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Abstract

This paper studies the name lookup issue with longest
prefix matching, which is widely used in URL filtering,
content routing/switching, etc. Recently Content-Centric
Networking (CCN) has been proposed as a clean slate
future Internet architecture to naturally fit the content-
centric property of today’s Internet usage: instead of
addressing end hosts, the Internet should operate based
on the identity/name of contents. A core challenge
and enabling technique in implementing CCN is exactly
to perform name lookup for packet forwarding at wire
speed. In CCN, routing tables can be orders of magni-
tude larger than current IP routing tables, and content
names are much longer and more complex than IP ad-
dresses. In pursuit of conquering this challenge, we con-
duct an implementation-based case study on wire speed
name lookup, exploiting GPU’s massive parallel pro-
cessing power. Extensive experiments demonstrate that
our GPU-based name lookup engine can achieve 63.52M
searches per second lookup throughput on large-scale
name tables containing millions of name entries with
a strict constraint of no more than the telecommunica-
tion level 100us per-packet lookup latency. Our solu-
tion can be applied to contexts beyond CCN, such as
search engines, content filtering, and intrusion preven-
tion/detection.
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1 Introduction

Name lookup is widely used in a broad range of techno-
logical fields, such as search engine, data center, storage
system, information retrieval, database, text processing,
web application, programming languages, intrusion de-
tection/prevention, malware detection, content filtering
and so on. Most of these name lookup applications ei-
ther perform exact matching only or operate on small-
scale data sets. The recently emerging Content-Centric
Networking (CCN) [12] proposes to use a content name
to identify a piece of data instead of using an IP address
to locate a device. In CCN scenario, every distinct con-
tent/entity is referenced by a unique name. Accordingly,
communication in CCN is no longer address-based, but
name-based. CCN routers forward packets based on the
requested content name(s) carried in each packet header,
by looking up a forwarding table consisting of content
name prefixes.

CCN name lookup complies with longest prefix
matching (LPM) and backbone CCN routers can have
large-scale forwarding tables. Wire speed name lookup
presents a research challenge because of stringent re-
quirements on memory occupation, throughput, latency
and fast incremental update. Practical name lookup en-
gine design and implementation, therefore, require elab-
orate design-level innovation plus implementation-level
re-engineering.

1.1 Names and Name Tables

Content naming, as recently proposed in the Named
Data Network (NDN) project [28]', is hierarchi-
cally structured and composed of explicitly delim-
ited name components, such as reversed domain
names followed by directory-style path.  For in-

'CCN refers to the general content-centric networking paradigm;
NDN refers to the specific proposal of the NDN project. However, we
shall use them interchangeably in the rest of the paper.
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Figure 1: NDN communication example?.

stance, com/parc/bulletin/NSDI.html is an exam-
ple NDN content name, where com/parc/ is the re-
versed domain name parc.com of the web site and
/bulletin/NSDI.html is the content’s directory path
on the web site. ‘/’ is the component boundary delimiter
and not a part of the name; com, parc, bulletin and
NSDI.html are four components of the name.

The format of Forwarding Information Base (FIB)?
of NDN routers is shown beside Router A and B in
Figure 1. Each FIB entry is composed of a name
prefix and the corresponding outgoing port(s). NDN
name lookup also complies with longest prefix match-
ing (LPM). For example, suppose the content name is
/com/parc/products/printers/hp, which matches
the third and fourth entries in Router A; the fourth entry
as the longest matching prefix determines that the packet
should be forwarded through port 3.

1.2 Challenges

To implement CCN routing with large-scale FIB tables in
high speed networks, a core challenge and enabling tech-
nique is to perform content name lookup for forwarding
packets at wire speed. In particular, a name lookup en-
gine is confronted with the following difficulties.

First, content names are far more complex than IP ad-
dresses. As introduced above, content names are much
longer than IPv4/IPv6 addresses; each name is composed
of tens, or even hundreds, of characters. In addition, un-
like fixed-length IP addresses, content names have vari-
able lengths, which further complicates the name lookup.

Second, CCN name tables could be far larger than to-
day’s IP forwarding tables. Compared with the current
IP routing tables with up to 400K IP prefix entries, CCN

21n this paper, we shall use three terms — FIB, FIB table and name
table — interchangeably.

3In the NDN proposal, there are three kinds of tables, FIB, PIT and
CS. Only if the CS and PIT both fail to match, name lookup in FIB is
performed. When we evaluate our lookup engine, we assume this worst
case where every name has to be looked up in FIB.

name tables could be orders of magnitude larger. With-
out elaborate compression and implementation, they can
by far exceed the capacity of today’s commodity devices.
Third, wire speeds have been relentlessly accelerat-
ing. Today, OC-768 (40Gbps) links have already been
deployed in Internet backbone, and OC-3072 (160Gbps)
technology is emerging at the horizon of Internet.
Fourth, in addition to network topology changes and
routing policy modifications, CCN routers have to han-
dle one new type of FIB update — when contents are
published/deleted, name prefixes may need to be inserted
into or deleted from FIBs. This makes FIB update much
more frequent than in today’s Internet. Fast FIB update,
therefore, must be well handled for large-scale FIBs.

1.3 Our work

In pursuit of conquering these challenges, we conduct
an implementation-based case study of wire speed name
lookup in large-scale name tables, exploiting GPU’s
massive parallel processing power.

1) We present the first design, implementation
and evaluation of a GPU-based name lookup engine.
Through this implementation-based experimental study,
we demonstrate the feasibility of implementing wire
speed name lookup with large-scale name tables at low
cost, using today’s commodity GPU devices. We have
released the implementation code, data traces and docu-
ments of our work [3].

2) Our GPU-based name lookup engine is featured by
anew technique called multiple aligned transition arrays
(MATA ), which combines the best of two worlds. On one
hand, MATA effectively improves lookup speed by re-
ducing the number of memory access. On the other hand,
MATA as one-dimensional arrays can substantially com-
press storage space. Due to these unique merits, MATA
is demonstrated through experiments to be able to com-
press storage space by two orders of magnitude, while
promoting lookup speed by an order of magnitude, com-
pared with two-dimensional state transition tables.

3) GPU achieves high processing throughput by ex-
ploiting massive data-level parallelism — large amounts
of input data (i.e., names) are loaded into GPU, looked
up in GPU and output results from GPU together to hide
GPU’s DRAM access latency. While effectively boost-
ing processing throughput, this typical GPU design phi-
losophy easily leads to extended per-packet latency. In
this work, we take on this throughput-latency dilemma
by exploiting the multi-stream mechanism featured in
NVIDIA’s Fermi GPU family. Our stream-based pipeline
solution ensures practical per-packet latency (less than
100us) while keeping high lookup throughput.

4) We employ data interweaving [32] technique for
optimizing the storage of input names in GPU memory.
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As aresult, memory access efficiency is significantly im-
proved, further boosting name lookup performance.

We implement our name lookup engine on a com-
modity PC installed with an NVIDIA GeForce GTX590
GPU board. Using real world URL names collected from
Internet, we conduct extensive experiments to evaluate
and analyze the performance of our GPU-based name
lookup engine. On large-scale name tables containing
up to 10M names, the CPU-GPU lookup engine obtains
63.52M searches per second (SPS) under average work-
load, enabling an average line rate of 127 Gbps (with
256-byte average packet size). Even under heavy work-
load, we can still obtain up to 55.65 MSPS, translating to
111 Gbps wire speed. Meanwhile, lookup latency can be
as low as 100us. In fact, if the PCIe bus bandwidth be-
tween CPU and GPU were not the system bottleneck, the
lookup engine core running on the GPU could achieve
219.69 MSPS! Besides, experiments also show that our
name lookup engine can support fast incremental name
table update.

