
USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 357

Robustness in the Salus scalable block store
Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha Kirubanandam,

Lorenzo Alvisi, and Mike Dahlin
The University of Texas at Austin

Abstract: This paper describes Salus, a block store that
seeks to maximize simultaneously both scalability and
robustness. Salus provides strong end-to-end correctness
guarantees for read operations, strict ordering guarantees
for write operations, and strong durability and availabili-
ty guarantees despite a wide range of server failures (in-
cluding memory corruptions, disk corruptions, firmware
bugs, etc.). Such increased protection does not come
at the cost of scalability or performance: indeed, Salus
often actually outperforms HBase (the codebase from
which Salus descends). For example, Salus’ active repli-
cation allows it to halve network bandwidth while in-
creasing aggregate write throughput by a factor of 1.74
compared to HBase in a well-provisioned system.

1 Introduction
The primary directive of storage—not to lose data—is
hard to carry out: disks and storage sub-systems can fail
in unpredictable ways [7, 8, 18, 23, 34, 37], and so can the
CPUs and memories of the nodes that are responsible for
accessing the data [33, 38]. Concerns about robustness
become even more pressing in cloud storage systems,
which appear to their clients as black boxes even as their
larger size and complexity create greater opportunities
for error and corruption.

This paper describes the design and implementation
of Salus,1 a scalable block store in the spirit of Ama-
zon’s Elastic Block Store (EBS) [1]: a user can request
storage space from the service provider, mount it like a
local disk, and run applications upon it, while the service
provider replicates data for durability and availability.

What makes Salus unique is its dual focus on scala-
bility and robustness. Some recent systems have provid-
ed end-to-end correctness guarantees on distributed stor-
age despite arbitrary node failures [13, 16, 31], but these
systems are not scalable—they require each correct node
to process at least a majority of updates. Conversely, s-
calable distributed storage systems [3, 4, 6, 11, 14, 20, 25,
30, 43] typically protect some subsystems like disk stor-
age with redundant data and checksums, but fail to pro-
tect the entire path from client PUT to client GET, leaving
them vulnerable to single points of failure that can cause
data corruption or loss.

Salus provides strong end-to-end correctness guaran-
tees for read operations, strict ordering guarantees for
write operations, and strong durability and availability

1Salus is the Roman goddess of safety and welfare

guarantees despite a wide range of server failures (in-
cluding memory corruptions, disk corruptions, firmware
bugs, etc), and leverages an architecture similar to scal-
able key-value stores like Bigtable [14] and HBase [6] to-
wards scaling these guarantees to thousands of machines
and tens of thousands of disks.

Achieving this unprecedented combination of robust-
ness and scalability presents several challenges.

First, to build a high-performance block store from
low-performance disks, Salus must be able to write d-
ifferent sets of updates to multiple disks in parallel. Par-
allelism, however, can threaten the basic consistency re-
quirement of a block store, as “later” writes may survive
a crash, while “earlier” ones are lost.

Second, aiming for efficiency and high availability at
low cost can have unintended consequences on robust-
ness by introducing single points of failure. For exam-
ple, in order to maximize throughput and availability for
reads while minimizing latency and cost, scalable stor-
age systems execute read requests at just one replica. If
that replica experiences a commission failure that causes
it to generate erroneous state or output, the data returned
to the client could be incorrect. Similarly, to reduce cost
and for ease of design, many systems that replicate their
storage layer for fault tolerance (such as HBase) leave
unreplicated the computation nodes that can modify the
state of that layer: hence, a memory error or an errant
PUT at a single HBase region server can irrevocably and
undetectably corrupt data (see §5.1).

Third, additional robustness should ideally not result
in higher replication cost. For example, in a perfec-
t world Salus’ ability to tolerate commission failures
would not require any more data replication than a scal-
able key-value store such as HBase already employs to
ensure durability despite omission failures.

To address these challenges Salus introduces three
novel ideas: pipelined commit, active storage, and scal-
able end-to-end verification.

Pipelined commit. Salus’ new pipelined commit pro-
tocol allows writes to proceed in parallel at multiple
disks but, by tracking the necessary dependency infor-
mation during failure-free execution, guarantees that, de-
spite failures, the system will be left in a state consistent
with the ordering of writes specified by the client.

Active storage. To prevent a single computation node
from corrupting data, Salus replicates both the storage
and the computation layer. Salus applies an update to the
system’s persistent state only if the update is agreed up-

1

358 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

on by all of the replicated computation nodes. We make
two observations about active storage. First, perhaps sur-
prisingly, replicating the computation nodes can actual-
ly improve system performance by moving the computa-
tion near the data (rather than vice versa), a good choice
when network bandwidth is a more limited resource than
CPU cycles. Second, by requiring the unanimous con-
sent of all replicas before an update is applied, Salus
comes near to its perfect world with respect to over-
head: Salus remains safe (i.e. keeps its blocks consistent
and durable) despite two commission failures with just
three-way replication—the same degree of data replica-
tion needed by HBase to tolerate two permanent omis-
sion failures. The flip side, of course, is that insisting on
unanimous consent can reduce the times during which
Salus is live (i.e. its blocks are available)—but liveness
is easily restored by replacing the faulty set of computa-
tion nodes with a new set that can use the storage layer to
recover the state required to resume processing requests.

Scalable end-to-end verification. Salus maintains a
Merkle tree [32] for each volume so that a client can val-
idate that each GET request returns consistent and correct
data: if not, the client can reissue the request to another
replica. Reads can then safely proceed at a single replica
without leaving clients vulnerable to reading corrupted
data; more generally, such end-to-end assurances protec-
t Salus clients from the opportunities for error and cor-
ruption that can arise in complex, black-box cloud stor-
age solutions. Further, Salus’ Merkle tree, unlike those
used in other systems that support end-to-end verifica-
tion [19, 26, 31, 41], is scalable: each server only needs
to keep the sub-tree corresponding to its own data, and
the client can rebuild and check the integrity of the w-
hole tree even after failing and restarting from an empty
state.

We have prototyped Salus by modifying the HBase
key-value store. The evaluation confirms that Salus can
tolerate servers experiencing commission failures like
memory corruption, disk corruption, etc. Although one
might fear the performance price to be paid for Salus’
robustness, Salus’ overheads are low in all of our exper-
iments. In fact, despite its strong guarantees, Salus often
outperforms HBase, especially when disk bandwidth is
plentiful compared to network bandwidth. For example,
Salus’ active replication allows it to halve network band-
width while increasing aggregate write throughput by a
factor of 1.74 in a well-provisioned system.
2 Requirements and model
Salus provides the abstraction of a large collection of vir-
tual disks, each of which is an array of fixed-sized block-
s. Each virtual disk is a volume that can be mounted by
a client running in the datacenter that hosts the volume.
The volume’s size (e.g., several hundred GB to several
hundred TB) and block size (e.g., 4 KB to 256 KB) are
specified at creation time

A volume’s interface supports GET and PUT, which on
a disk correspond to read and write. A client may have
many such commands outstanding to maximize through-
put. At any given time, only one client may mount a
volume for writing, and during that time no other client
can mount the volume for reading. Different clients may
mount and write different volumes at the same time, and
multiple clients may simultaneously mount a read-only
snapshot of a volume.

We explicitly designed Salus to support only a single
writer per volume for two reasons. First, as demonstrated
by the success of Amazon EBS, this model is sufficient
to support disk-like storage. Second, we are not aware of
a design that would allow Salus to support multiple writ-
ers while achieving its other goals: strong consistency,2

scalability, and end-to-end verification for read requests.
Even though each volume has only a single writer at

a time, a distributed block store has several advantages
over a local one. Spreading a volume across multiple
machines not only allows disk throughput and storage
capacity to exceed the capabilities of a single machine,
but balances load and increases resource utilization.

To minimize cost, a typical server in existing storage
deployments is relatively storage heavy, with a total ca-
pacity of up to 24 TB [5, 42]. We expect a storage server
in a Salus deployment to have ten or more SATA disks
and two 1 Gbit/s network connections. In this configura-
tion disk bandwidth is several times more plentiful than
network bandwidth, so the Salus design seeks to mini-
mize network bandwidth consumption.

2.1 Failure model
Salus is designed to operate on an unreliable network
with unreliable nodes. The network can drop, reorder,
modify, or arbitrarily delay messages.

