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Abstract
We present πBox, a new application platform that pre-

vents apps from misusing information about their users.
To strike a useful balance between users’ privacy and
apps’ functional needs, πBox shifts much of the respon-
sibility for protecting privacy from the app and its users
to the platform itself. To achieve this, πBox deploys (1)
a sandbox that spans the user’s device and the cloud, (2)
specialized storage and communication channels that en-
able common app functionalities, and (3) an adaptation
of recent theoretical algorithms for differential privacy
under continual observation. We describe a prototype im-
plementation of πBox and show how it enables a wide
range of useful apps with minimal performance overhead
and without sacrificing user privacy.

1 Introduction

On mobile platforms such as iOS and Android, Web
browsers such as Google Chrome, and even smart tele-
visions such as Google TV or Roku, hundreds of thou-
sands of software apps provide services to users. Their
functionality often requires access to potentially sensi-
tive user data (e.g., contact lists, passwords, photos), sen-
sor inputs (e.g., camera, microphone, GPS), and/or infor-
mation about user behavior.

Most apps use this data responsibly, but there has also
been evidence of privacy violations [2, 36, 43, 54, 56].
Corporations often restrict what apps employees can in-
stall on their phones to prevent an untrusted app—or a
cloud provider that an app communicates with—from
leaking proprietary information [11, 28].

There is an inherent trade-off between users’ privacy
and apps’ functionality. An app with no access to user
data (e.g., one running in Native Client [39]) cannot leak
anything sensitive, but many apps cannot function with-
out such data. For example, a password management app
needs access to passwords, an audio transcription app
needs access to the recordings of user’s speech, etc.

Existing confinement mechanisms deployed on plat-
forms such as iOS and Android rely on users to explic-
itly grant permissions to apps. In theory, users can de-
cide how much privacy to sacrifice for functionality. In
practice, permissions are very coarse-grained (e.g., an
app that has permission to access the network can send
out whatever it wishes to whomever it wishes), and apps
often request more permissions than they need [19, 25]
and use granted permissions in unexpected ways (e.g., an
app with permission to show the user’s location on a map
may transmit this location to other parties). Users—who
are inundated with permission requests and may not fully
understand the implications—often blindly grant all re-
quests [20] or even disable notifications [37], implicitly
entrusting all apps with their private data.
Our contributions. This paper describes πBox, a new
platform for confining untrusted apps that balances apps’
functional needs against their users’ privacy, largely pre-
serving both. To achieve this balance, πBox isolates
each user’s instance of an app from the other instances
and users, and only allows communication through a
few well-defined channels whose functionality meets the
needs of many apps. Because these channels are con-
trolled by πBox, πBox can give rigorous privacy guar-
antees about the information that flows through them.

The key idea behind πBox is to shift much of the re-
sponsibility for protecting user privacy from the apps to
the platform. We use three novel technical mechanisms:

1. A sandbox that spans a user’s device and a cloud
back-end. The latter may be supplied by the device’s
platform provider (e.g., Apple or Google) or another
entity (e.g., the user’s employer).

2. Five specialized storage and communications sys-
tems that enable a variety of apps to do useful work
within πBox while preserving user privacy.

3. An adaptation and implementation of differential
privacy under continual observation that improves
the trade-off between accuracy and privacy of re-
leased statistics (e.g., ad impression counts).
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Because πBox’s sandbox spans the device and the
cloud, πBox can help enterprises deploy bring-your-
own-app (BYOA) policies that allow users to execute
apps from untrusted publishers on a trusted platform.
This platform may run on the premises under the en-
terprise’s direct control or be part of an external “app
store” or hosting infrastructure. Similar to bring-your-
own-device (BYOD) policies, where companies install
profiles and security software on employee-owned de-
vices used for work, a company might restrict apps to run
only within πBox, thus ensuring that these apps—and
any information they access—are securely confined.

This paper addresses three research questions raised
by this architecture. Can we construct useful apps under
these constraints? Can we adapt differentially private ag-
gregation to an environment where app providers need
to query periodically updated statistics of user activities?
Are the overheads of πBox acceptable?

To answer these questions, we constructed (1) a pro-
totype of πBox and (2) a set of sample apps that rep-
resent common app types and demonstrate the util-
ity of our platform: a cloud-backed password vault, an
ad-supported news reader, and a transcription service.
We also ported two open-source Android apps: the Os-
mAnd navigation app [41] and ServeStream, an HTTP-
streaming media player and media server browser [51].
In Section 2.5, we explain in more detail the classes of
apps and app features supported by πBox.
πBox uses differential privacy to prevent aggregate

statistics from leaking too much information about users
to app publishers. Conventional differentially private
queries on static datasets can be very inaccurate when the
input data is changing due to user behavior. Instead, we
apply algorithms for differential privacy under continual
observation [16]—in particular, delayed-output counters.
We also list the parameters that enable an app publisher
to tune the amount, frequency, and/or accuracy of the re-
ported statistics subject to the platform’s bound on the
rate of information leakage. The resulting relative error
rates on real-world traces are five times lower than with
conventional differentially private counters.

The paper proceeds as follows. Section 2 presents an
overview of πBox’s design. Section 3 shows how πBox
deploys differential privacy under continual observation
and privacy-preserving top-K lists to implement aggre-
gate channels. Section 4 describes our prototype imple-
mentation. Section 5 evaluates it and describes the apps
we developed or ported to πBox. Section 6 discusses re-
lated work. Section 7 concludes.

2 Design

πBox is a platform for executing apps and associated
remote services. There are three types of principals in-
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FIGURE 1—Architecture of πBox.

volved in πBox: (1) the platform provider who sup-
plies the client (either software, e.g., Google Chrome, or
both hardware and software, e.g., Apple iPhone, Google
Nexus 7, or Kindle Fire), as well as the cloud resources
on which app instances execute, and deploys πBox on
both the client and the cloud; (2) users who invoke and
use untrusted apps on their local devices and their slice of
the cloud; and (3) publishers who provide apps, content
for apps, and/or advertisements.