These results advocate our GPU-based name lookup
engine design as a practical solution for wire speed name
lookup, using today’s off-the-shelf technologies. The re-
sults obtained in this work, however, will have broad im-
pact on many technological fields other than CCN.

2 Algorithms & Data Structures

In this section, we present the core algorithmic and data
structure design of our GPU-based name lookup engine.
The entire design starts with name table aggregation
in Section 2.1, where name tables are aggregated into
smaller yet equivalent ones. After that, we present in
Section 2.2 aligned transition array (ATA), which sub-
sequently evolves into multi-striding ATA in Section 2.3
and multi-ATA (MATA) — the core data structure for
high speed and memory efficient name lookup — in Sec-
tion 2.4. Finally in Section 2.5, we demonstrate how
name table updates can be handled with ease in our
lookup engine design.

2.1 Name table aggregation

The hierarchical structure of NDN names and the longest
prefix matching property of NDN name lookup enable
us to aggregate NDN name tables into smaller ones. For
example, consider Router A’s name table in Figure 1. If
the third entry and the fourth entry map to the same next
hop port, they can be aggregated into one, by removing
the fourth entry. After this aggregation, names originally
matching the fourth entry will now match the third one.
Since the two entries are hereby assumed to map to the
same port, it is safe to perform this aggregation.

/a/be/ Address| Transition
/ab/c/
Jal = 1045 | /1001
Jab/ 1046 /,1003
ﬂ 1096 b,999
1097 2,998
1098 1,997
1099 b,1002
LADD)@DL5) [1100 [ /1004
@ 2 0 1101 c,1051
D) e / C @ /@ 1.1.(?2 C,l-(-).53

Figure 2: Aligned transition array.

To safely aggregate the two name table entries, they
need to comply with two simple principles: (1) One of
them is the shortest prefix of the other in the name table;
(2) They must map to the same next hop port(s).

2.2 Aligned transition array (ATA)

A natural approach to implementing NDN name lookup
is to build a character-trie [9], which is essentially a fi-
nite state machine (FSM) for matching incoming names
against a name table, as shown in the left part of Fig-
ure 2. Each node in the character-trie is implemented as
a state in the FSM, and transitions to its child nodes (i.e.,
states) on specified input characters. To start with, we
assume the FSM processes one input character on each
state transition. In such a 1-stride FSM, each state has
256 transitions, and each transition corresponds to a dis-
tinct input character. The entire FSM is essentially a two-
dimensional state transition table, where the ith row im-
plements the ith state s; and the jth column corresponds
to the jth character c; in the input alphabet X, which in
this case is the ASCII character set. The table entry at
the intersection of the ith row and jth column records
the destination state we should transit to, if the current
state is s; and the input character is c¢;; an empty en-
try indicates failing to match. Using current state ID as
row number and input character as column number, one
memory access is sufficient to perform every state tran-
sition.

However, this standard solution does not work in prac-
tice. To see that, we experiment with a real name table
consisting of 2,763,780 names (referred as “3M name ta-
ble” for brevity). After aggregation, the constructed 1-
stride FSM consists of 20,440,366 states; four bytes are
needed for encoding state ID, and 256 x 4 = 1,024 bytes
are thus needed for each row of the state transition table.
The entire state transition table takes 19.49 GB memory
space. In fact, the largest name table used in our experi-
ments is even several times larger than the 3M name ta-
ble. To fit such a large-scale name table into commodity
GPU devices, the FSM has to be compressed by at least
2-3 orders of magnitude, while still has to perform name
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lookup at wire speed, meeting stringent lookup latency
requirement and supporting fast incremental name table
update. This is a key challenge in the design and imple-
mentation of a practical name lookup engine, which we
take on in this work.

As we can observe from Figure 2, the FSM for name
lookup demonstrates a key feature — most states have
valid transitions on very few input characters. For ex-
ample in Figure 2, state O only has a valid transition on
character a. This intuitive observation is also verified
through experiments. For example, in the 1-stride FSM
constructed from the 3M name table, more than 80% of
states have only one single valid transition, plus more
than 13% of states (which are accepting states) that have
no valid transition at all. The state transition table is thus
a rather sparse one.

In light of this observation, we store valid transitions
into what we call an aligned transition array (ATA). The
basic idea is to take the sum of current state ID and input
character as an index into the transition array. For exam-
ple, if the current state ID is 1,000 and the input char-
acter is a (whose ASCII code is 97), we shall take the
transition stored in the 1,097th transition array element
as our valid transition®. To properly implement, we need
to assign each state s a unique state ID such that no two
valid transitions are mapped to the same transition array
element. For that, we first find the smallest input char-
acter on which state s has a valid transition; suppose the
character is the kth character in input alphabet X. Then,
we find the lowest vacant element in the transition array,
and suppose it is the /th element in the transition array.
The number ¢-k, if previously unused as a state ID, is
considered as a candidate state ID for state s. To avoid
possible storage collision, we need to check every input
character ¢ on which state s has a valid transition. If no
collision is detected on any valid transition of state s, /-k
is assigned as the state ID of state s. Otherwise, if the
(¢-k+c)th transition array element is already occupied, a
collision is detected and ¢-k is not good as the state ID for
state 5. The next vacant elements in the transition array
are probed one by one until finding the available element.

Another mistake that can potentially happen here is
that, even if current state s has not a valid transition on
the current input character, (state ID + input character)
may mistakenly refer to a stored valid transition belong-
ing to another state. To handle this problem, we store for
each valid transition not only its destination state ID, but
also its input character for verification.

With this aligned transition array design, the example

4This basic idea of storing a sparse table as a one-dimensional ar-
ray is introduced by Robert Endre Tarjan and Andrew Chi-Chih Yao
[23] back in 1979. With our new techniques proposed in subsequent
sections, we shall be able to effectively boost name lookup speed while
further reducing storage space.

Figure 3: A 3-stride FSM.

name table in the left part of Figure 2 is implemented as
the aligned transition array in the right part of Figure 2.
State transition is as efficient as using two-dimensional
state transition table. We simply take the sum of current
state ID and input character, and read the transition ar-
ray element indexed by the sum. If the stored character
is the same as input character, the obtained transition di-
rectly gives us the destination state; otherwise, failing to
match is detected. One single memory access is still suf-
ficient for every state transition. Meanwhile, only valid
transitions need to be stored, leading to significant com-
pression of storage space.

Thus far, this basic ATA design looks perfect. How-
ever, scale can completely change the nature of prob-
lems. Given the limited resource and capacity of today’s
commodity devices, as we shall observe in subsequent
sections, performing name lookup at 10Gbps in a name
table containing hundreds of thousands name prefixes is
one thing, while performing name lookup at 100Gbps in
aname table consisting of millions of name prefixes is to-
tally different. Especially, we also have to meet stringent
per-packet lookup latency requirement and support fast
incremental name table update. In subsequent sections,
we shall unfold and solve various technical issues, as
we proceed towards wire speed name lookup with large-
scale name tables.