For storage nodes, we assume that 1) servers can
crash and recover, temporarily making their disks’ data
unavailable (transient omission failure); 2) servers and
disks can fail, permanently losing all their data (perma-
nent omission failure); 3) disks and the software that con-
trols them can cause corruption, where some blocks are
lost or modified, possibly silently [35] and servers can
experience memory corruption, software bugs, etc, send-
ing corrupted messages to other nodes (commission fail-
ure). When calculating failure thresholds, we only take
into account commission failures and permanent omis-
sion failures. Transient omission failures are not treated
as failures: in asynchronous systems a node that fails and
recovers is indistinguishable from a slow node.

In line with Salus’ aim to provide end-to-end robust-
ness guarantees, we do not try to explicitly enumerate
and patch all the different ways in which servers can
fail. Instead, we design Salus to tolerate arbitrary fail-

2More precisely, ordered commit (defined in §2.2) which for multi-
ple clients implies FIFO-compliant linearizability.

2

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 359

ures, both of omission, where a faulty node fails to per-
form actions specified by the protocol, such as send-
ing, receiving or processing a message; and of commis-
sion [16], where a faulty node performs arbitrary actions
not called for by the protocol. However, while we as-
sume that faulty nodes will potentially generate arbitrar-
ily erroneous state and output, given the data center en-
vironment we target we explicitly do not attempt to tol-
erate cases where a malicious adversary controls some
of the servers. Hence, we replace the traditional BFT
assumption that faulty nodes cannot break cryptograph-
ic primitives [36] with the stronger (but fundamentally
similar) assumption that a faulty node never produces
a checksum that appears to be a correct checksum pro-
duced by a different node. In practice, this means that
where in a traditional Byzantine-tolerant system [12] we
might have used signatures or arrays of message authen-
tication codes (MACs) with pairwise secret keys, we in-
stead weakly sign communication using checksums salt-
ed with the checksum creator’s well-known ID.

Salus relies on weak synchrony assumptions for both
safety and liveness. For safety, Salus assumes that clock-
s are sufficiently synchronized that a ZooKeeper lease is
never considered valid by a client when the server con-
siders it invalid. Salus only guarantees liveness during
synchronous intervals where messages sent between cor-
rect nodes are received and processed within some time-
out [10].
2.2 Consistency model
To be usable as a virtual disk, Salus tries to preserve
the standard disk semantics provided by physical disks.
These semantics allow some requests to be marked as
barriers. A disk must guarantee that all requests received
before a barrier are committed before the barrier, and al-
l requests received after the barrier are committed after
the barrier. Additionally, a disk guarantees freshness: a
read to a block returns the latest committed write to that
block.

During normal operation (up to two commission or
omission failures), Salus guarantees both freshness and
a property we call ordered-commit: by the time a re-
quest R is committed, all requests that were received
before R have committed. Note that ordered-commit e-
liminates the need for explicit barriers since every write
request functions as a barrier. Although we did not set
out to achieve ordered-commit and its stronger guaran-
tees, Salus provides them without any noticeable effect
on performance.

Under severe failures Salus provides the weaker prefix
semantics: in these circumstances, a client that crashes
and restarts may observe only a prefix of the committed
writes; a tail of committed writes may be lost. This se-
mantics is not new to Salus: it is the semantics familiar to
every client that interacts with a crash-prone server that
acknowledges writes immediately but logs them asyn-

chronously; it is also the semantics to which every other
geo-replicated storage systems we know of [11, 29, 31]
retreats when failures put it under duresse. The reason is
simple: while losing writes is always disappointing, pre-
fix semantics has at least the merit of leaving the disk in a
legal state. Still, data loss should be rare, and Salus falls
back on prefix semantics only in the following scenari-
o: the client crashes, one or more of the servers suffer at
the same time a commission failure, and the rest of the
servers are unavailable. If the client does not fail or at
least one server is correct and available, Salus continues
to guarantee standard disk semantics.

Salus mainly focuses on tolerating arbitrary failures of
server-side storage systems, since they entail most of the
complexity and are primarily responsible for preserving
the durability and availability of data. Client commission
failures can also be handled using replication, but this
falls beyond the scope of this paper.

3 Background
Salus’ starting point is the scalable architecture of H-
Base/HDFS, which Salus carefully modifies to boost ro-
bustness without introducing new bottlenecks. We chose
the HBase/HDFS architecture for three main reasons:
first, because it provides a key-value interface that can be
easily modified to support a block store; second, because
it has a large user base that includes companies such as
Yahoo!, Facebook, and Twitter; and third because, unlike
other successful large-scale storage systems with similar
architectural features, such as Windows Azure [11] and
Google’s Bigtable/GFS [14, 20], HBase/HDFS is open
source.

HDFS HDFS [39] is an append-only distributed file
system. It stores the system metadata in a NameNode
and replicates the data over a set of datanodes. Each file
consists of a set of blocks and HDFS ensures that each
block is replicated across a specified number of datan-
odes (three by default) despite datanode failures. HDFS
is widely used, primarily because of its scalability.

HBase HBase [6] is a distributed key-value store. It
exports the abstraction of tables accessible through a
PUT/GET interface. Each table is split into multiple re-
gions of non-overlapping key-ranges (for load balanc-
ing). Each region is assigned to one region server that is
responsible for all requests to that region. Region servers
use HDFS as a storage layer to ensure that data is repli-
cated persistently across enough nodes. Additionally, H-
Base uses a Master node to manage the assignment of
key-ranges to various region servers.

Region servers receive clients’ PUT and GET requests
and transform them into equivalent requests that are ap-
propriate for the append-only interface exposed by HDF-
S. On receiving a PUT, a region server logs the request
to a write-ahead-log stored on HDFS and updates its

3

360 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

RS-A1

Network traffic
Local traffic

RS-A2 RS-A3

DN1 DN2 DN3

Block Driver

App Client

Active
Storage

Pipelined
Commit

End-to-end
checks

Region A Region B

Metadata traffic

Client
ServersPut/Get

RS RS RS

DN DN DN

RS RS RS

DN DN DN

ZooKeeper

Master

NameNode

Fig. 1: The architecture of Salus. Salus differs from HBase in three
key ways. First, Salus’ block driver performs end-to-end checks to val-
idate the GET reply. Second, Salus performs pipelined commit across
different regions to ensure ordered commit. Third, Salus replicates re-
gion servers via active storage to eliminate spurious state updates. For
efficiency, Salus tries to co-locate the replicated region servers with the
replicated datanodes (DNs).

sorted, in-memory map (called memstore) with the new
PUT. When the size of the memstore exceeds a prede-
fined threshold, the region server flushes the memstore
to a checkpoint file stored on HDFS.

On receiving a GET request for a key, the region server
looks up the key in its memstore. If a match is found, the
region server returns the corresponding value; otherwise,
it looks up the key in various checkpoints, starting from
the most recent one, and returns the first matching value.
Periodically, to minimize the storage overheads and the
GET latency, the region server performs compaction by
reading a number of contiguous checkpoints and merg-
ing them into a single checkpoint.

ZooKeeper ZooKeeper [22] is a replicated coordina-
tion service. It is used by HBase to ensure that each key-
range is assigned to at most one region server.

4 The design of Salus
The architecture of Salus, as Figure 1 shows, bears con-
siderable resemblance to that of HBase. Like HBase,
Salus uses HDFS as its reliable and scalable storage lay-
er, partitions key ranges within a table in distinct regions
for load balancing, and supports the abstraction of a re-
gion server responsible for handling requests for the keys
within a region. As in HBase, blocks are mapped to their
region server through a Master node, leases are man-
aged using ZooKeeper, and Salus clients need to install
a block driver to access the storage system, not unlike
the client library used for the same purpose in HBase.
These similarities are intentional: they aim to retain in
Salus the ability to scale to thousands of nodes and tens
of thousands of disks that has secured HBase’s success.
Indeed, one of the main challenges in designing Salus
was to achieve its robustness goals (strict ordering guar-
antees for write operations across multiple disks, end-
to-end correctness guarantees for read operations, strong

availability and durability guarantees despite arbitrary
failures) without perturbing the scalability of the original
HBase design. With this in mind, we have designed Salus
so that, whenever possible, it buttresses architectural fea-
tures it inherits from HBase—and does so scalably. So,
the core of Salus’ active storage is a three-way replicated
region server (RRS), which upgrades the original HBase
region server abstraction to guarantee safety despite up
to two arbitrary server failures. Similarly, Salus’ end-to-
end verification is performed within the familiar archi-
tectural feature of the block driver, though upgraded to
support Salus’ scalable verification mechanisms.

Figure 1 also helps describe the role played by our
novel techniques (pipelined commit, scalable end-to-end
verification, and active storage) in the operation of Salus.