2.1 Threat model
πBox is based on the following design philosophy: do
not trust the apps nor rely on the users to make fine-
grained privacy decisions; instead, trust the platform
to enforce privacy. We argue that trusting the platform
provider is far more reasonable than expecting users to
judge the trustworthiness of many different, often ob-
scure app publishers. After all, users must already trust
the platform provider to not leak their private data. Fur-
thermore, third-party platform providers are often trusted
brands such as Google, Apple, and Amazon that have
strong incentives to take care of their customers’ data.
Therefore, we assume that both users and app publishers
trust the platform, but users do not trust the publishers.
Furthermore, we neither assume that the provider trusts
the publishers, nor rely on auditing by the provider to
eliminate misbehaving apps.1

πBox is thus designed for the scenario where an un-
trusted app runs in a trusted sandbox. In this model, the
app’s publisher may be malicious, the code of the app
may attempt to leak users’ private data or reveal infor-
mation about its users to the publisher, some of the app’s
users may be colluding with the app in an attempt to learn
other users’ data, etc. That said, the attacker is subject to

1Platforms that do audit apps such as Google Play provide addi-
tional assurance that is complementary to what πBox provides.
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standard computational feasibility constraints (e.g., the
attacker cannot subvert cryptographic primitives).

The sandbox provided by πBox is assumed to be
trusted. This includes both the components running on
the client device and those running in the cloud. Like any
software, if πBox is implemented incorrectly, it may be
subject to code injection and other attacks that compro-
mise the “ideal sandbox” abstraction. These attacks are
outside the scope of this paper, which focuses primarily
on the design of the sandbox. Another way in which the
“ideal sandbox” abstraction may be violated is via covert
(e.g., timing) channels between processes running in the
sandbox and those outside the sandbox [33, 47]. If an
implementation of πBox is vulnerable to such channels,
apps may be able to exfiltrate private data.

There has been much research on sandboxing mecha-
nisms (e.g., [27, 31, 60], among others). This work is or-
thogonal and complementary to the design of πBox and
can be applied to any implementation thereof.

2.2 Extended sandbox
Apps in πBox have two halves: one runs locally on the
user’s device, the other (optional) runs remotely in the
cloud. πBox, executing as the platform both on the de-
vice and in the cloud,2 supplies a per-user, per-app sand-
box that spans the device and the cloud. In effect, πBox
provides the abstraction that a slice of the cloud is part
of the user’s device: all of the app’s computations and
storage are done within this “distributed” device, which
is otherwise isolated to protect the user’s privacy.

The local half of an app running on the user’s device
can only connect to the remote half associated with the
same app and user. The local half does so by making a
request to the authentication service running as part of
the platform on the device. This service sends the user’s
credentials and the app’s ID to the authentication man-
ager running as a part of the platform in the cloud (see
Figure 1). Upon successful authentication, the authenti-
cation manager starts up the requesting app’s remote half
for that specific user and opens a secure channel between
the local and remote halves.

2.3 Storage and communication
An app running within πBox cannot write data or es-
tablish network connections outside of the sandbox. To
support app functionality, πBox provides five restricted
storage and communication channels (see Table 1).

The private vault provides per-sandbox (i.e., per-user,
per-app) storage that lets an app instance store data spe-
cific to a particular user (e.g., user profile, location, query

2Apple (iOS/iCloud) and Google (Android/Cloud Services) already
provide app platforms that extend from users’ devices to the cloud.

Written by Read by Purpose
Shared channels for all users of an app
Content
storage

Publisher App Store app data
and content

Aggregate
channel

App Publisher Collect usage
statistics

Individual channels for each app instance
Private
vault

App App App-specific

Inbox App (via
sharing
channel),
Publisher

App Receive shared
content, noti-
fications from
publisher

Sharing
channel

App App (via
inbox)

Share content

TABLE 1—Channels in πBox.

history, etc.) in order to provide personalized services.
For example, a password app may use the vault to store
the user’s passwords, while a news reader app may store
keywords of the articles the user has read. Each sand-
boxed app instance has read/write access to its own pri-
vate vault; no one else has any access rights.

The content storage provides per-publisher storage for
the content that app instances need to function, e.g., maps
for a navigation app. Each publisher has read/write ac-
cess to its own content storage so that the publisher can
(1) update the content and (2) grant read-only access to
apps that need this content. Apps may draw content from
multiple publishers’ content storage. For example, an ad-
supported news reader may load news articles from a
news publisher’s storage and ads from an ad broker’s
storage. Although content storage is shared across all
sandboxes that have access to it, read-only access pre-
vents communication between app instances.

The aggregate channel provides a per-app channel
(shared among all instances of an app) for publishers
to collect statistics on users’ collective behavior while
protecting privacy of individual users. For example, pub-
lishers of advertising-supported apps may collect the to-
tal number of ad impressions, but not which user viewed
which ad. Similarly, publishers of news or video stream-
ing apps may learn which articles or videos are popular,
but not who viewed what content. Publishers have read
access to their respective aggregate channels, and each
app has write access to its channel. In Section 3, we de-
scribe how πBox employs differential privacy to protect
data released via this channel.

The inbox provides per-sandbox storage for the user of
a particular app instance to receive information from the
app’s publisher as well as the content, if any, shared by
other users of the same app. Each sandbox has read/write
access to its inbox. All writes from the publisher or other
users must go through πBox; when publishers want to
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communicate with their apps’ users, they submit mes-
sages with the user as the recipient, and πBox delivers
the message to the appropriate inbox.

Finally, the sharing channel provides a per-sandbox
method for sharing content with other users of the same
app. To ensure that all recipients of the shared content
are explicitly approved by the user, we rely on a trusted,
platform-controlled dialog box (similar to a “powerbox,”
which is traditionally used to restrict the paths an app
can access [34, 50]). When a user wants to share content
from an app, the app writes the data to be shared into its
own sharing channel (to which no other sandbox has ac-
cess) and notifies the platform. πBox controls the rest of
the sharing process: it (1) reads in the data, (2) presents
the data to the user in a dialog box that explicitly noti-
fies the user about the imminent sharing of the presented
data, (3) prompts the user to confirm the recipients, and,
upon confirmation, (4) writes the shared content to the
inboxes of the designated recipients’ sandboxes. This de-
sign ensures that users are aware when and with whom
sharing occurs, but it cannot prevent the app from surrep-
titiously leaking private information in the shared data
(e.g., through steganography).