2.3 Multi-striding

The storage efficiency and lookup speed of aligned tran-
sition array can be further improved with multi-striding
— instead of processing one character per state tran-
sition, d characters are processed on each state transi-
tion. The same algorithm for constructing 1-stride FSMs
can be used to construct multi-stride FSMs. To ensure
proper matching of name prefixes and to facilitate name
table update, component delimiter ‘/’ can only be the
last character we read upon each state transition. Thus,
the d-stride FSM we construct is actually an FSM of
variable strides, which processes up fo d characters (84
bits) per state transition. For example, Figure 3 shows
the 3-stride FSM constructed from the following three
names: /com/amazon/books/, /com/amazon/www/
and /com/yahoo/www/. Upon state transition, we keep
reading in d input characters unless ‘/’ is encountered,
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where we stop. These input characters are transformed
into an integer, which is taken as the input number.

By processing multiple bytes per state transition,
multi-striding effectively accelerates name lookup. Even
better, multi-striding also helps reduce storage space.
Because a large number of intermediate states and tran-
sitions in the 1-stride FSM will be consolidated.

2.4 Multi-ATA (MATA)

While multi-striding is very effective on boosting lookup
speed and reducing storage space, trying to further ex-
pand its power using larger strides leads us to an inherent
constraint of the basic ATA design — its multi-striding
is limited by available memory. For example, in the 3-
stride FSM in Figure 3, it takes two state transitions to
match the first-level name component ‘com/’, making
us naturally think about using a 4-stride FSM so that one
state transition will be enough. Unfortunately, in a d-
stride FSM, a state can have 28¢ transitions at most, so
the distance between a state’s two valid transitions stored
in the aligned transition array can be as large as 237-
1. Thus, with the 3GB memory space available on the
NVIDIA GTX590 GPU board used in our experiments,
3-stride has been the maximum stride that can be imple-
mented with basic ATA; 4-stride is not a practical option.

We break this constraint of basic ATA by defining a
maximum ATA length L (L < 28¢). For a state with state
ID x, its valid transition on input number y can be stored
in the ((x+y) mod L)th transition array element instead
of the (x+y)th element. However, suppose state x has
another valid transition on input number z. If y-z is a
multiple of L, the two valid transitions will be mapped
to the same transition array element and hence cause a
storage collision.

For solving the above problem, we shall use a set of
prime numbers Ly, Ly, ..., Ly, such that Ly XLy X... XLy
> 284 Accordingly, instead of creating one huge ATA,
we create a number of small ATAs, each ATA using one
of the prime numbers as its maximum length. Then, we
first try to store the two valid transitions on y and z into
an ATA with prime number L;. (There can be multi-
ple ATAs having the same maximum length.) If the two
valid transitions do not collide with each other but col-
lide with some valid transition(s) previously stored in
that ATA, we shall try another ATA with the same maxi-
mum length; if the two valid transitions collide with each
other, we shall move on trying to store state x into an
ATA with a different maximum length, until ATAs with
all different maximum lengths have been tried. It is guar-
anteed that, there must be at least one prime number L;
that can be used to store the two valid transitions with-
out any collision. To prove by contradiction, assume the
two valid transitions collide with all prime numbers L,

Ly, ..., L; as the maximum length. That means, y-z is a
multiple of all these prime numbers Ly, Ly, ..., Ly, and
hence a multiple of L;xLyX...xLg; this in turn means
y-z > LixlyX... XL > 284 which is impossible.

For each state in the FSM, as part of its state ID in-
formation, we record the small ATA that is used to store
its valid transition(s). Thus, one single memory access is
still sufficient to perform every state transition.

To handle cases where a state has multiple pairs of
valid transitions colliding with each other, the above de-
sign can be simply augmented with more prime numbers.

In addition to breaking the constraint on maximum
stride, the above described multi-ATA (MATA) design
also has two other merits.

First, ATAs can leave elements unused in vacancy, due
to storage collision or insufficient number of valid tran-
sitions to store. By defining maximum ATA length, we
now have better control over the amount of ATA elements
that are wasted in vacancy.

Second, constructing the MATA optimally is NP-hard.
One single large basic ATA can take prohibitively long
time to construct, even employing a heuristic algorithm.
By breaking into a number of small ATAs, the entire
FSM takes much less time to store into these ATAs. For
example, the construction time of heuristic algorithm for
the 3M name table can be reduced from days (for basic
ATA) to minutes (for MATA), with an appropriate set of
prime numbers.

2.5 Name table update

There are two types of name table updates: insertion and
deletion. In this subsection, we demonstrate how these
updates can be handled with ease in our design. First of
all, it is worth reminding the reader that our name lookup
mechanism is composed of two components.

(1) The name table is first organized into a character-
trie, which is essentially a finite state machine.

(2) The character-trie is then transformed into MATA.

Accordingly, insertion and deletion of names are first
conducted on the character-trie, in order to determine
the modifications that need to be made to the character-
trie structure. Then, we carry out the modifications in
MATA. Following this logic, we explain name insertion
and deletion as follows.

2.5.1 Name deletion

To delete a name P from the name table, we simply con-
duct a lookup of name P in the name table. If it is not
matched, we determine that the proposed deletion oper-
ation is invalid, as name P does not actually exist in the
name table.

Once name P is properly matched and comes to the
leaf node representing itself, we then simply backtrack
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towards the root. (This can be done by remembering all
the nodes we have traversed along the path from the root
to the leaf node.) Every node with one single valid transi-
tion will be deleted from the trie (each trie node contains
a field that records the number of children nodes), till
when we encounter the first node with next-hop informa-
tion or more than one valid transition.

It is equally simple to carry out character-trie node
deletion in MATA. Since every node to be deleted has
one single valid transition, deleting the node is equiv-
alent to deleting its stored valid transition in MATA. It
takes one single memory access to locate the transition
array element storing that transition, and mark that tran-
sition array element as vacant.

2.5.2 Name insertion

To insert a name P into the name table, we also conduct
a lookup of name P in the name table, where we traverse
the character-trie in a top-down manner, starting from the
root. At each node on our way down the character-trie, if
an existing transition is properly matched by P, we need
to do nothing about the node. Otherwise, suppose we
read in a number of characters from name P, which is
converted into an integer x. We add a new transition on x
to the current node, pointing to a new node we create for
this new transition. This process continues until lookup
of name P is completed.

To add an existing node’s new transition on x into
MATA, we directly locate the transition array element in
which the new transition should be stored. If that element
is vacant, we simply store the new transition into that el-
ement, and we are done. Otherwise, suppose the existing
node needs to be relocated to resolve storage collision.
This is done as if the node is a new node to be stored into
MATA, following the algorithm described in Section 2.2
and 2.4. (One minor difference is that, here we also need
to update the upstream transition pointing to the relocat-
ing node. This can be easily handled by always remem-
bering the parent node of current node, during the lookup
process for name P.)

3 The CPU-GPU System: Packet Latency
and Stream Pipeline

GPU achieves high processing throughput by exploiting
massive data-level parallelism — a large batch of names
are processed by a large number of GPU threads con-
currently. However, this massive batch processing mode
can lead to extended per packet lookup latency>. Fig-
ure 4 presents a 4-stride MATA’s throughput and latency

SName lookup engine latency: the aggregate time from a packet
being copied from host CPU to GPU device till its lookup result being
returned from GPU to CPU.
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Figure 4: Throughput and
latency of MATA without
pipeline (3M name table, av-
erage workload).