Every client request in Salus is mediated by the block
driver, which exports a virtual disk interface by convert-
ing the application’s API calls into Salus GET and PUT
requests. The block driver, as we saw, is the compo-
nent in charge of performing Salus’ scalable end-to-end
verification (see §4.3): for PUT requests it generates the
appropriate metadata, while for GET requests it uses the
request’s metadata to check whether the data returned to
the client is consistent.

To issue a request, the client (or rather, its block driver)
contacts the Master, which identifies the RRS responsi-
ble for servicing the block that the client wants to access.
The client caches this information for future use and for-
wards the request to that RRS. The first responsibility of
the RRS is to ensure that the request commits in the order
specified by the client. This is where the pipelined com-
mit protocol becomes important: as we will see in more
detail in §4.1, the protocol requires only minimal coordi-
nation to enforce dependencies among requests assigned
to distinct RRSs. If the request is a PUT, the RRS also
needs to ensure that the data associated with the request
is made persistent, despite the possibility of individual
region servers suffering commission failures. This is the
role of active storage (see §4.2): the responsibility of
processing PUT requests is no longer assigned to a sin-
gle region server, but is instead conditioned on the set of
region servers in the RRS achieving unanimous consent
on the update to be performed. Thanks to Salus’ end-to-
end verification guarantees, GET requests can instead be
safely carried out by a single region server (with obvious
performance benefits), without running the risk that the
client sees incorrect data.
4.1 Pipelined commit
The goal of the pipelined commit protocol is to allow
clients to concurrently issue requests to multiple region-
s, while preserving the ordering specified by the client
(ordered-commit). In the presence of even simple crash
failures, however, enforcing the ordered-commit proper-
ty can be challenging.

Consider, for example, a client that, after mounting a

4

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 361

volume V that spans regions 1 and 2, issues a PUT u1 for
a block mapped to region 1 and then, without waiting for
the PUT to complete, issues a barrier PUT u2 for a block
mapped at region 2. Untimely crashes, even transient
ones, of the client and of the region server for region 1
may lead to u1 being lost even as u2 commits.3 Volume V
now violates both standard disk semantics and the weak-
er prefix semantics; further, V is left in an invalid state
that can potentially cause severe data loss [15, 35].

A simple way to avoid such inconsistencies would be
to allow clients to issue one request (or one batch of
requests) at a time, but, as we show in §5.2.4, perfor-
mance would suffer significantly. Instead, we would like
to achieve the good performance that comes with issu-
ing multiple oustanding requests, without compromising
the ordered-commit property. To achieve this goal, Salus
parallelizes the bulk of the processing (such as crypto-
graphic checks and disk-writes) required to handle each
request, while ensuring that requests commit in order.

Salus ensures ordered-commit by exploiting the se-
quence number that clients assign to each request. Re-
gion servers use these sequence numbers to guarantee
that a request does not commit unless the previous re-
quest is also guaranteed to eventually commit. Similarly,
during recovery, these sequence numbers are used to en-
sure that a consistent prefix of issued requests are recov-
ered (§4.4).

Salus’ apporach to ensure ordered-commit for GETs is
simple. Like other systems before it [9], Salus neither
assigns new sequence numbers to GETs, nor logs GETs
to stable storage. Instead, to prevent returning stale val-
ues, a GET request to a region server simply carries a
prevNum field indicating the sequence number of the last
PUT executed on that region: region servers do not ex-
ecute a GET until they have committed a PUT with the
prevNum sequence number. Conversely, to prevent the
value of a block from being overwritten by a later PUT,
clients block PUT requests to a block that has outstanding
GET requests.4

Salus’ pipelined commit protocol for PUTs is illustrat-
ed in Figure 2. The client, as in HBase, issues request-
s in batches. Unlike HBase, each client is allowed to
issue multiple outstanding batches. Each batch is com-
mitted using a 2PC-like protocol [21, 24], consisting of
the phases described below. Compared to 2PC, pipelined
commit reduces the overhead of the failure-free case by
eliminating the disk write in the commit phase and by
pushing complexity to the recovery protocol, which is
usually a good trade-off.

PC1. Choosing the batch leader and participants. To pro-

3For simplicity, in this example and throughout this section we con-
sider a single logical region server to be at work in each region. In
practice, in Salus this abstraction is implemented by a RRS.

4This requirement has minimal impact on performance, as such PUT
requests are rare in practice.

RRS A

Client

batch
(i)

batch
(i+1)

batch
leader

batch
leader

Client
Previous Commit

Previous Commit

Choosing Preparing Committing

RRS B

RRS C

RRS A

RRS B

RRS C

Fig. 2: Pipelined commit (each batch leader is actually replicated to
tolerate arbitrary faults.)

cess a batch, a client divides its PUTs into various sub-
batches, one per region server. Just like a GET request,
a PUT request to a region also includes a prevNum field
to identify the last PUT request issued to that region.
The client identifies one region server as batch leader
for the batch and sends each sub-batch to the appropri-
ate region server along with the batch leader’s identity.
The client sends the sequence numbers of all requests
in the batch to the batch leader, along with the identity
of the leader of the previous batch.

PC2. Preparing. A region server preprocesses the PUTs in
its sub-batch by validating each request, i.e. by check-
ing whether the request is signed and by using the
prevNum field to verify it is the next request that the
region server should process. If validation succeeds
for all requests in the sub-batch, the region server logs
the request (which is now prepared) and sends its YES
vote to the batch’s leader; otherwise, the region server
votes NO.

PC3. Deciding. The batch leader can decide COMMIT on-
ly if it receives a YES vote for all the PUTs in its
batch and a COMMIT-CONFIRMATION from the lead-
er of the previous batch; otherwise, it decides ABORT.
Either way, the leader notifies the participants of it-
s decision. Upon receiving COMMIT for a request, a
region server updates its memory state (memstore),
sends a PUT_SUCCESS notification to the client, and
asynchronously marks the request as committed on
persistent storage. On receiving ABORT, a region serv-
er discards the state associated with that PUT and sends
the client a PUT_FAILURE message.
Notice that all disk writes—both within a batch and

across batches—can proceed in parallel and that the vot-
ing and commit phases for a given batch can be similar-
ly parallelized. Different region servers receive and log
the PUT and COMMIT asynchronously. The only serial-
ization point is the passing of COMMIT-CONFIRMATION
from the leader of a batch to the leader of the next batch.

Despite its parallelism, the protocol ensures that re-
quests commit in the order specified by the client. The
presence of COMMIT in any correct region server’s log
implies that all preceding PUTs in this batch must have
prepared. Furthermore, all requests in preceding batches
must have also prepared. Our recovery protocol (§4.4)
ensures that all these prepared PUTs eventually commit
without violating ordered-commit.

The pipelined commit protocol enforces ordered-

5

362 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

commit assuming the abstraction of (logical) region
servers that are correct. It is the active storage proto-
col (§4.2) that, from physical region servers that can lose
committed data and suffer arbitrary failures, provides
this abstraction to the pipelined commit protocol.

4.2 Active storage
Active storage provides the abstraction of a region server
that does not experience arbitrary failures or lose data.
Salus uses active storage to ensure that the data remains
available and durable despite arbitrary failures in the s-
torage system by addressing a key limitation of existing
scalable storage systems: they replicate data at the stor-
age layer (e.g. HDFS) but leave the computation layer
(e.g. HBase) unreplicated. As a result, the computation
layer that processes clients’ requests represents a single
point of failure in an otherwise robust system. For ex-
ample, a bug in computing the checksum of data or a
corruption of the memory of a region server can lead to
data loss and data unavailability in systems like HBase.

The design of Salus embodies a simple principle: all
changes to persistent state should happen with the con-
sent of a quorum of nodes. Salus uses these compute quo-
rums to protect its data from faults in its region servers.

Salus implements this basic principle using active s-
torage. In addition to storing data, storage nodes in Salus
also coordinate to attest data and perform checks to en-
sure that only correct and attested data is being replicat-
ed. Perhaps surprisingly, in addition to improving fault-
resilience, active storage also enables us to improve per-
formance by trading relatively cheap CPU cycles for ex-
pensive network bandwidth.

Using active storage, Salus can provide strong avail-
ability and durability guarantees: a data block with a
quorum of size n will remain available and durable as
long as no more than n−1 nodes fail. These guarantees
hold irrespective of whether the nodes fail by crashing
(omission) or by corrupting their disk, memory, or logi-
cal state (commission).

