions. Tridium provides the Niagara AX frame-
work [47] for designing Internet-connected applications
using its HPL-like interfaces to building equipment and
external data sources. However, Tridium provides no se-
mantic information about its abstracted components, lim-
iting application portability.

8 Conclusion
Our work is a re-imagining building control systems of

the future: secure, modular, extensible, and networked.
Many of the problems with SCADA systems which ap-
pear in the popular media with increasing frequency can
be linked to system architecture designed for another
world: one without ubiquitous connectivity where sys-
tems are designed and used in isolation from other sys-
tems. This view is simply not realistic, but fixing the
problems requires a fundamental re-architecting of the

control system, drawing on distributed systems and In-
ternet design discipline to design a system which is ro-
bust even while subject to Internet-scale attacks. Al-
though challenging, we do not see an alternative because
it seems inevitable that control systems will become ever
more networked to provide increased efficiency and flex-
ibility; the only question is whether the result will be ro-
bust and conducive to application development.

BOSS begins to provide these properties by introduc-
ing flexibility in several new places where it did not pre-
viously exist: the HPL provides equal access to all of the
underlying data, while the transaction and control pro-
cess metaphors allow true applications to exist, and fail
safely. Looking forward, many challenges remain. Infer-
ring the HAL with minimum manual effort is an impor-
tant step to enabling this architecture in existing build-
ings. Much better tools are needed for incorporating ex-
isting BIM models, and tools for checking the derived
model against real sensor data will be crucial since draw-
ings rarely reflect the true state of the world. The emer-
gence of software-defined networks also presents an in-
teresting avenue for future exploration: if control intent
is expressed abstractly, SDNs might be used to enforce
access control and quality-of-service guarantees.

Acknowledgements

Thanks to our shepherd, Richard Mortier, and the
anonymous reviewers for helpful comments. Domenico
Caramagno, Scott McNally, and Venzi Nikiforov’s sup-
port was instrumental in allowing us gain access to real
commercial building control systems. This project was
supported in part by the National Science Foundation
under grants CPS-0932209 (LoCal), CPS-0931843 (Ac-
tionWebs), and CPS-1239552 (SDB). The sMAP project
is generously supported by the UC Berkeley Energy and
Climate Research Innovation Seed Fund.



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 455

Notes
1http://code.google.com/p/smap-data
2http://www.openbms.org
3http://github.com/stevedh/readingdb

References
[1] AGARWAL, Y., BALAJI, B., DUTTA, S., GUPTA,

R. K., AND WENG, T. Duty-cycling buildings ag-
gressively: The next frontier in hvac control. In
IPSN/SPOTS 2011 (2011).

[2] AGARWAL, Y., BALAJI, B., GUPTA, R., LYLES,
J., WEI, M., AND WENG, T. Occupancy-driven
energy management for smart building automation.
In Proceedings of the 2nd ACM Workshop On Em-
bedded Sensing Systems For Energy-Efficiency In
Buildings (2010).

[3] AMERICAN SOCIETY OF HEATING, REFRIG-
ERATING AND AIR-CONDITIONING ENGINEERS.
ASHRAE Standard 135-1995: BACnet. ASHRAE,
Inc., 1995.

[4] AMERICAN SOCIETY OF HEATING, REFRIG-
ERATING AND AIR-CONDITIONING ENGINEERS.
ASHRAE Standard 55-2010: Thermal Environmen-
tal Conditions for Human Occupancy. ASHRAE,
Inc., 2010.

[5] ASWANI, A., MASTER, N., TANEJA, J., KRI-
OUKOV, A., CULLER, D., AND TOMLIN, C.
Energy-efficient building hvac control using hy-
brid system lbmpc. In Proceedings of the IFAC
Conference on Nonlinear Model Predictive Control
(2012).

[6] AUTOMATED LOGIC CORPORATION. Eikon
LogicBuilder for WebCTRL. http:

//www.automatedlogic.com/product/

eikon-logicbuilder-for-webctrl/.

[7] AVCI, M., ERKOC, M., RAHMANI, A., AND AS-
FOUR, S. Model predictive HVAC load control in
buildings using real-time electricity pricing. Energy
and Buildings (2013).

[8] BAZJANAC, V., FORESTER, J., HAVES, P., SU-
CIC, D., AND XU, P. HVAC component data mod-
eling using industry foundation classes. In System
Simulation in Buildings (2002).

[9] CA ENERGY COMMISSION. California’s energy
efficiency standards for residential and nonresiden-
tial buildings, 2008.

[10] CHENG, Y., CHEN, K., ZHANG, B., LIANG, C.-
J. M., JIANG, X., AND ZHAO, F. Accurate Real-
Time Occupant Energy-Footprinting in Commer-
cial Buildings. In Proc. of 4th ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency
in Buildings (BuildSys) (2012).