Figure 5: Throughput and la-
tency of MATA with pipeline
(3M name table, average
workload).

obtained on the 3M name table, where names are pro-
cessed in 16MB batches. As we can see, per-packet
lookup latency can be many milliseconds. While in prac-
tice, telecommunication industry standards require that
the entire system latency should be less than 450 us®;
name lookup as one of the various packet processing
tasks should take no longer than 100 us.

This extended lookup latency results from concurrent
lookups of multiple names, due to contention among
concurrent lookup threads processing different names.
That said, a straightforward thought, therefore, is to re-
duce per-packet lookup latency by reducing batch size.
Figure 4 also presents the above MATA’s throughput and
latency obtained with IMB batch size. As we can see,
small batch size leads to reduced lookup throughput, due
to reduced data-level parallelism. But it is insufficient to
hide off-chip DRAM access latency, causing throughput
decline accordingly. Essentially, this latency-throughput
dilemma is rooted in the GPU design philosophy of ex-
ploiting massive data-level parallelism. Unfortunately,
previous proposals on GPU-based pattern matching (e.g.
[29, 16]) have not taken latency requirements into ac-
count.

In this work, we resolve this latency-throughput
dilemma by exploiting the multi-stream mechanism fea-
tured in NVIDIA’s Fermi GPU architecture. In CUDA
programming model, a stream is a sequence of op-
erations that execute in issue-order. For example, in
our design, each stream is composed of a number of
lookup threads, each thread consisting of three tasks.
(1) pataFetch: copy input names from host CPU to
GPU device (via PCle bus); (2) Kernel: perform name
lookup inside GPU; (3) writeBack: write lookup re-
sults back from GPU device to host CPU (via PCle
bus). Among them, DataFetch and WriteBack tasks
are placed into one queue, executed by the copy engine;
Kernel tasks are organized into another queue, executed
by the kernel engine. Tasks in the same queue are exe-
cuted in the order they enter the queue. In our design,
each batch of input names is divided into m subsets;
the kth subset is assigned to the kth stream for lookup.

%Here we refer to the specifications of the ISDN switch.
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Figure 6: Multi-stream pipeline solution.

By pipelining these concurrent streams, lookup latency
can be effectively reduced while keeping high lookup
throughput. Algorithm 1 shows the pseudo code descrip-
tion of this optimized scheduling.

As shown in Figure 6, the Kerne1 task of stream i runs
(on the kernel engine) in parallel with the WwriteBack
task of stream i-1 followed by the DataFetch task of
stream i+1 (both running on the copy engine).

Figure 5 presents MATA’s throughput and latency ob-
tained on the 3M name table with 16MB batch size
organized into 1~512 streams, using 2,048 threads.
This multi-stream pipeline solution successfully reduces
lookup latency to 101us while maintaining lookup
throughput (using 128 or more streams).

Throughput: As described in Section 6.2.2, the copy
engine is the throughput bottleneck. Then, the time T to
finish processing an input name batch can be calculated
by Formula (1) [15].

Mbatch + Mresult
Spcie

M batch 1 )

T = 2tgar *N
srart N N * Skernel

Here, My 0, and M, are the name batch size and the
corresponding lookup results size, respectively. Spcye is
the PCle speed, Sierner i the name lookup speed in GPU
kernel, #g, is the warm up time of the copy engine,
and N is the number of streams. Maximizing through-
put means minimizing 7. According to Fermat’s the-
orem [2], T gets the minimal value at the stationary

point f/(N) =0, where N = ,/#“gﬁmd. In Figure 53,

our CPU-GPU name lookup engine has Mp,.,=16MB,
tstare = 10US, Skernei~=~8GB/s (200MSPS x 40B/packet).
So the engine gets the maximal throughput with N=16
streams.

Algorithm 1 Multi-stream Pipeline Scheduling

1: procedure MultiStreamPipelineScheduling
2 i« 0;

3: offset < ixdata.size/m;

4: DataFetch (offset, streams[il]);
5

6

7

8

Kernel (offset, streams[i]);
for i: 0 — m-2 do
offset « (i+l)+*data.size/m;
: DataFetch (offset, streams[i+1]);
9: Kernel (offset,

streams[i+1]);
10: wb_offset < ixdata.size/m;
11: WriteBack (wb_offset, streams[i]);
12: end for
13: WriteBack (offset, streams[m-1]);

14: end procedure
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Figure 7: Input name storage layout.

Latency: Lookup latency Tj,sency €quals to the period
from a stream’s DataFetch task launched to the corre-
sponding WriteBack task finished, i.e.,

Mbatch + Mresult + Mbatch > (2)

N2

N

1
Tlatency = 2gan + = * <
Skernel

Obviously, lookup latency decreases as the increasing
of the stream number N.

4 Memory Access Performance

Like in all other modern computing architectures, mem-
ory access efficiency has a significant impact on GPU ap-
plication performance. One practical approach to boost-
ing performance is to reduce the amount of slow DRAM
accesses, by exploiting GPU’s memory access coales-
cence mechanism. In NVIDIA GeForce GTX GPU de-
vices, the off-chip DRAM (e.g. global memory) is par-
titioned into 128-byte memory blocks. When a piece of
data is requested, the entire 128-byte block containing
the data is fetched (with one memory access). When
multiple threads simultaneously read data from the same
block, their read requests will be coalesced into one sin-
gle memory access (to that block).

In our design, we employ an effective technique for
optimizing memory access performance called input in-
terweaving [32], which stores input names in an inter-
weaved layout. In NVIDIA GeForce GTX GPUs, ev-
ery 32 threads (with consecutive thread IDs) are bundled
together as a separate warp, running synchronously in
a single-instruction multiple-data (SIMD) manner — at
any time, the 32 threads execute the same instruction, on
possibly different data objects. In common practice, in-
put data (i.e., names) are simply stored contiguously, as
shown in the left part of Figure 7. For ease of illustration,
each name is 128-byte long and occupies a whole mem-
ory block (one row). The 32 names parallel processed by
the 32 threads in a warp reside in 32 different 128-byte
blocks. Therefore, when the 32 threads simultaneously
read the first piece of data from each of the names they
are processing, resulting in 32 separate memory accesses
that cannot be coalesced.
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Here, memory access performance can be substan-
tially improved by storing input names in an interweaved
layout. Suppose the name lookup engine employs N,jeqq
concurrent GPU threads. (1) Host CPU distributes in-
put names into Nyj.qq queues (i.e., name sequences), in
the order of their arrival’; (2) Then, every 32 adjacent
name sequences are grouped together, to be processed
by a GPU warp consisting of 32 threads; each thread in
the warp locates one of the 32 name sequence using its
thread ID; (3) Finally, each group of 32 name sequences
are interweaved together. Iteratively, CPU takes a 4-byte
data slice from the head of each name sequence and inter-
weaves them into a 128-byte memory block (one row), as
shown in the right part of Figure 7. After interweaving,
the 32 data slices of one name are stored in 32 different
blocks (one column), and the 32 data slices belonging to
32 different names are stored in one block. The inter-
weaved memory blocks are then transmitted to GPU’s
DRAM. Now, when the 32 threads in the same warp
each requests for a slice from its own name sequence si-
multaneously, the 32 requested slices reside in the same
128-byte block. Therefore, the 32 memory requests are
coalesced into one single memory access to that block.
Interweaving thus significantly reduces the total amount
of memory accesses to DRAM and hence substantially
boosts overall performance.