2.4 Advertising and third-party services

Advertising. To broadly support free apps, many of
which are financed by ads, πBox must support in-app
advertising. Traditionally, advertisers tell ad networks
which ads to display, how much they are willing to pay
per impression, and the interests they are targeting. Ad
networks organize ads into lists ranked by factors such as
the bid, number of impressions already made, etc. When
an app wants to display an ad, the ad network provides
an ad based on the user’s perceived interests.

To prevent apps from leaking users’ private data to ad-
vertisers, πBox changes this process: (1) the ad network
must store its ads in content storage on the πBox cloud
platform, (2) the number of impressions must be released
via the aggregate channel (see Section 3.1), and (3) the
logic for selecting and fetching an ad from content stor-
age (based on the user’s profile, activities, etc.) and the
logic for outputting to the aggregate channel must be im-
plemented inside the app (e.g., as part of a SDK or li-
brary) and executed inside the sandbox. For efficiency,
πBox allows publishers to share content storage across
multiple apps. Since apps have read-only access, this
does not affect privacy guarantees.
πBox protects users’ identities and thus prevents ad

networks from singling out individuals who may be en-
gaged in ad impression/click fraud. That said, other de-
fenses [22]—per-user thresholds on the number of im-
pressions/clicks, bait ads, and using historical statis-
tics to detect apps that pad the number of impres-

sions/clicks—continue to be effective even with πBox.
Ads that click-through to external sites can leak a

user’s identity (or at least the IP address) and other pri-
vate information.3 In πBox, arbitrary network traffic out
of the sandbox is not allowed, and click-through ads must
redirect the user to trusted platform resources, e.g., an ad
page in the ad network’s content storage.

Although not yet implemented, conventional click-
through ads can be supported in πBox with some mod-
ifications. First, all click-through URLs must be pre-
specified and static for all app instances (they cannot be
dynamically generated or otherwise based on the infor-
mation observed by a given instance). This still allows
a potential leak because the app’s choice of predefined
ads to show to the user may depend on the user’s private
information, but requiring static URLs limits the rate of
leakage. Second, the platform must verify that the click
indeed originated from the user. To support this, πBox
can use a trusted powerbox dialog to prompt the user
for explicit consent, similar to the sharing channel, be-
fore permitting the click to go through. We believe, how-
ever, that this point in the design space for ad support
sacrifices privacy, complicates the guarantees provided
by πBox, and forces users to make privacy decisions for
which they may not fully understand the implications.
πBox does not currently support ad networks that

choose which ads to serve via a real-time auction. Such
auctions require either that users’ profiles be sent to the
advertisers (so they know what they are bidding on),
or that all bidding logic be part of the sandbox. Alter-
natively, there exist proposals for privacy-preserving ad
auctions [46]. Advertising based on real-time bidding ac-
counts for less than 30% of all advertising sales [45], and
the introduction of “Do Not Track” in Web browsers may
adversely impact auction-based advertising [17].
Third-party services. Because πBox does not allow
apps to communicate outside of the platform, apps can-
not use external third-party services such as content de-
livery networks (CDNs). As with ads, apps running on
πBox can only access content and use services that are
hosted by the platform provider and published in the
read-only content storage. Fortunately, many platform
providers already provide services for apps, e.g., maps
from Apple, Google, and Bing, or CDN services such as
Amazon CloudFront and Google PageSpeed.

2.5 Apps supported by πBox
Figure 2 lists many app features and indicates whether
and how πBox protects user privacy for each of them.
In general, apps that do not involve sharing between

3For example, a set of ads may only be shown to (and thus clicked
by) users matching certain criteria or even maliciously micro-targeted
to specific individuals [30].
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FIGURE 2—πBox support for different app features.

users are well-suited for πBox. This includes, for ex-
ample, multimedia, reference, weather, and utility apps,
many of which handle sensitive data (e.g., navigation,
personal finance, password management, malware detec-
tion, speech recognition, etc.). πBox supports the report-
ing of usage statistics, user feedback, and ad impressions.

Some apps only share content occasionally, e.g.,
games that let users share their scores, or camera apps
that let users share some of their pictures. For these apps,
πBox protects user privacy with respect to the app’s core
functionality. Furthermore, the πBox sharing channel en-
sures that any content sharing is explicitly authorized by
the user (malicious apps may still exfiltrate sensitive data
by hiding it in shared content—see Section 2.6).

Finally, there are apps—e.g., Facebook, Twitter, or
multiplayer online games—whose sole purpose is to
allow users to connect, communicate, collaborate, and
share content with other users. Users of such apps al-
ready expect to lose some of their privacy, and πBox can
guarantee relatively little for them.

Each πBox-supported app is assigned a privacy rat-
ing determined by the channels it uses. Apps that only
use the private vault, content storage, or inbox are green:
they never export any data from the sandbox and cannot
leak anything. Apps that use the aggregate channel are
yellow: they may release differentially private statistics
but there is a provable bound on the amount of informa-
tion leaked. Finally, apps that use the sharing channel are
red: they rely on explicit user consent to export infor-
mation and are at a higher risk of leaking private data.
In Section 5.4, we describe how many top apps from the
Google Play store fall into these categories.

2.6 Limitations and scope
πBox reduces privacy risks to the users of many apps
and makes it more difficult to harvest large amounts of
private user information, but it is not a privacy panacea.

First, the differentially private aggregate channel leaks
a little information with every output. This is inevitable,
and we quantify this leakage in Section 3. Note that
no covert communication beyond this leakage is possi-
ble over the aggregate channel because differential pri-
vacy holds regardless of the recipient’s auxiliary (includ-
ing covert) information. In the case of πBox’s aggregate

channel, the timing of the release is differentially private,
too, precluding a malicious app from encoding covert in-
formation in the timing of its aggregate outputs.

Second, while πBox’s sharing channel guarantees that
only the specified recipient can read the shared content, a
malicious app may hide private information in this con-
tent via steganography. Several factors mitigate this risk.
First, πBox shows the content to be shared to the user
and uses the powerbox mechanism to directly confirm
the user’s consent to share. Second, πBox restricts the
type of content to be shared: only plain text and images
are allowed in our prototype.