[11] COHN, G., STUNTEBECK, E., PANDEY, J., OTIS,
B., ABOWD, G. D., AND PATEL, S. N. SNUPI:
sensor nodes utilizing powerline infrastructure. In
Proceedings of the 12th ACM international con-
ference on Ubiquitous computing (2010), pp. 159–
168.

[12] DAWSON-HAGGERTY, S., JIANG, X., TOLLE, G.,
ORTIZ, J., AND CULLER, D. sMAP: a simple mea-
surement and actuation profile for physical infor-
mation. In Proceedings of the 8th ACM Conference
on Embedded Networked Sensor Systems (2010).

[13] DAWSON-HAGGERTY, S., KRIOUKOV, A., AND
CULLER, D. E. Experiences integrating build-
ing data with smap. Tech. Rep. UCB/EECS-2012-
21, EECS Department, University of California,
Berkeley, Feb 2012.

[14] DIXON, C., MAHAJAN, R., AGARWAL, S.,
BRUSH, A. J., LEE, B., SAROIU, S., AND BAHL,
P. An operating system for the home. In Proceed-
ings of the 9th USENIX conference on Networked
Systems Design and Implementation (2012).

[15] ERICKSON, V., AND CERPA, A. E. ThermoVote:
Participatory Sensing for Efficient Building HVAC
Conditioning. In Proc. of 4th ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency
in Buildings (BuildSys) (2012).

[16] FOUNTAIN, M., BRAGER, G., ARENS, E., BAU-
MAN, F., AND BENTON, C. Comport control for
short-term occupancy. Energy and Buildings 21, 1
(1994), 1 – 13.

[17] HA, Y.-G., SOHN, J.-C., AND CHO, Y.-J. ubi-
home: An infrastructure for ubiquitous home net-
work services. In Proceedings of the IEEE Interna-
tional Symposium on Consumer Electronics (2007).

[18] HAY, S., AND RICE, A. C. The Case for Appor-
tionment. In Proc. of 1st ACM Workshop on Em-
bedded Sensing Systems for Energy-Efficiency in
Buildings (BuildSys) (2009).

[19] Holistic platform design for smart buildings of the
future internet.



456 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

[20] HSU, J., MOHAN, P., JIANG, X., ORTIZ, J.,
SHANKAR, S., DAWSON-HAGGERTY, S., AND
CULLER, D. HBCI: Human-Building-Computer
Interaction. In Proc. of 2nd ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency
in Buildings (BuildSys) (2010).

[21] HULL, B., BYCHKOVSKY, V., ZHANG, Y., CHEN,
K., GORACZKO, M., MIU, A., SHIH, E., BAL-
AKRISHNAN, H., AND MADDEN, S. Cartel: a dis-
tributed mobile sensor computing system. In Pro-
ceedings of the 4th international conference on Em-
bedded networked sensor systems (2006).

[22] ISO. Industry Foundation Classes, Release 2x,
2005.

[23] JAZIZADEH, F., AND BECERIK-GERBER, B. To-
ward Adaptive Comfort Management in Office
Buildings Using Participatory Sensing for End User
Driven Control. In Proc. of 4th ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency
in Buildings (BuildSys) (2012).

[24] JERONIMO, M., AND WEAST, J. UPnP Design by
Example: A Software Developer’s Guide to Univer-
sal Plug and Play. Intel Press, 2003.

[25] JIANG, X., LY, M. V., TANEJA, J., DUTTA,
P., AND CULLER, D. Experiences with a High-
Fidelity Wireless Building Energy Auditing Net-
work. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems (2009).

[26] KRIOUKOV, A., ALSPAUGH, S., MOHAN, P.,
DAWSON-HAGGERTY, S., CULLER, D. E., AND
KATZ, R. H. Design and Evaluation of an Energy
Agile Computing Cluster. Tech. Rep. UCB/EECS-
2012-13, EECS Department, University of Califor-
nia, Berkeley, 2012.

[27] KRIOUKOV, A., DAWSON-HAGGERTY, S., LEE,
L., REHMANE, O., AND CULLER, D. A Liv-
ing Laboratory Study in Personalized Automated
Lighting Controls. In Proc. of 3rd ACM Work-
shop on Embedded Sensing Systems for Energy-
Efficiency in Buildings (BuildSys) (2011).

[28] KRIOUKOV, A., FIERRO, G., KITAEV, N., AND
CULLER, D. Building application stack (BAS).
In Proceedings of the 4th ACM Workshop On Em-
bedded Sensing Systems For Energy-Efficiency In
Buildings (2012).

[29] LIANG, C.-J. M., LIU, J., LUO, L., TERZIS, A.,
AND ZHAO, F. RACNet: A High-Fidelity Data
Center Sensing Network. In Proceedings of the 7th

ACM Conference on Embedded Networked Sensor
Systems (SenSys) (2009).