S Implementation

In this section, we describe the implementation of
our GPU-based name lookup engine, including its in-
put/output. First in Section 5.1, we introduce the hard-
ware platform, operating system environment and devel-
opment tools with which we implement the name lookup
engine. Then in Section 5.2, we present the framework
of our system. The lookup engine has two inputs: name
tables and name traces. We introduce how we obtain or
generate the name tables and name traces in Section 5.3
and Section 5.4, respectively.

5.1 Platform, environment and tools

We implement and run the name lookup engine on a
commodity PC installed with an NVIDIA GeForce GTX
590 GPU board. The PC is installed with two 6-core
CPUs (Intel Xeon E5645x2), with 2.4GHz clock fre-

7When appending names into sequences, we transform each input
name (and name sequence) from a sequence of characters into a se-
quence of numbers. In our implementation and experiments, we imple-
ment 4-stride FSMs and hence each input name is transformed into a
sequence of 32-bit unsigned int type integers. To transform an in-
put name, CPU keeps reading up to 4 characters from that name unless
a ‘/’ is encountered; the characters read out are then transformed into
an unsigned int integer. Each name sequence is thus transformed
into a sequence of 32-bit integers.

quency. Relevant hardware configuration is listed in Ta-
ble 1.

Table 1: Hardware configuration.

Item Specification

Motherboard ASUS Z8PE-D12X (INTEL S5520)
CPU Intel Xeon E5645x2 (6 cores, 2.4GHz)
RAM DDR3 ECC 48GB (1333MHz)
GPU NVIDIA GTX590 (2x512 cores, 2x 1536MB)

The PC runs Linux Operating System version
2.6.41.9-1.fc15.x86_64 on its CPU. The GPU runs
CUDA NVIDIA-Linux operating system version
x86_64-285.05.09.

The entire lookup engine program consists of about
8,000 lines of code, and is composed of two parts: a
CPU-based part and a GPU-based part. The CPU part
of the system is developed using the C++ programming
language; the GPU part of the system is developed using
NVIDIA CUDA C programming language’s SDK 4.0.

5.2 System framework

Figure 8 depicts the framework of our name lookup en-
gine. Module 1 takes a name table as input and builds a
character-trie for aggregating and representing that name
table; this character-trie serves as the control plane of
name lookup. To implement high speed and memory ef-
ficient name lookup, Module 2 transforms the character-
trie into MATA, which serves as the data plane of name
lookup, and hence will be transferred to and operated in
the GPU-based lookup engine. Module 3 is the lookup
engine operating in GPU, which accepts input names,
performs lookup in the MATA and outputs lookup re-
sults. Meanwhile, GPU takes the generated name traces
as input to search against the name table, which is imple-
mented as the MATA. The lookup result in GPU is output
to a module running on CPU, which obtains next-hop in-
terface information based on GPU’s output. There is also
a 5-th module that is responsible for handling name ta-
ble updates. We measure the core latency between point
A and B, that is from the sending buffer to the receiving
buffer of CPU.

5.3 Name Tables

The two name tables used in our experiments contain
2,763,780 entries and 10,000,000 entries, respectively.
For brevity, we refer to them as the “3M name table” and
the “10M name table”, respectively. Each name table en-
try is composed of an NDN-style name and a next hop
port number. As NDN is not yet standardized and there
is no real NDN network, the name tables are obtained
through the following five-step process.
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Figure 8: Framework of the name lookup engine.

Step 1: We collect Internet domain names in two
ways. (1) We obtain existing domain name information
from DMOZ [1], which is later used to generate the 3M
name table. (2) We use a web crawler program to col-
lect domain names, which are later used to generate the
10M name table. To achieve good geographic coverage,
we ran web crawler programs on three servers located
in North America, Europe and Asia, respectively. The
web crawler programs kept collecting URLs from Octo-
ber 1st, 2011 to March 31st, 2012. At last, the crawler
collected 7M domain names different from that collected
from DMOZ. Consequently, we obtain 10 million non-
duplicate domain names in total with our maximum ef-
forts.

Step 2: We convert the domain names into NDN-style
names, by putting the components in reverse order. For
example, domain name www.parc.com is transformed
into /com/parc/www/.

Step 3: For each NDN-style name, we map its cor-
responding domain name to an IP address resolved by
DNS.

Step 4: For each NDN-style name, we obtain its next
hop port number by performing longest prefix matching
on its IP address obtained in Step 3, using an IP FIB
downloaded from www.ripe.net.

Step 5: We map each NDN prefix to its obtained next
hop port number, which gives us the final name table.

5.4 Name Traces

The name traces, which are generated from name tables,
simulate the destination names carried in NDN pack-
ets. The names are formed by concatenating name pre-
fixes selected from the name table and randomly gen-
erated suffixes. We generate two types of name traces,
simulating average lookup workload and heavy lookup
workload, respectively. Each name trace contains 200M
names, and is generated as follows.

For each name table used in our experiments, its av-
erage workload trace is generated by randomly choosing

names from the name table; its heavy work load trace
is generated by randomly choosing from the top 10%
longest names in the name table. Intuitively, the longer
the input names are, the more state transition operations
the GPU will perform for their lookup, meaning heavier
workload.

Names chosen from name tables do not have a direc-
tory path. From the URLs we collected from Internet,
we randomly choose a directory path for each name in
the traces and append that path to the name.

6 Experimental Evaluation

We compare the performance of four lookup methods
we have discussed in Section 2. The baseline method is
using a two-dimensional state transition table (denoted
by STT), which is largely compressed by ATA. Then,
we upgrade ATA into 4-stride MATA. Finally, we im-
prove MATA with interweaved name storage (denoted by
MATA-NW).

First, in Section 6.1, we evaluate the memory ef-
ficiency of these methods. Then in Section 6.2, we
conduct comprehensive evaluation and analysis of the
throughput and latency of our name lookup engine —
both the entire prototype engine and the core GPU part.
The scalability of our lookup engine is evaluated in Sec-
tion 6.3. Finally in Section 6.4, we evaluate its perfor-
mance on handling name table updates.

6.1 Memory Space

If implemented with STT, the 3M and 10M name ta-
bles will take 19.49GB and 69.62GB, respectively. Com-
pared with state transition table, ATA compresses storage
space by 101 x (on the 3M name table) and 102 (on the
10M name table), respectively. By constructing multiple
smaller ATAs, MATA further compresses storage space
— MATA compresses storage space by 130x (on the
3M name table) and 142 (on the 10M name table),
respectively, easily fitting into the GTX590 GPU board
of our prototype system, which has 3GB off-chip DRAM
on board. (Note that input name interweaving changes
storage layout but does not change storage space require-
ment.)

6.2 Lookup Performance
6.2.1 CPU-GPU System Performance

We now proceed to compare the lookup throughput and
latency that can be achieved by the methods in compar-
ison. Due to the excessive memory space requirement
of STT, we hereby implement two small subsets of the
3M and 10M name tables, respectively, each containing
100,000 name entries. To explore the best achievable
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Figure 9: Throughput and la-
tency on the 3M table’s subset
(average workload).