This is a trade-off between usability and privacy. The
design philosophy behind πBox is to avoid involving
users in privacy-critical decisions (in contrast to the An-
droid permission system). At the same time, sharing is
important for many applications, and πBox lets users ex-
plicitly accept a privacy risk when sharing content.

Most importantly, πBox guarantees that shared con-
tent can only be viewed by the recipients who have been
explicitly approved by the user. While a malicious app in-
stance may be able to embarrass the user by sending pri-
vate information to an approved recipient, the app pub-
lisher still does not have access to this data unless the
recipient (or the user who is sharing) cooperates.

In general, we believe that πBox will be appealing to
entities looking to (1) enhance or safeguard their exist-
ing app platforms by improving user privacy, (2) rent
privacy-preserving cloud resources to app publishers,
and/or (3) provide a curated version of their standard app
store that offers privacy-enhanced apps to enterprise cus-
tomers. πBox is an especially good fit for enterprise en-
vironments, where apps typically contain content from
a single external publisher, do not require (in fact, fre-
quently forbid) sharing of content outside the enterprise,
do not rely on ads, and do not involve functionalities with
multiple external parties such as brokered ad auctions.

3 Protecting privacy

The functionality of many apps depends, both technically
and financially, on some information about their users.
Aggregate statistics are often sufficient—for example,
some ad-supported apps only need to track the number
of ad impressions, not whether a particular user viewed
a given ad—but even they may reveal information about
individuals [8, 14].
πBox uses differential privacy [14] to enable app pub-

lishers to collect relatively accurate statistics on users’
behavior while limiting information leaks about any in-
dividual user. Informally, differential privacy is a frame-
work for designing computations where the influence of
any single input on the output is bounded, regardless
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of the adversary’s knowledge and/or external (auxiliary)
sources of information the adversary may have access to.

“Conventional” differential privacy techniques such as
the Laplacian mechanism (described in the following
section) are primarily intended to protect individual in-
puts in computations on static datasets. By contrast, apps
keep generating new data: for example, an app may con-
tinuously update the number of times a news article has
been read or an ad has been shown. Moreover, app pub-
lishers may be interested in rankings, such as the most
popular news articles or the most frequently misrecog-
nized words in a transcription app. As we will show, con-
ventional mechanisms, while privacy-preserving, result
in an unacceptable loss of accuracy in these settings.

To balance privacy and accuracy, πBox deploys re-
cently developed algorithms for differentially private
counters under continual observation [16] and differen-
tially private ranked lists [7]. To the best of our knowl-
edge, πBox is the first system that uses differential pri-
vacy under continual observation in a working system.

3.1 Counters and top-K lists
In πBox, the key building block for the aggregate chan-
nel is a set of platform-controlled counters. As an app
executes, it may increment one or more counters. Even-
tually, the (randomly perturbed) values of these counters
are released to the app publisher. The list of counters
must be defined by the publisher in advance. Therefore,
a malicious app instance cannot encode user-specific in-
formation in its choice of counter names. The released
counter values are differentially private and thus proba-
bilistically hide the influence of any given user’s data.
πBox enforces user-level differential privacy on these

counters, i.e., the privacy of all data, actions, and any
other inputs associated with a particular user, as opposed
to the privacy of a single input. Formally, for some pri-
vacy parameter ε (described further in Section 3.2), a
computation F satisfies user-level ε-differential privacy
if, (1) for all input datasets D and D′ that differ only in a
single individual user whose inputs are present in D but
not in D′, and (2) all outputs S ⊆ Range(F ),

Pr[F (D) ∈ S] ≤ eε · Pr[F (D′) ∈ S] (1)

A standard mechanism for making any computation F
differentially private is the Laplacian mechanism, which
adds random noise from a Laplace distribution to the out-
put of F before it is released, i.e., F (x) + Lap

(

∆F
ε

)

.
Here Lap(y) is a Laplace-distributed random variable
with mean 0 and scale y, and ∆F is the maximum pos-
sible change in the value of F (F ’s sensitivity) when a
single user’s inputs are removed from the dataset.

Intuitively, the more sensitive a computation is to its
inputs, the more random noise is needed to ensure a

Parameter chosen by platform provider
Per-period privacy budget (R)
Parameters chosen by app publisher
List of counters (L)
Frequency of output release (f )
Privacy parameter (ε)
Max. # counters app instance can update per period (n)
Max. contribution to each counter per period (s)
Buffer size (b)
# of ranked counters (K)

TABLE 2—Parameters for aggregate counters. b and K only
apply to delayed-output and top-K counters, respectively.

given level of privacy. Consequently, ∆F in πBox—and,
therefore, the amount of noise that πBox adds to the re-
leased counter values—depends on the number of coun-
ters a user can update (which we denote as n) and the
maximum amount by which a user can affect any sin-
gle counter (s). There is an important trade-off in the
Laplacian mechanism between privacy (ε) and accuracy:
higher accuracy requires giving up more privacy. We
will revisit this trade-off in detail in Section 3.2.
Supporting periodic updates. Many apps dynami-
cally update counters during execution and then need to
periodically release them. The Laplacian mechanism can
be applied to every release, but if the timing of releases
is independent of the counter’s true value, the random
noise added by the mechanism (which, too, is indepen-
dent of the counter’s value) can be much larger than the
true value, resulting in high relative error. This arises, for
instance, when counting the number of impressions for
rarely displayed ads targeting a niche group of users.
πBox uses delayed-output counters [16] instead. Fig-

ure 3 describes how such a counter is implemented. Intu-
itively, this mechanism randomly delays releases of the
counter value; if the value is small relative to the noise
that must be added, the release is likely to be postponed.