Replication typically incurs network and storage over-
heads. Salus uses two key ideas—(1) moving computa-
tion to data, and (2) using unanimous consent quorums—
to ensure that active storage does not incur more network
cost or storage cost compared to existing approaches that
do not replicate computation.

4.2.1 Moving computation to data to minimize net-
work usage

Salus implements active storage by blurring the bound-
aries between the storage layer and the compute layer.
Existing storage systems [6, 11, 14] require a designated
primary datanode to mediate updates. In contrast, Salus
modifies the storage system API to permit region servers
to directly update any replica of a block. Using this mod-
ified interface, Salus can efficiently implement active s-
torage by colocating a compute node (region server) with

the storage node (datanode) that it needs to access.
Active storage thus reduces bandwidth utilization in

exchange for additional CPU usage (§5.2.2)—an attrac-
tive trade-off for bandwidth starved data-centers. In par-
ticular, because a region server can now update the colo-
cated datanode without requiring the network, the band-
width overheads of flushing (§3) and compaction (§3) in
HBase are avoided.

We have implemented active storage in HBase by
changing the NameNode API for allocating blocks. As
in HBase, to create a block a region server sends a re-
quest to the NameNode, which responds with the new
block’s location; but where the HBase NameNode makes
its placement decisions in splendid solitude, in Salus the
request to the NameNode includes a list of preferred
datanodes as a location-hint. The hint biases the NameN-
ode toward assigning the new block to datanodes hosted
on the same machines that also host the region servers
that will access the block. The NameNode follows the
hint unless doing so violates its load-balancing policies.

Loosely coupling in this way the region servers and
datanodes of a block yields Salus significant network
bandwidth savings (§5.2.2): why then not go all the
way—eliminate the HDFS layer and have each region
server store its state on its local file system? The rea-
son is that maintaining flexibility in block placement is
crucial to the robustness of Salus: our design allows the
NameNode to continue to load balance and re-replicate
blocks as needed, and makes it easy for a recovering re-
gion server to read state from any datanode that stores it,
not just its own disk.

4.2.2 Using unanimous consent to reduce replica-
tion overheads

To control the replication and storage overheads, we use
unanimous consent quorums for PUTs. Existing system-
s replicate data to three nodes to ensure durability de-
spite two permanent omission failures. Salus provides
the same durability and availability guarantees despite t-
wo failures of either omission or commission without in-
creasing the number of replicas. To tolrate f commission
faults with just f + 1 replicas, Salus requires the repli-
cas to reach unanimous consent prior to performing any
operation that updates the state and to store a certificate
proving the legitimacy of the update.

Of course, the failure of any of the replicated region
servers can prevent unanimous consent. To ensure live-
ness, Salus replaces any RRS that is not making adequate
progress with a new set of region servers, which read al-
l state committed by the previous region server quorum
from the datanodes and resume processing requests. This
fail-over protocol is a slight variation of the one already
present in HBase to handle failures of unreplicated re-
gion servers. If a client detects a problem with a RRS,
it sends a RRS-replacement request to the Master, which

6

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 363

RS-A1

DN1
C
lie
nt RS-A2 RS-A31 2

3

4
56

2
3

4 4
5

DN2 DN3

Fig. 3: Steps to process a PUT request in Salus using active storage.

first attempts to get all the nodes of the existing RRS
to relinquish their leases; if that fails, the Master coor-
dinates with ZooKeeper to prevent lease renewal. Once
the previous RRS is known to be disabled, the Master
appoints a new RRS. Then Salus performs the recovery
protocol as described in §4.4.

4.2.3 Active storage protocol
To provide to the other components of Salus the abstrac-
tion of a correct region server, region servers within a
RRS are organized in a chain. In response to a client’s
PUT request or to attend a periodic task (such as flush-
ing and compaction), the primary region server (the first
replica in the chain) issues a proposal, which is forward-
ed to all region servers in the chain. After executing the
request, the region servers in the RRS coordinate to cre-
ate a certificate attesting that all replicas executed the re-
quest in the same order and obtained identical respons-
es. The components of Salus (such as client, NameNode,
and Master) that use active storage to make data persis-
tent require all messages from a RRS to carry such a
certificate: this guarantees no spurious changes to per-
sistent data as long as at least one region server and its
corresponding datanode do not experience a commission
failure.

Figure 3 shows how active storage refines the
pipelined commit protocol for PUT requests. The PUT
issued by a client is received by the primary region serv-
er as part of a sub-batch (1). Upon receiving a PUT,
each replica validates it and forwards it down the chain
of replicas (2). The region servers then agree on the lo-
cation and order of the PUT in the append-only logs (3)
and create a PUT-log certificate that attests to that loca-
tion and order. Each region server sends the PUT and
the certificate to its corresponding datanode to guarantee
their persistence and waits for the datanode’s confirma-
tion (4) before marking the request as prepared. Each
region server then independently contacts the leader of
the batch to which the PUT belongs and, if it voted YES,
waits for the decision. On receiving COMMIT, the region
servers mark the request as committed, update their in-
memory state and generate a PUT_SUCCESS certificate
(5); on receiving ABORT the region servers generate in-
stead a PUT_FAILED certificate. In either case, the pri-
mary then forwards the certificate to the client (6).

Similar changes are also required to leverage active s-
torage in flushing and compaction. Unlike PUTs, these
operations are initiated by the primary region server: the
other region servers use predefined deterministic crite-
ria, such as the current size of the memstore, to verify

Client RS

RS1 RS2

RS3 RS4

Volume tree

Region
trees1 32 4

1

3

2

4

Fig. 4: Merkle tree structure on client and region servers

whether the proposed operation should be performed.

4.3 End-to-end verification
Local file systems fail in unpredictable ways [35]. Dis-
tributed systems like HBase are even more complex
and are therefore more prone to failures. To provide
strong correctness guarantees, Salus implements end-to-
end checks that (a) ensure that clients access correct and
current data and (b) do so without affecting performance:
GETs can be processed at a single replica and yet retain
the ability to identify whether the returned data is correct
and current.

Like many existing systems [19, 26, 31, 41], Salus’
mechanism for end-to-end checks leverages Merkle trees
to efficiently verify the integrity of the state whose hash
is at the tree’s root. Specifically, a client accessing a
volume maintains a Merkle tree on the volume’s block-
s, called volume tree, that is updated on every PUT and
verified on every GET.

For robustness, Salus keeps a copy of the volume tree
stored distributedly across the region servers that host the
volume so that, after a crash, a client can rebuild its vol-
ume tree by contacting the region servers responsible for
the regions in that volume. Replicating the volume tree at
the region servers also allows a client, if it so chooses, to
only store a subset of its volume tree during normal oper-
ation, fetching on demand what it needs from the region
servers serving its volume.

Since a volume can span multiple region servers, for
scalability and load-balancing each region server only s-
tores and validates a region tree for the regions that it
hosts. The region tree is a sub-tree of the volume tree
corresponding to the blocks in a given region. In addi-
tion, to enable the client to recover the volume tree, each
region server also stores the latest known hash for the
root of the full volume tree, together with the sequence
number of the PUT request that produced it.

Figure 4 shows a volume tree and its region trees. The
client stores the top levels of the volume tree that are not
included in any region tree so that it can easily fetch the
desired region tree on demand. A client can also cache
recently used region trees for faster access.

To process a GET request for a block, the client sends
the request to any of the region servers hosting that block.
On receiving a response, the client verifies it using the lo-
cally stored volume tree. If the check fails (because of a
commission failure) or if the client times out (because of

7

364 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

an omission failure), the client retries the GET using an-
other region server. If the GET fails at all region server-
s, the client contacts the Master triggering the recovery
protocol(§4.4). To process a PUT, the client updates its
volume tree and sends the weakly-signed root hash of its
updated volume tree along with the PUT request to the
RRS. Attaching the root hash of the volume tree to each
PUT request enables clients to ensure that, despite com-
mission failures, they will be able to mount and access a
consistent volume.

A client’s protocol to mount a volume after losing the
volume tree is simple. The client begins by fetching the
region trees, the root hashes, and the corresponding se-
quence numbers from the various RRSs. Before respond-
ing to a client’s fetch request, a RRS commits any pre-
pared PUTs pending to be committed using the commit-
recovery phase of the recovery protocol (§4.4). Using the
sequence numbers received from all the RRSs, the client
identifies the most recent root hash and compares it with
the root hash of the volume tree constructed by combin-
ing the various region trees. If the two hashes match, then
the client considers the mount to be complete; otherwise
it reports an error indicating that a RRS is returning a
potentially stale tree. In such cases, the client reports
an error to the Master to trigger the replacement of the
servers in the corresponding RRS, as described in §4.4.
4.4 Recovery
The recovery protocol ensures that, despite comission or
permanent omission failures in up to f pairs of corre-
sponding region servers and datanodes, Salus continues
to provide the abstraction of a virtual disk with standard
disk semantics, except in the extreme failure scenario in
which the client crashes and one or more of the region
server/datanode pairs of a region experience a commis-
sion failure and all other region server/datanode pairs of
that region are unavailable: in this case, Salus’ recovery
protocol guarantees the weaker prefix semantics.