Figure 10: Throughput and
latency on the 3M table’s sub-
set (heavy workload).
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latency on the 10M table’s
subset (heavy workload).

latency on the 10M table’s
subset (average workload).

lookup performance of each method, we run experiments
with a wide range of parameter settings: doubling num-
ber of CUDA thread blocks from 8 to 4096, doubling
number of threads per CUDA thread block from 32 to
1024, and doubling CUDA stream count from 1 to 4096.
The measured lookup throughput and latency of the four
methods are plotted in Figure 9-12, in which one point
means the throughput and latency of the method with one
parameter setting. (For legibility, we have only plotted
results with less than 1ms latency.)

As we expected, STT and ATA have nearly identical
performance, although ATA uses two orders of magni-
tude less memory. With multi-striding, MATA signifi-
cantly outperforms ATA. STT and ATA have not been
able to meet the 100us latency requirement; in con-
trast, MATA can achieve up to 29.75 MSPS under av-
erage worload and 28.52 MSPS under heavy workload,
while keeping latency below 100us. With input name
interweaving, MATA-NW further raises lookup through-
put to 61.40 MSPS under average workload and 56.10
MSPS under heavy workload. The minimum lookup la-
tency that can be achieved by MATA-NW is around 50us
(with about 20 MSPS lookup throughput), while the min-
imum achievable latency of STT and ATT is around
200us. With a 200us latency requirement, the maximum
throughput that can be achieved by STT, ATA, MATA
and MATA-NW are 6.59, 6.56, 52.99 and 71.12 MSPS
under average workload and 6.02, 6.01, 49.04 and 63.32
MSPS under heavy workload, respectively; MATA-NW
achieves over 10x speedup.

As the above two subsets are relatively small, we then
conduct experiments based on the 3M and 10M name
tables (without STT), and plot the results in Figure 13-
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Figure 16: Throughput and
latency on the 10M table
(heavy workload).

Figure 15: Throughput and
latency on the 10M table (av-
erage workload).

16. The results are similar to what we observe on the
two subsets. With 100us latency requirement, MATA-
NW can achieve 63.52 MSPS under average workload
and 55.65 MSPS under heavy workload, translating to
127 Gbps under average workload and 111 Gbps under
heavy workload, respectively.

6.2.2 GPU Engine Core Performance

The above experiments have not answered the following
question — which part of the prototype system is the per-
formance bottleneck? To answer this question, we con-
duct the following experiments for comparison®. (1) In
experiment I, the GPU does not perform lookup on any
input name and directly returns. The measured through-
put represents the raw bandwidth of PCle bus connect-
ing CPU and GPU, and is plotted as “PCle” in Fig-
ure 17-18; (2) In experiment II, the GPU performs one
lookup on every input name. The measured throughput
represents the normal throughput of our prototype sys-
tem and is plotted as “MATA-NW”. The experiment re-
sults reveal that system throughput is tightly bounded by
PCIe bus bandwidth; although with overly large stream
counts, system throughput starts dropping due to insuffi-
cient number of threads per stream®.

As the PCle bus limits the lookup throughput achiev-
able with our prototype system, we conduct another set
of experiments to evaluate the lookup throughput that can
be achieved with our core algorithmic design (MATA-

8Here, lookup throughput is obtained with 16 concurrent CUDA
thread blocks and 32 threads per CUDA thread block running in paral-
lel. Because the above experiment results show that they produce the
best lookup throughput under 100us latency requirement.

“Recall that every warp of 32 threads must execute synchronously.
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NW) running on GPU. (1) First, we transmit input names
from CPU to GPU’s global memory in advance; (2)
Then, we perform name lookup on GPU. Lookup results
are not written back to CPU (via PCle). When calculat-
ing lookup throughput, we do not include the time taken
in (1). The calculated throughput represents the GPU’s
kernel throughput, without the bottleneck of PCIe band-
width. As we can see in Figure 19-20, GPU’s kernel
throughput is more than two times higher than the entire
engine throughput, reaching up to 219.69 MSPS, which
is 96 x of CPU-based implementation (MATA can per-
form 2.28 MSPS with one thread in CPU-based plat-
form). These results demonstrate the real potential of
our GPU-based name lookup engine design; this poten-
tial can be realized by high speed routers, which do not
have the PCle bandwidth problem.

6.3 Scalability

While our GPU-based name lookup engine is demon-
strated to perform well on the 3M and 10M name ta-
bles, we are also interested in foreseeing its performance
trend as name table size grows. For that, we partition
each name table into ten equal-sized subsets, and pro-
gressively generate ten name tables for each of them; the
kth generated name table consists of the first k equal-
size subsets. Experiments are then conducted on these
20 generated name tables derived from the 3M name ta-
ble and 10M name table. Measured results on lookup
throughput, memory space requirement and lookup la-
tency are presented in Figure 21-23, respectively.

As name table size grows, lookup throughput and
lookup latency tend to stabilize around 60 MSPS and
100us, respectively. The memory space requirement,

represented by MATA size, tends to grow with linear
scalability, which is consistent with our intuition.

6.4 Name table update

Finally, we measure the performance of our design on
handling name table updates, both insertions and dele-
tions. The results are reported in Figure 24. The general
trend is that, the larger the name table, the more difficult
it is to handle updates. Just like what we have observed
on the growth trend of throughput and latency, update
performance also tends to stabilize at a certain perfor-
mance level. On both name tables, we can consistently
handle more than 30K insertions per second. As we have
described in Section 2, deletions are much easier to im-
plement than insertions; we can steadily handle around
600K deletions per second. Compared with the current
IP networks, which have an average update rate of sev-
eral thousand per second, our name updating mechanism
runs one order of magnitude faster.

7 Related Work

7.1 GPU-based Packet Processing

GPU as a high throughput parallel processing platform is
attracting proliferating interest, and is being studied as a
potential platform for high speed packet processing, such
as IP lookup [10, 30, 19], packet classification [14, 20]
and pattern matching [17, 7, 29, 24, 32, 16].

Pattern matching is a much simpler special form
of name lookup, whose technical core is longest pre-
fix string matching. While the initial study on name-
based routing [22, 11, 25, 26] has revealed the feasi-
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bility of routing based on hierarchical names instead
of IP addresses, there has been lacking a comprehen-
sive implementation-based study to address the follow-
ing practical problems: (1) With large-scale name tables
containing millions of names, how and to what extent
can name tables be compressed for practical implemen-
tation; (2) What name lookup throughput can be reached
under practical latency constraints; (3) What update per-
formance can be obtained.

The existing methods for GPU-based pattern match-
ing [17,7,29, 24, 32, 16] are designed targeting IDS-like
systems where packet latency is not a first priority, and
have all ignored the important issue of packet latency. As
we have analyzed in Section 3 and demonstrated through
experiments in Section 6, the latency-throughput trade-
off is rooted in GPU’s design philosophy; optimizing
throughput without considering latency constraints leads
to overly optimistic results, and are not practically com-
petent for high speed routers. By employing the multi-
stream mechanism featured by NVIDIA Fermi architec-
ture, which has been proven effective in other fields (e.g.
[21, 13, 6]), our design is able to achieve wire speed
lookup throughput with 50-100us packet latency.

In fact, the existing GPU-based pattern matching
methods have not even considered practical performance
issues specific to such CPU-GPU hybrid systems, such
as data transmission (e.g. via PCle bus). Meanwhile,
the existing methods have also not paid deserved atten-
tion to update performance, which is an important issue
in high speed router design. The pattern sets used in
their study are also multiple orders of magnitude smaller
than what we target and have adopted in our experiments.
On one hand, this requires more advanced compression
techniques; on the other hand, high speed lookup can
become even more challenging in the presence of more
sophisticated compression. In contrast, our work is the
first system-based study on GPU-based large-scale pat-
tern matching and addresses all these performance is-
sues: lookup throughput, latency, memory efficiency, up-
date performance and CPU-GPU communication.