Furthermore, rather than allowing counters to be con-
tinuously queried, πBox enforces a minimum interval
between releases (line 5). Thus, even the counters that
have internally accumulated a large number of updates
may not be immediately released. Delaying the release
may affect the freshness of the released values, but the
relative error will be smaller.
Supporting ranked top-K lists. To release top-K
lists, πBox adapts techniques by Bhaskar et al. [7]. The
app publisher specifies K beforehand, and the amount of
noise that is added is proportional to K, which is typi-
cally smaller than the amount of noise (proportional to
n) that would have been added if we had used the Lapla-
cian mechanism on every counter to determine the top
K. To generate a ranking of the counters without their
associated values, the algorithm adds Lap(4Ks/ε) ran-
dom noise to the values of all counters and picks the

6



USENIX Association  10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 507

1: Vi : true count in period i
2: λ ⇐ s·n

ε
3: A ⇐ 0
4: D ⇐ b+ Lap(λ)
5: for each period i of duration 1/f do
6: A ⇐ A+ Vi

7: if A−D > Lap(λ) then
8: Release A+ Lap(λ)
9: A ⇐ 0

10: D ⇐ b+ Lap(λ)
11: end if
12: end for

FIGURE 3—Delayed-output counter.

top K counters based on these noisy values. If an app
publisher needs to know the actual values of the associ-
ated counters as well, the algorithm adds an additional
Lap(2Ks/ε) noise to the true values of the selected K
counters before releasing their values.

It may appear that the ability to release top-K lists al-
lows apps to leak sensitive information. For example, the
publisher of a password management app could learn the
K most common user passwords (in any case, these are
already well-known). Note, however, that the publisher
cannot learn the password of any given user. Similarly,
conventional differential privacy allows the publisher to
ask how many users have a particular password, but the
answer does not reveal any specific user’s password.

Finally, πBox’s aggregate channel can be extended
to support other differentially private functions such as
mean and threshold [48].

3.2 Choosing privacy parameters

Absolute privacy cannot be achieved: as long as the re-
leased values have any utility, the original data can be
reconstructed after observing at most a linear (in the size
of the dataset) number of values [13]. To model the cu-
mulative loss of privacy after multiple computations on
the same private data, differential privacy uses the notion
of a privacy budget [15, 35]. Every ε-private computa-
tion charges ε cost to this budget. The higher the value of
ε, the less noise is added, thus the released value is more
accurate, but the privacy cost is correspondingly higher,
too. The budget is pre-defined by the data owner. Once it
is exhausted, no further release is allowed.

In our setting, it is undesirable for an app to lose func-
tionality after a while. Instead, πBox enforces a per-
period privacy budget that bounds privacy loss per pe-
riod by parameter R, which is chosen by the platform
provider. For a given R, the app publisher may specify
the types of the counters the app will release (delayed-
output and/or top-K with or without associated values),

as well as the relevant parameters in Table 2, so long as

c · f ≤ R (2)

where c = ε/2 for top-K counters without associated
values and ε for the other two types of counters.

To understand how c and ε relate to the amount of in-
formation leaked, let P be an adversary’s prior proba-
bility of the user’s private data having a particular value
and P ′ be the posterior probability after observing the re-
leased counters. Condition (1) ensures that P ′ ≤ ec · P ,
i.e., any released value changes the adversary’s prior
probabilities (no matter what they are!) by no more than a
constant multiplicative factor. If uncertainty is measured
as min-entropy of the adversary’s probability distribution
over the private data,4 every release yields (c log2 e) bits
of information to the adversary [1, 6]. Given this repre-
sentation of uncertainty, πBox’s counters release at most
(f · c log2 e) = (R log2 e) bits per period. For example,
an app that uses delayed-output counters with ε = 1 and
the release frequency f of once per day leaks at most
1.44 bits of information daily.

While it is straightforward to calculate how much
noise should be added for a given choice of counter type
and ε, the utility of a particular counter arguably depends
not just on the amount of noise added, but also the ac-
tual true counter value, i.e., the relative amount of noise
matters. The larger the true value, the larger the absolute
noise that can be tolerated for a given relative error, thus
allowing for smaller values of ε.

As long as condition (2) is followed, app publishers
are free to choose the types of the counters used by their
apps and the values of the parameters listed in Table 2.
For example, a publisher may want more frequent output
(f ), at the expense of lower ε, higher λ and thus lower ac-
curacy. To maintain the same accuracy, the publisher may
keep the same λ at the cost of decreasing the maximum
number of counters a single app instance can update (n)
and/or the maximum amount it can contribute (s).

4 Implementation

We implemented a prototype of πBox using Android 2.3
(Gingerbread) for the device client; Jetty [29], a Java
servlet container, for the remote services; and HBase [23]
for the cloud communication and storage channels. The
trusted computing base (TCB) consists of the above soft-
ware, cloud operating system (Linux in our case), and
the πBox implementation, which itself is approximately
7,500 lines of code for the cloud half and 2,700 for the
device half. The design of πBox is largely agnostic to
the specific sandboxing technology and could have used

4The min-entropy of a probability distribution that assigns proba-
bility pi to some event i is −(maxi log2(pi)).
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virtual machines, Native Client [39], or more advanced
sandboxes, which would change the size of the TCB.

4.1 Isolation and authentication

Client isolation. To implement the sandbox on the
device, we augmented Android’s built-in sandboxing
mechanism. By default, Android assigns each app a
unique user identifier (UID). πBox allows non-privacy-
preserving apps to coexist with privacy-preserving apps
on the same device, but assigns UIDs from different
ranges to apps of different types. This makes isolation
enforcement simpler in the kernel code.

Android uses standard Linux permissions to isolate
apps from each other, but this is not enough to prevent
an app from abusing the permissions it has. To prevent
πBox-confined apps from leaking private data, we mod-
ify Android to block them from creating world-readable
files or directories, and from writing to files or directo-
ries owned by another app’s UID.5 πBox does not allow
confined apps to communicate with other non-system
apps via IPC, including Binder IPC (the basic primitive
for various higher-level Android IPC mechanisms). Fi-
nally, we use iptables to confine the apps’ network traf-
fic. These changes are applied at the kernel level only to
πBox-confined apps (recognized by their UIDs).
Cloud isolation. We implement the server-side func-
tionality for πBox apps as Java servlets using Jetty. Many
existing Web apps, e.g., those on Google App Engine [4],
can thus be easily adapted to πBox.