To achieve this goal, Salus’ recovery protocol collect-
s the longest available prefix PC of prepared PUT re-
quests that satisfy the ordered-commit property. Recall
from §4.1 that every PUT for which the client received a
PUT_SUCCESS must appear in the log of at least one cor-
rect replica in the region that processed that PUT. Hence,
if a correct replica is available for each of the volume’s
regions, PC will contain all PUT requests for which the
client received a PUT_SUCCESS, thus guaranteeing stan-
dard disk semantics. If however, because of a confluence
of commission and transient omission failures, the only
available replicas in a region are those who have suffered
commission failures, then the PC that the recovery proto-
col collects may include only a prefix (albeit ordered-
commit-compliant) of those PUT requests, resulting in
the weaker prefix semantics.

Specifically, recovery must address two key issues.
Resolving log discrepancies Because of omission or

1 do
2 foreach failed-region i
3 remapRegion(i)
4 end
5 foreach failed-region i
6 region_logs[i] ← recoverRegionLog(region i)
7 end
8 LCP ← identifyLCP(region_logs)
9 while rebuildVolume(LCP) fails

Fig. 5: Pseudocode for the recovery protocol.

commission failures, different datanodes within the same
RRS may store different logs. A prepared PUT, for ex-
ample, may have been made persistent at one datanode,
but not at another.

Identifying committable requests Because COM-
MIT decisions are logged asynchronously, some PUTs
for which a client received PUT_SUCCESS may not be
marked as committed in the logs. It is possible, for ex-
ample, that a later PUT be logged as committed when
an earlier one is not; or that a suffix of PUTs for which
the client has received a PUT_SUCCESS be not logged as
committed. Worse, because of transient omission fail-
ures, some region may temporarily have no operational
correct replica when the recovery protocol attempts to
collect logged PUTs.

One major challenge in addressing these issues is that,
while PC is defined on a global volume log, Salus does
not actually store any such log: instead, for efficiency,
each region keeps its own separate region log. Hence,
after retrieving its region log, a recovering region server
needs to cooperate with other region servers to determine
whether the recovered region log is correct and whether
the PUTs it stores can be committed.

Figure 5 describes the protocol that Salus uses to re-
cover faulty datanodes and region servers. The first two
phases describe the recovery of individual region logs,
while the last two phases describe how the RRSs coordi-
nate to identify commitable requests.
1. Remap (remapRegion). As in HBase, when a RRS
crashes or is reported by the client as non-responsive, the
Master swaps out the servers in that RRS and assigns its
regions to one or more replacement RRSs.
2. Recover region log (recoverRegionLog). To re-
cover all prepared PUTs of a failed region, the new region
servers choose, among the instances (one for each op-
erational datanode) of that region’s old region logs, the
longest available log that is valid. A log is valid if it
is a prefix of PUT requests issued to that region. 5 We
use the PUT-log certificate attached to each PUT record
to separate valid logs from invalid ones: each region
server independently replays the log and checks if each
PUT record’s location and order matches the location and
order included in that PUT record’s PUT-log certificate.
Having found a valid log, the servers in the RRS agree
on the longest prefix and advance to the next stage.

5Salus’ approach for truncating logs is similar to how HBase man-
ages checkpoints and is discussed in an extended TR [44].

8

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 365

3. Identify the longest commitable prefix (LCP) of the
volume log (identifyLCP). If the client is available,
Salus can determine the LCP and the root of the corre-
sponding volume tree simply by asking the client. Oth-
erwise, all RRSs must coordinate to identify the longest
prefix of the volume log that contains either committed
or prepared PUTs (i.e. PUTs whose data has been made
persistent in at least one correct datanode). Since Salus
keeps no physical volume log, the RRSs use ZooKeeper
as a means of coordination, as follows. The Master asks
each RRS to report its maximum committed sequence
number as well as its list of prepared sequence number-
s by writing the requested information to a known file
in ZooKeeper. Upon learning from Zookeeper that the
file is complete (i.e. all RRSs have responded), 6 each
RRS uses the file to identify the longest prefix of com-
mitted and prepared PUTs in the volume log. Finally, the
sequence number of the last PUT in the LCP and the at-
tached Merkle tree root are written to ZooKeeper.
4. Rebuild volume state (rebuildVolume). The goal
of this phase is to ensures that all PUTs in the LCP are
committed and available. The first half is simple: if a
PUT in the LCP is prepared, then the corresponding re-
gion server marks it as committed. With respect to avail-
ability, Salus makes sure that all PUTs in the LCP are
available, in order to reconstruct the volume consistent-
ly. To that end, the Master asks the RRSs to replay their
log and rebuild their region trees; it then uses the same
checks used by the client in the mount protocol (§4.3)
to determine whether the current root of the volume tree
matches the one stored in ZooKeeper during Phase 3.

As mentioned above, a confluence of commission and
transient omission failures could cause a RRS to recover
only a prefix of its region log. In that case, the above
checks could fail, since some PUTs within the LCP could
be ignored. If the checks fail, recovery starts again from
Phase 1.7 Note, however, that all the ignored PUTs must
have been prepared and so, as long as the number of per-
manent omission or commission failures does not exceed
f , a correct datanode will eventually become available
and a consistent volume will be recovered.

5 Evaluation
We have implemented Salus by modifying HBase [6] and
HDFS [39] to add pipelined commit, active storage, and
end-to-end checks. Our current implementation lags be-
hind our design in two ways. First, our prototype sup-
ports unanimous consent between HBase and HDFS but
not between HBase and ZooKeeper. Second, while our
design calls for a BFT-replicated Master, NameNode,
and ZooKeeper, our prototype does not yet incorporate

6If some RRS are unavailable during this phase, recovery starts a-
gain from Phase 1, replacing the unavailable servers.

7For a more efficient implementation that leverages version vectors,
see [44].

Salus ensures freshness, ordered-commit, and liveness
when there are no more than 2 failures within any RRS
and the corresponding datanodes.

§5.1

Salus achieves comparable or better single-client through-
put compared to HBase with slightly increased latency. §5.2.1

Salus’ active replication can reduce network usage by 55%
and increase aggregate throughput by 74% for sequential
write workload compared to HBase. Salus can achieve
similar aggregate read throughput compared to HBase.

§5.2.2

Salus’ overhead over HBase does not grow with the scale
of the system. §5.2.3

Fig. 6: Summary of main results.

these features. We intend to use UpRight [16] to repli-
cate NameNode, ZooKeeper, and Master.

Our evaluation tries to answer two basic questions.
First, does Salus provide the expected guarantees despite
a wide range of failures? Second, given its stronger guar-
antees, is Salus’ performance competitive with HBase?
Figure 6 summarizes the main results.

5.1 Robustness
In this section, we evaluate Salus’ robustness, which in-
cludes guaranteeing freshness for read operations and
liveness and ordered-commit for all operations.

Salus is designed to ensure these properties as long as
there are no more than two failures in the region servers
within an RRS and their corresponding datanodes, and
fewer than a third of the nodes in the implementation
of each of UpRight NameNode, UpRight ZooKeeper,
and UpRight Master nodes are incorrect; however, since
we have not yet integrated in Salus UpRight versions of
NameNode, ZooKeeper, and Master, we only evaluate
Salus’ robustness when datanode or region server fails.

We test our implementation via fault injection. We in-
troduce failures and then determine what happens when
we attempt to access the storage. For reference, we
compare Salus with HBase (which replicates stored data
across datanodes but does not support pipelined commit,
active storage, or end-to-end checks).

In particular, we inject faults into clients to force them
to crash and restart. We inject faults into datanodes to
force them either to crash, temporarily or permanently, or
to corrupt block data. We cause data corruption in both
log files and checkpoint files. We inject faults into region
servers to force them to either 1) crash; 2) corrupt data in
memory; 3) write corrupted data to HDFS; 4) refuse to
process requests or forward requests out of order; or 5)
ask the NameNode to delete files. Once again, we cause
corruption in both log files and checkpoint files. Note
that data on region servers is not protected by checksums.
Figure 7 summarizes our results.