IP lookup is much simpler than name lookup. For ex-
ample, in our implementation-based study, average name
length is around 40 bytes, 10x longer than IP addresses
used in GPU-based IP lookup research (e.g. Packet-
Shader [10]). Unlike fixed length IP addresses, names
are also variable in length, making it even more complex
to implement efficient lookup. Moreover, name tables
are 1-2 orders of magnitude larger than IP forwarding ta-
bles in terms of entry count, and 2-3 orders of magnitude
larger in terms of byte count.

Packet classification is more complex than IP lookup
in that packet classification rules typically check five
packet header fields (13 bytes in total for IPv4) includ-
ing two IP addresses. Nevertheless, packet classification

rules are still much shorter than names, and are also fixed
in length. In fact, packet classification rule sets are typi-
cally 1-3 orders of magnitude smaller than IP forwarding
tables, let alone name tables.

In summary, GPU-based IP lookup and packet classi-
fication are not comparable/applicable to the large-scale
name lookup problem studied in our work. Meanwhile,
almost all of these GPU-based packet processing tech-
niques (except PacketShader [10]) ignore the important
issue of packet processing latency.

7.2 Algorithm & Data Structure

The technical core of name lookup is longest prefix
matching. Before determining the matched longest pre-
fix, hash-based methods have to perform multiple hash
computations, which significantly degrade lookup per-
formance [27]. In trie-based methods, to quickly deter-
mine the correct branch to transfer, hash techniques have
been intensively studied. B. Michel et al. designed an
incremental hash function called Hash Chain [18], im-
proved by Zhou et al. [31], to aggregate URLs sharing
common prefixes, while minimizing collisions between
prefixes. These hash-based algorithms all have a com-
mon drawback — false positives due to hash collisions.
More importantly, hash collision during trie traversal can
lead name lookup to a wrong branch, causing packets
to be forwarded to wrong ports; this undermines rout-
ing integrity — a fundamental property of NDN routers.
So remedies for false positives are required in these sys-
tems. For eliminating false positive, we [26] proposed to
encode all the name components for efficient traversal.
When balancing hash collision probability and memory
space requirement, we may not necessarily gain memory
efficiency.

Tarjan and Yao proposed in their pioneer work [23]
a method for compressing two-dimensional (state transi-
tion) tables into compact one-dimensional arrays — the
original idea underlying basic ATA. In a follow-up work,
Suwaiyel and Horowitz [5] proved that producing an op-
timal array is NP-hard, and proposed approximation al-
gorithms for producing arrays. Our work develops be-
yond prior arts on the following aspects: (1) We pro-
pose a multi-stride ATA approach that can significantly
improve storage efficiency, matching speed and lookup
latency; (2) We propose the more advanced multi-ATA
(MATA) design. Compared with the basic ATA design,
MATA liberates multi-stride ATA from the constraint of
available memory space. As a result, matching speed, la-
tency, storage space and array construction time are all
optimized substantially. We demonstrate through exper-
imental evaluation that, while the naive ATA design can
be inadequate for large-scale, high throughput and low
latency name lookup, the innovated MATA design is suf-
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ficient for tackling such real applications.

7.3 Software Routers

Compared with hardware routers, software routers are
cost-effective and much easier to program. Software
routers can also provide extensible platforms for imple-
menting CCN router prototypes.

PacketShader [10] exploits the GPU’s massively-
parallel processing power to overcome the CPU bottle-
neck in the current software IP routers. However, name
lookup is more complex than IP lookup, for the vari-
able and unbounded length of names as well as the much
larger name tables. Compared with the IP FIB in [10],
name FIB in our engine needs elaborate data structures to
reduce memory consumption and speed up name lookup.
Besides, PacketShader has not described any detail about
how to balance lookup throughput and latency in Pack-
etShader. However, the high performance packet I/O en-
gine in PacketShader may help improve the performance
of a whole CCN router.

In backbone routers, a high speed interface (e.g. 40
Gbps OC-768) is usually processed by a single data
plane. RouteBricks [8] bundles multiple PCs together
to handle packets, but one single PC is hard to handle the
traffic from a high speed interface. Our work focuses
on wire speed name lookup with a single data plane,
which is different from RouteBricks. If more capacity
or a larger number of ports is needed, we can apply a
multi-machine approach in [8].

8 Discussion and Conclusion

8.1 Discussion

As described in Section 6.2.2, PCle is the bottleneck of
our name lookup engine, which has to use a GPU board
installed on a PC via PCle. However, it does not rule out
the possibility of embedding GPUs into a high-end router
through other non-PCle means. Moreover, note that, al-
though GTX590 GPU has two processor cores on chip,
we have only used one of them in our experiments; using
both processor cores can potentially boost performance
as well.

Since CCN has not been standardized yet, its FIB ta-
ble size and name length bound are still unknown. The
10M name table, collected with our maximum efforts,
has only consumed one-sixth of the memory resource of
GTX590. Thus we estimate our name lookup engine at
least can handle a name table with 60M prefixes while
keeping the lookup throughput. However, the name table
would be orders of magnitude vaster when the prefixes
cannot be aggregated effectively. As the first step, in

this paper we demonstrate the feasibility of implement-
ing wire speed name lookup on a table of substantial size.
Scaling name tables to the larger conceivable size will be
our future work.

Routing changes, including network topology
changes, routing policy modifications and content
publish/deletion, will cause FIB updates. Given no
CCN/NDN network is deployed today, FIB update fre-
quency cannot be accurately measured. We will estimate
the update frequency from the current Internet. On one
hand, the frequency of network topology changes and
routing policy modifications in CCN can be inferred
from the current IP network, which makes up to several
thousand updates per second. On the other hand, content
publish/deletion will not necessarily lead to FIB updates,
since the name prefixes in FIBs are aggregated. If we
assume the addition and deletion of domains will cause
FIB updates, there are only a few tens of FIB updates per
second, according to the top-level domain statistics [4]
of the current Internet. Therefore, in this case, our
approach can meet update performance requirements.
Whether our FIB update mechanism meets practical
performance requirements in real CCN networks needs
to be further studied in future work.

8.2 Conclusion

Name lookup is one of the fundamental functions un-
derlying a great variety of technological fields, among
which wire speed CCN name lookup in large-scale name
tables is the most challenging. Thus far, implementation-
based study on real systems has been lacking. How
much memory will CCN name tables consume? How
fast can name lookup engine be implemented, from
both technical and economic point of view? These are
still unknown. In this paper, we propose a multi-stride
character-trie algorithm, implemented in our GPU-based
name lookup engine with a number of new techniques.
Extensive experiments demonstrate that our GPU-based
lookup engine can achieve up to 63.52 MSPS on name
tables containing millions of names under a delay of less
than 100us. Our GPU-based implementation results an-
swer that large-scale name lookup can not only run at
high speed with low latency and fast incremental update,
but also be cost-effective with today’s off-the-shelf tech-
nologies.

9 Acknowledgments

We thank the anonymous reviewers and our shepherd
Michael Walfish for their help and invaluable comments.

USENIX Association

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI "13) 211



References

(1]
(21

(3]
[4]
(5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

DMOZ - Open Directory Project. http://www.dmoz.org/.