[30] LIU, X., AKINCI, B., GARRETT, J. H., AND
BERGES, M. Requirements for a formal approach
to represent information exchange requirements of
a self-managing framework for HVAC systems. In
ICCCBE (2012).

[31] LU, J., SOOKOOR, T., SRINIVASAN, V., GAO, G.,
HOLBEN, B., STANKOVIC, J., FIELD, E., AND
WHITEHOUSE, K. The smart thermostat: using
occupancy sensors to save energy in homes. In Pro-
ceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems (2010).

[32] MARCHIORI, A., HAN, Q., NAVIDI, W., AND
EARLE, L. Building the Case For Automated
Building Energy Management. In Proc. of 4th
ACM Workshop on Embedded Sensing Systems for
Energy-Efficiency in Buildings (BuildSys) (2012).

[33] MODICON, INC., INDUSTRIAL AUTOMATION
SYSTEMS. Modicon MODBUS Protocol Refer-
ence Guide, 1996.

[34] NGHIEM, T., BEHL, M., PAPPAS, G., AND
MANGHARAM, R. Green scheduling: Scheduling
of control systems for peak power reduction. In
Proceedings of the International Green Computing
Conference and Workshops (2011).

[35] OPC TASK FORCE. OPC common definitions and
interfaces, 1998.

[36] PARK, T., LEE, J., HWANG, I., YOO, C., NACH-
MAN, L., AND SONG, J. E-gesture: a collaborative
architecture for energy-efficient gesture recognition
with hand-worn sensor and mobile devices. In Pro-
ceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems (2011), ACM.

[37] PIETTE, M. A., KILICCOTE, S., AND
GHATIKAR., G. Design of an energy and
maintenance system user interface for building
occupants. In ASHRAE Transactions, vol. 109,
pp. 665–676.

[38] PIETTE, M. A., KILICCOTE, S., AND
GHATIKAR., G. Design and implementation
of an open, interoperable automated demand
response infrastructure. In Grid Interop Forum
(2007).

[39] PONNEKANTI, S. R., LEE, B., FOX, A., FOX, O.,
WINOGRAD, T., AND HANRAHAN, P. ICrafter : A
service framework for ubiquitous computing envi-
ronments. In Proceedings of the 3rd International
Conference on Ubiquitous Computing (2001).



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 457

[40] Project Haystack. http://project-haystack.org/.

[41] ROWE, A., BERGES, M., BHATIA, G., GOLD-
MAN, E., RAJKUMAR, R., GARRETT, J. H.,
MOURA, J. M. F., AND SOIBELMAN, L. Sensor
Andrew: Large-scale campus-wide sensing and ac-
tuation. IBM Journal of Research and Development
55, 1.2 (Jan. 2011), 6:1 – 6:14.

[42] SATYANARAYANAN, M. Pervasive computing: vi-
sion and challenges. IEEE Personal Communica-
tions 8, 4 (August 2001), 10 –17.

[43] SIEMENS. APOGEE Building Automa-
tion Software. http://w3.usa.siemens.

com/buildingtechnologies/us/en/

building-automation-and-energy-management/

apogee/pages/apogee.aspx.

[44] Smart Energy Profile 2.0. Zigbee Alliance, 2010.

[45] TAHERIAN, S., PIAS, M., COULOURIS, G., AND
CROWCROFT, J. Profiling Energy Use in House-
holds and Office Spaces. In Proceedings of the 3rd
Int’l Conference on Future Energy Systems (ACM
e-Energy) (2012).

[46] TANEJA, J., CULLER, D., AND DUTTA, P. To-
wards Cooperative Grids: Sensor/Actuator Net-
works for Renewables Integration. In Proceedings
of the 1st IEEE Int’l Conference on Smart Grid
Communications (2010).

[47] TRIDIUM. NiagaraAX. http://www.tridium.

com/cs/products_/_services/niagaraax.

[48] U.S. DEPARTMENT OF ENERGY. 2011 buildings
energy data book, 2012.

[49] WEISER, M. The computer for the 21st cen-
tury. SIGMOBILE Mobile. Computer Communica-
tion Review 3, 3 (July 1999), 3–11.

[50] WEN, Y.-J., DIBARTOLOMEO, D., AND RUBIN-
STEIN, F. Co-simulation Based Building Controls
Implementation with Networked Sensors and Actu-
ators. In Proc. of 3rd ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings
(BuildSys) (2011).

[51] WirelessHART. HART Communication Founda-
tion, 2009.

[52] LVAREZ, J., REDONDO, J., CAMPONOGARA, E.,
NORMEY-RICO, J., BERENGUEL, M., AND OR-
TIGOSA, P. Optimizing building comfort tempera-
ture regulation via model predictive control. Energy
and Buildings (2013).