First, as expected, when a client crashes and restart-
s in HBase, a volume’s on-disk state can be left in an
inconsistent state, because HBase does not guarantee or-
dered commit. HBase can avoid these inconsistencies
by blocking all requests that follow a barrier request un-
til the barrier completes, but this can hurt performance

9

366 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

Affected nodes Faults HBase Salus
GET PUT GET PUT

Client Crash and restart Fresh Not ordered Fresh Ordered

DataNode

1 or 2 permanent crashes Fresh Ordered Fresh Ordered
Corruption of 1 or 2 replicas of log or checkpoint Fresh Ordered Fresh Ordered
3 arbitrary failures Fresh* Lost Fresh* Lost

Region server+DataNode

1 (for HBase) or 3 (for Salus) region server permanent
crashes

Fresh Ordered Fresh Ordered

1 (for HBase) or 2 (for Salus) region server arbitrary
failures that potentially affect datanodes

Corrupted Lost Fresh Ordered

3 (for Salus) region server arbitrary failures that po-
tentially affect datanodes

- - Fresh* Lost

Client+Region server+DataNode Client crashes and restarts, 1 (for HBase) or 2 (for
Salus) region server arbitrary failures causing the cor-
responding datanodes to not receive a suffix of data

Corrupted Lost Fresh Ordered

Fig. 7: Robustness towards failures affecting the region servers within an RRS, and their corresponding datanodes. (- = not applicable, * =
corresponding operations may not be live). Note that a region server failure has the potential to cause the failure of the corresponding datanode.

when barriers are frequent (see §5.2.4). Second, HBase’s
replicated datanodes tolerate crash and benign file cor-
ruptions that alter the data but don’t affect the checksum,
which is stored separately. Thus, when considering only
datanode failures, HBase provides the same guarantees
as Salus. Third, HBase’s unreplicated region server is a
single point of failure, vulnerable to commission failures
that can violate freshness as well as ordered-commit.

In Salus, end-to-end checks ensure freshness for GET
operations in all the scenarios covered in Figure 7: a cor-
rect client does not accept GET reply unless it can pass
the Merkle tree check. Second, pipelined commit en-
sures the ordered-commit property in all scenarios in-
volving one or two failures, whether of omission or of
commission: if a client fails or region servers reorder
requests, the out-of-order requests will not be accepted
and eventually recovery will be triggered, causing these
requests to be discarded. Third, active storage protect-
s liveness failure scenarios involving one or two region
server/datanode pairs: if a client receives an unexpected
GET reply, it retries until it obtains the correct data. Fur-
thermore, during recovery, the recovering region servers
find the correct log by using the certificates generated
by active storage protocol. As expected, ordered-commit
and liveness cannot be guaranteed if all replicas either
permanently fail or experience commission failures.

5.2 Performance

Salus’ architecture can in principle result in both bene-
fits and overhead when it comes to throughput and la-
tency: on the one hand, pipelined commit allows multi-
ple batches to be processed in parallel and active stor-
age reduces network bandwidth consumption. On the
other hand, end-to-end checks introduce checksum com-
putations on both clients and servers; pipelined commit
requires additional network messages for preparing and
committing; and active storage requires additional com-
putation and messages for certificate generation and val-
idation. Compared to the cost of disk-accesses for data,
however, we expect these ovrheads to be modest.

This section quantifies these tradeoffs using

sequential- and random-, read and write microbench-
marks. We compare Salus’ single-client throughput
and latency, aggregate throughput, and network usage
to those of HBase. We also include measured num-
bers from Amazon EBS to put Salus’ performance in
perspective.

Salus targets clusters of storage nodes with 10 or more
disks each. In such an environment, we expect a node’s
aggregate disk bandwidth to be much larger than its net-
work bandwidth. Unfortunately, we have only three stor-
age nodes matching this description, the rest of our small
nodes have a single disk and a single active 1Gbit/s net-
work connection.

Most of our experiments run on a 15-node clus-
ter of small nodes equipped with a 4-core Intel X-
eon X3220 2.40GHz CPU, 3GB of memory, and one
WD2502ABYS 250GB hard drive. In these experiments,
we use nine small nodes as region servers and datanodes,
another small node as the Master, ZooKeeper, and Na-
meNode, and up to four small nodes acting as clients. In
these experiments, we set the Java heap size to 2GB for
the region server and 1GB for the datanode.

To understand system behavior when disk bandwidth
is more plentiful than network bandwidth, we run several
experiments using the three storage nodes, each equipped
with an 16-core AMD Opteron 4282 @3.0GHz, 64G-
B of memory, and 10 WDC WD1003FBYX 1TB hard
drives. These storage nodes have 1Gbit/s networks, but
the network topology constrains them to share an aggre-
gate bandwidth of about 1.2Gbit/s.

To measure the scalability of Salus with a large num-
ber of machines, we run several experiments on Amazon
EC2 [2]. The detailed configuration is shown in §5.2.3.

For all experiments, we use a small 4KB block size,
which we expect to magnify Salus’ overheads compared
to larger block sizes. For read workloads, each client
formats the volume by writing all blocks and then forc-
ing a flush and compaction before the start of the ex-
periments. For write workloads, since compaction in-
troduces significant overhead in both HBase and Salus
and the compaction interval is tunable, we first run these

10

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 367

experiments with compaction disabled to measure the
maximum throughput; then we run HBase with its de-
fault compaction strategy and measure how many bytes
it reads for each compaction; finally, we tune Salus’ com-
paction interval so that Salus performs compaction on the
same amount of data as HBase.

5.2.1 Single client throughput and latency
We first evaluate the single-client throughput and latency
of Salus. Since a single client usually cannot saturate the
system, we find that executing requests in a pipeline is
beneficial to Salus’ throughput. However, the additional
overhead of checksum computation and message transfer
of Salus increases its latency.

We use the nine small nodes as servers and start a sin-
gle client to issue sequential and random reads and writes
to the system. For the throughput experiment, the client
issues requests as fast as it can and performs batching to
maximize throughput. In all experiments, we use a batch
size of 250 requests, so each batch accesses about 1M-
B. For the latency experiment, the client issues a single
request, waits for it to return, and then waits for 10ms
before issuing the next request.

Figure 8 shows the single client throughput. For se-
quential read, Salus outperforms the HBase system with
a speedup of 2.5. The reasons are that Salus’ active
replication’s three region servers increase parallelism for
reads and reads are pipelined to have multiple batches
outstanding; the HBase client instead issues only one
batch of requests at a time. For random reads, disk seeks
are the bottleneck and HBase and Salus have comparable
performance.

For sequential write and random write, Salus is slower
than HBase by 3.5% to 22.8% for its stronger guaran-
tees. For Salus, pipelined execution does not help write
throughput as much as it helps sequential reads, since
write operations need to be forwared to all three nodes
and unlike reads cannot be executed in parallel.

As a sanity check, Figure 8 also shows the perfor-
mance we measured from a small compute instance ac-
cessing Amazon’s EBS. Because the EBS hardware dif-
fers from our testbed hardware, we can only draw lim-
ited conclusions, but we note that the Salus prototype
achieves a respectable fraction of EBS’s sequential read
and write bandwidth, and that it modestly outperforms
EBS’s random read throughput (likely because it is uti-
lizing more disk arms), and that it substantially outper-
forms EBS’s random write throughput (likely because it
transforms random writes into sequential ones.)

Figure 9 shows the 90th-percentile latency for random
reads and writes. In both cases, Salus’ latency is within
two or three milliseconds or of HBase’s. This is rea-
sonable considering Salus’ additional work to perform
Merkle tree calculation, certificate generation and vali-
dation, and network transfer. One thing should be noted

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Sequential read Random read Sequential write Random write

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

88

0.5

33

0.3

26

2.3

18
22

26

2.3

26

32

64

3.1

18 20

64

3.1

20

27

E
B
S

E
B
S

E
B
S

E
B
S

H
B
a
se

H
B
a
se

H
B
a
se

H
B
a
se

H
B
a
se

-N

H
B
a
se

-N

H
B
a
se

-N

H
B
a
se

-N

S
a
lu
s

S
a
lu
s

S
a
lu
s

S
a
lu
s

S
a
lu
s-

N

S
a
lu
s-

N

S
a
lu
s-

N

S
a
lu
s-

N

Fig. 8: Single client throughput on small nodes. HBase-N and Salus-N
disable compactions. EBS’s numbers are measured on different hard-
wares and are included for reference.