Fermat’s theorem (stationary points). http://en.wikipedia.org/-
wiki/fermat’s_theorem_(stationary_points).

http://s-router.cs.tsinghua.edu.cn/namelookup.org/index.htm.
Internet Statistics, http://www.whois.sc/internet-statistics/.

AL-SUWAIYEL, M., AND HOROWITZ, E. Algorithms for trie
compaction. ACM Trans. Database Syst. 9, 2 (June 1984), 243—
263.

BHATOTIA, P., RODRIGUES, R., AND VERMA, A. Shredder:
GPUaccelerated incremental storage and computation. In Pro-
ceedings of the 10th USENIX Conference on File and Storage
Technologies (FAST) (2012).

CASCARANO, N., ROLANDO, P., Risso, F., AND SI1STO, R.
iNFAnt: NFA pattern matching on gpgpu devices. SIGCOMM
Comput. Commun. Rev. 40, 5, 20-26.

DoBREScU, M., EGI, N., ARGYRAKI, K., CHUN, B.-G.,
FALL, K., JANNACCONE, G., KNIES, A., MANESH, M., AND
RATNASAMY, S. RouteBricks: exploiting parallelism to scale
software routers. In Proceedings of the ACM SIGOPS 22nd sym-
posium on Operating systems principles (New York, NY, USA,
2009), SOSP’09, ACM, pp. 15-28.

FREDKIN, E. Trie memory. Commun. ACM 3, 9 (Sept. 1960),
490-499.

HAN, S., JANG, K., PARK, K., AND MOON, S. PacketShader:
a GPU-accelerated software router. In Proceedings of the ACM
SIGCOMM 2010 conference on SIGCOMM (New York, NY,
USA, 2010), SIGCOMM 10, ACM, pp. 195-206.

HWANG, H., ATA, S., AND MURATA, M. A Feasibility Eval-
uation on Name-Based Routing. In IP Operations and Manage-
ment, G. Nunzi, C. Scoglio, and X. Li, Eds., vol. 5843 of Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, 2009,
pp. 130-142.

JACOBSON, V., SMETTERS, D. K., THORNTON, J. D., PLASS,
M. F., BRIGGS, N. H., AND BRAYNARD, R. L. Networking
Named Content. In Proceedings of the 5th international con-
ference on Emerging networking experiments and technologies
(2009), CoNEXT *09, ACM, pp. 1-12.

JANG, K., HAN, S., HAN, S., MOON, S., AND PARK, K.
SSLShader: Cheap SSL Acceleration with Commodity Proces-
sors. In Proceedings of the 8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI) (2011).

KANG, K., AND DENG, Y. Scalable packet classification via
GPU metaprogramming. In Design, Automation Test in Europe
Conference Exhibition (DATE), 2011 (march 2011), pp. 1 —4.

L. HENNESSY, J., AND A. PATTERSON, D. Computer Archi-
tecture: A Quantitative Approach, 5th ed. Morgan Kaufmann
Publishers, 2011.

LiN, C.-H., Liu, C.-H., CHANG, S.-C., AND HoON, W.-K.
Memory-efficient pattern matching architectures using perfect
hashing on graphic processing units. In INFOCOM, 2012 Pro-
ceedings IEEE (march 2012), pp. 1978 —1986.

LiN, C.-H., Tsa1, S.-Y., L1u, C.-H., CHANG, S.-C., AND
SHYU, J.-M.  Accelerating String Matching Using Multi-
Threaded Algorithm on GPU. In Global Telecommunications
Conference (GLOBECOM 2010), 2010 IEEE (dec. 2010), pp. 1
-5.

MICHEL, B., NIKOLOUDAKIS, K., REIHER, P., AND ZHANG,
L. URL forwarding and compression in adaptive Web caching.
In INFOCOM 2000. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. Proceedings.
IEEE (2000), vol. 2, pp. 670 —678.

[19]

(20]

[21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

(30]

[31]

(32]

Mu, S., ZHANG, X., ZHANG, N, LU, J., DENG, Y. S., AND
ZHANG, S. IP routing processing with graphic processors. In
Proceedings of the Conference on Design, Automation and Test
in Europe (2010), DATE *10, pp. 93-98.

NOTTINGHAM, A., AND IRWIN, B. Parallel packet classification
using GPU co-processors. In Proceedings of the 2010 Annual
Research Conference of the South African Institute of Computer
Scientists and Information Technologists (New York, NY, USA,
2010), SAICSIT "10, ACM, pp. 231-241.

RENNICH, S. C/C++ Streams and Concurrency. http://developer.
download.nvidia.com/.

SHUE, C., AND GUPTA, M. Packet Forwarding: Name-based
Vs. Prefix-based. In IEEE Global Internet Symposium, 2007
(May 2007), pp. 73 -78.

TARJAN, R. E., AND YAO, A. C.-C. Storing a sparse table.
Commun. ACM 22, 11 (Nov. 1979), 606-611.

VASILIADIS, G., ANTONATOS, S., POLYCHRONAKIS, M.,
MARKATOS, E., AND IOANNIDIS, S. Gnort: High Perfor-
mance Network Intrusion Detection Using Graphics Processors.
vol. 5230. 2008, pp. 116-134.

WANG, Y., DAI, H., JIANG, J., HE, K., MENG, W., AND
Liu, B. Parallel Name Lookup for Named Data Networking.
In IEEE Global Telecommunications Conference (GLOBECOM)
(dec. 2011), pp. 1 -5.

WANG, Y., HE, K., DAI, H., MENG, W., JIANG, J., L1U, B.,
AND CHEN, Y. Scalable Name Lookup in NDN Using Effective
Name Component Encoding. In IEEE 32nd International Con-
ference on Distributed Computing Systems (ICDCS) (june 2012),
pp. 688-697.

WANG, Y., PAN, T., M1, Z., DAI1, H., Guo, X., ZHANG, T.,
Liu, B., AND DONG, Q. NameFilter: Achieving fast name
lookup with low memory cost via applying two-stage bloom fil-
ters. In INFOCOM mini-conference 2013. Proceedings. IEEE
(2013).

ZHANG, L., ESTRIN, D., JACOBSON, V., AND ZHANG, B.
Named Data Networking (NDN) Project. http://www.named-
data.net/.

ZHAO, J., ZHANG, X., WANG, X., DENG, Y., AND Fu, X.
Exploiting graphics processors for high-performance IP lookup
in software routers. In INFOCOM, 2011 Proceedings IEEE (april
2011), pp. 301 -305.

ZHAO, J., ZHANG, X., WANG, X., AND XUE, X. Achieving
O(1) IP lookup on GPU-based software routers. In Proceedings
of the ACM SIGCOMM 2010 conference on SIGCOMM (New
York, NY, USA, 2010), SIGCOMM °’10, ACM, pp. 429-430.

ZHOU, Z., SONG, T., AND J1A, Y. A High-Performance URL
Lookup Engine for URL Filtering Systems. In Communications
(ICC), 2010 IEEE International Conference on (may 2010), pp. 1
-5.

ZU, Y., YANG, M., Xu, Z., WANG, L., TIAN, X., PENG, K.,
AND DONG, Q. GPU-based NFA implementation for high speed
memory efficient regular expression matching. In ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming
(PPoPP) (2012).

212

10th USENIX Symposium on Networked Systems Design and Implementation (NSDI 13)

USENIX Association