In Jetty, each app is isolated in a separate Web app con-
text (a container that shares the same Java class loader).
In πBox, each user of an app is also isolated in a sepa-
rate context, achieving classloader-level isolation. To re-
strict the servlet’s communication via system resources,
we rely on Java’s security monitor. Our sandbox also in-
cludes many other restrictions used by Google App En-
gine, e.g., disallowing reflection and controlling access
to JVM-wide resources such as system properties.
Authentication. When an app on the user’s device
wants to communicate with its cloud-based half, it sends
an “intent” (a high-level IPC mechanism in Android) to
πBox’s local trusted authentication service, implemented
as a system app. After identifying the requesting app, the
authentication service requests the user’s credentials via
user input or from a cache and sends them, along with the
app’s ID, through a TLS tunnel to πBox’s authentication
manager in the cloud. Upon successful authentication,
the authentication manager sets up a new servlet instance
at a specific URL, establishes an IPsec endpoint on the
machine where the servlet is instantiated, and sends this

5This implies that an app can only write to directories that it alone
has read access to and that other apps cannot see the files it has written.

URL, a one-time password that is required to access the
servlet instance, and the IPsec key to the authentication
service on the user’s device.

The authentication service establishes the other end of
the IPsec tunnel on the device, updates iptables to al-
low the app to communicate with the servlet, and passes,
via intent, the URL and password to the app. IPsec en-
sures that all communication to and from the servlet is
encrypted, and iptables ensure that the app on the user’s
device can only communicate with the user’s servlet in-
stance via this IPsec tunnel. Finally, the app running lo-
cally on the user’s device authenticates using the pro-
vided password via HTTP basic authentication over the
IPsec tunnel (which encrypts the credentials); this step
ensures that only this specific app can communicate with
the servlet. Once this process is complete, the app can
send HTTP requests to the provided URL and receive
HTTP responses from its cloud component.

4.2 Storage and communication channels

πBox’s storage systems use local device storage and
HBase, a popular NoSQL storage system. Local device
storage is part of πBox’s private vault. Any data that is
written to local storage is secured as described in Sec-
tion 4.1 and cannot be exported from the sandbox. Ac-
cess to cloud storage is provided via a HBase-like API.

When an app publisher submits an app to the plat-
form, the publisher provides a WAR (Web application
ARchive) file that contains the app’s servlet code and
XML files that describe the schemas of the HBase ta-
bles that the app needs for each type of cloud storage.
To implement various channels, πBox provides wrap-
pers of the HBase client that expose the appropriate in-
terfaces to servlet instances. For example, the interface
to content storage exposes read-only operations on the
storage’s shared tables. The interface to the cloud-backed
private vault provides both read and write access to the
per-sandbox table. The wrapper for the aggregate chan-
nel exposes an update-only interface for the counters,
which are stored in the HBase tables by πBox. Stored
counter values are periodically released by (1) sanitizing
them via the differential privacy module using the param-
eters provided by the app publisher (Section 3.2) and (2)
writing them to a table that can be read by the publisher.

The per-sandbox inbox allows a user’s servlet to re-
ceive messages from the app publisher or from another
user’s servlet for the same app. This inbox is imple-
mented using an HBase table in which each row cor-
responds to a single message. The row includes the
sender’s platform username (the name used to authen-
ticate with the authentication service or a special user-
name reserved for the app’s publisher), a timestamp, and
the message body. Messages from the publisher are de-
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FIGURE 4—Latency vs. throughput for πBox mechanisms.

livered to the recipient’s inbox by a designated servlet,
which can be invoked only by the authorized publisher.

Lastly, when an app wants to share content through
the sharing channel, it sends an intent, along with the
content to be shared, to πBox’s sharing service, which
is implemented as part of the authentication service. The
sharing service prompts the user for the recipients’ user-
names and sends the message, along with the usernames
of the sender and the recipients, to a designated servlet
that only the platform can access. This servlet then adds
the message to the inbox of each recipient.

5 Evaluation

5.1 Performance overhead
We evaluate πBox using a server with two four-core
Xeon E5430 CPUs and 16 GB RAM and 4 clients with
a single-core 3 GHz Pentium 4 Xeon CPU with hyper-
threading and 1 GB of RAM, all running Fedora 8.

We first use micro-benchmarks to measure the
throughput and response time of the various mechanisms
employed by πBox on two types of workloads: a simple
static workload where the server responds with about 10
bytes of static HTTP body data, and a computationally
intensive workload where the server randomly generates
1 MB of data and calculates its SHA-256 hash. We gener-
ate the workloads by having a varying number of clients
continuously submit requests over a 30-second interval.

Figure 4 shows the results with different components
turned on. In the base configuration, we run the server
with the Java security monitor disabled, no isolation
(i.e., a single servlet instance serves all client requests),
and without an IPsec tunnel between the server and the
clients. We then enable the security monitor, run multiple
servlet instances to serve different clients, and/or enable
IPsec. For the simple static workload, πBox reduces the
throughput of the system by roughly 50%, incurring an
overhead of 0.17 ms per operation. For the heavier SHA-
256 workload, however, the computation required to gen-
erate the hash effectively hides the overhead of πBox.

To measure the overhead of isolating app instances,
we fix the load offered to the server (i.e., the number
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FIGURE 6—Fraction of time the true top-K documents appear
in the noisy top-K list.

of requests generated by the clients) and vary the num-
ber of Web app containers (i.e., per-client servlet con-
texts) on the server. Figure 5 shows the throughput and
response time of πBox for three types of workloads, with
requests uniformly distributed across the containers. The
static and SHA-256 workloads are the same as in the pre-
vious experiment. In the news reader workload, clients
request a list of new articles (about 300) and a specific
article (5 to 10 KB) from the servlet half of our news
reader app (Section 5.3). This causes many I/O-intensive
operations on the small HBase instance that stores the ar-
ticles. As Figure 5 shows, the overhead of user isolation
is insignificant for all three workload types.

5.2 Privacy vs. accuracy
To show that the differential privacy mechanisms em-
ployed by πBox provide reasonable accuracy in real-
world scenarios, we first apply the top-K mechanism
to the 60-day Web server trace of the 1998 World Cup
website [59]. For each day, we calculate the top 5 and
top 10 most frequently accessed documents and use the
πBox’s aggregate channel to output “noisy” top-5 and
top-10 lists. The total number of daily accesses for a top-
10 document ranged from 6,000 to 14,000.