 0

 10

 20

 30

 40

Random read Random write
L

at
en

cy
 -

 9
0
th

 P
er

ce
n
ti

le
 (

m
s)

20

4

26

1.6

26

12

28

2.3

28

15

E
B
S

E
B
S

H
B
a
se

H
B
a
se

 H
B
a
se

-S

 H
B
a
se

-S

 S
a
lu
s

 S
a
lu
s

 S
a
lu
s-

S

 S
a
lu
s-

S

Fig. 9: Single client latency on small nodes. HBase-S and Salus-S
enable sync. EBS’s numbers are measured on different hardwares and
are included for reference.

about the random write latency experiment: the HBase
datanode does not call sync when performing disk write
and that’s why its write latency is small. This may be a
reasonable design decision when the probability of three
simultaneous crashes is small [28]. In this experiment,
we also show what happens when adding this call to both
HBase and Salus: calling sync adds more than 10ms of
latency to both. To be consistent, we do not call sync in
other throughput experiments.

Again, as a sanity check we note that Salus (and H-
Base) are reasonably competitive with EBS (though we
emphasize again that EBS’s underlying hardware is not
known to us, so not too much should be read into this
experiment.)

Overall, these results show that despite all the extra
computation and message transfers to achieve stronger
guarantees, Salus’ single-client throughput and latency
are comparable to those of HBase. This is because the
additional processing Salus requires adds relatively lit-
tle to the time required to complete disk operations. In
an environment in which computational cycles are plen-
tiful, trading off as Salus does processing for improved
reliability appears to be a reasonable trade-off.

5.2.2 Aggregate throughput/network bandwidth
We then evaluate the aggregate throughput and network
usage of Salus. The servers are saturated in these exper-
iments, so pipelined execution does not improve Salus’
throughput at all. On the other hand, we find that active

11

368 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

 0

 20

 40

 60

 80

 100

 120

Sequential read Random read Sequential write Random write

T
h
ro

u
g
h
p
u
t

(M
B

/s
)

112

2.7

25 22

112

2.7

58
54

108

3.1

22 20

108

3.1

46 45

 H
B
a
se

 H
B
a
se

 H
B
a
se

 H
B
a
se

H
B
a
se

-N

H
B
a
se

-N

H
B
a
se

-N

H
B
a
se

-N

S
a
lu
s

S
a
lu
s

S
a
lu
s

S
a
lu
s

S
a
lu
s-

N

S
a
lu
s-

N

S
a
lu
s-

N

S
a
lu
s-

N

Fig. 10: Aggregate throughput on small nodes. HBase-N and Salus-N
disable compactions.

HBase Salus
Throughput (MB/s) 27 47

Network consumption (network bytes per
byte written by the client)

5.3 2.4

Fig. 11: Aggregate sequential write throughput and network band-
width usage with fewer server machines but more disks per machine.

replication of region servers, introduced to improve ro-
bustness, can reduce network bandwidth and significant-
ly improve performance when the total disk bandwidth
exceeds the aggregate network bandwidth.

Figure 10 reports experiments on our small-server
testbed with nine nodes acting as combined region serv-
er and datanode servers and we increase the number of
clients until the throughput does not increase.

For sequential read, both systems can achieve about
110MB/s. Pipelining reads in Salus does not improve ag-
gregate throughput since also HBase has multiple clients
to parallelize network and disk operations. For random
reads, disk seek and rotation are the bottleneck, and both
systems achieve only about 3MB/s.

The relative slowdown of Salus versus HBase for se-
quential and random writes is respectively of 11.1% to
19.4% and significantly lower when compaction is en-
abled since compaction adds more disk operations to
both HBase and Salus. Salus reduces network bandwidth
at the expense of higher disk and CPU usage, but this
trade-off does not help in our system because disk and
network bandwidth are comparable. Even so, we find
this to be an acceptable price for the stronger guarantees
provided by Salus.

Figure 11 shows what happens when we run the se-
quential write experiment using the three 10-disk storage
nodes as servers. Here, the tables are turned and Salus
outperforms HBase (47MB/s versus 27MB/s). Our pro-
filing shows that in both experiments, the bottleneck is
the network topology that constrains the aggregate band-
width to 1.2Gbit/s.

Figure 11 also compares the network bandwidth us-
age of HBase and Salus under the sequential write work-
load. HBase sends more than five bytes for each byte
written by the client (two network transfers each for log-
ging and flushing, but fewer than two for compaction,
since some blocks are overwritten.) Salus only uses two
bytes per-byte-written to forward the request to replicas;

 0

 1

 2

 3

 4

 5

 6

 7

Sequential write Random write

T
h
ro

u
g
h
p
u
t

p
er

 r
eg

io
n
 s

er
v
er

 (
M

B
/s

)

5.3
5.1

4
3.7

5.5

2

4.5

1.5

H
B
a
se

-9

H
B
a
se

-9

S
a
lu
s-

9

S
a
lu
s-

9

H
B
a
se

-1
0
8

H
B
a
se

-1
0
8

S
a
lu
s-

1
0
8

S
a
lu
s-

1
0
8

Fig. 12: Write throughput per server with 9 servers and 108 servers
(compaction disabled).

logging, flushing, and compaction are performed locally.
The actual number is slightly higher than 2, because of
Salus’s additional metadata. Salus halves network band-
width usage compared to HBase, which explains why its
throughput is 74% higher than that HBase when network
bandwidth is limited.

Note that we do not measure the aggregate throughput
of EBS because we do not know its internal architecture
and thus we do not know how to saturate it.

5.2.3 Scalability
In this section we evaluate the degree to which the mech-
anisms that Salus uses to achieve its stronger robustness
guarantees impact its scalability. Growing by an order
of magnitude the size of the testbed used in our previ-
ous experiments, we run Salus and HBase on Amazon
EC2 [2] with up to 108 servers. While short of our goal
of showing conclusively that Salus can scale to thousands
of servers, we believe these experiments can offer valu-
able insights on the relevant trends.

For our testbed we use EC2’s extra large instances,
with datanodes and region servers configured to use 3G-
B of memory each. Some preliminary tests run to mea-
sure the characteristics of our testbed show that each EC2
instance can reach a maximum network and disk band-
width of about 100MB/s, meaning that network band-
width is not a bottleneck; thus, we do not expect Salus to
outperform HBase in this setting.

Given our limited resources, we focus our attention
on measuring the throughput of sequential and random
writes: we believe this is reasonable since the only addi-
tional overhead for reads are the end-to-end checks per-
formed by the clients, which are easy to make scalable.
We run each experiment with an equal number of clients
and servers and for each 11-minute-long experiment we
report the throughput of the last 10 minutes.

Because we do not have full control over EC2’s in-
ternal architecture, and because one user’s virtual ma-
chines in EC2 may share resources such as disks and
networks with other users, these experiments have lim-
itations: the performance of EC2’s instances fluctuates
noticeably and it becomes hard to even determine what
the stable throughput for a given experimental configu-
ration is. Further, while in most cases, as expected, we
find that HBase performs better than Salus, some experi-

12

USENIX Association 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) 369

 0

 5

 10

 15

 20

 1 2 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

M
B

/s
)

Barrier interval

HBase
Salus

Fig. 13: Single client sequential write throughput as the frequency of
barriers varies.
ments show Salus with a higher throughput than HBase,
possibly because the network is being heavily used and
pipelined commit helps Salus handle high network laten-
cies more efficiently: to be conservative, we report only
results for which HBase performs better than Salus.

Figure 12 shows the per-server throughput of the
sequential and random write workloads in configura-
tion with 9 and 108 servers. For the sequential write
workload, the throughput per server remains almost un-
changed in both HBase and Salus as we move from 9 to
108 servers, meaning that for this workload both systems
are perfectly scalable up to 108 servers. For the random
write workload, however, both HBase and Salus experi-
ence a significant drop in throughput-per-server when the
number of servers grows. The culprit is the high number
of small I/O operations that this workload requires. As
the number of server increases, the number of request-
s randomly assigned to each server in a sub-batch de-
creases, even as increasing the number of clients causes
each server to process more sub-batches. The net result
is that as the number of server increases, each server per-
forms an ever larger number of ever smaller-sized I/O
operations—which of course hurts performance. Note
however that the extent of Salus’ slowdown with respect
to HBase is virtually the same (28%) in both the 9-server
and the 108-server experiments, the letter that Salus’
overhead does not grow with the scale of the system.

5.2.4 Pipeline commit
Salus achieves increased parallelism by pipelining PUTs
across barrier operations—Salus’ PUTs always commit
in the order they are issued, so the barriers’ constraints
are satisfied without stalling the pipeline. Figure 13 com-
pares HBase and Salus by varying the number of opera-
tions between barriers. Salus’ throughput remains con-
stant at 18 MB/s as it is not affected by barriers, whereas
HBase’s throughput suffers with increasing barrier fre-
quency: HBase achieves 3MB/s with a batch size of 1
and 14 MB/s with a batch size of 32.

6 Related work
Scalable and consistent storage. Many existing sys-
tems provide the abstraction of scalable distributed stor-
age [6, 11, 14, 27] with strong consistency. Unfortunate-
ly, these systems do not tolerate arbitrary node failures.
While these systems use checksums to safeguard data

written on disk, a memory corruption or a software glitch
can lead to the loss of data in these systems (§ 5.1). In
contrast, Salus is designed to be robust (safe and live)
even if nodes fail arbitrarily.

Protections in local storage systems Disks and stor-
age sub systems can fail in various ways [7, 8, 18, 23, 34,
37], are so can memories and CPUs [33, 38] with disas-
trous consequences [35]. Unfortuantely, end-to-end pro-
tection mechanisms developed for local storage system-
s [35, 41] are inadequate for protecting the full path from
a PUT to a GET in complex systems like HBase.

End-to-end checks. ZFS [41] incorporates an on-disk
Merkle tree to protect the file system from disk cor-
ruptions. SFSRO [19], SUNDR [26], Depot [31], and
Iris [40] also use end-to-end checks to guard against
faulty servers. However, none of these systems is de-
signed to scale to thousands of machines, because, to
support multiple clients sharing a volume, they depend
on a single server to update the Merkle tree. Instead,
Salus is designed for a single client per volume, so it can
rely on the client to update the Merkle tree and make the
server side scalable. We do not claim this to be a ma-
jor novelty of Salus; we see this as an example of how
different goals lead to different designs.

BFT systems. While some distributed systems tolerate
arbitrary faults (Depot [31], SPORC [17], SUNDR [26],
BFT RSM [13, 16]), they require a correct node to ob-
serve all writes to a given volume, preventing a volume
from scaling with the number of nodes.

Supporting multiple writers. We are not aware of any
system that can support multiple writers while achieving
ordered-commit, scalability, and end-to-end verification
for read requests. One can tune Salus to support multiple
writers by either using a single server to serialize requests
to a volume as shown in SUNDR [26], which of course
hurts scalability, or by using weaker consistency models
like Fork-Join-Casual [31] or fork* [17].

7 Conclusions
Salus is a distributed block store that offers an unprece-
dented combination of scalability and robustness. Sur-
prisingly, Salus’ robustness does not come at the cost of
performance: pipelined commit allows updates to pro-
ceed at high speed while ensuring that the system’s com-
mitted state is consistent; end-to-end checks allow read-
ing from one replica safely; and active replication not
only eliminates reliability bottlenecks but also eases per-
formance bottlenecks.

Acknowledgements
We thank our shepherd Arvind Krishnamurthy and the
anonymous reviewers for their insightful comments.
This work was supported in part by NSF grants CiC-
FRCC-1048269 and CSR-0905625.

13

370 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI ’13) USENIX Association

References
[1] Amazon Elastic Block Store (EBS). http://aws.amazon.com/

ebs/.
[2] Amazon Elastic Compute Cloud (EC2). http://aws.amazon.

com/ec2/.
[3] D. Anderson, J. Chase, and A. Vahdat. Interposed Request Rout-

ing for Scalable Network Storage. In OSDI, 2000.
[4] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and

R. Wang. Serverless Network File Systems. ACM Transactions
on Computer Systems, 14(1):41–79, Feb 1996.

[5] Apache Hadoop FileSystem and its Usage in Facebook. http:
//cloud.berkeley.edu/data/hdfs.pdf.

[6] Apache HBASE. http://hbase.apache.org/.
[7] L. N. Bairavasundaram, A. C. Arpaci-Dusseau, R. H. Arpaci-

Dusseau, G. R. Goodson, and B. Schroeder. An analysis of data
corruption in the storage stack. TOS, 2008.

[8] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An analysis of latent sector errors in disk drives.
In SIGMETRICS, 2007.

[9] W. Bolosky, D. Bradshaw, R. Haagens, N. Kusters, and P. Li. Pax-
os Replicated State Machines as the Basis of a High-Performance
Data Store. In NSDI, 2011.

[10] M. Burrows. The Chubby lock service for loosely-coupled dis-
tributed systems. In OSDI, 2006.

[11] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. M-
cKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Ud-
daraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali, R. Ab-
basi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhardwaj,
S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Mani-
vannan, and L. Rigas. Windows Azure Storage: a highly available
cloud storage service with strong consistency. In SOSP, 2011.

[12] M. Castro and B. Liskov. Proactive Recovery in a Byzantine-
Fault-Tolerant System. In OSDI, 2000.

[13] M. Castro and B. Liskov. Practical Byzantine fault tolerance and
proactive recovery. TOCS, 2002.

[14] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber. Bigtable: A distribut-
ed storage system for structured data. In OSDI, 2006.

[15] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Consistency Without Ordering. In FAST, 2012.

[16] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riché. UpRight Cluster Services. In SOSP, 2009.

[17] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten.
SPORC: Group Collaboration Using Untrusted Cloud Resources.
In OSDI, 2010.

[18] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong,
L. Barroso, C. Grimes, and S. Quinlan. Availability in Globally
Distributed Storage Systems. In OSDI, 2010.

[19] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and secure dis-
tributed read-only file system. TOCS, 2002.

[20] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file sys-
tem. In SOSP, 2003.

[21] J. Gray. Notes on Database Systems. IBM Research Report R-
J2188, Feb. 1978.

[22] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. ZooKeeper:
wait-free coordination for internet-scale systems. In USENIX
ATC, 2010.

[23] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are disks the dom-
inant contributor for storage failures?: A comprehensive study of
storage subsystem failure characteristics. TOS, 2008.

[24] B. Lampson and H. Sturgis. Crash Recovery in a Distributed
System. Xerox PARC Research Report, 1976.

[25] E. Lee and R. A. Thekkath. Petal: Distributed virtual disks. In
ASPLOS, 1996.

[26] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure Untrusted
Data Repository (SUNDR). In OSDI, 2004.

[27] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky. SILT: A
memory-efficient, high-performance key-value store. In SOSP,
2011.

[28] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, and L. Shrira.
Replication in the Harp File System. In SOSP, 1991.

[29] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In SOSP, 2011.

[30] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and
L. Zhou. Boxwood: Abstractions as the foundation for storage
infrastructure. In OSDI, 2004.

[31] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish. Depot: cloud storage with minimal trust. In
OSDI, 2010.

[32] R. Merkle. Protocols for public key cryptosystems. In Symposium
on Security and Privacy, 1980.

[33] E. B. Nightingale, J. R. Douceur, and V. Orgovan. Cycles, cells
and platters: an empirical analysis of hardware failures on a mil-
lion consumer PCs. In Eurosys, 2011.

[34] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a
large disk drive population. In FAST, 2007.

[35] V. Prabhakaran, L. Bairavasundaram, N. Agrawal, H. Gunawi,
A. Arpaci-Dusseau, and R. Arpaci-Dusseau. IRON file systems.
In SOSP, 2005.

[36] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method
for Obtaining Digital Signatures and Public-Key Cryptosystems
(Reprint). CACM, 1983.

[37] B. Schroeder and G. A. Gibson. Disk failures in the real world:
What does an MTTF of 1,000,000 hours mean to you? In FAST,
2007.

[38] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the
wild: a large-scale field study. In SIGMETRICS, 2009.

[39] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop
Distributed File System. In MSST, 2010.

[40] E. Stefanov, M. van Dijk, A. Oprea, and A. Juels. Iris: A Scalable
Cloud File System with Efficient Integrity Checks. In ACSAC,
2012.

[41] I. Sun Microsystems. ZFS on-disk specification. Technical re-
port, Sun Microsystems, 2006.

[42] HDFS Usage in Yahoo! http://www.aosabook.org/en/
hdfs.html.

[43] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A Scalable
Distributed File System. In SOSP, 1997.

[44] Y. Wang, M. Kapritsos, Z. Ren, P. Mahajan, J. Kirubanandam,
L. Alvisi, and M. Dahlin. Robustness in the Salus scalable block
store. Technical Report TR-12-24, The University of Texas at
Austin, Department of Computer Science, 2012.

14