Figure 6 shows, as a function of the privacy parameter
ε, how often the true top-5 and top-10 documents on a
particular day appeared in the noisy, privacy-preserving
top-5 and top-10 lists output by the aggregate channel.
As ε increases, the accuracy of the noisy rank lists im-
proves. For example, the 8th-ranked item appears in the
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FIGURE 8—Accuracy of delayed-output counter on two differ-
ent documents. We use ε = 1, |L| = 100, and b = 500.

noisy top-10 list 75% of the time when ε = 0.05, but
95% of the time when ε = 0.2. This percentage is even
higher for items with higher true ranks. Figure 7 shows
the average noisy rank given to true top-5 and top-10
documents. The accuracy of the noisy rank improves
with higher ε; with ε = 0.2, all ranks are correct.

To illustrate the advantages of the delayed-output
mechanism for releasing infrequently updated counters,
we use a trace from the University of Saskatchewan Web
server [49] which contains a variety of access patterns.
For this experiment, we set ε = 1, the total number of
delayed-output counters (|L|) to 100, the buffer size (b)
to 500, and the release frequency to 1 week. We com-
pare the delayed-output counter to a basic counter that
simply outputs its differentially private value every week.
Figure 8 shows the values of the delayed-output counter
and the basic counter over a 30-week span for two doc-
uments with different access patterns. For the frequently
accessed document, the delayed-output counter is off by
12.9% on average vs. 19.6% for the basic counter. For the
less frequently accessed document, the delayed-output
counter is much more accurate, with a relative error of
15.6% vs. 83.1% for the basic counter.

5.3 Apps
To illustrate how to build useful privacy-preserving apps
in πBox, we developed three sample apps and ported two
existing open-source apps.
Password manager. A password manager is an exam-
ple of an app that needs to keep (but not share) sensitive

Content storage
(news, ads)

Aggregate channels
(# views, # displays)

Private vault
(settings, history)

Publishers
(news, ads)

(1a)

(1b)

(2a)

(2b)

(3a)

(4a)

(4b)

(5b)

(5a)

(3b)

Private vault
(settings, history)

FIGURE 9—Interactions and data flow between the news reader
app and πBox. The dark (solid, dotted) lines represent the flow
from the (content, ad) publisher. The lighter lines represent the
same flows for another user of the same app.

data, e.g., store a user’s credentials in the cloud so that
the user can access them from different devices and to
avoid keeping them on the devices themselves. Although
many such apps use encryption, the user must trust that
the app’s publisher is neither malicious nor incompetent.

Our πBox-based password manager app simply stores
the user’s passwords in its cloud-backed private vault, en-
abling their retrieval from multiple devices. Despite its
simple design, the app guarantees that (1) only a specific
user can access the stored password via the app, and (2)
the app cannot leak the stored passwords to anyone else
(i.e., this app is “green”; see Section 2.5). This benefits
both the user, who does not have to worry about the trust-
worthiness of the app, and the app publisher, who can
rely on πBox to secure the publisher’s app’s storage.
News reader. Our news reader app is an example of
an ad-supported media browsing and consumption app
that uses πBox’s storage systems and involves multiple
publishers. Figure 9 shows the flow of data between the
publishers, the app, and the platform.

The main functionality in any news reader app is dis-
playing content (news articles) to the user. In our imple-
mentation, the publisher supplies the articles by adding
to, updating, and removing from the app’s content stor-
age located on πBox’s cloud platform (Figure 9, 1a). The
app has read-only access to this storage (Figure 9, 2a).

The news reader may provide personalized content to
the user, for example, recommend certain articles based
on the user’s reading history. It can track the user’s read-
ing history by writing to its private vault (Figure 9, 3a).
Because the vault is per-user and per-app, this data can-
not leak to other app instances or the app publisher.

Many apps of this type are ad-supported. The ads may
be published by either the app publisher or a separate en-
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tity, e.g., an advertising network partnering with the app
publisher. Like the news articles, the ads are published
and updated by their publisher and viewed by the user via
content storage (Figure 9, 1b and 2b). Any personaliza-
tion and micro-targeting is done by writing the relevant
data to the private vault (Figure 9, 3b).

Both news and ad publishers may want to know how
often their articles and ads have been viewed. Our app
keeps one counter per article and ad. We use a top-10
list to track the most popular articles (Figure 9, 5a) and
delayed-output counters for ad impressions (Figure 9,
5b), since the latter do not need to be released frequently.

The news reader app is a “yellow” app: although it ex-
ports statistics, πBox provides differential privacy guar-
antees to its users. It is straightforward to extend the news
reader to let users share interesting articles with other
users, which would make the app “red.”
Transcription. Our transcription app uses cloud-
based voice recognition. It records the user’s speech on
the device and transmits it to a servlet, which writes the
recording to per-sandbox temporary scratch space and
executes Sphinx-4 [53], an open-source speech recog-
nition toolkit, to transcribe the text. The transcription is
then sent back to and displayed by the app on the device.
Our current prototype keeps the dictionary in the app’s
binary but we could also use content storage for this pur-
pose, allowing the publisher to update the dictionary.

This app uses the aggregate channel to release the
confidence scores of speech recognition for each l-gram
(l = 1 in our prototype). First, the app publisher defines
counters for all words in the Sphinx-4 dictionary (per Ta-
ble 2, L is the list of these counters, n = |L|). Sphinx-4
provides confidence scores that range from 0 (low confi-
dence) to 1. Because the publisher is likely interested in
the most misrecognized words, our app inverts the score
(thus making higher scores reflect lower confidence, up
to a maximum of s = 1) before adding it to the previous
value of the counter. The top-K list thus contains the K
(10 in our prototype) most misrecognized words.

The transcription app is a “yellow” app. πBox guar-
antees that, even if the recordings of the user’s speech
contain highly sensitive data, the app can leak this data
only through the differentially private aggregate channel
as (noisy) top-K word lists, which do not identify the
actual words spoken by specific users.
Porting existing apps. We ported OsmAnd [41], an
Android navigation app based on OpenStreetMap [40],
and ServeStream [51], an HTTP-streaming media player
and media server browser, to πBox.

The major changes to the apps involved (1) adding
code to initiate authentication via πBox’s authentication
service, (2) modifying all HTTP requests app to include
the authentication credentials provided by the authentica-
tion service (Section 4.1), and (3) moving map and media
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Casual!
Comics!

Communication!
Education!

Entertainment!
Finance!
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Lifestyle!

Live Wallpaper!
Media/Video!

Medical!
Music/Audio!

News/Magazines!
Personalization!

Photography!
Productivity!

Racing!
Shopping!

Social!
Sports!

Sports Games!
Tools!

Transportation!
Travel/Local!

Weather!

Paid apps! Free apps!

FIGURE 10—Number of top-10 apps in Google Play categories
(as of Feb. 2013) that can be supported by πBox. Unsupported
apps are uncolored/white. Stripes represent apps that, due to
non-core sharing or unsupported functionality, are one color but
whose core functionality is another color, e.g., a PDF viewer
that allows sharing is red, but its core is green.

content into πBox’s content storage and serving them via
servlets. The use of HTTP as the communication proto-
col simplified porting these apps to πBox, but this sim-
plification is likely to apply to many other apps. Overall,
for OsmAnd, we modified or added 174 out of 119,147
lines of code; for ServeStream, 133 out of 13,193 lines.

Both ported apps use only the private vault and content
storage, making them “green.”

5.4 Coverage of existing apps
To further evaluate how well πBox can support existing
app functionalities, we surveyed the top 10 free apps and
top 10 paid apps from all categories excluding wallpaper,
widget, and library in the Google Play app store, for a to-
tal of 30 categories and 600 apps. This survey was based
solely on the developer’s description of the app in Google
Play, thus the reported numbers are only estimates.

Figure 10 shows how many apps can be supported by
πBox and the degree of support. Among the paid apps,
46% are green, 18% red, and 36% unsupported; consid-
ering only core functionality, 74% are green. Among the
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free apps, 37% are yellow, 21% red, and 42% unsup-
ported; considering only core functionality, 67% are yel-
low. Unsurprisingly, many of the unsupported apps are
those that are categorized as “communication” or “so-
cial” and thus require frequent sharing of data. Free apps
are largely ad-supported and thus at least yellow.

6 Related work

xBook [52] and the system of Viswanath et al. [57] em-
ploy an extended sandbox mechanism similar to πBox
for social-networking services. These systems protect
user information stored on the platform (e.g., users’ pro-
files and social relationships). Hails [21] protects user
data on the platform using language-level information
flow control. Unlike πBox, none of these systems can
protect private information that apps directly receive or
infer from their interactions with the users.

In xBook, each user decides whether to allow a partic-
ular domain to access a given part of the user’s profile.
By contrast, πBox simplifies users’ decision-making by
color-coding the apps based on their potential for privacy
violations. xBook anonymizes app statistics (with no for-
mal privacy guarantees), while the system of Viswanath
et al. uses conventional differential privacy. As we show
in Section 5.2, this can lead to high relative errors when
releasing rarely updated values.

Embassies [26] is somewhat similar to πBox in that
it aims to secure apps through a minimal interface that
allows most apps to function correctly. Unlike in πBox,
app publishers are not viewed as adversaries with respect
to the user data collected by the app.

Dynamic taint analysis tracks the flow of sensitive
data through program binaries [10, 24, 62] and can
help protect user privacy. For example, TaintDroid [18]
detects (rather than prevents) privacy violations, while
AppFence [25] uses data shadowing and exfiltration
blocking to prevent tainted data from leaving the device.
Neither system handles implicit leaks. While taint-based
systems can track specific data items such as device ID,
they cannot prevent the app from leaking information
about the user’s behavior (e.g., articles the user has read).
In general, dynamic taint tracking is complementary to
the guarantees provided by πBox. For example, it can be
used to prevent certain data items from being declassified
even via differentially private channels.

Bubbles [55] aims to capture privacy intentions by
clustering data into “bubbles” based on explicit user be-
havior. The privacy guarantee is similar to that of πBox’s
sharing channel: once the user adds a friend to a bubble,
this friend gains access to all data in that bubble. Bubbles
is limited to apps that run on the client device only.

ObliviAd [5] and PrivAd [22] are privacy-preserving
online advertising systems that aim to protect user pro-

files from ad brokers. ObliviAd creates a black box at
the ad broker using a secure coprocessor and oblivious
RAM. This black box serves ads to clients, receives re-
ports about ad clicks and impressions from clients via
a secure TLS channel, records which ads were clicked
or viewed (but not who viewed an ad), and only releases
these records in large batches to make it difficult to deter-
mine who saw which ad. In PrivAd, clients fetch a large
set of ads that are roughly based on users’ interests; more
accurate targeting is done only at the client. When the
client reports which ads have been shown, a trusted third
party anonymizes his identity before sending the data to
the ad broker. By contrast, πBox aims to provide rigor-
ous privacy guarantees without sacrificing the ability of
advertisers to obtain accurate impression counts.

PINQ [35] and Airavat [48] are centralized platforms
for differentially private computations on static datasets.
PDDP [9] is a distributed differential privacy system in
which participants maintain their own data.

While the cloud provider is trusted in πBox, Cloud-
Visor [61] and CryptDB [44] focus on untrusted
clouds. CloudVisor hides users’ data from the hypervi-
sor using nested virtualization, CryptDB uses encryp-
tion. CLAMP [42] employs isolation and authentication
mechanisms that are similar to πBox to protect private
data in LAMP-like Web servers. It focuses on compro-
mised servers rather than malicious applications.
πBox can be viewed as imposing a mandatory infor-

mation flow policy on untrusted apps. Previous work on
information flow control includes [12, 32, 38, 60] and
hundreds of other papers.

Bring-Your-Own-Device approaches that support dual
workspaces [3, 58] enable personal and corporate data to
coexist on the same device while permitting only trusted
apps to access the corporate data. πBox takes this idea a
step further and allows untrusted apps to run on corporate
data, thus realizing the idea of Bring-Your-Own-App.

7 Conclusion

πBox is a new app platform that combines support for
apps’ functional needs with rigorous privacy protec-
tion for their users. Our evaluation demonstrates that
πBox can be used in many practical scenarios, includ-
ing “bring-your-own-app” enterprise deployments where
external apps operate on proprietary company data.
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